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Abstract— Wavelength tunability of an all-optical clock recovery operation based on a quantum dash mode-locked Fabry-Pérot laser 

diode is experimentally investigated. Synchronization of the device to the injection of 40 Gb/s NRZ incoming data is assessed by 

analyzing both the carrier-to-noise ratio and the linewidth of the 40 GHz beat-tones measured at the mode-locked laser output. Under 

optical injection, beat-tone linewidths below 10 Hz are measured. Recovered clock pulses featuring a width of 1.6 ps are obtained 

irrespective of the wavelength detuning between the laser spectra and the optical carrier of the incoming data stream. 

 
Index Terms—All-optical clock recovery, non-return-to-zero (NRZ), mode-locked laser, quantum dash, Fabry-Pérot laser.  

 

I. INTRODUCTION 

ll-optical clock recovery (CR) might be an essential technology in future optical networks and optical signal processing as 

the information is kept in its optical format. Clock recovery operations have been investigated by using mode-locked 

semiconductor laser diodes (MLLD) [1]-[6]. Such devices have attracted significant attention because of their stable operation, 

cost effectiveness, low energy consumption and small size, holding possibilities for monolithic integration. Among the different 

approaches of clock recovery with MLLDs, those based on quantum dot/dash (QDot/QDash) lasers have demonstrated good 

performance in terms of frequency stability and low timing jitter [5] because of their narrow spectral linewidth and small 

associated phase noise [5],[7].  
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Furthermore, QDash-ML lasers have demonstrated the feasibility to synchronize their free running frequencies with high bit rates 

at 40 Gb/s and beyond by direct [4],[5] or sub-harmonic frequencies [6], as well as being able to handle both non-return-to-zero 

(NRZ) and return-to-zero (RZ) modulation formats. Focusing on the assessment of clock-recovery operations based on mode-

locked laser diodes, to the best of the authors’ knowledge these can be performed either by re-modulating the recovered clock 

with the original data stream and then implementing bit error rate measurements, or by analyzing the linewidth of the radio 

frequency (RF) beat-tone signals generated within the MLLD and then retrieving the root-mean-square (rms) timing jitter. In this 

context, synchronization of a QDash-MLLD subject to the injection of 40 Gb/s NRZ incoming data is investigated in this work. 

Carrier-to-noise ratio (CNR) and full-width at half maximum (FWHM) of the beat-tones generated by the laser source under 

study are analyzed. Such an investigation is carried out by setting a detuning between the carrier wavelength of the incoming data 

and the right-edge wavelength of the QDash laser in the range from 3 to 26 nm. Evaluation of the wavelength detuning in clock 

recovery based on QDash-ML lasers provides an insight on the optical network management and their potential applications in 

all-optical regeneration, wavelength conversion and logic gating, for instance. In addition, features of the recovered clock signals 

in terms of pulse width and timing jitter are analyzed. 

II. PASSIVELY MODE-LOCKED QUANTUM DASH LASER 

The device under investigation is a 1-mm long, DC-biased, multi-mode QDash Fabry-Pérot laser diode [8]. The laser is a 
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single-section device, without phase or saturable absorption sections. Its threshold current is measured at 18 mA and an average 

power of 1.63 mW is collected by a 0.5 NA lensed fiber when operating at 350 mA and temperature controlled at 25 °C. Within 

the 3 dB spectral bandwidth, the QDash-MLLD exhibits 40 modes from 1520 to 1532 nm with an inter-modal separation of 

0.31 nm, corresponding to a 39.77 GHz free spectral range (FSR). In addition, the linewidth of the longitudinal modes varies 

from 10 to 45 MHz [9]. Despite being DC-biased, the laser exhibits a passive mode-locking behavior, featuring a periodic 

variation of its output emission. Mode-locking in this type of laser is attributed to the nonlinearities in the semiconductor active 

region, mainly sustained by four wave mixing processes [8]-[11]. The frequency of the RF beat-tone is determined by the laser 

FSR, featuring a FWHM of 25 kHz at free running conditions. In addition, the pulses generated by the QDash-MLLD exhibit a 

width of 2.2 ps, featuring a time-bandwidth product of around 0.84. Considering a collected power of 1.6 mW and a repetition 

rate of 40 GHz, pulses exhibit a peak power of 18 mW [9]. 

