C3	$0.1405(2)$	$0.6555(2)$	$0.6209(3)$	$3.23(5)$
C4	$0.1519(3)$	$0.7747(3)$	$0.5990(3)$	$3.74(6)$
C5	$0.0812(3)$	$0.8495(2)$	$0.6682(3)$	$3.61(6)$

Table 5. Selected geometric parameters $\left(\AA^{\AA},{ }^{\circ}\right)$ for $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2} \cdot \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$

N1-O1	1.323 (3)	C4-C5	1.373 (4)
N2-O2	1.227 (4)	$\mathrm{Co}-\mathrm{Ol}^{\text {i }}$	2.062 (2)
N2-03	1.227 (4)	$\mathrm{Co}-\mathrm{OW} 1^{\text {ii }}$	2.101 (2)
O2...03	2.182 (4)	$\mathrm{Co}-\mathrm{OW} \mathbf{2}^{\text {ii }}$	2.085 (2)
N1-Cl	1.349 (3)	N3-O4	1.252 (3)
N1-C5	1.354 (8)	N3-O5	1.239 (3)
N2-C3	1.473 (4)	N3-06	1.238 (3)
C1-C2	1.366 (4)	O4. . 05	2.168 (3)
C2-C3	1.379 (4)	04...06	2.145 (3)
C3-C4	1.379 (4)	05.. 06	2.146 (3)
O1-N1-C1	118.2 (2)	N2-C3-C2	119.3 (2)
O1-N1-C5	120.9 (2)	N2-C3-C4	119.5 (3)
C1-N1-C5	121.1 (2)	C2-C3-C4	121.2 (3)
O2-N2-C3	116.7 (3)	C3-C4-C5	118.4 (3)
O3-N2-C3	117.8 (3)	N1-C5-C4	120.3 (2)
O2-N2-O3	125.5 (3)	O4-N3-05	120.9 (2)
N1-C1-C2	120.7 (3)	O4-N3-06	118.9 (2)
C1-C2-C3	118.3 (2)	O5-N3-O6	120.1 (2)

Symmetry codes: (i) $x, y-1, z-1$; (ii) $x, y, z-1$.
Table 6. Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$ for $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2} \cdot \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$

D	H	A	D-H	H \cdots A	D \cdots A	D-H. . A
OW1	H1W1	04	0.80 (3)	1.99 (3)	2.783 (3)	172 (3)
OW1	H2W1	Os ${ }^{\text {i }}$	0.73 (3)	2.09 (3)	2.779 (3)	158 (3)
OW2	H1W2	O4 ${ }^{\text {ii }}$	0.76 (3)	2.03 (3)	2.764 (3)	162 (3)
OW2	H2W2	06	0.74 (3)	2.02 (3)	2.758 (3)	170 (3)
C1	HCl	$06^{\text {i }}$	0.98 (3)	2.42 (3)	3.080 (3)	124 (3)
C4	HC4	O2 ${ }^{\text {iii }}$	0.90 (4)	2.46 (3)	3.252 (4)	148 (3)

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, 2-z$; (iii) $\frac{1}{2}-$

$$
\bar{x}, \frac{1}{2}+y, 1-z .
$$

Data collection and cell refinement: CAD-4 Software (EnrafNonius, 1989). Data reduction: SDP (Enraf-Nonius, 1977). Program(s) used to solve structure: MULTAN77 (Main, Lessinger, Woolfson, Germain \& Declercq, 1977). Program(s) used to refine structure: SDP. Molecular graphics: MolView (Cense, 1989). Software used to prepare material for publication: SDP. The same computer programs were used for both analyses.

The X-ray diffraction data collection for both compounds was made possible thanks to the cooperation of Enraf-Nonius, Delft, The Netherlands.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1074). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Averbuch-Pouchot, M.-T. \& Durif, A. (1992). Acta Cryst. C48, 11731176.

