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ABSTRACT

Deep learning has shown great potential in image and video com-
pression tasks. However, it brings bit savings at the cost of signif-
icant increases in coding complexity, which limits its potential for
implementation within practical applications. In this paper, a novel
neural network-based tool is presented which improves the interpo-
lation of reference samples needed for fractional precision motion
compensation. Contrary to previous efforts, the proposed approach
focuses on complexity reduction achieved by interpreting the inter-
polation filters learned by the networks. When the approach is imple-
mented in the Versatile Video Coding (VVC) test model, up to 4.5%
BD-rate saving for individual sequences is achieved compared with
the baseline VVC, while the complexity of learned interpolation is
significantly reduced compared to the application of full neural net-
work.

Index Terms— Neural network interpretability, video coding
standards, fractional-pixel motion compensation, convolutional neu-
ral networks, inter prediction

1. INTRODUCTION

Advanced video compression solutions, such as the current state-of-
the-art High Efficiency Video Coding (HEVC) standard [1] and the
next-generation Versatile Video Coding (VVC) [2] standard, rely on
the investigation of new, more efficient compression tools. In order
to even further reduce the bitrates necessary to transmit content at
higher video qualities, solutions based on learned methods, rather
than traditional, hand-crafted video coding methods are being ex-
plored. In this context, deep learning schemes similar to ones proven
to be useful in image processing tasks, are showing great potential in
video coding applications as well. Methods based on Convolutional
Neural Networks (CNNs) provide significant improvements in tasks
such as image denoising [3], image super-resolution [4] and image
colourisation [5]. For these reasons, significant research efforts have
been focused on ways to integrate CNN-based solutions into next
generation video coding schemes [6, 7, 8].

When used in video coding for higher compression, such so-
lutions have shown to bring coding gains at the cost of significant
increases in complexity and memory consumption. In many cases,
the high complexity of these schemes, especially on the decoder
side, limits their potential for implementation within practical ap-
plications. Nevertheless, schemes based on highly simplified neural
network (NN) models have been proposed [9], while some have been
adopted into the latest VVC drafts, including Matrix Intra-Prediction
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(MIP) modes [10] and Low-Frequency Non Separable Transform
(LFNST) [11, 12].

Most modern video coding solutions rely on sub-pixel (frac-
tional) Motion Compensation (MC) to refine integer motion vectors
and provide more accurate prediction samples. The reference sam-
ples are interpolated by means of fixed N-tap filters which are se-
quentially applied in the horizontal and vertical direction to produce
fractional samples. VVC inherits the same 8-tap filter to generate
half-pixel samples and 7-tap filters for quarter-pixel samples [13] as
in HEVC, but extends these with filters that provide up to sixteenth-
pixel precision samples as well as an alternate half-pixel filter. How-
ever, these fixed filters may not describe the original content well
enough or capture the diversity within the video data.

In this paper, a novel tool based on NNs is presented that im-
proves the interpolation of reference samples needed for fractional
precision MC. Contrary to previous NN-based efforts, the proposed
approach focuses on complexity reduction which is achieved by in-
terpreting the results learned by the networks. In his context, in-
terpretability aims to understand the relationships learned by a NN,
facilitating the derivation of simple algorithms from a multi-layer
network. Fractional interpolation models obtained this way pre-
serve the advantages of the learned models, while enabling their low-
complexity implementation.

2. STATE OF THE ART

An approach to using super-resolution CNNs to generate half-pixel
interpolated fractional samples was introduced in [14], reporting
0.9% Bjøntegaard delta-rate (BD-rate) [15] reductions under low-
delay P (LDP) configuration when replacing HEVC luma filters.
Training separate networks for luma and chroma channels was
presented in [16]. The resulting models were integrated within
the HEVC reference software as a switchable interpolation filter,
achieving 2.9% BD-rate coding gains under the LDP configuration.

