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Abstract: It is impossible to collect more than a tiny proportion of all of the 

possible examples of a given hue, to form a training set for a machine that learns to 

discriminate colours. In view of this, it is argued that colour generalisation is 

essential. Three mechanisms for learning colours as defined by a human being are 

described. One of these is based upon an idea developed by AP Plummer and is 

implemented in a commercial device known as the Intelligent Camera. This 

implementation can learn the characteristics of coloured scenes presented to it, and 

can segment a video image in real-time. This paper presents four procedures which 

allow the range of colours learned by such a system to be broadened, so that 

recognition is made more reliable and less prone to generating noisy images, which 

are difficult to analyse. Three of the procedures can be used to improve colour 

discrimination, while a fourth procedure is used when a single and general colour 

concept has to be learned. Several experiments were devised to demonstrate the 

effectiveness of colour generalisation. These have shown that it is indeed possible to 

achieve reliable colour discrimination / recognition for such tasks as  inspecting 

packaging and fruit. A practical system based upon the Intelligent Camera and 

controlled by software written in Prolog has been developed by the authors and is 
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being used in a study of methods for declarative programming of machine vision 

systems for industrial applications.  

 

Key words: Machine Vision, Systems Engineering, Teaching by showing, Real-

time colour recognition, Prolog. 

 

 

1 Introduction 

 

1.1  Colour Recognition in a Symbolic Programming Environment 

 

Consider the task of designing a machine to inspect printed cardboard and plastic 

cartons, such as those used for food products, household goods, toiletries, etc. These 

are often printed in several colours. For example, the container of a certain brand of 

margarine has a wavy yellow streak across its top, in addition to the product name, 

which is printed in red. Other features on the top are printed in blue (large blob-like 

regions) and black (small lettering). (See Figure 1.) Inspecting such a container could 

be achieved by first isolating the different colours and then applying conventional (i.e. 

monochrome) image analysis procedures to each of the colour separations. In this 

article, we shall discuss electronic filters that are capable of performing such a 

separation of colours. (Plummer 1991; Intelligent Camera 1990) A Programmable 

Colour Filter (PCF)  might, for example, isolate the yellow streak on the margarine 

tub, so that it can be examined in detail. Once the yellow streak has been inspected, 

other coloured features can be treated in the same way. Of course, such a filter should 

be able to tolerate wide variations in the brightness of the scene being examined; it 

should be sensitive to colour, not intensity.  

 

 Inspecting coloured cartons, containers, etc. is a typical application for the 

techniques that we shall discuss. Amongst the other applications areas, we may list: 
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reading resistor colour codes, identifying coloured wires, inspecting iconic displays 

on car dash boards, etc. 

 

 To illustrate how colour recognition may be used in symbolic programming of a 

vision system, we shall explain how we can identify bananas, which is a rather 

simpler task than inspecting margarine tubs, which we shall discuss in detail later. 

The following is a description of a banana, expressed in formalised English. 

 
X is a banana if 
 X is yellow and 
 the length of X is U and  % U is the length in mm 
 60 ≤ U ≤  800 and 
 the width of X is V and  % V is the width in mm 
 10 ≤ V ≤ 50. 

 

This recognition rule for bananas1 can be translated into Prolog  in the following way. 

(Prolog has been used for several years as a medium for programming vision systems. 

(Batchelor 1991; 1992; Batchelor and Whelan 1993; Whelan 1993) and will be 

discussed again in this article.) 
 
object(X, banana) :- 
 colour(X,yellow), 
 length(X,U), 
 60 ≤  U, 
 U ≤ 800, 
 width(X,V), 
 10 ≤ V, 
 V ≤ 50. 

 

                                                 

1 A more complicated rule for recognising bananas is  needed in certain parts of the 

world. In Sri Lanka, for example, there are 14 different varieties of banana, including 

types that are bluish-green and red. There is also a considerable variation in size. In 

this situation, we simply need to add further clauses of the type listed here.  
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This demonstrates how we can incorporate colour recognition in a symbolic 

description of an object.  A recognition rule for a multi-coloured artefact, such as the 

top of a margarine tub can often be expressed in a similar way as a program written in 

Prolog. To do this, we might isolate each colour in turn, then perform a series of 

simple tests, such as counting blobs, then measuring the area, and the dimensions of 

the minimum-area bounding rectangle for each one. 

 

 The top of the margarine tub described above can be inspected thus: 

 
inspect( ) :- 
 remember(parameters,[]),  % Initialise parameter store2 
 member(X,[margarine_tub_yellow, margarine_tub_red, 
  margarine_tub_blue, black]), 
 isolate(X),    % Digitise image. PCF recognises <X> 
 measure(Y),   % X is a list of measurements of white 

     % areas 
 recall(parameters,Z),  % Refer to parameter store 
 append(Y,Z,Q),   % Append new parameters to list … 
 remember(parameters,Q),   % … and store the results  
 fail.     % Clause 1 always fails 
 
inspect(margarine_tub) :- 
 recall(parameters,X),  % Refer to parameter store 
 ideal_parameters(Y),  % Consult the database 
 euclidean_distance(X,Y,D), % Measure similarity between X and Y 
 small(D).    % Is D small enough? 

 

Notice that the goal inspect(margarine_tub) fails, if the tub is defective and 

succeeds, if it is acceptable. 

 

 We have tried to demonstrate that colour recognition can be used to good effect 

in a symbolic programming environment. To do so, we need a machine that can 

                                                 

2 remember and recall are features of MacProlog (1992) and are similar in function 

to properties in LISP. The stored parameters can be updated, unlike instantiated 

variables. 
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quickly learn to recognise colours such as “margarine-tub yellow”, “margarine-tub 

red”3, given a few examples of each. The samples on which such an inspection 

machine is to be designed would most conveniently be obtained by examining a small 

number of margarine tubs on a production line. 

 

1.2 The Naming of Colours 

 

It is not difficult to find authoritative statements in the literature of colour theory 

about the subjective nature of colour perception. For example: 

 

"One cannot, strictly speaking, measure colour instrumentally, because it is a 

subjective sensation. …  In everyday conversation, one compares colours to 

some readily understood physical standard, e.g. orange, lemon, cream". 

(Chamberlain and Chamberlain 1980) 

and 

"Careful observations by qualified observers have shown, in fact, that the 

defining features of the concept of colour are not, and probably cannot be, 

realised at will, even in the experimental laboratory". (Optical Society of 

America 1953). 

