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Abstract. There is a growing interest in utilising novel signal sources
such as EEG (Electroencephalography) in multimedia research. When
using such signals, subtle limitations are often not readily apparent with-
out significant domain expertise. Multimedia research outputs incorpo-
rating EEG signals can fail to be replicated when only minor modifica-
tions have been made to an experiment or seemingly unimportant (or
unstated) details are changed. This can lead to overoptimistic or over-
pessimistic viewpoints on the potential real-world utility of these signals
in multimedia research activities. This paper describes an EEG/MM
dataset and presents a summary of distilled experiences and knowledge
gained during the preparation (and utilisiation) of the dataset that sup-
ported a collaborative neural-image labelling benchmarking task. The
goal of this task was to collaboratively identify machine learning ap-
proaches that would support the use of EEG signals in areas such as
image labelling and multimedia modeling or retrieval. The contributions
of this paper can be listed thus; a template experimental paradigm is
proposed (along with datasets and a baseline system) upon which re-
searchers can explore multimedia image labelling using a brain-computer
interface, learnings regarding commonly encountered issues (and useful
signals) when conducting research that utilises EEG in multimedia con-
texts are provided, and finally insights are shared on how an EEG dataset
was used to support a collaborative neural-image labelling benchmarking
task and the valuable experiences gained.
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1 Introduction

EEG (Electroencephalography) has recently become an accessible method to
support the building and operation of BCI (Brain-Computer Interface) applica-
tions. While the initial use of such techniques began in clinical / rehabilitative
settings for the purposes of augmenting communication and control, a recent
trend has been to use such signals and methods in novel domains, such as image
annotation, which relies on the identification of target brain events to trigger
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semi-automated image labeling [5][11][14][19]. This trend is particularly relevant
to multimedia and HII (Human-Information Interaction) communities because
in recent years EEG has demonstrated its potential for several applications in-
cluding annotation of multimedia content, identifying when a user’s attention is
drawn to something in the real world, or as a source of wearable sensor data to
be indexed for later retrieval or analysis.

EEG signals when used in a multimedia application can often be naively ex-
pected to carry meaningful information that will directly measure a particular
mental state or concept. Many multimedia researchers embark on a course of
research intending to use EEG signals without a clear understanding of which
phenomena in the signal should be useful. In such circumstances, it is often
quickly realised that the signals offer little utility. Conversely, a naively applied
off-the-shelf machine-learning strategy to an arbitrary selection of features from
EEG might not readily reveal if the source of the useful information is of neural
origin or from non-neural artefacts imparted onto the EEG (e.g. eye movements),
therefore it can be erroneously assumed that since EEG was used the only ex-
planation is that the useful signals are directly of a neural origin.

EEG data is rife with sources of variability including those related to the
task, the environment and the participants themselves. Moreover, EEG is typ-
ically contaminated by non-neural sources of activity emerging from the body
such as eye movements (EOG - Electrooculography), facial movement (EMG
- Electromyography) and ECG (Electrocardiography). These signals are typi-
cally orders of magnitude larger than EEG phenomena, and can be difficult to
disentangle from the EEG. Hence, we decided that the community needed to
have access to multimedia datasets containing EEG signals and a better un-
derstanding of the methodologies for extracting semantic value from such data.
Therefore, an EEG/multimedia modelling comparative benchmarking task was
proposed and run at NTCIR-13.

NTCIR (NII Testbeds and Community for Information access Research) is a
repeating participation conference (with an 18-month cycle) that brings together
researchers to develop evaluation methodologies and performance measures for
IA (Information Access) technologies across single and multiple-media data. This
brings together an active research community in which findings based on com-
parable experimental results are shared and exchanged in an open, collaborative
manner. One topical focus of this is mining knowledge from a large amount of hu-
man generated data. NAILS (Neurally Augmented Image Labelling Strategies)
was an affiliated task at NTCIR-13 (the 13th NTCIR conference) to support the
collaborative evaluation of best-practice strategies for RSVP-EEG image search
applications, where researchers benchmarked their machine-learning strategies.

