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ABSTRACT
In this paper, the qualitative theory of large-scale dynam-
ical systems is surveyed. In particular, the focus is the
Hopfield Neural networks both with and without pertur-
bations. Properties relating to asymptotic and exponen-
tial stability and instability are detailed. A model reduc-
tion technique based on balanced truncation is applied to
the neural networks. Its effect on the stability properties
of the networks is then examined. A numerical test illus-
trates some important points.

1. INTRODUCTION
Nonlinear neural networks such as the Hopfield neu-
ral network [Hopfield (1982)], [Hopfield et al. (1986)],
[Denker (1986)] are powerful computational systems for
a wide variety of applications [Borisyuk et al. (2005)],
[Edelstein-Keshet (1986)]. This lies in the fact that they
are extremely robust to malfunctions. Their dynamic be-
haviour exhibits stable states and this is advantageous.
For example, a time evolution of an array of neuron-like
elements towards equilibrium points can be viewed as the
evolution of an imperfect pattern towards a correct stored
pattern. As stated in [Hinton et al. (Eds)], this is similar
to the storage of information in an associative memory
[Kohonen (1984)].

In most of the applications involving neural networks,
the model equations form a large-scale system (see e.g.
([Pomerlau et al. (1988)], [Iwata et al. (1990)], [Griffin
et al. (1991)] and [Wawrzynek et al. (1993)]) and conse-
quently, this leads to costly and inefficient computations.
Therefore, model reduction is of paramount importance.
However, its effect on the stability properties of the sys-
tem is crucial in determining its usefulness. The reduced
model must mirror the properties of the original system if
it is to be of practical utility. Furthermore, the behaviour
of the reduced system subject to perturbations must also
match that of the original system.

Nonlinear model reduction has increasingly become
a focus of research as in general, linear models are in-
adequate to describe real-world processes. While nu-

merous approaches for linear model reduction have been
proposed [Antoulas (2003)], there is a dearth of effec-
tive nonlinear model reduction techniques. Balanced
truncation, as pioneered by Moore [Moore (1981)], is a
very effective linear model reduction technique and con-
sequently, it has been extended by several authors for
nonlinear systems. For example, Scherpen introduced
the notion of controllability and observability functions
to generalise the controllability and observability grami-
ans which characterise linear systems [Scherpen (1993)].
However, their calculation is computationally expensive
and their use is hence restricted [Scherpen (1993); Gray
et al. (1998)]. To counteract this, empirical grami-
ans have been proposed by several authors [Lall et al.
(2002)], [Hahn et al. (2002a)] and [Condon et al. (2004)].
It is the technique in [Condon et al. (2004)] that is
adopted in this work. In particular, the paper will ex-
amine the effect of the application of empirical balanced
truncation on the stability properties of both unperturbed
and perturbed neural networks.

The present paper looks at the robustness of neural net-
works to perturbations and examines if the related prop-
erties are preserved with empirical balanced truncation.

The paper is organized as follows: In section 2, the
Hopfield neural network model is described briefly. In
Section 3, the stability properties of neural networks are
sketched. Then, in Section 4, the robustness properties of
perturbed neural networks are reviewed, while the model
reduction technique is reviewed in Section 5. The preser-
vation of the robustness qualities in a reduced model is
addressed in Section 6. These results are illustrated with
a numerical example in Section 7.

2. NONLINEAR NEURAL NETWORK
Consider the following system of non-linear ODE’s
(known as Hopfield models [Hopfield (1982)], [Hopfield
et al. (1986)) in the form:

u̇i = −biui +
n∑

j=1

AijGj(uj) + Ui(t), (1)

where i = 1, . . . , n, Aij and bi are constants, Ui(t) are
functions of the time variable t. Model order reduction is
applied to the model equations (1), and the paper studies
the qualitative behaviour of the solutions of the reduced



Figure 1: Hopfield neural network model

perturbed model (see eqn.(17) below) near equilibrium
points (the positions where u̇i = 0, i = 1, . . . , n). By
setting the external inputs Ui(t), i = 1, . . . , n, equal
to zero, u∗ = [u1, . . . , un]T ∈ Rn is defined to be an
equilibrium for eqn. (1). The locations of such equi-
libria in Rn are determined by the interconnection pat-
tern of the neural network (i.e., by the parameters Aij ;
i, j = 1, . . . , n ) as well as by the parameters bi, and the
nature of the nonlinearities Gi(·), i = 1, . . . , n.