                                                 

3 Colours such as “margarine-tub yellow” and “margarine-tub red” are probably 

specified, by the printer, in terms of some standard colour atlas, such as the Munsell 

Book of Color. (Munsell Color Co.) However, for systems reasons, a colour atlas 

cannot be used as the basis for programming a real-time colour recognition machine 

working in a factory environment. The terminology used (for the colours of cartons) 

in a food processing plant, as distinct from a printing works, is likely to be informal 

and non-scientific; factory workers would certainly prefer to use to the term 

“margarine-tub yellow”  rather than “5Y 5\4”, which is a typical Munsell colour 

label. 
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  The axiom on which this article is based is that the names of colours cannot be 

defined mathematically. The standard CIE (1931) Chromaticity Diagram, reproduced 

in Figure 2, should properly be regarded as a conceptual aid, since it cannot form a 

precise basis for discriminating between colours. The position of the boundary 

between any two named colours in the Chromicity Diagram is plotted for an 

hypothetical standard observer, working in carefully controlled lighting conditions. 

In a practical situation, however, an industrial machine vision system is likely to be 

taught by a person untrained in colour science, working in a factory environment, 

where the lighting is highly variable. Schettini (1993) points out that camera, lighting 

and filter combinations affect the RGB values measured by a video camera. 

 

 Several authors, have represented the colours of ordinary everyday objects as 

points plotted on the Chromaticity Diagram and some of these are plotted in Figure 2. 

(Chamberlain and Chamberlain 1980). However, it should be noted that each point 

represents just one instance of a broad class of objects. The set of all ripe tomatoes, 

for example, is represented more accurately by a cluster of points, while ripening 

tomatoes generate a broad serpentine curve in the Chromaticity Diagram. The 

Chromaticity Diagram does not include definitions for the range of such colours as 

“margarine-tub yellow”  or even “sky blue”. 

 

 The fact that people recognise colours by some mental process that is not fully 

understood simply has to be accepted. (Chamberlain and Chamberlain 1980; Optical 

Society of America 1953) The authors suggest that a colour recognition filter used 

when inspecting artefacts such as food packaging, household good and 

pharmaceutical cartons could be designed using the principle of teaching-by-showing.  
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1.3 Notation 

 

The set notation introduced in this section allows us to define colour generalisation 

process in formal mathematical terms. Generalisation is seen as being an essential 

function in any learning system. 

 

 Let  <X> denote the set of colours of objects in that class defined by human 

beings and which is called X. Thus , <banana> is the set of colours of bananas, while 

<green> is the set of colours of those objects that are referred to as “green” by human 

beings. A machine that is designed for colour recognition, might well use the 

conventional RGB colour separations. To take account of this fact, we shall therefore 

take {X} as being the set of all of those (R,G,B)-vectors that can be associated with 

the label X. Notice that in this notation, <X> is defined by a person, while {X} is a set 

of 3-element (R,G,B)-vectors, derived by a machine.  

 

1.4 Recognition and Generalisation of Colours 

 

We are all familiar with certain classes of colour, such as <yellow>, <leaf green>, 

<sky blue>, etc., while others are quickly learned, when we are engaged in certain 

specific activities, such as gardening, cooking, manufacturing motor cars, etc. For 

example, <daffodil> is quickly learned by Welsh children, since the daffodil is the 

national emblem of Wales. Obviously, <daffodil>, <canary>, <banana> and <lemon> 

are all proper sub-sets of <yellow>.4 Hence, we may regard, the last mentioned as a 

more general colour concept than the others.  

 

                                                 

4 Clearly, we are ignoring albino canaries, unripe / diseased fruit, red bananas from 

Sri Lanka and mutant daffodils. 
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 Implicit in our approach to colour recognition is the concept of teaching by 

showing. It is important, of course, to make the maximum use of each colour sample, 

since they may be difficult and / or expensive to collect. It is impossible, in practice, 

to obtain more than a very small proportion of all the colours of a class such as 

<yellow>, so we must teach our machine using a few well chosen samples and leave 

it to generalise. Generalisation is universally accepted as being essential in all pattern 

recognition machines, of which the PCF is an example. 

 

 Given that <daffodil> ∪ <canary> ∪ <banana> ∪ <lemon> ⊆ <yellow> it is 

reasonable to expect that {daffodil} ∪ {canary} ∪ {banana} ∪ {lemon} ⊆ {yellow}. 

Now, we want to find some operation upon the set {daffodil} ∪ {canary} ∪ {banana} 

∪ {lemon} which will generate an enlarged set E, such that   

 

 E ⊇ {daffodil} ∪ {canary} ∪ {banana} ∪ {lemon}  

and  

 ∀ X: X ∈ E → X ∈ {yellow} 

 

An important but ill-defined condition is that the set E should be as small as possible, 

thereby avoiding over-generalisation.  

 

 This is one of the two types of colour generalisation we discuss in this paper. It 

is appropriate for those situations in which we are interested in colour recognition 

(single colour class), as distinct from colour discrimination (more than one colour 

class). 

 

  We shall present one procedure for generalisation in colour recognition. 

(Procedure 4  defined below) A different type of colour generalisation is needed 

when we have to discriminate between colours. For reasons of economy, we might, 

for example, need to use a small data set to learn to distinguish between {apple} and 
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{tomato} and wish to make the discrimination more reliable, so that colours in these 

sets that were not represented in the training data are classified appropriately. We 

shall describe this type of colour generalisation  in more formal terms later, after we 

have described how colour recognition can be performed in electronic hardware. 

 

 

2 Colour recognition 

 

2.1 Previous work 

 

The inspection of coloured objects and surfaces by machine has, of course, been 

studied by numerous researchers over many years. Particular attention has been paid 

to the characterisation and matching of subtle colouring of fabrics, paint, paper, 

printing and automobiles. Since very precise colour measurement is needed in these 

areas, non-imaging techniques have been widely used. It should be understood that 

the approach that we have taken is quite different, since we are concerned with 

relatively coarse, high-speed recognition and discrimination processes. A typical 

application for the techniques we shall discuss is the inspection of packages and 

containers for food, domestic goods and pharmaceutical products on a factory 

production line. 