As a follow-up to [14], Yan et al. proposed to formulate sub-
pixel MC as an inter-picture regression problem rather than an in-
terpolation problem [17]. The resulting method uses 15 networks,
one for each quarter-pixel fractional shift. The input to each net-
work was the decoded reference block for that position, where the
ground truth was the original content of the current block. Different
NNs were trained for uni-prediction and bi-prediction and for dif-
ferent QP ranges, resulting in a total of 120 NN-based interpolation
filters. Two NN structures were compared when training the NNs,
a 3-layer structure referred to as Super-Resolution CNN (SRCNN),
and a deeper model with multiple branches based on Variable-filter-
size Residue learning CNN (VRCNN), as proposed in [18]. When
tested on 32 frames, 2.9% BD-rate gains were reported for VRCNN
under LDP configuration with respect to HEVC, with 2.2% for SR-



CNN.
While these methods consistently improve the efficiency of

video compression by providing more accurate sub-pixel interpo-
lated samples, they have high complexity requirements to produce
CNN-based estimations. The SRCNN model implemented as a
switchable interpolation filter resulted in an almost 50 times higher
decoder run-time compared to the HEVC anchor, while VRCNN
increased the run-time by more than 200 times [17]. New solutions
to reduce the complexity of these models would be highly beneficial
to ensure such methods can be integrated within practical coding
solutions.

Interpreting and understanding relationships learned by the net-
work enables the derivation of streamlined, less complex algorithms
which achieve similar performance to the original models. In [19],
a framework for defining machine learning interpretability methods
was introduced. Interpretability could be achieved using model-
based methods prior to training, by defining a network structure that
is simple enough to be analytically understood, while sophisticated
enough to fit underlying data. Interpretability can also be achieved
using post-hoc methods, by analysing the NN models after training,
providing valuable insights into the learned relationships between
inputs and outputs.

The approach proposed in this paper builds on the algorithms
in [17], with the goal of reducing the complexity of SRCNN-based
sub-pixel MC using interpretability of learned NN models. Both
model-based and post-hoc interpretability methodologies are em-
ployed with the goal of capturing how individual features of the in-
put data contribute to the output predictions, thus deriving simple yet
accurate predictions.

3. PROPOSED APPROACH

The SRCNN model presented in [17] contains 64 individual 9 × 9
convolutional kernels in the first layer, 32 individual 1×1 kernels in
the second layer, and 32 individual 5 × 5 kernels in the final layer.
It is worth mentioning that the output of the network Y (motion
copensated prediction) is modified by adding the input X (reference
samples), which means the output of the final convolutional layer is
formed of prediction residuals R. In the machine learning context,
residuals are defined as the difference between the output and the
input, formally Y = R+X.

Following a model-based interpretability approach, a new sim-
plified structure can be defined by removing activation functions and
biases from the network, as they introduce non-linearities between
layers which do not allow simplifications. The original 3-layer SR-
CNN network contains ReLU activation functions after the first and
second layer, while biases are added to weighted inputs of each layer.
The removal of non-linearities does not affect the network perfor-
mance, as discussed in Section 4. The proposed SRCNN without
ReLUs and biases, referred to as ScratchCNN, is illustrated in Fig. 1.

The ScratchCNN training process is outlined in Section 3.2.
Once a trained model is available, post-hoc interpretability can be
applied to derive a simple interpolation filter. As seen in Fig. 2, the
first convolutional layer output, F1, is obtained from a given input
X as:

F1,i = K1,i ∗X, (1)

where K1,i correspond to 9 × 9 convolutional kernels and i =
0, .., 63. Second convolutional layer output, F2, is obtained as:

Fig. 1: ScratchCNN network architecture

F2,j =

63∑
i=0

K2,jF1,i, (2)

where K2,j correspond to 1 × 1 convolutional kernels, i.e. scalar
values, and j = 0, .., 31. The final convolutional layer output R is
obtained from F3 feature maps as:

F3,j = K3,j ∗ F2,j , (3)

and their summation for each j = 0, .., 31 as:

R =

31∑
j=0

F3,i. (4)

Additionally, unlike the networks described in [17] which ap-
ply zero padding between layers to keep the input size consistent,
none of the convolutional layers in the proposed simplified CNN ap-
ply padding. They instead use available samples from the reference
frame. Thus, the input X is extracted into patches only prior to the
first convolutional layer. As a 5 × 5 convolution is applied on top
of a 9 × 9 convolution, then 13 × 13 reference samples have to be
considered. Values at input positions Xi,j , where i, j = 0, ..12, are
multiplied with several convolutional kernel weights per layer. Sum-
ming all the weights with which a Xi,j has been multiplied with,
leads to a 13 × 13 matrix M created from trained CNN, described
as:

R = M ∗X = F(K3,K2,K1,X). (5)

A non-separable 2D filter M is obtained. The filter coefficients
represent the contribution of each of the reference samples in a fixed
13 × 13 window surrounding the interpolated fractional sample, as
shown on the top-right of Fig. 2.