It is frequently assumed also, that

Gi(ui) = ai arctan (λiui), (2)

for some ai > 0 and λi > 0.
In neural network applications, usually the input cur-

rents Ii(t) are held constant over a time interval of inter-
est, so it is customary to define an equilibrium as a point
u∗ ∈ Rn having the following property:

−biu
∗
i +

n∑

j=1

AijGj(u∗j ) + ci = 0, (3)

where ci, i = 1, . . . , n are time-independent constants,
not necessarily equal to zero. Note that in this case, the
locations of such equilibria in Rn are determined by the
interconnection pattern of the neural network (i.e., by the
parameters Aij ; i, j = 1, . . . , N ), by the parameters bi,
the nature of the nonlinearities Gi(·), and the constant
inputs ci, i = 1, . . . , N .

In this study of the stability properties of such mod-
els, it will be assumed also that a given equilibrium
point u∗ is an isolated equilibrium point for eqn. 1, i.e.,
there exists an r > 0 such that in the neighbourhood
B(u∗, r) = {(u(t) − u∗) ∈ Rn : |u(t) − u∗| < r} no
equilibrium for eqn. 1, other than u = u∗, exists. It is
shown in [Mitchel et al. (1989)], [Li et al. (1986)] that
this assumption is a reasonable one for the case of the
systems considered herein. When analyzing the stability
properties of a given equilibrium point, it is possible to
assume, without loss of generality, that this equilibrium
is located at the origin of Rn. By appropriate coordi-
nate transformation, one can always map the equilibrium
point u∗ into the origin.

It is often convenient to view a system in the form of
(1) as an interconnection of N free subsystems (or iso-
lated subsystems) described by equations of the form:

ṗi = −bipi + AiiGi(p∗i ) + Ui(t), (4)

where i = 1, . . . , n. From this viewpoint, the terms

gi(x1, . . . , xn) =
n∑

j=1

j 6=i

AijGj(x∗j ), (5)

make up the interconnecting structure of the system in
(3).

3. STABILITY OF NONLINEAR NEURAL NET-
WORKS
3.1 Stability of Free Subsystems
Prior to describing the stability properties of the entire
neural network, one will consider a brief sketch of the
stability results concerning the individual free subsys-
tems, described by eqn. (4).

Below, there is a sketch of the basic results on the var-
ious stability properties of the equilibrium pi = 0 of the
the model equations (4) for the case of vanishing external
inputs Ui(t) = 0. The precise ε − δ definitions of such
concepts can be found, e.g., in [Miller et al. (1982)].

For any pi0, sufficiently close to pi = 0, if the so-
lutions φi(t, t0, pi0) of (4) with zero external inputs, re-
main close enough to the equilibrium pi = 0, then the
equilibrium pi = 0 of (4) will be stable for Ui(t) = 0,
i = 1, ..., n.

If pi = 0 is not stable, then it is said to be unstable.
If pi = 0 is stable and if, in addition, |φi(t, t0, pi0)|

tends to zero as t → ∞ whenever pi ∈ Di, where Di is
a subset of R containing the origin pi = 0, then pi = 0
is said to be asymptotically stable and Di is called the
domain of attraction for pi = 0. If Di ≡ R, then pi = 0
is said to be globally asymptotically stable.

If pi = 0 is asymptotically stable and if, in addition,
|φi(t, t0, pi0)| tends to zero exponentially, then pi = 0 is
said to be exponentially stable.

The direct method of Lyapunov enables the stabil-
ity properties of the origin pi = 0 for (4) to be de-
termined without the actual determination of the solu-
tions φi(t, t0, pi0). In this method, continuously differ-
entiable scalar-valued functions, vi(pi), called Lyapunov
functions, are employed. If a positive definite function
vi(pi) can be found such that the rate of change of vi(pi)
with respect to time along the solutions of (4),denoted
Dvi(pi), is negative semi-definite, then the equilibrium
pi for (4) will be stable. If a positive definite vi(pi) can
be found such that Dvi(pi) is negative definite, then the
equilibrium pi = 0 will be asymptotically stable. If, in
addition, both vi(pi) and Dvi(pi) are quadratic forms,
then pi = 0 will be exponentially stable. A more precise
and complete treatment of Lyapunov’s direct method is
given in [Miller et al. (1982)].