 

 The recognition of crops, grass, scrub, forests, water and other types of ground 

cover from colour and multi-spectral satellite / aerial imagery has also been studied 

extensively, since the early 1970s. During that early period, one of the authors (BGB) 

applied pattern recognition methods to data consisting of 3- and 4-element vectors 

describing the spectrum of the light leaving each point in a scene. (unpublished) 

Various classification techniques were used, including nearest neighbour, potential 

function and compound classifiers. (Batchelor 1975) Generalisation is an implicit 

function in all of these classification techniques. Furthermore, it is a trivial matter to 
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bias any of them, so that the likelihood of generating a selected type of error can be 

diminished to an arbitrarily small value. Self-adaptive learning methods developed for 

these classifiers lend themselves to teaching by showing. More recent work, by 

Stoksik et al (1991) used a Neural Network for colour recognition. They reported 

good accuracy of recognition, on a set of fifty colours. Broadly similar work has also 

performed by Yu et al (1993) and Parkkinen et al (1988). Among the other recent 

approaches to colour recognition has been one based on colour histograms (Swain and 

Ballard 1991), while Syeda (1991) discusses how (Euclidean) distances in the CIE 

Chromaticity Diagram can be used to estimate similarity of colours. The detection of 

clusters in RGB-space can be used as prelude to identifying regions of “similar 

colour” and assigning symbolic labels to them. Clustering can be achieved in a variety 

of ways. For example, Lambert and Batchelor (1991) used a scanning technique based 

upon the Hilbert curve to locate clusters in RGB-space. Kanamori et al (1990) 

simulated a colour recognition and interpolation (i.e. generalisation) algorithm that is 

capable of being implemented in real-time hardware. Klinker (1993) argues that the 

physics of light reflection / scattering be used to provide clues for the segmentation of 

colour images. Despite the title of her book, there is no consideration of image 

understanding in the sense that we use the term here. 

 

 Applications of colour in industrial machine vision systems were discussed in 

recent articles by Zuech (1991), Mital et al (1990). Among the industries that present 

possible applications for colour recognition are: glass recycling (Foran 1990; 

Gibboneym 1990; Gitzhofer 1991), textiles (Keesee and Aspland 1988), electronics 

(Capson and Eng 1988; Xie and Beni 1991; Barth et al 1992; Blaauw et al 1993), food 

processing (Doney 1991; Jungman and Lozano 1986),  pharmaceuticals (Zuech 

1991), packaging (Doney 1991). Agricultural applications include harvesting (Harrell 

et al 1989; Slaughter and Harrell 1989), grading of peaches (Delwiche 1989; Miller 

and Delwiche 1989; Thai and Shewfelt 1991), inspection of tomatoes, (Thai et al 

1990), corn leaves (Tarbell and Reid 1991) and grain (Zayas and Steele 1991). 
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Robotics applications of colour recognition have also been described. (Barschdorff et 

al 1988; Zheng et al 1991; Kamel and Elmaghraby 1988; Zuech 1991) Medical 

applications include the detection of tumours on human skin. (Umbaugh et al 1992) 

 

 In a recent paper, Batchelor (1992) explained how a programmable colour filter, 

based upon a look-up table, can be used in  Prolog programs. Batchelor and Whelan 

(1993) first introduced the theme which is explained in expanded form here.  

 

2.2 Real-time Recognition of Colours in Electronic Hardware 

 

Figure 3 shows the block diagram of a colour recognition system designed by 

Plummer (1991). This is built into a small self-contained commercially available 

image processing unit, called the Intelligent Camera (1990). The authors used the 

Intelligent Camera, in conjunction with control software written in Prolog (Batchelor 

1991; 1992) in the experiments reported below. Another implementation using a real-

time RGB/HSI converter chip (Umbaugh et al 1992) is suggested in Figure 4. A third 

implementation relies upon the use of the xy  parameters used to define the standard 

Chromaticity Diagram, see Figures 2 and 5. These last two configurations have not 

yet  been implemented. 

 

 Notice that in Figures 3 - 5, the output from the Look-Up Table (LUT) is a 

stream of 8-bit values, which may be regarded as forming intensities in a 

monochrome image. This image can be analysed in a conventional monochrome 

image processing sub-system. All of these hardware systems can be fully simulated in 

a software environment, but not necessarily in real-time. 

 

 The authors have shared conversations with several people who are dismissive 

of the approach to colour recognition exemplified by Figure 3, because hue, saturation 

and intensity (H,S and I) are not computed explicitly. While it is the accepted wisdom 
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that the HSI representation is better able than RGB to discriminate colours as we 

perceive them, this hardware arrangement is, in fact, quite general, since the LUT in 

Figure 3 can be programmed to generate H, S and I, given R, G and B. Hence, Figure 

3 is able to implement any functions which Figures 4 and 5 can. A further advantage 

of Figure 3 is that it relies upon cheap standard memory devices, rather than custom 

ICs or real-time divider circuits. Our discussion hereafter is based upon the system 

using a LUT with RGB inputs, as illustrated in Figure 3.  

 

 The  LUT forms the heart of the Programmable Colour Filter. The use of high-

speed random access memory (RAM) to form a look-up table, together with “flash” 

analogue-to-digital converters, makes the PCF very fast indeed. It is well able to 

perform transformations upon a digitised video signal, in real time. Training the PCF 

consists of calculating appropriate values for each of the LUT’s 262144  (= 218) 

storage cells. We shall describe the training process in a little while. 

 

 Since the outputs of the RGB colour channels are each limited to a finite range, 

it is convenient to define a cube in RGB-space within which the vector (R,G,B) is 

allowed to wander. This defines the so-called Colour Cube. (See Figures 7(a), 13 and 

Appendix). A plane inclined at angles of 45° to the RGB coordinate axes intersects 

this cube defining an equilateral triangle, called the Colour Triangle.  Hue and 

saturation are related to the position of a point in the colour triangle. The orientation 

of any vector (R,G,B) can be determined by the point of intersection of that vector 

with the colour triangle. The vector (R,G,B) is extended, if necessary, so that it 

intersects the colour triangle. 
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2.3 Programming the Colour Filter 

 

Training the PCF consists of three processes. See Figures 6 and 7. 

 

(i) Projecting all RGB vectors onto the colour triangle, which thereby 

contains the so-called colour scattergram. This process is defined in 

Figure 7(a). Let Γ(X) denote the process of projecting a point X from 

the colour cube onto the colour triangle. Then, in Figure 7(a) we see 

that Y = Γ(X). The Appendix explains how Γ(X) is calculated. 

 

(iii) Processing the colour scattergram, to form a synthetic image, S. (Image S 

is not a “picture of” anything. It is merely a convenient representation 

of the distribution of colours within the input). How this image can be 

created forms the main subject of this article. 

