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Abstract—Increased complexity in I'T, big data, and advanced
analytical techniques are some of the trends driving demand
for more sophisticated and scalable search technology. Despite
Quality of Service (QoS) being a critical success factor in
most enterprise software service offerings, it is often not a
generic component of the enterprise search software stack. In
this paper, we explore enterprise search engine dependability
and performance using a real-world company architecture and
associated data sourced from an ElasticSearch implementation
on Linknovate.com. We propose a Fault Tree model to assess the
availability and reliability of the Linknovate.com architecture.
The results of the Fault Tree model are fed into a Stochastic Petri
Net (SPN) model to analyze how failures and redundancy impact
application performance of the use case system. Availability and
MTTF were used to evaluate the reliability and throughput was
used to evaluate the performance of the target system. The best
results for all three metrics were returned in scenarios with high
levels of redundancy.

I. INTRODUCTION

Search engines are the most common way for users to
source information on the Internet. In the UK, search engines
are used by 94% of Internet adult users, by far the most
popular source for information search [1]. In January 2019,
nearly 10 billion search queries were processed by Google
in the US alone [2]. While the volume of both searches and
content is continually on the increase, delays in search results
can lead to user frustration and result in loss of revenue [3]]. At
the same time, search engine providers are providing increas-
ingly complex search functionality including voice search,
predictive search, and object detection-based search among
others increasingly based on varying degrees of artificial
intelligence. To meet these demands, search engine providers
rely on the efficient provision, scaling, and optimization of
distributed compute infrastructure at hyper-scale [4]].

In this paper, we examine the quality of service (QoS)
characteristics of an enterprise data discovery service built
on the ElasticSearch search engine. ElasticSearch (ES) [3]]

is a popular open source search engine designed to be dis-
tributed, scalable, and capable of near real-time information
retrieval [6]. The analysis of the ElasticSearch performance
was carried out using a real-world search service deployment
used by Linknovate.com. Linknovate.com generates insight for
its clients through the aggregation of large volumes of re-
search and scientific data. Since 2017, they have indexed over
20 million documents, 30 million expert profiles, 2 million
entity profiles, and more than 200 million innovation topics.
Linknovate.com serves enterprise users located throughout the
world who expect relevant information to be identified within
a fraction of a second. To meet their end-user demand for
real-time query response while processing large volumes of
data requires an understanding of QoS dependencies through
continuous monitoring, analysis, and remediation.
This paper has two main objectives:

e To propose a Fault Tree model for enterprise search
engine reliability and availability analysis, and

o To integrate the Fault Tree model with a Stochastic Petri
Net (SPN) model to analyze how failures and redundancy
impact application performance.

The result of our work produces a general set of QoS
attributes for a given service which can be further used to
evaluate and optimize other large distributed search application
services.

The remainder of this paper is organized as follows. Sec-
tion [[I] introduces background concepts and definitions of reli-
ability and availability as dependability measures. Section
describes the modeling and analysis of the dependability of
Linknovate.com as a representative ElasticSearch application.
Next, the performance model for the Linknovate.com architec-
ture is presented taking into account the dependability model
defined in the previous section. Section [V] briefly summarizes
selected related works. The paper concludes with a summary
of the paper and a discussion of future work in Section



II. BACKGROUND CONCEPTS

System dependability can be essentially described by two
key measures: reliability and availability [7].