Baur, W. H. (1992). Acta Cryst. B48, 745-746.
Cady, H. H. (1967). Acta Cryst. 23, 601-609.
Cense, J. M. (1989). Tetrahedron Comput. Methodol. 2, 1, 65-71.
Eichhorn, E. L. (1956). Acta Cryst. 9, 787-793.
Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Enraf-Nonius (1977). Structure Determination Package. Version RSX11M. Enraf-Nonius, Delft, The Netherlands.
Jensen, K. G. \& Jerslev, B. (1969). Acta Cryst. B25, 916-925.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declercq, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Masse, R., Bagieu-Beucher, M., Pécaut, J., Levy J.-P. \& Zyss, J. (1993). Second French-Israeli Symposium on Non-Linear Optics. Topic 3. Switzerland: Gordon and Bzeach.
Nicoud, J. F. \& Twieg, R. J. (1987). Non-Linear Optical Properties of Organic Molecules and Crystals. Quantum Electronics. Principles and Applications, Vol. 1, edited by D. S. Chemla \& J. Zyss, pp. 227296. London: Academic Press.

Nyburg, S. C. \& Faerman, C. M. (1985). Acta Cryst. B41, 274-279.
Pécaut, J., Le Fur, Y., Levy, J.-P. \& Masse, R. (1993). J. Mater. Chem. 3, 333-338.
Shiro, M., Yamakawa, M. \& Kubota, T. (1977). Acta Cryst. B33, 15491556.

Wang, Y., Blessing, R. H., Ross, F. K. \& Coppens, P. (1976). Acta Cryst. B32, 572-578.
Yamakawa, M., Kubota, T., Ezumi, K. \& Mizuno, Y. (1974). Spectrochim. Acta, 30, 2103-2119.
Zyss, J., Chemla, D. S. \& Nicoud, J. F. (1981). J. Chem. Phys. 74, 48004810.

Acta Cryst. (1994). C50, 1084-1087

cis-Tetracarbonylbis[tris(p-fluorophenyl)phosphine]molybdenum(0)

Elmer C. Alyea, George Ferguson, John F. Gallagher \dagger and Shuquan Song

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada NIG 2W1
(Received 11 August 1993; accepted 14 December 1993)

Abstract

The molecule cis-tetracarbonylbis[tris(p-fluorophenyl)phosphine]molybdenum(0), $\left[\mathrm{Mo}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{P}\right)_{2}(\mathrm{CO})_{4}\right]$, has twofold crystallographic symmetry; the Mo geometry is irregular octahedral, with principal dimensions MoP 2.5644 (4), Mo-C (trans to P) 1.9869 (16), Mo-C (trans to C) 2.0310 (18) £, P-Mo-P 107.33 (1), trans-P-Mo-C 166.76 (5) and trans-C-Mo-C 174.31 (8) ${ }^{\circ}$. The P geometry is irregular tetrahedral, with enlarged Mo-P-C [average 115.94 (5) ${ }^{\circ}$] and reduced C-P-C [average $102.22(7)^{\circ}$] angles. ${ }^{95} \mathrm{Mo}$ NMR chemical shift data are in accord with the observed structure.
\dagger Present address: University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, England.

Comment

The compound cis-tetracarbonylbis[tris(p-fluorophenyl)phosphine]molybdenum $(0), \quad\left[\mathrm{Mo}\left\{\mathrm{P}^{(\mathrm{C}} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}-p\right)_{3}\right\}_{2^{-}}$ $\left.(\mathrm{CO})_{4}\right]$, (1), was synthesized as part of our studies of the nature of $\mathrm{P}^{\text {III }}$ ligands as probed by ${ }^{95} \mathrm{Mo}$ NMR spectroscopy (Alyea \& Song, 1992, 1994). Since the X-ray structure of cis- $\left[\mathrm{Mo}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{4}\right]$ (2) is known (Cotton, Darensbourg, Klein \& Kolthammer, 1982), an X-ray analysis of (1) was undertaken to determine the influence of the electronegative para-substituent on the structural parameters and on the ${ }^{95} \mathrm{Mo}$ chemical shift. A search of the April 1993 release of the Cambridge Structural Database (Allen, Kennard \& Taylor, 1983) for structures containing the $\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{P}_{2}$ fragment revealed several structures of this type. However, cis-[$\left.\mathrm{Mo}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{4}\right]$ (2) is the only previous one containing monodentate triarylphosphine ligands.