3.2 Stability of Neural Networks
The equilibrium u = 0 of the neural network (1) is expo-
nentially stable if: 1) for the system (1) all the external
inputs are zero: Ui(t) ≡ 0, i = 1, . . . , n; 2) the
interconnections satisfy the estimate: uiAijGj(uj) ≤
|ui|aij |uj |, for all |ui| < ri, |uj | < rj and i, j =
1, . . . , n, where aij are real constants;

3) there exists a vector α ∈ RN
+ (i.e. αT =

(α1, . . . , αN ) and αi > 0, i = 1, . . . , n) such that the
test matrix S = [sij ]

sij =
{

αi(−bi + aii) i = j
1
2 (αiaij + αjaji) i 6= j

(6)

is negative definite.
The Lyapunov function of the neural network (1)

v(u) = 1
2

∑n
i=1 αiu

2
i is considered as a weighted sum

of the Lyapunov functions of the free subsystems with
Ui(t) ≡ 0). The weighting factor α > 0 is chosen so as
to emphasize the qualitative properties of the individual
subsystems.

Finally, it should be noted that the parameters Aij need
not form a symmetric matrix for the definitions of stabil-
ity given previously to hold.

To conclude, the books by [Miller et al. (1982)],
[Mitchel et al. (1977)] give a more detailed survey on
stability analysis.

4. NONLINEAR NETWORKS WITH PERTURBA-
TIONS
Consider the perturbed version of the Hopfield model (1)

u̇i = −b̃iui +
n∑

j=1

ÃijG̃j(uj) + Ui(t), (7)

where b̃i = bi + ∆bi, Ãij = Aij + ∆Ãij (note, that
∆Ãij does not need to be a symmetric) and G̃j(uj) =
Gj(uj) + ∆G̃j(uj) (∆G̃j(uj) ∈ C2[R, (−1, 1)]), 1 ≤
i ≤ n.

The system (1) is said to be robust, if for every asymp-
totically stable equilibrium ue of (1), and for every ε > 0,
there is a δ > 0, such that for any perturbed system (7),
as long as

max {|∆bi|, |∆Aij |, |∆Gj(ue)|, |∆G′j(ue)|, |Ui|} < δ

where

∆G′j(uj) =
d(∆Gj)(uj)

duj
,

there is an asymptotically stable equilibrium ũe, of sys-
tem (7), such that |ue − ũe| < ε.

To summarise, robustness means that the system (1)
is not overly sensitive to small perturbations. This is
very important from a practical viewpoint as robustness
ensures that small errors encountered in practical imple-
mentations of associative memories will not affect in an
adverse manner the accuracy of the desired stored memo-
ries. Robustness ensures that the locations of the desired

asymptotically stable equilibria, which are used as mem-
ories in the neural networks, are not affected adversely
by small perturbations.

The equilibrium ue of the system (7) is exponentially
stable iff [Wang et al. (1994)]: 1) ue is an equilibrium
point of both (7) and (1); 2) the matrix −b + AG′ is
Hurwitz stable; 3)

max {|∆bi|∞, |∆Aij |∞, |∆Aij |1, |∆G′j(ue)|∞, } < K0,

where 1
K0

= 2|P|∞(1 + |A|∞ + |G′|∞), and P = PT

is a positive definite symmetric matrix, determined by
PA+AT P = −E, where E ∈ Rn×n is the identity ma-
trix, A = [Aij ]ni,j=1, b = diag (b1, . . . , bn), and where

G′(u) =
(

dG1(u1)
du1

, . . . ,
dGn(un)

dun

)T

.

Note that K0 is a positive number, that is determined
by system (1) and is independent of the system pertur-
bations. It is an admissible bound for robust stability.