A. Reliability

The reliability R(¢) of a system is the probability of a
failure not occurring in the interval [0,) [7]. Suppose, without
losing generality, that a system has two states [_8], working and
failed. The transition from an operating state to a faulty state
is triggered by the failure rate function A(t). Now, consider T
as the time to failure of a system component. If T" is a random
variable defined by a Cumulative Distribution Function (CDF)
F(t), it follows that reliability is given by:

R(t)=P(T >t)=1— F(t) 1)

It can be proved that R(t) and A(t), which describes
the instantaneous failure rate of a system component, are
associated as given by the Equation 2] [9]:

R(t) = exp <— /0 t )\(u)du) )

Another metric related to R(¢) is the Mean Time To Failure
(MTTF). This measure is defined as the expected time F(t)
elapsed until the occurrence of the (first) system failure [7].
Formally, MTTF is given by [9]:

MTTF = E(t) = /OO tf(t)dt 3)
0

B. Availability

The availability A(t) of a system is defined as the prob-
ability of the system being operational at a given instant
t [7]. Like reliability, availability can also be described as
a model having two states - working (available) and faulty
(unavailable). However, after the occurrence of a system fault,
this new model may be repaired (maintenance). The transition
from a faulty state to an operating state is induced by the
repair rate function u(t).

Availability can be obtained in the same way as reliability,
by replacing each event for the failure and repair rate functions
(A\(t) and p(t) respectively). Assuming that A(t) and u(t) have
constant values, then it can be proved that A(t) is calculated
as following [9]:

H A —(Ap)t
= 4
M+)\+/~L+/\e 4)

A(t)

Assuming that n periods occurred (with working and failed
states), the steady-state availability A, can be outlined by
Equation [5[[9]. In this case, MTTF = 1/X and MTTR (Mean
Time to Repair) = 1/p.

A __ MTTF
* " MTTF+ MTTR

(&)

C. Fault Tree Analysis

A fault tree is a graphical paradigm applied to dependability
analysis. It is a tree structure model representing a sequence
of components failures that may cause a system shutdown.
The model uses a tree structure consisting of events and
logic gates. The events represent the normal conditions as
well as system failures (components failures, environmental
conditions, human errors, and many others) and use boolean
logic i.e. they occur or do not occur. Cause-effect relationships
between events are represented by logic gates. The most
important event is the output of a fault tree, the TOP event,
which represents a system failure. It is important to note that
a gate input can be a single event or a combination of events
originated from the output of another logic gate [|10]]. Further-
more, several types of gates available in graphic representation
e.g. and, or and k-out-of-n gates.

Fault Tree Analysis (FTA) is an effective technique to
evaluate system reliability and availability, both qualitatively
and quantitatively [11f]. The utility of FTA for qualitative
analysis depends on the system stage. The development stage
aims to identify potential problems that can lead to failures.
In the commissioning stage, the FTA technique can be used to
identify the causes of failure. Conversely, during the quantita-
tive analysis process, the objective is to evaluate the probability
of the occurrence of the TOP event. The main advantages of
FTA are the execution of an intuitive procedure to describe
the events that lead to a system fault, and the minimization
of the state space explosion problem, which is very common
when modeling large systems [12].

The evaluation of a fault tree is performed by calculating
the TOP event (system failure condition) probability based on
basic event probabilities. This calculation is conducted differ-
ently for each type of logic gate. Assuming n independent
inputs/events, the occurrence of the event ¢ is described by its
cumulative distribution function F;(t). The logic gate outputs
are indicated in Figure[I] When an and gate is used, the failure
condition is only enabled when all inputs/events occur. On the
other hand, the output of an or gate is enabled when at least
one of its inputs/events is active. Finally, if a k-out-of-n (KooN)
gate is used, the output is enabled if at least k£ inputs/events
occurred.

The equations presented in Figure [I] illustrate a fault tree
without repeated events. When repeated events occur, the
equations are invalidated, hence, a different technique such as
Sum of Disjoint Products (SDP) may be applied [13]]. The SDP
method can be efficiently applied to fault trees with repeating
events and it is easily automated and computationally efficient.
The basic idea is to find a boolean function ¢(x) describing
the system fault condition (TOP event) and transform into
a different function whose individual terms are mutually
exclusive. According to [[10], this structural boolean function
¢(x) is given by:

system failed
system is working
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Fig. 1. Cumulative distribution function F'(t) for the gate output (and, or, k-out-of-n).

where x is defined as the state vector, x = (x1,Z2,...,Tp).
Each element z; is a boolean variable, that represents the
component state i.