(1)

A general view of molecule (1) is shown in Fig. 1 and the bond data (Table 2) show that the Mo atom has irregular octahedral coordination geometry in the solid state. The distortion is considerably larger than that reported previously for the analogous triphenylphosphine complex (2). The average Mo- P bond distance in $\left[\mathrm{Mo}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{F}-p\right)_{3}\right\}_{2}(\mathrm{CO})_{4}\right]$ (1) is 2.5644 (4) \AA, which is significantly shorter than the analogous bond in the cis$\left[\mathrm{Mo}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})_{4}\right]$ complex (2) $[2.577$ (2) \AA]. More importantly, the P -Mo- P angle is considerably larger, at 107.33 (1) ${ }^{\circ}$ in (1) than the comparable bond in the unsubstituted triphenylphosphine complex (2) [104.62 (7) ${ }^{\circ}$]. Cotton et al. (1982) attributed the larger $\mathrm{P}-\mathrm{Mo}-\mathrm{P}$ angle for the $\mathrm{Ph}_{3} \mathrm{P}$ complex (2) as compared with those found for the $\mathrm{Ph}_{2} \mathrm{MeP}$ [92.52 (5) ${ }^{\circ}$] and $\mathrm{PhMe}_{2} \mathrm{P}$ [94.78 (5) ${ }^{\circ}$] analogues to the greater steric demand of the $\mathrm{Ph}_{3} \mathrm{P}$ ligand [Tolman (1977) cone angle of 145°]. In the present case, the still greater distortion must be attributed to the effect of \mathbf{F} substitution. The resultant σ-orbital contraction and/or enhanced π-acceptor ability would lead to a shorter $\mathrm{Mo}-\mathrm{P}$ bond and hence greater steric distortion.
The downfield $\delta\left({ }^{95} \mathrm{Mo}\right)$ value of -1551 p.p.m., relative to -1556 p.p.m. reported earlier for (2) (Alyea \& Somogyvari, 1988) implies that the weaker basicity of the fluoro-substituted phosphine has the dominant effect, not its greater potential π-acceptor ability. We also observe that the ${ }^{31} \mathrm{P}$ NMR coordination chemical shift is slightly

Fig. 1. A view of the molecule (1) showing the general conformation and our numbering scheme. The non- H atoms are depicted as displacement ellipsoids drawn at the 50% probability level.
greater for the present complex (45.5 p.p.m.) than for the $\mathrm{Ph}_{3} \mathrm{P}$ analogue (43.3 p.p.m.), which is consistent with the shorter Mo-P bond distance.
Other angles around the Mo atom are also significantly distorted from those of a regular octahedron; cis $\mathrm{P}-\mathrm{Mo}-\mathrm{C}$ angles are 84.83 (5)-91.79(5) and cis C -Mo-C angles are 83.17 (7)-94.15 (7) ${ }^{\circ}$. The trans P -Mo-C(2) and $\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(1)$ angles are $166.76(5)$ and $174.31(8)^{\circ}$, respectively. The $\mathrm{MoP}_{2} \mathrm{C}_{2}$ moiety is significantly non-planar [the dihedral angle between the MoP_{2} and MoC_{2} planes is $7.37(6)^{\circ}$] in contrast to the case in (2). There is also bending distortion of the Mo-$\mathrm{C}(2)-\mathrm{O}(2)$ angles $\left.[174.36 \text { (8) })^{\circ}\right]$. As expected, the $\mathrm{Mo}-$ $\mathrm{C}(2)$ bond distance $[1.9869$ (16) \AA] trans to P is considerably shorter ($0.044 \AA$) than the Mo-C(1) bond distance 2.0310 (18) \AA trans to the carbonyl groups.