 

(iii) Projecting each point, Y, in image S back into the colour cube. This 

process is therefore called Back-projection. Every vector X, within the 

colour cube, that shares the same values of hue and saturation as Y, is 

assigned a number equal to the intensity at Y. These are the values 

stored within the look-up table. (See Figure 7(b).) Let Φ(Y) denote the 

result of back-projecting a point Y within the colour triangle through 

the colour cube; Φ(Y) defines a set of points and is explained in the 

Appendix. 

 

An understanding of the colour triangle and colour scattergram, their relationship to 

the colour cube and the two projection techniques outlined in steps (i) and (iii) are 

essential to the comprehension of the remainder of this article. 
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 Once the PCF has been programmed, the colour recognition process takes place 

in real-time and does not increase the computational load needed for image analysis in 

any way. 

 

 

3 Colour generalisation 

 

3.1 Colour generalisation in formal terms 

 

We have already defined colour generalisation in relation to the recognition process. 

We are now in a position to be able to do the same for colour discrimination. Suppose 

that there exists a set of colours <P1>, <P2>,…, <Pn> and that we have been able to 

procure a small sample of each one. These samples will be denoted by {A1}, {A2},…, 

{An}. From each of these, we generate a series of distinct blobs in the colour triangle. 

These will be denoted by B1, B2,…, Bn. (Each of the Bi denotes a set of white points 

in the colour triangle and represents the result of some data-reduction process applied 

to the colour scattergram derived from {Ai}. The colour scattergram is created by 

evaluating Γ(X), for all X within {A1} ∪ {A2}∪…∪ {An}. Multiple “hits” are 

recorded in the colour triangle by increasing the intensity stored at position X.) See 

Appendix. Then 

 

 B1 ∪ B2 ∪…∪ Bn ⊆ {Γ(X) | X ∈ {A1} ∪ {A2}∪…∪ {An}} 

 

When we apply a generalisation procedure in colour  discrimination, we generate a 

series of sets C1, C2,…, Cn,  from B1, B2,…, Bn,  so that Ci ⊇ Bi, i ∈ [1,n]. 

 

 The blob defined by Ci is obtained by enlarging the corresponding blob defined 

by Bi. (Figure 6) However, we also need to impose an important condition on the blob 

expansion procedure: since Bi and Bj are disjoint before expansion, Ci and Cj must 
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also be disjoint. This condition must be obeyed for all values of i and j. Then, by 

applying Φ(X) to each point in Ci, we hope to obtain a superset of Ai and more 

specifically 

 {Ai} ⊆ {Pi} ⊆ {Φ(X) | X ∈ Ci} 

 

Let us summarise this process. We have a series of colour classes <Pi>, i ∈ [1,n], 

which have been sparsely sampled and measured using the hardware, thereby 

generating the {Ai}. From {Ai}, we have been able to generate a blob Bi in the colour 

triangle and which is then expanded to form the blob Ci. By projecting Ci back into 

the colour cube, we define a volume that is bigger than {Ai} and we hope also bigger 

than {Pi}. The trick is to do this without allowing the Ci to overlap and without 

making {Φ(X) | X ∈ Ci} excessively large. 

 

 Procedures 1 - 3, defined below, are implementations of this broadly defined 

scheme for generalisation in colour discrimination, as distinct from that intended for 

colour recognition. (Procedure 4) Let us turn our attention now to the practical 

implementation of these ideas.  

 

3.2 Procedures for Colour Generalisation. 

 

The colour scattergram may be displayed as a grey-scale image, in which intensity 

indicates the number of pixels with the same values of hue and saturation. (See 

Figures 8 - 11 for some results.) The colour scattergram must be simplified before any 

further processing takes place. An obvious step is to threshold it, This process will 

generate a compact blob for each region of similar colours. See Figure 6, for example. 

It is often difficult to choose the value for  the threshold parameter with any degree of 

confidence. Choosing too high a value will result in a binary image containing a large 

spot surrounded by a cloud of small spots, many of them single, isolated pixels. This 

is unsatisfactory, since the outliers have the same weight as those at the centre of the 
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cluster, which are much more representative of the general population of points within 

the input. Outliers are also prone to the effects of camera and quantisation noise. By 

placing the threshold too high, tolerance of colour variation in the input is lost. As a 

result the PCF output will consist of a noisy image in which large regions are not 

recognised properly, even though they may be identical to areas in the scene used 

during training of the PCF. 

 

 Our approach to colour generalisation consists of adjusting the sizes of the 

blobs created by thresholding the colour scattergram. It will be necessary to do this in 

such a way that blobs which were distinct when the (multi-cluster) scattergram was 

first thresholded, remain separate. 

 

 In a typical application, a number of coloured scenes are used to design the 

PCF. As each scene is being viewed, a scattergram is generated in the colour triangle. 

Noise is then removed from the scattergram, using common image processing 

operations, such as low-pass filtering. This is followed by thresholding. If the input 

scene consists of a single colour, such as <margarine-top yellow>, thresholding the 

scattergam, after clean-up, creates a single blob, Bi. This process is repeated for each 

colour we wish to use to design the PCF. As each new blob (Bi, i = 1,…,n) is 

generated, it is superimposed on the colour triangle. Therefore, prior to generalisation, 

the colour triangle consists of a number of blob regions, each of which corresponds to 

one of the trained colours. The aim of the generalisation procedures is to expand these 

regions, forming the regions Ci, i = 1,…,n. By projecting the Ci, back onto the colour 

cube, we generate the contents of the PCF look-up table. If the Ci have been generated 

appropriately, the resulting colour recognition process is more reliable, than it would 

have been if the smaller blobs Bi had been used instead. 

 

 Here are the definitions of four suggested procedures for colour generalisation. 

Two more generalisation procedures will be described later. 
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Procedure 1: Simple Dilation. 

 

Each blob, Bi, in the colour triangle is dilated (expanded) by single a pixel for 

a fixed number of iterations. The number of iterations is  denoted by the 

variable N. The resultant blob is Ci. Notice that this is a standard binary 

morphological operation applied to a derivative of the colour scattergram. 

 

Procedure 2: Dilation with preservation of connectivity. 

 

A single layer of background pixels is stripped from the (binary) image in the 

colour triangle. Unlike the previous approach, pixels critical for connectivity 

are retained. The number of iterations in this  'onion peeling' operation is 

denoted by the variable N. Again, this function can be performed by a 

standard binary morphological operator. 

 

Procedure 3: Watershed. 

 

This approach involves finding the watershed for each of the blobs Bi. The 

watershed is generated by finding the medial axis transformation of the image 

background. 