D. Stochastic Petri Nets

Petri Nets are a state-based mathematical formalism to
model several kinds of systems with different behaviors such
as concurrency, synchronization, and communication mecha-
nisms [[14]]. A generic Petri Net can be defined as a tuple
PN = (P, T, F, M) [15], where:

o P is a finite set of places;

o T is a finite set of transitions;

o« FC(PxT)U(T x P) is a set of flow relation, and

e My € P — Ny is a set of tokens assigned into places

which defines an initial marking.

Stochastic Petri Nets (SPN) are a variation of the traditional
Petri Nets that assign a delay to the time transitions, and this
delay follows a probability distribution function. With this, it
is possible to derive an equivalent Continuous Time Markov
Chains (CTMC) in order to solve the SPN model analytically
[16]. In other words, the steady-state/transient analysis of the
CTMC can be used to get steady-state/transient SPN measures
efficiently. However, for the conversion to be possible, the time
transitions should have a probability distribution which has a
memoryless property e.g. the exponential distribution [[17].
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Fig. 2. Main SPN components

Figure 2] illustrates the main Petri Net components [14]. The
places (Figure [2Ja)) represent the local state variables, while
the tokens (Figure [2(b)) may reside at the places; a set of
tokens assigned to the places represents a state of the SPN.
The transitions represent the events, actions, and activities
that may occur in the system. The immediate transition (Fig-
ure [2c)) fires after been enabled, while the timed transition
(Figure [2{d)) fires following a delay defined by a distribution
function. The arcs connect the places to transitions and vice-
versa. There are two types of arcs: directed arcs (Figure [J[e)),

which define the normal flow of the tokens; and inhibitor arcs
(Figure 2f)), which disable the transition if there are tokens
present at the origin place [16].

Guard functions are expressions that can be used to repre-
sent conditions that must be satisfied to enable transitions to
fire [[18]. The use of these functions can simplify the modeling
since arcs do not need to be added. For instance, considering
that a transition will be enabled to fire when there are 20
tokens in a specific place, this condition can be represented as
guard functions that check the number of tokens in this place
and enable the transition when the condition is satisfied.

III. MODELING AN ELASTICSEARCH APPLICATION

As described previously, the target application in this paper
is related to an enterprise search engine based on Elastic-
Search [[19], [20]. As a use case, we consider Linknovate.com,
a real-world company with a distributed data discovery engine
whose objective is to search among large amounts of het-
erogeneous data to identify key institutions for a particular
technology request. To achieve this objective, the Linkno-
vate.com platform relies on different mechanisms, but the
most crucial being distributed inverted-indices optimized for
efficient searching, which stores the vast majority of the data.

The basic Linknovate.com platform (Figure [3) is deployed
on the Microsoft Azure cloud and consists of (a) a web server,
(b) an ElasticSearch (ES) client node, and (¢) data nodes. To be
able to offer the structured information available through the
data nodes, it is necessary to perform extensive offline data
processing of the new incoming raw data. This prior work
is carried out on servers managed by Linknovate.com and
processed results are moved to the cloud (Microsoft Azure)
on a daily basis.

The ES client node and the data nodes (that compose the
ES Cluster) are responsible for processing the requests, while
the web server is where users unleash several internal queries
over application indices, retrieving the data to be shown in the
User Interface (UI).

A. Shard Distribution and Multi-Zones Environment

Data is distributed in an ES cluster over multiple partition
units referred to as shards. Indices are used to link data to
shards. The latter is stored in data nodes. If a shard is lost, the
information related to that shard is also lost. Thus, at least one
replica for each shard is typically configured in an ES cluster.