Large distortions from tetrahedral geometry are found for the P atoms. The average $\mathrm{Mo}-\mathrm{P}-\mathrm{C}$ angle of 115.94 (5) and the average $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angle of 102.22 (7) ${ }^{\circ}$ compare with 116.67 (3) and $101.4(4)^{\circ}$, respectively, for the $\mathrm{Ph}_{3} \mathrm{P}$ analogue (2). It is noteworthy that the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles in both cases are not larger than those observed for the free $\mathrm{Ph}_{3} \mathrm{P}$ ligand (103 ${ }^{\circ}$) (Daly, 1964). The average $\mathrm{P}-\mathrm{C}$ bond distance in (1) is $1.8345(15) \AA$ and is not significantly different from the mean $\mathrm{P}-\mathrm{C}$ distance $[1.832$ (8) \AA] reported for the cis$\left[\mathrm{Mo}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{CO})_{4}\right]$ complex (2). Other bond distances and angles in (1) are normal and are available as supplementary material. Intermolecular contacts are of the van der Waals type.

Experimental

The compound was synthesized by adding an excess ($3: 1$) of the ligand to a dichloromethane solution of $\mathrm{Mo}(\mathrm{CO})_{4}$ (norbornadiene) and stirring for 30 min . Addition of hexane to the clear yellow solution gave, upon reduction of the volume, airstable yellowish needles; recrystallization was effected from
dichloromethane. The melting point is 441 K (decomposition) and the results of an elemental analysis were: calculated (found), C 57.16 (56.98), H 2.88% (2.95%). Carbonyl infrared bands occur at 2022, 1922, 1909 and $1884 \mathrm{~cm}^{-1}$ in dichloromethane solution.

Crystal data

$\left[\mathrm{Mo}\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{P}\right)_{2}(\mathrm{CO})_{4}\right]$
$M_{r}=840.50$
Monoclinic
C2/c
$a=20.4933(10) \AA$
$b=9.0960$ (4) \AA
$c=22.0321$ (9) \AA
$\beta=118.591$ (3)
$V=3606.1(3) \AA^{3}$
$Z=4$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: empirical (ψ scan)

$$
T_{\min }=0.844, T_{\max }=
$$ 0.889

5359 measured reflections
5238 independent reflections 4435 observed reflections
$[I>3.0 \sigma(I)]$

Refinement

Refinement on F
$R=0.024$
$w R=0.035$
$S=1.32$
4435 reflections
289 parameters
$w=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$
$(\Delta / \sigma)_{\max }<0.009$
$\Delta \rho_{\max }=0.28 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
$D_{x}=1.55 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=12.0-18.0^{\circ}$
$\mu=0.51 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Colourless
$0.75 \times 0.60 \times 0.60 \mathrm{~mm}$ Block
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-28 \rightarrow 25$
$k=0 \rightarrow 12$
$l=0 \rightarrow 30$
3 standard reflections monitored every 60 reflections intensity variation: < 1%

Extinction correction: Larson (1970)
Extinction coefficient: 4499 (692)
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Mo	1/2	0.319868 (17)	1/4	0.03152 (11)
P	0.517084 (21)	0.15282 (4)	0.164886 (18)	0.03479 (20)
F(1)	0.65196 (10)	0.50311 (18)	0.02554 (9)	0.1041 (14)
F(2)	0.71386 (9)	-0.37021 (17)	0.26335 (8)	0.0981 (11)
F(3)	0.23567 (8)	-0.08557 (20)	-0.06095 (8)	0.1006 (11)
O(1)	0.32460 (8)	0.29919 (25)	0.16227 (8)	0.0859 (13)
$\mathrm{O}(2)$	0.49865 (10)	0.58327 (16)	0.15836 (8)	0.0768 (12)
C(1)	0.38758 (10)	0.30878 (21)	0.19316 (8)	0.0501 (10)
C(2)	0.50151 (10)	0.48325 (18)	0.19083 (8)	0.0479 (10)
C(11)	0.55675 (9)	0.25506 (17)	0.11819 (8)	0.0418 (9)
C(12)	0.52324 (12)	0.2677 (3)	0.04704 (9)	0.0581 (12)
C(13)	0.55499 (15)	0.3523 (3)	0.01574 (12)	0.0724 (16)
C(14)	0.62087 (14)	0.42106 (24)	0.05664 (13)	0.0686 (16)
C(15)	0.65694 (13)	0.40906 (25)	0.12630 (13)	0.0649 (15)
C(16)	0.62419 (12)	0.32642 (22)	0.15732 (10)	0.0560 (11)
C(21)	0.57960 (8)	-0.00590 (17)	0.19531 (8)	0.0418 (8)