The equilibrium ũe of the system (7) is exponentially
stable iff [Wang et al. (1994)]: 1) the matrix −b + AG′

is Hurwitz stable; 2)

max {|∆bi|∞, |∆Aij |∞, |∆Aij |1, |∆G′j(ue)|∞, } < K,

where 1
K = 4|P|∞(1 + |G|1 + |A|∞), where again

P = PT is a positive definite symmetric matrix, deter-
mined by PA + AT P = −E, (E ∈ Rn×n is the iden-
tity matrix), |G|1 = sup|x−xe|∞<ε|G′|∞, |ũε − uε| <
min (ε, 1/(4|G|2|A|∞|P|∞)), A = [Aij ]ni,j=1 is a n×n
- matrix, and b = diag (b1, . . . , bn).

Note that in the definitions given above, it is supposed
that there exists an equilibrium of the perturbed system
(7) that remains close to the corresponding equilibrium
of the unperturbed system (1) for t > 0. For small per-
turbations, these assumptions hold true [Mitchel et al.
(1989)], [Mitchel et al. (1977)]. [Wang et al. (1994)]
give a detailed study of the stability conditions relating
to perturbed neural networks.

In specific applications involving adaptive schemes for
learning algorithms in neural networks, the interconnec-
tion patterns (and external inputs) are changed to yield
an evolution of different sets of desired asymptotically
stable equilibrium points with appropriate domains of at-
traction. One can derive a series of conditions, that can be
used as constraints to guarantee that the desired equilib-
ria always have the desired stability properties [Mitchel
et all., 1989].

5. MODEL REDUCTION OF NONLINEAR
SYSTEMS: EMPIRICAL GRAMIANS AND BAL-
ANCED TRUNCATION
Let us consider nonlinear systems of the most general
form:

ẋ(t) = f(t,x(t)) + B(t)u(t) (8)
y(t) = h(t,x(t))



where f : Rn → Rn and h : Rn → Rq are non-linear
functions and the function u(t) ∈ Rn is regarded as an
input signal to the system (8) and the function y(t) ∈ Rq

is an output signal. In this case, f(t,x(t)) is called a
dynamical term (or drift term) and B(t)u(t) is called a
source term (or diffusion term).

The unperturbed Hopfield network model (1) corre-
sponds to (8) if the components of f(t,x(t)) are given
by

fi(t,x(t)) = −bixi +
n∑

j=1

AijGj(xj)

and the source term in (8) is given by the external input
U(t). In a similar manner, one can identify the different
terms in the perturbed Hopfield model (7).

Suppose that the equilibrium point is reached when
u(t) = 0. Consider the vicinity of an isolated asymp-
totically stable equilibrium point (steady–state solution)
which is supposed to be a constant solution and is chosen
for simplicity at x = 0, i.e. f(t, 0) ≡ 0. It is also as-
sumed that the system does not leave the region of attrac-
tion of this equilibrium point when the input is applied
for the initial data used. If the system exhibits multiple
steady–state solutions, then the analysis may be applied
separately in the vicinity of each solution provided that
extra care is taken to ensure that the system does not leave
the region of attraction of the corresponding (asymptoti-
cally stable) equilibrium point.

Let also xilm(t) be the solution of (8) with u ≡ 0:

ẋ(t) = f(t,x(t)), xilm(0) = cmTlei. (9)

It is assumed that the initial condition in (9) does not take
the system outside the region of attraction of the equilib-
rium point x = 0. Then the ’state-space average’ of the
’nonlinear’ fundamental solution may be defined as:

〈Θ(t)〉 =
1
rs

s∑
m=1

r∑

l=1

n∑

i=1

1
cm

xilm(t)eT
i TT

l (10)

where M ≡ {c1, c2, . . . , cs} is the set of s positive con-
stants, Tn ≡ {T1, T2, . . . , Tr} – is the set of r orthogonal
n × n matrices and En ≡ {e1, e2, . . . , en} is the set of
standard unit vectors in Rn. So for the system in (8), the
nonlinear controllability gramian is defined as:

P =
∫ ∞

0

〈Θ(−τ)〉−1B(−τ)BT (−τ)〈Θ(−τ)〉−1T dτ

(11)
where 〈Θ(t)〉 is as described in (10) and the nonlin-
ear observability gramian is defined as [Condon et al.
(2004)]:

Q =
∫ ∞

0

zT (τ)z(τ)dτ,

z(t) =
1
rs

∑

i,l,m

1
cm

yilm(t)eT
i TT

l (12)

yilm(t) is the output which corresponds to an initial state
xilm(0) = cmTlei and a zero source term.