Due to the network architecture of ScratchCNN, the described
method directly computes samples of the resulting motion compen-
sated prediction from the reference samples, instead of performing
numerous convolutions defined by CNN layers. Furthermore, using
this approach, it is possible to visually identify the contribution of
each reference pixel in the 15 interpreted filters, as illustrated in Fig.
3.

3.1. Encoding configuration

Tests for this preliminary work are done for simplified VVC inter-
prediction, similar to HEVC conditions in [17]. VVC Test Model
(VTM) [20] version 6.0 was used as basis for this implementation.
Common Test Conditions (CTCs) defined by JVET [21] were used,
where these conditions were modified according to a number of
restrictions imposed to encoder tools and algorithms. The flags in-
clude: Triangle=0, Affine=0, DMVR=0, BIO=0, WeightedPredP=0,



Fig. 2: Fractional pixel derivation process for VVC (left), NN interpolation filter (centre) and proposed approach (right). VVC requires 8× 8
samples (top-left) to predict a pixel; NN and proposed approach require 13× 13 samples (top-right).

Fig. 3: 15 derived 13× 13 interpolation filters, one for each quarter-
pixel position

WeightedPredB=0, MHIntra=0, SBT=0, MMVD=0, SMVD=0,
IMV=0, SubPuMvp=0, TMVPMode=0; along with disabling the
alternate half-pel interpolation filter and limiting VVC to quarter-pel
fractional MC.

3.2. Data generation and network training

The described modified VTM encoder was used to compress all
frames in the BlowingBubbles sequence, adopting the approach from
[17]. Additional restrictions were imposed to the encoding, to ensure
that all blocks in the sequence are encoded using the same QP, and
to ensure that only smaller coding units (CUs) are used. Training
data was obtained using LDP configuration, with four different QPs
of 22, 27, 32 and 37.

Although blocks equal or smaller than 16 × 16 samples were
used for training in [17], VVC limits the minimum Coding Tree Unit
(CTU) size to 32×32 luma samples, so blocks of maximum 32×32
samples were used when generating the data for training the evalu-
ated approaches. Also different to HEVC, VVC uses a more com-
plex partitioning scheme [2] which may result in non-square CUs.
These rectangular blocks were also considered during the training of
SRCNN and ScratchCNN.

Four sets (for QPs 22, 27, 32 and 37) of 15 networks, one for
each of the possible half-pel/quarter-pel positions in a 2D space be-
tween 4 integer pixels, were trained using Sum of Absolute Differ-
ences (SAD) as the loss function, along with the Adam optimiser.
The approach is different from [17], where Mean Squared Error
(MSE) and Stochastic Gradient Descent (SGD) were used as the loss
function and optimiser.

3.3. Integration into VVC

After training the 60 networks and extracting corresponding simpli-
fied 13 × 13 filter matrices from learned models, the filters were
integrated within the VTM encoder as switchable interpolation fil-
ters. The selection between the conventional VVC filters and the
13 × 13 filters is performed at a CU level. One additional flag is
correspondingly encoded in the bitstream and parsed by the decoder
to determine which filter is used on a given block. Blocks coded in
merge mode inherit usage of the same filter together with the merged
motion information. The NN filters are only used for the luma com-
ponent. If the QP of the CU is different to one of the 4 QPs for
which the filters are trained, then the filter trained for the closest QP
to the current QP is used. Separate filters for bi-prediction were not
considered at this stage.



Table 1: Comparison of coding performances of different network
structures for ClassD sequences, low-delay B (LDB) configuration,
32 frames.