This paper extends previous work with the NAILS task by sharing experi-
ences gained in collecting the novel dataset, and importantly, offering not only
a template experimental protocol but also an understanding of common pitfalls
and issues. We describe the experimental protocol used to capture the dataset
for this task, and compliment this with an understanding of the motivation be-
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hind its construction to allow others to extend upon this approach integrating
it as relevant with their application domain.

2 Motivation to use EEG

When coupled with a suitable visual presentation paradigm, EEG can enable
the detection of attention-related events that are understood to be indicative of
user interest – or more specifically the allocation of their attention to one par-
ticular stimulus as opposed to some other. One characteristic pattern of activity,
commonly known as the P300 signal [20], has been a focus of investigation as
it can be used as an index of attentional resource allocation to a stimulus such
as an attention-captivating image (due to its infrequency) when presented on a
screen. This finding has enabled BCI systems to leverage the ability of a user
to be able to guide their attention in such a manner so as to be able to provide
relevance judgements/ratings on visual stimuli. For example, a user can actively
‘look out’ for a particular type of image so that when relevant images appear in
a high-speed visual presentation sequence known as RSVP (Rapid Serial Visual
Presentation) [26], they will subsequently elicit a P300 response that can be
detected using signal processing and machine-learning methods. Ultimately this
allows the image to be ‘neurally’ labelled by the participant.

While systems like these have been explored in a proof-of-concept manner in
BCI research using a multitude of image-search tasks, the datasets used usually
remain unshared between studies, making it difficult to meaningfully compare
the machine-learning and feature-processing strategies used, to find those that
offer the best generalisability both across tasks and participants. This is what
NTCIR-13 NAILS sought to address, by developing and releasing a dataset and
setting achievable research challenges for participants. While the NAILS task
showed some classification approaches from participating groups were better
than others, it also provided clear evidence, that even with a pristine cleaned
dataset (removing potential non-neural sources of useful information), that ap-
plications relying on such signals would still need to ultimately rely on noisy
labels for the time being i.e. a balanced accuracy of 0.8839 might not be good
enough yet to support the type of image target detection applications it is tar-
geting.

While this might appear as a roadblock for applications using EEG sig-
nals in this way, it’s important to realise the developments that have been
made in this space over the past number of years, where through refined ex-
perimental protocols, better sensing equipment [15][16][10] and improved signal
processing/machine-learning [12], the accuracy of such neural-labelling systems
are improving. Moreover, applications replying upon the RSVP-EEG paradigm
are being realised where the objective of the system might be to extract other
information such as the believability of images generated by GANs [28], mem-
orability of media [24], or to use the signals across users on the same dataset
collectively to overcome issues with noise [8]. It is the opinion of the authors that
sharing datasets, as well as experience and knowledge in how to conduct EEG
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data gathering and use of the data from a RSVP-EEG BCI, could enable other
researchers to leverage a RSVP-EEG BCI as a component to drive other applica-
tions within the multimedia modelling space although the intended application
may not be specifically for image labelling.

Fig. 1. Examples of four target images used in the NAILS experiment.

3 NAILS Data Set & Collection

Before discussing experiences in executing the NAILS task at NTCIR-13, we
provide a concise description of the dataset [6] [7].

3.1 Experimental Task Description

The NAILS dataset1 collection contained EEG responses to 97,200 images from
10 experimental participants. Data collection was carried out with approval from
Dublin City University’s Research Ethics Committee (DCUREC/2016/099). Each
participant completed 6 different search tasks for a particular type of target,

1 To gain access to the NAILS dataset and related benchmark implementations please
contact graham.healy@dcu.ie
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where each search task was divided into 9 (approximately 35 second) blocks
which were completed in a self-paced manner so as to alleviate strain on partici-
pants. In each search task, a participant searched for a known type of target (e.g.
an airplane), and was instructed to covertly count occurrences of target images
in the RSVP sequence so as to maintain their attention on the task. Figure 1
shows examples of the target search images used. In each RSVP block, images
were presented successively at a rate of 6 Hz with target (search-relevant) im-
ages randomly interspersed among standard (non-search relevant) images with
a percentage of 5% across all blocks. In each block, 180 images (9 targets/171
standards) were presented in rapid succession on screen. Per participant, there
were 486/9234 target/standard examples available.