 

(Figure 8 shows the results of applying Procedures 1 - 3  to the colour 

scattergram derived from several samples of fruit. A comparison of their 

performances can be found in Table 1.) 

 

Procedure 4: Convex hull generalization. 

  

The convex hull is drawn around the set of blobs Bi (i = 1,…,n) in the colour 

triangle. It is reasonable to expect that points within this convex hull will 
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correspond to a generalisation of the observed colours, {Ai }, i = 1,…,n. (An 

example of this approach to generalisation can be found in Figure 11.) 

 

 It should be understood that Procedures 1 - 3  are intended for use in those 

situations where colour discrimination is required, whereas Procedure 4 is more 

appropriate for those occasions when simple colour recognition is needed.  

 

 

4 Demonstration of Colour Recognition 

 

Our first experiment to demonstrate the effectiveness of the three colour 

generalisation procedures defined above used three samples of fruit: an orange, a 

Golden Delicious apple (yellow-green) and a Star Crimson apple (yellow-green and 

deep red). Figure 8(a) was obtained by thresholding the composite colour scattergram, 

derived from these three items of fruit. In the case of the Star Crimson apple, only the 

red portion was used to generate the colour scattergram. In Figures 8(b  - d), these 

blobs have been enlarged, using Procedures 1 - 3, respectively. In each case, a PCF 

was then programmed. The accuracy of recognition was measured by finding the 

percentage of pixels in the image generated by the PCF that had the correct value. The 

performance statistics are shown in Table 1. Notice that the recognition rate for the 

yellow-green region of the Star Crimson apple, improved from 2% to over 99.9%, 

even though this had not been included in the original set of training data. 

 

 The second experiment was based upon a set of six coloured stripes. (Figure 9) 

The colour scattergram was generated in the usual way. This consisted of a set of six 

bright clusters. After thresholding, the colour triangle contained six small white spots, 

which were then enlarged, using Procedures 2 and 3. In both cases, a PCF was then 

programmed, in the usual way. When these PCFs were applied to the same scene, the 
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images shown in Figures 9(b - d) were obtained. Notice the reduction in the noise 

level as the blobs are enlarged.  

 

 In our third experiment , we used a Golden Delicious apple to train the PCF, see 

Figure 10. The resulting filter was then applied to a high quality printed picture of the 

visible spectrum. (This will be referred to as <rainbow>.) By testing the PCF on 

<rainbow>, we have an objective means of measuring the extent of the colour 

generalisation. The process was repeated with the blob in the colour triangle 

expanded by two different amounts, see Figures 10(b - c). The expected broadening of 

the range of colours recognised by the PCF took place. However, we had not 

anticipated that the extension would be so asymmetric. The cause of this asymmetry 

is still being investigated using a prism, or grating to generate a spectrum from white 

light. (We suspect that the asymmetry is due to the fact that a printed spectrum is a 

poor approximation of an optical spectrum.)  

 

 Our last experiment was devised to demonstrate the learning of generalised 

colour concepts from a few specific examples. Four samples of <green> were 

obtained, from printed materials (magazine covers). The colour scattergram of each 

sample was obtained and was found to consist of a single bright compact cluster, 

surrounded by a small halo of low intensity. Three of the scattergrams were 

thresholded at the same level, yielding a set of three small, nearly elliptical blobs, B1 - 

B3. These were merged to form a single image and the PCF was programmed on it. 

(Black blobs in  Figure 11) The result was a filter that did not  recognise the fourth 

sample of <green> properly. (Recognition rate: < 1%) The next step in the experiment 

was to form the (filled) convex hull of B1 - B3. The resulting image was then used to 

reprogram the PCF. The recognition rate on the fourth sample of <green> was much 

higher than before (63 %). Examination of Figure 11 shows why this is so: the 

scattergram of the fourth sample does not overlap the union of B1 - B3 but does 

overlap their convex hull to a significant extent. In this simple experiment, which was 
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devised purely for illustrative purposes, the convex hull was able to generalise three 

similar but distinct colours, thereby enabling a fourth sample to be recognised with 

increased accuracy. In practice, learning a very general colour concept, such as 

<green> would require far more samples than the three we have used here. 

 

 The experiments reported in Figures 8 - 11 were performed using the system 

configuration outlined in Figure 3.  

 

 

5 Colour Recognition and Generalisation in Prolog 

 

5.1 Interactive procedure for designing a PCF 

 

A broad range of software tools has been added to Prolog+ (Batchelor 1991; 1992; 

Batchelor and Whelan 1993), to facilitate the programming and use of a PCF. These 

can be operated interactively, using pull-down menus, or by incorporating the 

appropriate goals in a Prolog+ program. A colour filter which can simultaneously 

recognise several colours, such as <margarine_tub_yellow>, <margarine_tub_red> 

and <margarine_tub_blue>, can be designed interactively, in just a few minutes. The 

following steps are typically needed in an application, such as inspecting margarine 

tubs. (Prolog+ goals are enclosed in brackets and are set in bold-face type. Also see 

Figure 12. ) 

 

1. Plot the colour scattergram derived from the margarine tub. This simply 

involves selecting one item from a pull-down menu. 

(colour_scattergram) 

2. Examine the colour scattergram and choose a suitable threshold parameter. 

(thr) 
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3. Apply some standard noise reduction operator. (e.g. eliminate very small 

blobs) 

4. Shade the remaining blobs in the colour triangle, so that each one has a 

different intensity. Associate these intensity values with the symbolic 

colour labels: <margarine_tub_yellow>,  <margarine_tub_red> and 

<margarine_tub_blue> (shade_blobs) 

5. Apply one of the generalisation procedures, selected using a pull-down 

menu. (colour_generalisation) 

6. Program the PCF (program_pcf) 

7. Test the resulting PCF and, if necessary, repeat Steps 5 and 6. It may be 

necessary to adjust the degree of generalisation interactively. 

 

 Although the total time required to design and test a PCF for an inspection task, 

such as detecting printing faults on margarine tub lids, is likely to be less than than 5 

minutes, a reliable and, of course, rapid inspection procedure is achieved. 

 

 In addition, a number of standard colour recognition programs are provided, for 

the convenience of the Prolog+ system programmer . For example, colour filters have 

been devised for recognising the familiar “named” colours e.g. <red>, <yellow>, 

<orange>, etc. but, of course, the response can only be guaranteed as being correct for 

nearly pure tints. As we saw in Section 1.1, Prolog+ programs can be written 

including goals such as isolate (yellow), which generates a binary image whose white 

areas identify regions which are <yellow> and black areas which are <not yellow>. 