BD-Y [%] EncT [%] DecT [%]
SRCNN 0.67% 38915% 1322%
ScratchCNN
(MSE & zero padding) 0.36% 859% 192%

ScratchCNN
(SAD & no padding) -0.95% 863% 237%

Table 2: Coding performance of the proposed approach for random
access (RA), LDB and LDP configurations, entire sequence; BD-rate
for luma.

Sequence
Class

Encoder configuration
RA LDB LDP

BasketballDrill (C) -0.15% 0.11% -0.28%
BQMall (C) -0.32% -0.69% -1.25%

PartyScene (C) -0.82% -1.92% -3.22%
RaceHorses (C) 0.14% 0.19% 0.19%
ClassC Overall -0.29% -0.58% -1.14%

BasketballPass (D) -0.14% -0.33% -0.52%
BQSquare (D) -1.35% -3.02% -4.54%

BlowingBubbles (D) -0.90% -2.18% -3.14%
RaceHorses (D) 0.04% 0.21% 0.02%
ClassD Overall -0.59% -1.33% -2.04%

4. RESULTS

As mentioned in Section 3.1, the proposed approach is tested for a
modified VVC codec. Although neural networks are usually run on
a GPU to enhance their run-time performance, all results reported
here were obtained in a CPU environment.

Rather than integrating a deep learning software within VTM,
all weights and biases (8129 parameters in total) are extracted
from each of the 15 trained SRCNNs and implemented in VTM
as a series of matrix multiplications. In contrast, each trained
ScratchCNN model is condensed in one 2D matrix that contains
169 parameters. As presented in Table 1 which summarises results
for coding 32 frames of ClassD sequences, the encoding time for
a CPU implementation of SRCNN equals to 38915% of the equiv-
alent (restricted) VVC configuration. ScratchCNN encoding time
increases are around 860%, showing a considerable running time
reduction compared to SRCNN. Further comparisons are run for
ScratchCNN trained in the way proposed in [17] (MSE loss func-
tion, zero padding) against a network with SAD loss function, no
padding on a block level, demonstrating how these changes bring
significant coding gains.

Table 2 summarises test results for a ScratchCNN switchable fil-
ter implementation within VTM 6.0 constrained conditions. As the
network was trained on a Class D sequence, with its motion infor-
mation extracted from an LDP configuration, the most significant
coding gains are demonstrated for lower resolution test sequences.

Table 3: Hit ratio for learned 13 × 13 interpolation filters, LDP
configuration.

Class QP 22 QP 27 QP 32 QP 37
Class C 74.52% 85.28% 83.68% 80.62%
Class D 77.92% 88.35% 84.06% 79.66%

Since the learned 13×13 filters were implemented as switchable in-
terpolation filters, each CU in VVC can select between the proposed
NN 13 × 13 and conventional VVC filters during Rate-Distortion
(R-D) optimisation. The ratio of CUs choosing the learned 13× 13
filter across all CUs using sub-pixel MC is referred to as hit ratio.
Hit ratio per QP of NN interpolation filters compared to VVC fil-
ters for both Class C and Class D sequences, LDP configuration is
shown in Table 3, suggesting that the learned filters are performing
well across all tested QPs.

The proposed approach achieves per class average and single
configuration BD-rate saving of up to 2.0% compared with the mod-
ified VVC, while significantly reducing the complexity of learned
NN interpolation.

5. CONCLUSIONS

An approach for interpreting and understanding convolutional neu-
ral networks in visual data processing has been presented. The en-
visaged complexity reduction has been tested in the field of video
coding, specifically on fractional-pixel motion compensation. Ex-
perimental results show a considerable encoder and decoder running
time decrease when compared to previous state-of-the-art methods.
Additional revisions to network training, such as using a SAD loss
function and no padding, have also been proposed, displaying a no-
table increase in bitrate savings in a modified VVC encoder environ-
ment.

The presented work warrants further improvements, as Scratch-
CNN’s encoding time needs additional complexity reductions for
possible future practical applications. Likewise, results need to be
verified in VTM CTC. Greater diversity between the training and
testing datasets is also required. Lastly, VVC uses a combination of
SAD and a full R-D cost computation as a loss metric for motion es-
timation, meaning the neural network’s SAD loss function currently
doesn’t describe the video coding loss metric in full.
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