C(22)	$0.60990(12)$	$-0.06647(22)$	$0.15633(11)$	$0.0585(12)$
$\mathrm{C}(23)$	$0.65562(13)$	$-0.18912(23)$	$0.17923(14)$	$0.0686(15)$
$\mathrm{C}(24)$	$0.66961(11)$	$-0.24942(23)$	$0.24092(12)$	$0.0654(12)$
$\mathrm{C}(25)$	$0.64166(13)$	$-0.19470(24)$	$0.28114(12)$	$0.0684(14)$
$\mathrm{C}(26)$	$0.59677(10)$	$-0.07005(21)$	$0.25786(9)$	$0.0535(10)$
$\mathrm{C}(31)$	$0.43156(8)$	$0.07484(17)$	$0.09515(7)$	$0.0403(8)$
$\mathrm{C}(32)$	$0.41838(11)$	$-0.07516(20)$	$0.08740(10)$	$0.0527(11)$
$\mathrm{C}(33)$	$0.35124(13)$	$-0.1293(3)$	$0.03549(12)$	$0.0668(15)$
$\mathrm{C}(34)$	$0.30030(11)$	$-0.0316(3)$	$-0.00902(10)$	$0.0655(13)$
$\mathrm{C}(35)$	$0.31102(11)$	$0.1168(3)$	$-0.00328(10)$	$0.0606(12)$
$\mathrm{C}(36)$	$0.37631(10)$	$0.17008(20)$	$0.05020(8)$	$0.0478(9)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

Mo-P	$2.5644(4)$	$\mathrm{F}(1)-\mathrm{C}(14)$	$1.360(2)$
$\mathrm{Mo}-\mathrm{C}(1)$	$2.0310(18)$	$\mathrm{F}(2)-\mathrm{C}(24)$	$1.358(2)$
$\mathrm{Mo}-\mathrm{C}(2)$	$1.9869(16)$	$\mathrm{F}(3)-\mathrm{C}(34)$	$1.362(2)$
$\mathrm{P}-\mathrm{C}(11)$	$1.8398(16)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.138(2)$
$\mathrm{P}-\mathrm{C}(21)$	$1.8312(15)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.141(2)$
$\mathrm{P}-\mathrm{C}(31)$	$1.8326(15)$		
$\mathrm{P}-\mathrm{Mo}-\mathrm{P}^{\mathrm{i}}$	$107.33(1)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$100.62(7)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(1)$	$91.79(5)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$103.18(7)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}\left(1^{1}\right)$	$84.83(5)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$102.87(7)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}(2)$	$85.01(5)$	$\mathrm{Mo}-\mathrm{C}(1)-\mathrm{O}(1)$	$178.13(18)$
$\mathrm{P}-\mathrm{Mo}-\mathrm{C}\left(2^{\mathrm{i}}\right)$	$166.76(5)$	$\mathrm{Mo}-\mathrm{C}(2)-\mathrm{O}(2)$	$174.36(16)$
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}\left(1^{\mathrm{i}}\right)$	$174.31(8)$	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$124.29(14)$
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	$90.11(7)$	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	$117.59(12)$
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}\left(2^{\mathrm{i}}\right)$	$94.15(7)$	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	$121.78(13)$
$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}\left(2^{\mathrm{i}}\right)$	$83.17(7)$	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	$119.93(12)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{C}(11)$	$111.16(5)$	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	$122.43(13)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{C}(21)$	$121.06(5)$	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	$118.77(12)$
$\mathrm{Mo}-\mathrm{P}-\mathrm{C}(31)$	$115.59(5)$		
	Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.		