R ~
7 M \
! I
[ [
! Query Results |
| Page |
. Web -
| Server |
[ [
[ [
: ES Cluster |
! T T T T T T T T T T Qe | (| Padregates T T T T T ~. |
I ,/ Query Results \ N
Y ES Client |
I - Node | |
H l Coordinates/aggregates | .
! | the search results [ |
b b
[ [
N ! Query Partial 1 I
| | Results I |
[ [
L .
| - Query Results of Query | |
. | local shards . '
[ by
[ b
= | & = b
- | M
! \ Data Nodes - |
[N Virtualised nodes R
= T e — . — — — . — . E— ¢ — E—— — . E— . —— S—— S— — -—
\ .
~ Processing and Indexing Layer "

Fig. 3. An overview of the search engine architecture.
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As the architecture (Figure [3) is deployed in a cloud
environment, a multi-zone configuration can be used to meet
reliability and availability requirements. Multi-zoning has the
potential to isolate zones in case of local failures and thus
reduce the consequences of that problem to the boundaries of
that zone. Notwithstanding this, multi-zones can suffer from
common cause failures (CCF); failures caused by an external
event that causes all functioning components of that zone to
fail at the same time.

Shard and multi-zones can be used to provide resilient
scenarios. The master node in an ES cluster can distribute a
primary shard and associated replica shards so that no replica
shard is in the same zone of its corresponding primary shard.
The ES cluster of Figure [3] was modeled using three zones
with one and two replica shards according to Figures [4] and [3]
respectively.

In Figure[d] a shard is considered in a faulty state if two data
nodes fail; on the other hand, in Figure 5] a shard is regarded
in a defective state if three data nodes fail.

B. Reliability and Availability Model

The modeling of a search engine architecture into a fault tree
begins with the definition of the TOP event. In this case, we can
assume that the system architecture (Figure [3) comprises two
main components, the web server and the ES cluster. Thus,
the system fails if the web server or the ES cluster fails. In
this case, a gate OR is used to describe this scenario as per
Figure [f[a).

Challenges emerge when it is necessary to map the failure
events in the web server and the ES cluster. According

Fig. 5. Shard distribution considering two replicas for each indices and three
zones.

Top Event Webserver ES Cluster
CCF HW HYP Data
Webserver ES Cluster Cllent Nodes
(a) (b} (c)

Fig. 6. (a) TOP event of search engine architecture. (b) webserver and (c) ES
cluster models.

to [21], reliability and availability evaluation for virtual and
physical machines can be estimated from hardware (HW) and
hypervisor (HYP) failures. In order to model CCF failures for
each zone, an event named CCF Zone is introduced. The result
is that the web server is mapped into a gate OR of three inputs,
meaning that the web server fails if its hardware fails or its
hypervisor fails, or if there is a common cause failure in the
zone where the web server is situated (Figure |§Kb)).

The modeling of the ES cluster is more complex. It com-
prises an ES client and a set of data nodes. This model is
described in Figure[6fc). The ES client has a major role in the
architecture proposed in Figure [3] It serves as the coordinator
node of the ES cluster. In an optimistic configuration, the ES
client can be deployed without redundancy (Figure [7(a)). In
this case, the model is similar to that used for the web server



(Figure [f[b)). As discussed previously, the use of replicas can
be an effective approach to improve the overall reliability of
the system. In such a scenario, the ES client fails if the primary
ES client fails and all replicas also fail. This model is described
in Figure [7b). Note that each replica is placed in different
zones than the primary ES client (indices ¢ and j).

ES Client ES Client
CCF Hw HYP _
Zone k replicas
ES Client ES Client
(a} Primary Replica
CCF HW,HYP, GGF HWK HYPK
Zone i ZOI'IE]
(b)
Fig. 7. (a) ES client without redundancy and (b) redundant ES client

configuration with k replicas and a one primary (p) device.