 

5.2 Equivalence of concepts about colour 

 

A region of nearly constant colour is mapped into a blob in the colour triangle (using 

colour_scattergram, thr(X), where X has previously been instantiated to some 

suitable parameter value). This defines an image, which can be processed using any of 
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the normal Prolog+ operators. A blob, however it was created, can be used to define 

the behaviour of a colour recognition filter, using program_pcf. Thus, operations 

upon colours, i.e. union, intersection and generalisation, can be regarded as being 

equivalent to binary image processing operations. (max, min and expand_blob 

respectively). This duality is similar to, but subtlety different from, that implied when 

we represent and manipulate sets using Venn diagrams.5 In fact, there are several 

levels at which we can see equivalencies among the various concepts / terms relating 

to colour. These are summarised in Table 2. The transformation from the colour 

domain to image format is performed by colour_scattergram, while the “inverse 

transform” (i.e. programming the PCF) is performed using program_pcf. We can 

also relate both of these representations to symbolic concepts and operations 

expressed in Prolog+.  

 

5.3 Representing colours by a set of overlapping discs 

 

A blob in the colour triangle can be approximated, to whatever level of accuracy we 

may choose, using the union of a set of  overlapping discs, or rectangles. Thus, a blob 

may be represented approximately by a list of the following form:  

 

 [ [X1,Y1,Z1], [X2,Y2,Z2], …, [Xn,Yn,Zn] ]  

 

where [Xi,Yi] is the centre of the ith disc and Zi is its radius. Generating the list of 

parameters is achieved using find_disc(L). Using a list of the form just given, we can 

manipulate colour parmetrically, using Prolog+. At any time, we can redraw the discs 

as an image, using a predicate draw_discs(L), where L is instantiated to a list of lists, 

each containing three elements. 

                                                 

5 The major difference is that whereas Venn diagrams do not indicate the relative 

sizes of two or more sets, whereas the colour triangle does. 

23 



 

 Using this notation, we see that there exists another technique for colour 

generalisation (in recognition, as distinct from discrimination); we simply enlarge 

each of the discs. For example, we may simply add a constant to each of the Zi, or 

multiplying each one by a constant factor. This defines Procedures 5 and 6 for 

Colour Generalisation. 

 

 

6 Discussion and conclusions 

 

The idea of using a look-up table to perform colour recognition is not new but has 

considerable appeal for such tasks as recognising (ripe) fruit on a tree, recognising 

resistor colour codes, tracing wiring, inspecting food products, cartons and 

pharmaceutical packaging. It lends itself to implementation in fast electronic 

hardware. Commercial equipment has been available for colour recognition, for some 

years. 

 

 The colour scattergram is a useful tool, which allows the user to associate areas 

of the colour triangle with colours that he / she can recognise and name. Once a 

colour scattergram has been generated, the user can think about colour in convenient 

terms, using the concepts of  blob position, shape and size. He / she can also apply a 

wide range of image processing operators to the colour triangle. This is possible 

because the colour triangle is an image, like any other. After processing of the colour 

scattergram is complete, the back-projection procedure allows the contents of the PCF 

look-up table to be fixed. Thereafter, colour recognition is achieved in real time, 

although the subsequent procedures for image analysis (i.e. Prolog+ programs) may 

not be. 
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 Six techniques for colour generalisation have been described and have been 

studied extensively by ourselves, using an interactive image processing system. As a 

result of their experience, the authors  are  convinced that the techniques described 

above provide a useful addition to the range of facilities available for recognising 

colours. It is possible to extend the range of colours recognised by the PCF to any 

extent desired. In Procedure 2, for example, the parameter N can be adjusted at will; 

if N is increased, the degree of generalisation will become higher. It is possible for a 

person, working with an interactive system,  to experiment with the colour 

generalisation parameter, to obtain the best results for a given application. On the 

other hand, a (Prolog+) program can be written which chooses a suitable value for N, 

according to some pre-defined criterion. A discussion of this advanced topic is, 

however, beyond the scope of this communication.  

  

 Clearly, there are many other ways to extend the blobs in the colour triangle 

which determine the behaviour of the PCF and the reader will have no difficulty in 

suggesting several others, that we have not discussed. In this article, we have merely 

suggested some of the numerous ways that might be used to perform generalised 

colour recognition / discrimination. We have not attempted to provide a critical 

comparison of these techniques, nor have we tried to define criteria for fixing the 

control parameters (N for procedures 2 and 3). Clearly, these are possible areas for 

future research.  

 

 We believe that the concept of colour generalisation is an important one, and 

will have a significant impact upon the acceptance by industry of machines that can 

make decisions about objects containing several colours. The inspection of multi-

coloured printed packaging is one obvious area of application for colour recognition 

systems. The isolation of the various components in the scene being viewed is made 

more reliable by the use of colour generalisation. We saw this in Figure 9. Analysis of 

such scenes is made much simpler if colour generalisation is used. For example: 
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(a) The “noise” level is reduced. 

(b) Regions of constant colour are made more “solid”. 

(c) Colour boundaries are better defined. 

(d) Estimates of the areas of the various coloured regions are more accurate.  

(e) It is possible to identify coloured regions from their shapes more reliably. 

 

 While we have explained the rationale and context for our work in terms of 

programs written in Prolog, there is no fundamental reason why other computer 

languages could not be used instead. However, the authors feel that it would be a pity 

to forfeit Prolog’s distinctive style of (declarative) programming, which is, we 

believe, of great importance for ease of programming.  

 

 It should be noted that the fast hardware colour recognition system that we has 

discussed that we have described can be fully simulated in software, using a 

conventional programming language, such as Pascal or C. 

 

 The ideas outlined in this paper are currently being studied by us, in relation to 

applications in agriculture, the food, printing, electronics and plastics industries, as 

well as for the inspection of packaging, toiletries, pharmaceuticals, etc. 

 

  Procedures for colour recognition based upon Figures 4 and 5 are worthy of 

further research. Clustering occurs naturally in both HS- and xy-space, in the same 

way as we have already seen in the colour triangle. In both cases, a broadly similar 

process to that described above would be appropriate for thresholding, noise reduction 

and colour generalisation by blob dilation, prior to back-projection into RGB-space. 

We hope to report on this in future publications and on their implementation in 

software. 
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Appendix: Calculating the Colour Scattergram and Programming 

   the PCF. 