3.2 Image Dataset

Image tasks were constructed using freely available datasets [29][23][22]. These
were selected as a good choice given that they are commonly used datasets
with well-researched characteristics that are representative of the visual content
typically encountered in multimedia-IR tasks whilst remaining similar to content
used in previous RSVP-BCI studies.

3.3 EEG data filtering

As contaminant eye-movement related activity on the EEG can often contain
useful information, epochs (from -1000ms to 2000ms) containing such activ-
ity were excluded as they might encourage developed strategies to utilise these
non-neural sources of discriminative information. In the NTCIR-13 NAILS task,
epochs were filtered to exclude those with a peak-to-peak amplitude greater
than 70 on EOG (Electrooculogram) and frontal EEG channels to remove trials
that contained such contaminant eye-movement activity. A commonly employed
strategy in EEG signal processing is ICA (Independent Component Analysis),
and in the NAILS dataset this was used alongside a wavelet based analysis to
confirm that the remaining epochs did not contain non-neural sources of discrim-
inative information. For further details please refer to [7]. For the NAILS task,
this dataset was split into a training/testing set, where 15/285 target/standard
trials from each search task (for each participant) were selected to act as a
withheld test set in the evaluation.

3.4 Collaborative Evaluation Task Description

Nine competing teams took part in the collaborative evaluation using the sup-
plied training data (remaining epochs from blocks not used to extract test set
data) and they were asked to build machine-learning models that maximised
the BA (Balanced Accuracy) score on the withheld testing set (withheld by the
NAILS organisers). That means for an evaluation run, a team needed to submit
binary predictions for the 18,000 examples given in the test set (900/17100 tar-
gets/standards respectively). There were more than 2500/47000 target/standard
training examples available across all participants for model training.
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3.5 Provided Features / Pre-processing

Three types of preprocessed data were made available to participating organ-
isations: time-series features (time), wavelet magnitude features (w-mean) and
wavelet magnitude ratio (w-ratio) features. It was at the discretion of each par-
ticipating team which combination of these features to use.

3.6 Dataset Validation

In order to validate that the captured data contained useful information for
classification prior to sharing the dataset, we applied a basic machine learning
analysis using a RBF (Radial Basis Function) kernel SVM (Support Vector Ma-
chine) [18]. Each model was trained on a participant-by-participant basis where
hyper-parameters (C and gamma) were learned using a randomised grid-search
approach. Each model was then applied to the unseen test set data where ac-
curacy measures were calculated (presented in Table 1 and Table 2). A range
(and combination) of feature sources (used in baseline approaches) were pre-
sented so as to support a better interpretation of the results of participating
teams. Importantly, a functioning pipeline was shared with participants (devel-
oped in python using mne [3] and sklearn [17]) demonstrating how this result
was achieved. In Figure 2, we show a characteristic P3b response acquired from
one experimental participant. These measures verified that the chosen tasks were
eliciting the expected characteristic (oddball) P300 response i.e. it was possible
for a participant to do the search tasks as intended.

Table 1. Balanced accuracy scores for each participating team’s best performing
method broken down by experimental participant.

Dataset Team-1 Team-2 Baseline

101 .8219 .7670 .7503
102 .8781 .8512 .8211
103 .8646 .8275 .7664
104 .8877 .8743 .8322
105 .9304 .8921 .8257
106 .8781 .8705 .8026
107 .9170 .8719 .8295
108 .8804 .8658 .8041
109 .8763 .8523 .7930
110 .9041 .8556 .8246

Average .8839 .8528 .8049

4 Experiences from Gathering Usable EEG Data

Given the challenges of gathering usable EEG data for valid experimental use,
we now provide on overview of experiences gained from gathering the NTCIR
dataset, as well as other related activities over the recent years.
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Table 2. Balanced accuracy scores for each participating team’s best performing
method broken down by experimental task.