Data nodes are other important components in the proposed
architecture. In Figures [] and [5} data nodes are configured
based on the number of replicas used in each shard. A gate
kooN is used to modeling this behavior in each scenario. When
one replica is adopted (Figure [8|a)), failure only occurs when
any combination of two nodes (from six nodes available) fails
(2006). However, when two replicas are adopted (Figure b)),
at least three nodes need to fail for the data nodes array fails.
Thus, a gate 3006 must be configured.

Data Nodes Data Nodes
: Data Node : Data Node
CCF  Hw HYP CCF HW HYP
Zone i
(a) (b)

Fig. 8. (a) data nodes using one replica for each shard and (b) data nodes
using two replicas for each shard.

C. Assumptions and MTTF Calculation

Our main objective is to calculate the Mean Time to Failure
(MTTF) of the system since this metric is fundamental for the
reliability and performance models proposed in this work. The
main assumptions considered are:

« Device Resources: the components of the system have
different resources. Specifically, the web server and data
nodes are virtual machines with 28GB RAM and 8
CPUs. The ES Client is a more powerful device with
112GB RAM and 16 CPUs. Storage resources were not
considered in the model for simplification [20].

o Failure rate: we assume that device failures occur at
a constant rate (i.e. the exponential distribution). The
failure rate of the devices is unknown however we use
approximate values that we set based on the methodol-
ogy described in [20], where the authors described and
utilised ElasticSearch in optimised fashion to mine inter-
esting patterns from log files. Zone disruption (CCF) is
a rare event and thus it was configured to an MTTF of 20
years (A = 5.7077e—6 hours—!). Hardware failure rate
(HW) was set to an MTTF of 10 years (A = 1.1415e-5
hours~1) for data nodes and web server, and 5 years
(A = 2.2831e-5 hours™!) for the ES Client. Lastly,
the hypervisor failure rate was configured to an MTTF
(hours) of 8 years (A = 1.4269e-5 hours™!) for all
devices.

o Repair rate: the architecture’s devices can be repaired
after a failure. After a repair, the device is considered as
new. We consider that repair processes are independent
and that the number of repairmen (i.e. the number of
repair actions) is not limited. The time necessary to
repair a device is characterized by a repair distribution.
This distribution is defined in an analogous way to the
failure distribution discussed previously. Based on [22]],
the repair rates were approximated for: puccrzone =
1/72h71,,U,HW = 1/24h71,[14Hy = 1/05h71

o Scenarios: Six evaluation scenarios were considered
based on the combination of shard distribution with one
and two replicas, and redundancy configurations for the
ES Cluster (no spares, one and two replicas). Table[i]
summarizes the six scenarios considered in this study.

TABLE I
DIFFERENT SCENARIOS STUDIED BASED ON SHARD DISTRIBUTIONS AND
REDUNDANCY ASPECTS OF THE ES CLIENT.

Scenario  Shard Distribution ES Client
I 1 replica No replica
I 2 replicas No replica
I 1 replica 1 replica
v 2 replicas 1 replica
\Y% 1 replica 2 replicas
VI 2 replicas 2 replicas

The MTTF evaluation of the defined scenarios is described
in Figure [0] As expected, the best results were found in
scenarios with a high level of redundancy (IV and VI). Note



that scenario VI is only 7.86% better than scenario IV for
the MTTF metric. The result of the availability metric is
approximately equal for scenario IV and VI. Thus, it is not
always beneficial to have more replicas.

15000 99.9303 99.9304 100 B MTTF

9834 ggm06q, M 098067 B Availability
997105
997105 99.75

10000 929

MTTE (h)

Availability (%)

5000

99.25

Scenario

Fig. 9. MTTF and availability evaluation across six scenarios.

IV. PERFORMANCE MODEL

The reliability results from the previous section are used to
feed a performance model and analyze how failures and redun-
dancy impact on the ElasticSearch system performance. We
assume that the system follows an M/M/1/K queue, where the
arrival time rate, ), is a Poisson process, and the service time,
u, follows an exponential distribution. To find A and p, we
analyzed a real trace provided by Linknovate.com composed
of 3,577,146 requests, from August 2017 to November 2017.
Based on this data set, we found A = 0.4689 requests/second,
and we applied the k-means clustering to partition our data
into four clusters (classes of requests) based on the request
time, as shown in Table [[]

TABLE II
CLASS OF REQUESTS, SERVICE TIME AND PROBABILITY OF HAVING EACH
CLASS OF REQUEST.