Let T be the matrix that transforms both P and Q into
diagonal form S as follows:

TPT ∗ = S, (T−1)∗QT−1 = S, (TPQT−1 = S2)

The states of the system are then ordered according to
decreasing values of the diagonal entries in S. Once bal-
anced, a Galerkin projection Π = [I, 0], where Π is k×n
projection matrix and I is k × k unit matrix, is then em-
ployed to project the transformed system onto the states
corresponding to the k largest singular values (i.e. the
k largest values of the diagonal matrix S where k is the
desired dimension of the reduced-order model).

The final reduced nonlinear model that corresponds to
(8) takes the form:

ż(t) = ΠT f(t, T−1Π∗z(t)) + ΠTB(t)u(t)
y(t) = h(t, T−1Π∗z(t)) (13)

6. PERTURBED NONLINEAR NETWORKS AND
MODEL REDUCTIONS
The model reduction technique of Section 5 will now be
applied to the perturbed neural networks.

6.1 The case of free subsystems
In the case of vanishing Ui(t), the reduced nonlinear
model that corresponds to (4) is given by

żi = −b̄izi + ĀiiḠi(p̄i), (14)

or in vector form

żi = −B̄z + ĀḠ(p̄). (15)

where B̄ = ~BE, ~B = (b̄1, . . . , b̄n)T (here, again E is the
n×n unit matrix) and the reduced model parameters are
expressed through the initial ones as follows:

Ā = ΠT ÃT−1Π∗, z = ΠTp (16)
B̄ = ΠT B̃T−1Π∗, Ḡ = ΠT G̃.

Here, Π is k × n Galerkin projection matrix and T is the
transformation matrix that casts both the gramians (11)
and (12) into diagonal form (cf. Section 5).

If it is possible to force the solutions φi(t, t0, pi0, ε) of
(4) with Ui(t = 0), i = 1, ..., n to remain as close as
desired to the stable equilibrium pi = 0 for all t > t0 >
0, by choosing pi0 to be sufficiently close to pi = 0, then
it will be possible to force the solutions φ̄i(t, t0, pi0) =
ΠT φ̃i(t, t0, pi0) of (15) to remain as close as desired the
same stable equilibrium point for all t > t0 > 0. So the
equilibrium pi = 0 of (4) with zero external inputs, will
be also a stable equilibrium point for (14). The proof can
be done in a similar manner to those in [Condon et al.
(2008)].

Analogously, if pi = 0 is an unstable equilibrium point
for eqn. (4) with zero external inputs, then it it will be
unstable equilibrium point for eqn. (14) as well.



Finally, if pi = 0 is exponentially stable for eqn. (4)
with zero external inputs, then it it will be exponentially
stable equilibrium point for eqn. (14) as well.

The proofs are in a similar manner as in [Condon et al.
(2008)].

6.2 The case of neural networks
Now let us consider the case of interconnected systems
(neural networks).

Applying again model order reduction (as it is outlined
in Section 5), we get a reduced nonlinear model, that cor-
responds to (7) in the form

żi = −b̄izi +
n∑

j=1

ĀijḠj(p̄j) + Ūi(t). (17)

or in vector form

żi = −B̄z + ĀḠ(p̄) + Ū(t), (18)

and the reduced model parameters are expressed through
the initial ones (using the Galerkin projection matrix Π
and the transformation matrix T ) as follows:

Ā = ΠT ÃT−1Π∗ Ū = ΠT Ũ, (19)
B̄ = ΠT B̃T−1Π∗, Ḡ = ΠT G̃.

If the equilibrium point p = 0 for eqn. (7) is asymptoti-
cally stable in the case of zero external input Ui(t) = 0,
then it is asymptotically stable equilibrium point for eqn.
(17) as well.