Task ID Team-1 Team-2 Baseline

WIND1 .8905 .8609 .8237
WIND2 .8846 .8356 .7746
INSTR .8114 .7895 .7616
BIRD .8616 .8191 .7805
UAV1 .9216 .9053 .8381
UAV2 .9335 .9065 .8512

Average .8839 .8528 .8049

Fig. 2. Butterfly plot (ERP averages) of target epochs across all blocks minus average
standard epochs across all blocks. Plots are generated using CAR (common average ref-
erence). Characteristic P3b activity can be seen at posterior scalp sites approximately
between 300ms and 600ms following target detection (peaking at 426ms). The colors
on time-series plots indicate electrode location on scalp (upper left).
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4.1 Data Gathering

While EEG data clearly has a lot of potential to assist the multimedia modeling,
analysis and retrieval communities, recording clean EEG data is a laborious
activity requiring a coordinator to strike a balance between multiple factors such
as experiment length, a participant’s motivation to maintain attention during the
task and task complexity. There is little point in recording data if the participant
is no longer engaged in a task that requires their active engagement for the data
to be meaningful (as is the case with the endogenous P300 [1]).

Furthermore, if aiming for high quality signals, it requires the careful con-
nection of an EEG cap ensuring the impedance on each electrode is kept low.
This typically involves using an instrument to mechanically abrade the top layer
of (dead) skin and using a conductive paste or liquid to enable conduction of
electrical signals generated by the brain to the electrodes [13]. This is a messy
business requiring participants after an experiment to wash their hair (necessi-
tating some basic washing facilities on site). Moreover, care must be taken not
to use too much conductive gel as electrodes can bridge together when this gel
creeps along the scalp. This becomes particularly cumbersome when using more
than 32 electrodes in an experiment as the electrodes will be closer together. For
those new to recording EEG, this can often be daunting as there’s a valid fear
that they may injure a participant, which leads to over-cautious scalp prepa-
ration behaviour that in fact counter-productively results in more discomfort
than necessary [2]. While many dry electrode EEG systems (not requiring a
conductive gel) are available, their SNR (Signal-to-Noise Ratio) issues can often
impede applications that rely on a high SNR. Due to the relatively low SNR
of the P300 signal elicited in the NAILS task, a wet electrode EEG system is
usually necessary.

Other practical experience learned over time from conducting similar EEG
studies, which will assist researchers to gather their own EEG datasets include:

– When a participant arrives having rushed from somewhere else, they will
often be sweating. Sometimes they will just be anxious or excited about the
experiment causing them to sweat. It’s important for the first few minutes to
allow a participant to get their bearings, and this is often a good time to run
through formalities such as ethics or informed consent. Sweat is deleterious
to EEG signal quality and the issues it presents can often be avoided with
some planning.

– Before connection to an EEG system ensure that the participant will not get
disturbed or does not need to use a washroom.

– Allow a participant a practise session to get comfortable with the general
requirements of the task.

– Do some pilot tests before committing to executing a large study (and have a
pipeline to analyse and inspect the data from the start). It’s easy to overlook
what seems like a minor detail that can have deleterious effects that are only
realised during data analysis when it’s too late to fix a timing synchronisation
or trigger problem [27].



Experiences and Insights from NAILS 9

– Check impedance of the electrodes during the experiment.
– Pay careful attention to the instructions you use to ask a participant to com-

plete a task as they can have undesired consequences i.e. asking a participant
to minimise eye blinks can often result in the subject in a RSVP experiment
withholding eye blinks until they see a target image in a stream resulting in
confounding eye blinks consistently occurring directly after a target image.

– Instruct the participant to try and avoid physical movements during the ex-
perimental blocks (and similarly make it apparent if the participant needs to
adjust themselves physically that between experimental blocks is a good time
to do so). Avoid swivel and recliner chairs as they can encourage movement
during the experiment.

– Choose a quiet location to do the experiment where the participant will
not be interrupted with distractions e.g. overhearing a hallway conversation
distracting them from the task.

– Use small experimental blocks; in long experimental blocks it’s unlikely a
participant will be able to consistently sustain their attention throughout.