Request class  Service time (in seconds)  Probability (%)

A 0.2391 54.17
B 0.5833 30.50
C 1.0269 10.03
D 1.7414 5.29

Given the A, u, and the probability of each service time
class, we implemented the SPN model as shown in Figure [I0]
When there is one token at place P/, the system can receive
requests. The transition E7/ represents the arrival of requests
in the system, and when it fires, one token is consumed from
Pl and produced at place P2. The transition ETI receives
the mean time between requests, which is 1/\. In this state,
the immediate transitions /71 and I72 are enable to fire. The
transition /72 fires according to the probability of the service
time class (P,.); while the transition I fires with probability
equals to 1 — P, representing the other classes of service time.

Therefore, if we are simulating the service with class A
(e.g. with probability equals to 54.17%), the transition I72
will fire according to this probability, representing the requests
for service class A. On the other hand, the transition for other
services do not need to be considered as we are only evaluating
class A. Considering the example, the probability of requests
arrival for other services is 45.83%, in this case, the transition
IT1 will fire following this probability.

ET4 ET3

P1

Fig. 10. Performance model based on the availability results presented in

Figurdg]

If the transition IT! fires, one token is consumed from the
place P2 and one token is produced at P/ again, enabling the
arrival of new requests. On the other hand, if the transition
IT?2 fires, the request will be processed by the system. Thus,
one token is consumed from the P2 and P3 (decreasing a
token from the total system capacity, K), and produced at P4
and P/ (enabling new requests to arrive). At this point, the
transition E72 is enabled to fire following the class of service
time specified (1/u), and when it fires, one token is consumed
from the P4 and the other is produced at the P3, regenerating
the capacity of the system.

As we are interested in evaluating the impact of the
availability on system performance, we integrate the results
provided by the Fault Tree model with our SPN model. To
represent when the system is available, we have an additional
SPN building block composed of two places and two stochastic
transitions on the top of Figure [I0]

One token at place UP means that the system is working
properly. The transition ET3 represents the failure of the
system, and when it fires, one token is consumed from UP
and produced at DOWN, making the system unavailable. This
transition receives the MTTF of the system, as shown in
Figure O] The transition ET4 represents the repair of the
system, and when it fires, one token is consumed from DOWN
and produced at UP, making the system available again. This
transition receives the MTTR values which can be calculated



through Equation [5| The MTTF and availability values are
calculated using the Fault Tree model (see results in Figure [9).

The transition E72 fires only when there is one token at
UP, i.e. when the system is operational. Otherwise, tokens are
accumulated at P2, forming a queue, and the throughput of
the system is impacted. To ensure this interdependence, the
transition ET2 has the following guard function: #UP > 0
i.e. if there is at least one token at UP, the transition can be
enabled to fire.

Table [T shows the performance results per request class (as
defined in Table [lI) and scenarios (as defined in sub-section

HI-C.

TABLE III
THROUGHPUT (IN REQUESTS/DAY) TAKING INTO ACCOUNT THE
availability OF THE APPLICATION PRESENTED IN FIGURE|§|

Scenarios/Classes A B C D
I 21884.5649  12321.9567  4052.2402  2138.8977
1T 21911.8204  12337.2670  4057.2643  2141.5482
i1 21905.7834  12333.8735  4056.1499  2140.9603
v 21933.1914  12349.2439  4061.1859  2143.6162
\% 21905.7766  12333.8765  4056.1531  2140.9621
VI 21933.1933  12349.2497  4061.1893  2143.6181