 

Consider Figure 13. The position of a point in the colour triangle can be specified by 

the parameters6 U and V, which can be calculated from R, G and B using the 

following formulae: 

 

U = (R - G) / [ √2. (R+G +B) ] 

and  

V = (2.B - R - G) / [ √6. (R+G+B) ] 

 

To see how these equations can be derived, view the colour triangle normally (i.e. 

along the line QPO, the diagonal of the colour cube). When the vector (R,0,0) is 

projected onto the colour triangle, the resultant is a vector Vr of length R√(2/3) 

parallel with the R’ axis. In a similar way, when the vector (0,G,0) is projected onto 

the colour triangle, the result is a vector Vg of length G√(2/3) parallel to the G’ axis. 

Finally, the vector (0,0,B) projected into the colour triangle forms a vector Vb of 

length B√(2/3) parallel to the B’ axis. A given colour observation (R,G,B) can 

therefore be represented by the vector sum (Vr+Vg+Vb). Finally, U and V can be 

calculated, simply by resolving Vr, Vg and Vb along these axes.  

 

The mapping function Γ(.) mentioned in the text is given by: 

 

  Γ((R,G,B)) = ((R - G)/(√2.(R+G +B)), (2.B - R - G)/(√6.(R+G+B))) 

 

                                                 

6 These parameters are not to be confused with the CIE Uniform Chromacity Scale 

(UCS)-system. 
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Clearly, there are many values of the colour vector (R,G,B) which give identical 

values for Γ((R,G,B)). The set of points within the colour cube which give a constant 

value for Γ((R,G,B)) all lie along a straight line passing through the origin in RGB 

space (O). Let us denote this set by Φ(U,V), where  

 

∀X: X ∈ Φ(U,V) → Γ(X) = {U,V}  

 

The colour scattergram is simply an image in which the “intensity” at a point {U,V} 

is given by the number of members in the set Φ(U,V). 

 

 The details of the process of programming the PCF are as follows: 

1. We assume that the colour scattergram has been processed, yielding an 

 image in which there are several blob-like regions of different intensities. 

 Let the intensity at a point {U,V} in the colour triangle be equal to 

 I(U,V).  

2. The entry in the (R,G,B)th cell in the LUT is equal to I(Γ((R,G,B)). 

3. Step 2 is repeated for all points in the colour cube. 

 

Notice that all entries in the LUT corresponding to members of the set Φ(U,V) are 

given the value I(U,V) 
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Legends for the Diagrams 

 

Figure 1. Margarine tub referred to in the text (simulation). 

 

Figure 2. The standard CIE (1931) Chromaticity Diagram. The horse-shoe shaped 

curve is known as the spectrum locus and represents the set of points on which all 

pure spectral colours lie. (Chamberlain and Chamberlain 1980) The coordinates x, y 

are calculated in terms of the tristimulus variables (X, Y, Z), the significance of these 

values is not our concern here. Let it suffice to say that (X, Y, Z) can, in turn, be 

related, albeit approximately, to physically measurable quantities, such as the (R, G, 

B) variables measured by a video camera. In this composite diagram, three different 

forms of the Chromaticity Diagram are merged. 

(i) The Chromaticity Diagram is sometimes printed in colour, having been 

tinted by an artist. (Optical Society of America 1978) To avoid using 

expensive colour reproduction techniques, some authors / publishers 

have, however, chosen to draw the diagram with regions labelled with 

symbolic colour names, such as “bluish green”, “blue green”  and 

“greenish blue”. (Judd 1952) However, people frequently differ in 

their naming of the same coloured surface. Confusion of nomenclature 

often occurs, for example, on the blue-turquoise-green  continuum. It 

is well known that culture, language, age, illness and chemicals (e.g. 

barbiturates and alcohol) can all cause changes in human colour 

perception. For this reason, boundaries of the labelled “cells” are not 

fixed; they differ from one observer to another. Furthermore, the 

diagram does not indicate the location of colours such as <margarine-

tub yellow>,  <3M red>, <IBM blue>, or even  <sky blue>. The 

objective of this article is to define computational techniques which 

allow the boundaries of regions associated with colour names to be 

learned from a finite and small set of samples. 
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(ii) Some authors have indicated the relationship between certain well-known 

colours and points on the Chromaticity Diagram. See for example 

(Chamberlain and Chamberlain 1980). Key: Lt - lettuce; LM - lemon; 

OR - orange. This is a gross simplification. It is obvious, for example, 

that an individual tomato can display a wide variation of colours. 

Additional variations exist among different samples of the same 

variety and different species of tomato, due to the degree of ripeness, 

growing conditions etc.. For these reasons, a broad blob-like region is 

a more accurate representation of colours such as <tomato>, <lemon> 

and <lettuce>. Smaller but nevertheless significant differences exist in 

the colours of printed packaging, plastics parts, etc. (Chamberlain and 

Chamberlain 1980; Billmeyer Jnr and Saltzman 1966). 

(iii) MacAdam (1970) shows another version of the Chromaticity Diagram, 

which contains a series of small ellipses, each of which shows just 

noticeable colour differences. Any colour represented by a point lying 

just outside an ellipse is perceived by a human observer as being just 

noticeably different  from the colour denoted by the centre of the 

ellipse. (Also see Jain (1989)) The three black ellipses, labelled A, B 

and C are enlarged here for clarity. Notice that they differ in size and 

orientation. For our purposes, machine rather human perception of 

colour differences is important.  

   

Figure 3. Hardware structure of the Programmable Colour Filter, based upon RGB 

inputs to the LUT. This is the block diagram of the implementation of this technique 

in the Intelligent Camera (1990; Plummer 1991) and was used by the authors in the 

experiments reported here. The pseudo-colour display is used only for the 

convenience of the user; it does not form part of the processing chain. 
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Figure 4. Proposed hardware structure of a Programmable Colour Filter, based upon 

HSI inputs to the LUT, using a real-time RGB/HSI converter chip (Umbaugh et al 

1992).  

 

Figure 5. Proposed hardware structure of a Programmable Colour Filter, based on the 

xy parameters used in defining the standard Chromaticity Diagram. 

 

Figure 6. The training, recognition and generalisation processes 

(a) Flowchart for the training and recognition procedures. The line labelled 

“Additional Inputs” indicates that the procedure represented by the top 

four blocks can be repeated many times and the results merged. 

(b) The colour scattergram consists of a number of diffuse clusters. 

(c) After thresholding, the colour triangle contains a number of small distinct 

blob-like regions. 

(d) Simple generalisation the blobs become enlarged. 