– EEG experiments are often long and boring, and it is often vitally important
that the participant remains engaged in the task. Conversing with the par-
ticipant during electrode setup and between experimental blocks will make
them feel less objectified as a data point and more likely to want to do the
task correctly.

– Ensure the participant is comfortable. The distraction of hunger/thirst or
an uncomfortable chair (requiring regular readjustment) is not only likely
to affect a participant’s performance but will also likely add to giving your
experiment a bad reputation when recruiting future participants.

4.2 Experiences from running NTCIR-13 NAILS

Only two of the nine teams successfully submitted an overview paper along with
valid predictions to the NAILS task. Teams were contacted prior to the due
date of submission of results (i.e., predictions on the test set), and the most
common reason for not continuing participation was due to not achieving any
significant improvements over the baseline approach. All participants in the task
were provided with an implementation for the baseline approach so as to ease
their participation. A table of results related to the competition are presented in
Table 1. These results have been subsequently interpreted in an overview paper
[7]. Elements of the NAILS task that happened at NTCIR-13, particularly the
use of EEG in an informational retrieval context, will be married with a previous
core task [4] as part of NTCIR-15.

Invariance of ranking of participant accuracies Although not explicitly
stated in the overview paper [7], each team’s winning approach (and the base-
line) showed high correlation in their respective balanced accuracy scores when
analysing on a per-participant basis i.e. balanced accuracy scores for individual
experimental participants data tended to be similarly ranked regardless of ap-
proach. Using a Spearman’s rho correlation test we find the balanced accuracy
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scores for Team 1’s and Team 2’s best approaches significantly correlate (rs=.86,
p=.0015, N=10). This is similarly the case when performing the same correlation
test against the baseline approaches for both Team 1 (rs=.89, p=.0005, N=10)
and Team 2 (rs=.82, p=.0038, N=10). This is an important observation as it
indicates some participant’s EEG data was difficult to classify regardless of the
explored approaches taken. When conducting a future study like this, we may
actively seek to screen participants in order to collect a more directed dataset
that focuses on participants who have difficult-to-classify EEG data. Similarly,
we intend to explore whether it’s possible to identify such experimental partici-
pants via a proxy measure like reaction time [21].

Invariance of ranking of task accuracies Performing a similar Spearman’s
rho correlation analysis on the balanced accuracy scores of the tasks (where
scores are averaged across participants for a task) we find the scores of Team
1’s and Team 2’s best approaches significantly correlate (rs=1, p=.0000, N=6).
This is similarly the case when performing a similar correlation test against
the baseline approaches for both Team 1 (rs=.94, p=.0048, N=6) and Team 2
(rs=.94, p=.0048, N=6). These results indicate that balanced accuracy scores for
experimental task’s data tended to be similarly ranked regardless of approach.

ARL17 [25] and QUT [9] both made successful submissions whose respective
balanced accuracies on the test set are shown in Table 1 and Table 2. Both
team’s best results achieved balanced accuracy scores on the test set greater
than any of the naive baseline approaches. This indicates that both participating
team’s approaches used a suitably developed strategy i.e. they outperformed a
classical off-the-shelf machine-learning strategy like a SVM. In Table 1 and Table
2 we present a breakdown across participants and tasks (respectively) of the
balanced accuracies achieved by each team’s best performing method. Notably,
independent subject nor task (or a combination thereof) models were not used as
runs as it was found that these models performed sub-optimally to those trained
on the data both per task and per participant. This is particularly important, as
it shows there may be a need for much larger datasets to accomplish such feats.

5 Conclusions

There is a growing interest in utilising novel signal sources such as EEG (Elec-
troencephalography) in multimedia research. While these signals can provide a
useful source of evidence in multimodal media analytics, significant domain ex-
pertise is required to gather EEG datasets and make use of the resulting data.
This paper presents a summary of distilled experiences and knowledge gained
during the preparation (and utilisiation) of an EEG dataset that supported a
collaborative neural-image labelling benchmarking task. This paper also high-
lights the nature of the novel EEG dataset and provides details on how it was
made and how it can be accessed.
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