The systematic absences for (1) ($h k l$ absent if $h+k=2 n+1, h 0 l$ absent if $l=2 n+1$) allow the space group to be either $C 2 / c$ or $C c$; the former was assumed and confirmed by the analysis. All H atoms attached to the phenyl ring C atoms were visible in difference maps at intermediate stages of refinement and were refined isotropically. Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: NRCVAX DATRD2 (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: NRCVAX LSTSQ. Molecular graphics: NRCVAX PLUTON and ORTEPII (Johnson, 1976). Software used to prepare material for publication: NRCVAX TABLES.

ECA and GF thank NSERC Canada for research grants.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the IUCr (Reference: CR1098). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146153.

Alyea, E. C. \& Somogyvari, A. S. (1988). Can. J. Chem. 66, 397-400.
Alyea, E. C. \& Song, S. (1992). Inorg. Chem. 31, 4909-4910.
Alyea, E. C. \& Song, S. (1994). In preparation.
Cotton, F. A., Darensbourg, D. J., Klein, S. \& Kolthammer, B. W. S. (1982). Inorg. Chem. 21, 294-299.

Daly, J. J. (1964). J. Chem. Soc. pp. 3799-3810.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

Acta Cryst. (1994). C50, 1087-1089

$\left(\mathbf{C}_{24} \mathbf{H}_{20} \mathbf{P}\right)_{2}\left[\mathbf{M o}_{6} \mathbf{C l}_{14}\right]$

Mark A. White, Mark R. Pressprich and Phlip Coppens
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214-3094, USA

(Received 5 April 1993; accepted 23 November 1993)

Abstract

The structure of bis(tetraphenylphosphonium) octa- μ_{3} -chloro-hexachlorohexamolybdate ($2-$) is reported. The structure consists of an $\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]^{2-}$ cluster anion having a crystallographic center of inversion and two (inversion) symmetry-related tetraphenylphosphonium (TPP) cations. The molybdenum chloride cluster anion is a slightly distorted octahedron of Mo atoms surrounded by eight $\left(\mu_{3}\right)$ face-bridging and six axial Cl atoms, and is coordinated by ten nearest neighbor TPP molecules. The distorted cluster retains only inversion symmetry.

Comment

Molecular crystals containing the cluster anion $\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]^{2-}$ are of interest for their optical properties. The cluster anion is luminescent with emission maximum, lifetime, and quantum yield of $805 \mathrm{~nm}, 180 \mu \mathrm{~s}$, and 0.19 , respectively, and has a broad absorption spectrum below 500 nm (Maverick, Najdzionek, Mackenzie, Nocera \& Gray, 1983). The large quantum yield and moderately long lifetime makes the cluster ion a suitable candidate for electronic excited-state structure determination (Pressprich, White \& Coppens, 1993) using modulated laser techniques.

The molybdenum chloride cluster anion in the title compound has slightly distorted octahedral symmetry. The distortion of the cluster is such as to remove all but inversion symmetry, with only the Mo2-Mo3, Mo1Mo2 ${ }^{i}$ and Mo2-Mo3 ${ }^{i}$ nearest-neighbor bond lengths remaining equivalent at 2.606 (1) A. The distortion may be viewed as a canting of the body diagonals (by about
0.2°). The molybdenum chloride cluster anion is nearly identical (to within 3σ in Mo-Mo bond lengths) to that reported in the tetramethyltetrathiafulvalene (TMTTF) complex (TMTTF) $2\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]$ (Ouhab, Battail, Perrin \& Garragou-Lagrange, 1986).

Fig. 1. The unit-cell packing diagram viewed along the c axis. The $\mathrm{Mo}-\mathrm{Cl}$ bonds have been omitted and the adjacent bridging Cl atoms connected to show the geometry of the cluster. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2. The molybdenum chloride cluster anion showing the atomic labeling and the octahedral symmetry. The Mo- Cl bonds have been omitted and the adjacent bridging Cl atoms have been connected. Displacement ellipsoids are drawn at the 50% probability level.