Indeed, if there exist constants σi1 > 0 and σi2 > 0
for some r̃i > 0, such that σi1p

2
i < piGi(pi) < σi2p

2
i ,

|pi| < ri, then one can find constants σ̃i1 > 0 and σ̃i2 >
0, such that:

σ̃i1z
2
i < ziG̃i(zi) < σ̃i2p

2
i , |zi| < r̃i. (20)

If the interconnections for eqn. (4) satisfy the estimate:
uiAijGj(xj) ≤ |ui|aij |uj |, for all |ui| < ri, |uj | < rj

and i, j = 1, . . . , n, where aij are real constants, then the
interconnections for eqn. (17) will satisfy the estimate:
ziÃijG̃j(zj) ≤ |zi|ãij |zj |, for all |zi| < r̃i, |zj | < r̃j

and i, j = 1, . . . , n, where ãij are suitably chosen real
constants. Secondly, if the test matrix S = [sij ] for eqn.
(4) is negative definite, then the test matrix S̃ = [̃sij ] for
eqn. (17) will be negatively definite as well.

Detailed proofs for the stability results of neural net-
works can be found in [Mitchel et al. (1989)] and for the
effect of model reduction on the stability of the Hopfield
type network models – in [Condon et al. (2008)].

Summarizing, if u = 0 is an exponentially stable equi-
librium of the perturbed neural network (7), then it is
an exponentially stable equilibrium of the reduced neu-
ral network (18), for the case when all the external inputs
are zero: Ui(t) ≡ 0, i = 1, . . . , n.

Hopfield model
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Figure 2: Phase portrait for the unperturbed Hopfield
neural network model

7. EXAMPLE
For illustration of some of the stability results given
above, we will take a specific test case, taken from [Hop-
field (1984); Mitchel et al. (1989)]. For this case

A =
(

0 1
1 0

)
, gi(xi) =

2
π

arctan
(

λπ

2
xi

)
,

where λ = 1.4. Choosing the specific values of b1 and
b2 to be b1 = b2 = 1.1, the model equation (1) takes the
form:

u̇1 = −1.1u1 + g2(u2) + U1(t)
u̇2 = −1.1u2 + g1(u1) + U2(t). (21)

In the case of zero input U1(t) = U2(t) = 0
we have three equilibrium points for eqn. (21):
(−0.454,−0.454), (0, 0) and (0.454, 0.454) ( as it is
plotted in Fig.2).

By using the direct Lyapunov methods, one can prove
that the equilibrium point (0, 0) is not globally asymptot-
ically stable. The precise proof can be found in [Mitchel
et al. (1977)] and [Mitchel et al. (1989)].

The translated nonlinearities Gi(wi), i = 1, 2 for the
equilibrium points (±0.454,±0.454) are given by:

Gi(wi) =
2
π

arctan
(

λπ

2
(wi ± 0.454)

)

+
2
π

arctan
(

λπ

2
(∓0.454)

)
(22)

In this case, we have 0 < Gi(wi)/wi < σi2, σi2 < b =
1.1, when |wi| < 0.454 and the test matrix S takes the
form

S =
( 1.1

σi2
−1

−1 1.1
σi2

)
.

Since all successive principal minors of S are positive,
the equilibrium points (±0.454,±0.454) are asymptoti-
cally stable.

Consider the perturbed system, that corresponds to
(21) in the form:

u̇1 = −1.1u1 + (1 + ε)g2(u2) + U1(t)
u̇2 = −1.1u2 + (1 + ε)g1(u1) + U2(t), (23)



where ε is a perturbation parameter.
Eqn. (23) can be linearised by using a Taylor se-

ries expansion of arctanx about the origin: arctan x =
x− x3

3 +o(x4). For sufficiently small ε, one of the eigen-
values of the linearised system is positive while the other
is negative and hence the origin is a saddle point for both
the perturbed and unperturbed systems. For the other
equilibrium points when small perturbations are applied,
the equilibrium points remain asymptotically stable.

In general, however, as shown in [Wang et al. (1994)],
the perturbed neural network system may not have the
same asymptotically stable points as the unperturbed sys-
tem.

For large scale systems, when empirical balanced trun-
cation is applied, the same conclusions can be made.

8. CONCLUSIONS

The paper has examined the stability properties of large-
scale dynamical systems. In particular, it has focussed
on nonlinear neural networks with perturbations. For this
type of system, the properties of both the individual neu-
rons and the interconnecting structure are employed to
determine results for the system. The paper proceeds to
ascertain the effect of model reduction technique on the
resultant robustness of the equilibrium points of the sys-
tem.

Further publications will explore the effect of model
order reduction on the stability properties of perturbed
nonlinear neural networks with feedback.
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