40500
40487.25

40480

40460

40487.24
40447.90
40436.77

v \ Vi

Fig. 11. Total throughput of the four classes of requests across the defined
scenarios in Table [l
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As one can see from Table [[TI, the values of throughput
vary dramatically with the four request classes; requests with a
high probability of occurrence, as defined in Table [T, generate
higher throughput traffic. We can also notice from Figure [TT]
that the total throughput of the four classes of requests does not
vary significantly across the defined scenarios. As expected,
higher throughput is returned by the scenarios with higher
availability (level of redundancy). We can also notice that
Scenarios IV and VI have the highest throughput due to their
having the highest availability (as shown in Figure [9). The
values of their throughput are approximately the same, also
due to their very close availability metrics. Thus, taking into
account these results and the results of availability (discussed
in the previous section), we can conclude that the number of
replicas does not always affect the availability and throughput
results.

V. RELATED WORK

Several prior studies have considered the performance anal-
ysis of web and search services. For example, in [23], the
authors introduced an approach for bootstrapping to evaluate
and monitor the performance- and availability-related QoS
attributes. They use a flexible Web service invocation mech-
anism combined with aspect-oriented programming to weave
performance measurement aspects directly into the byte-code
of the Web service stubs to gain maximum flexibility. Evalua-
tion results proved the usability of the approach for QoS-based
service selection.

Petri net models have been used successfully in the per-
formance analysis of different systems such as cloud and
edge computing [24]-[26] and IoT [27]]. It has also been
used for performance analysis of web and search services.
In [28]], the authors evaluated the performance of client-
server, mobile-agent, and remote-evaluation paradigms in an
information retrieval scenario using non-Markovian Petri-
net models. The Petri-net models proposed in [28] were
relatively simple and assumed execution parameters, such
as code and reply size, processing time, and a number of
examined servers for queries that were not derived from
experimental measurements. In [29], the authors improved
their results by defining more accurate Petri-net models fed
with experimentally-evaluated parameters through in-depth
measurements of the behavior of real users. Thus, whereas [28]
was concerned with the characterization of the users behavior
in a typical information retrieval scenario, based on thousands
of queries generated by hundreds of users search sessions, [29]]
solves some very accurate Petri-net models thus allowing for
complete performance analysis of the main communication
paradigms. Petri-net is also used by [30] to model traffic
generation patterns of internet-based real-time block-transfer
applications (e.g. Web browsing). Model flexibility is achieved
through adjustable system parameters.

To the best of our knowledge, no work looked at perfor-
mance analysis of ElasticSearch as a search engine. In this
paper, we evaluated three QoS parameters related to Elas-
ticSearch; we looked at Availability and Reliability metrics.
The reliability and availability models were fed into our
performance analysis for better monitoring and evaluation of
the target system.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have modelled and analysed the availability
and the performance of an enterprise search architecture (Elas-
ticSearch) deployed in a real-world service, Linknovate.com.
We proposed a Fault Tree model and analysing different
scenarios defined by shard distributions and the level of
redundancy of replicas in the ES client node. The results of the
analysis suggest that the best results were reached in scenarios
with a high level of redundancy.

The results of the proposed Fault tree model analysis
were integrated with a Stochastic Petri Net (SPN) model for
performance analysis of the Linknovate.com architecture to
analyze how failures and redundancy impact on application



performance. The results of this analysis suggested that higher
throughput is returned by the scenarios with higher availability.

To keep reduced response times when request peaks occur,
Linknovate.com currently over-provision nodes in the cloud.
This is a clear source of inefficiency which can be optimized
to reduce costs and energy consumption. As future work, dy-
namic provisioning (auto-scaling) together with the co-location
of nodes and users can be addressed. Also, we plan to explore
the relationships between redundancy and availability from
an economic perspective and derive appropriate cost-benefit
models. We also plan to validate the proposed model/analysis
using a real measurement of the system studied and also study
the scalability of the proposed solution.
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