(e) More complex generalisation  procedures allows these regions to be 

expanded until they touch. The back-projection process outlined in 

Figure 7(b) is now applied to (d) or (e). 

 

Figure 7. Transformations in RGB space. 

(a) Calculating the colour scattergram. The diagram shows the colour cube, 

defined as a cube-shaped region of RGB space, and the colour triangle. 

X is a general point lying within the colour cube and Y is the 

projection of X onto the colour triangle. Hence, OX (or OX produced) 

intersects the colour triangle at Y. The point Z is located at the 

intersection of OX-produced with the edge of  the colour cube. All 

points along OZ have the same values of hue and saturation but 

different values of intensity. To calculate the value at point Y in the 

colour scattergram, we simply count the number of pixels along OZ. 
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(b) Programming the colour filter. Calculating the entries in the look-up table 

is a process of projecting values stored in the colour triangle through 

the colour cube. Blob A is a region within the colour triangle enclosing 

a set of points that all have the same colour label, L. L is a scalar 

quantity, and hence can be regarded as an intensity value in the  image 

containing the colour triangle. Blob A also defines a conical region  

within the colour cube (light stippling). Blob C is the intersection of 

that cone with the edge of the colour cube. All (R,G,B)-vectors which 

fall within this cone can be associated with the colour label L. Thus, all 

entries in the PCF look-up-table which correspond to points within this 

cone are assigned to value L. Blob B which has a different colour label 

is treated in the same way as blob A.  

 

Figure 8. Colour generalization applied to samples of fruit. Also see Table 1. 

(a) Colour scattergram after noise removal. The white blob to the left 

corresponds to a Golden Delicious apple. The central blob corresponds 

to an orange. The right-most blob corresponds to the  red region of a 

Star Crimson apple. 

(b) The application of procedure 1 to the image in (a). N = 5. 

(c) The application of procedure 2 to the image in (a). N = 6. 

(d) The application of procedure 3 to the image in (a). 

 

Figure 9. Learning to distinguish coloured stripes, with varying degrees of 

generalisation. The stripes are (from top to bottom): yellow, lime green, turquoise 

green, sky blue, purple and cerise. Simple fixed-value thresholding and a noise-

reduction filter were applied to the colour scatttergram obtained from the stripe 

image.. This generated a set of six blobs in the colour triangle. (The small white spots 

in (a).) The blobs were then enlarged and the contents of the look-up table were 
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calculated in the usual way, by back-projection. The resulting PCF was then reapplied 

to the stripe image. 

(a)  Blobs in the colour triangle, at various stages of enlargement. The small 

white spots show the blobs with no enlargement. For the sake of 

illustration, these spots were deliberately made to be small, by 

selecting a high value for the threshold parameter. The larger, darker 

blobs, were obtained by applying procedure 2. (N = 5) The white lines 

indicate the watershed boundaries generated by Procedure 3. 

(b) Result of applying the PCF designed using the small white blobs in (a). 

(i.e. with no generalisation)  These blobs were shaded before back-

projection was applied, enabling the PCF to distinguish the different 

colours in the stripe pattern. Notice that the PCF does not recognise all 

of the points seen during training and that the output image is quite 

noisy.  

(c) Image from the PCF generated by applying back-projection to the enlarged 

dark spots in (a). Procedure 1 gives identical results in this case. Notice 

the improved recognition performance but that it is still inferior to that 

shown in (c). 

(d) Image from the PCF generated by procedure 3. Notice how the ability to 

distinguish these six colours has been improved. 

 

Figure 10. Using generalisation in the training of a PCF to recognize {Golden 

Delicious} (normally described as yellow-green). 

(a) Applying the PCF to {rainbow}. Notice that only a very narrow range of 

colours is recognized. 

(b) Applying the PCF generated by procedure 1 (N=5), to {rainbow}. A 

broader range of colours is recognized than in (a). 
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(c) Applying the PCF generated by procedure 1 (N=10), to {rainbow}.  Notice 

that the range of colours recognized by the PCF has increased yet 

again. 

 

Figure 11. Generalising from specific instances of {green}. The black blobs 

correspond to three different shades of {green}, taken from covers of magazines. It is 

reasonable to expect that points within the convex hull of the black blobs will also 

correspond to {green}. The white blob corresponds to a fourth shade of {green} 

which was used to test this hypothesis. (See text.) Notice that a little over half of the 

white blob is enclosed within the convex hull. This corresponds well with the 

observed recognition rate of 63% after generalisation using procedure 4. 

 

Figure 12.  Procedures for designing and using a PCF. 

 

Figure 13.  Showing the relationship between the RGB- and UV-coordinate axes. The 

vectors R', G'  and B' all lie in the UV-plane, which also contains the colour triangle. 
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Table 1. Recognition performance of a PCF, with various generalisation procedures. 

For example, a PCF was designed, without the use of generalisation, to recognise 

{Golden Delicious}. When the PCF was subsequently applied to the same sample, it 

achieved a recognition accuracy of only 82%. However, when this process was 

repeated with any of the three generalisation procedures, the recognition rate was over 

99.9%.  

 

Generalisation 

Procedure 

Orange Golden 

Delicious 

Star Crimson 

(red area) 

Star Crimson  

(green area) 

None 77 82 45 2 

Procedure 1 > 99.9 > 99.9 97 97 

Procedure 2 > 99.9 > 99.9 99.9 > 99.9 

Procedure 3 > 99.9 > 99.9 > 99.9 > 99.9 
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Table 2. Equivalent entities and operations in Colour Space, Colour Triangle & 

Prolog+. 

 

Colour Space Colour Triangle Prolog+ Remarks 

Human RGB (Image)   

<yellow> {yellow} Single blob yellow No universally agreed 

definition. 

<tomato red> {tomato red} Single blob tomato_red  

<Q>  Approx. to 

{Q} 

Union of discs Prolog list List format: [ [X1,Y1,Z1], 

…  [Xi,Yi,Zi], … ] 

<A> ∪ <B> {A} ∪  {B} Blob merge max Union (OR) 

<A> ∩ <B> {A} ∩  {B} Blob intersection min Intersection (AND) 

Colour generalisation Blob expand exw Procedure 1 

Colour generalisation Blob expand Command 

sequence 

Procedure 2 

Colour generalisation Blob expand [neg, mdl] Procedure 3 

Colour generalisation Blob expand chu Procedure 4 

Colour generalisation Blob expand Simple list 

manipulation

Procedure 5  

Procedure 6 

 