III. ALL-OPTICAL CLOCK RECOVERY RESULTS 

The experiment investigating the clock-recovery functionality based on a QDash-MLLD operating under injection of an optical 

data stream is illustrated in Fig. 1(a). A pulse pattern generator (PPG) is utilized for producing a (231-1)-long pseudo random 

binary sequence (PRBS) in NRZ format at 40 Gb/s. The PRBS signal is applied onto an optical carrier obtained from a CW laser 

source through a Mach-Zehnder modulator (MZM) and then amplified with an Erbium-doped fiber amplifier (EDFA-1). An 

optical band-pass filter (OBPF-1) centered at the data carrier wavelength suppresses part of the amplified spontaneous emission 

of EDFA-1. Data stream optical power (90 %) is injected into the QDash-MLLD via an optical circulator and a lensed fiber 

whilst the remaining power is directed to the detection stage. The incoming data signal is preconditioned with a polarization 

controller (PC-2) and a variable optical attenuator (VOA). Electrical and optical spectra of the data injected to the QDash laser 

(or equivalently at the output of OBPF-1) are illustrated in Figs. 1(b) and 1(c), respectively. Radio frequency spectrum is 

obtained after optical to electrical conversion and subtracting the accumulative noise added throughout the detection stage. It 

features components at 20 and 40 GHz inherent to the operation 

of the utilized PPG. However, they do not affect the quality of 

the NRZ wave forms, as illustrated in the optical spectrum 

depicted in Fig. 1(c). The QDash laser is DC-biased at 102 mA 

and temperature stabilized at 25 ºC. Signal from the laser output 

at third port of the circulator is amplified with EDFA-2 and then 

passed through optical filter OBPF-2. Such a filter has a 

Gaussian profile and is set to a 1530 nm central wavelength 

(minimum tunable wavelength achievable in this device) and a 

3 dB bandwidth of 2 nm. It is utilized to spectrally isolate the 

recovered clock at the QDash-MLLD output from the injected 

data stream, as depicted in Figs. 1(d) and 1(e). The optical clock 

is then converted to the electrical domain by using a 50 GHz 

photo-detector (PD) and a 40 GHz RF amplifier (RF-AMP). The 

electrical clock directed to the detection stage is analyzed with 

an electrical spectrum analyzer (ESA) and used as a trigger 

signal for a digital sampling oscilloscope (SCOPE) with 40 GHz 

precision time base (PTB). An optical spectrum analyzer (OSA) 

is used to monitor both optical signals, namely the data and the 

recovered clock. 

The experiment is carried out by injecting a 40 Gb/s NRZ 

PRBS signal into the QDash-MLLD at various carrier 

wavelengths whilst maintaining the same average power 

impinged onto the laser (kept at 12.7 dBm when measured at 

second port of the circulator). Owing to the coupling efficiency 

measured as a ratio between the total emitted power and the 

power collected by the lensed fiber used in the system (for the 

same bias current and temperature conditions), injection 

coupling losses of at least 6.44 dB can be assumed. A fine tuning 

of the state of polarization and average power of the injected 

data signal, as well as on the DC-bias current supplied to the 

QDash-MLLD allows for an optimized locking of the laser to the 

incoming data. 

 

 
 

 
 

   
 

Fig. 1. (a): Experimental setup. Continuous (―) and dashed (---) lines 

denote optical and electrical links, respectively. (b)-(c): Electrical and 

optical spectra of the data injected to the QDash-MLLD. (d)-(e): Optical 

spectra of recovered clock and data signals before and after the OBPF-2, 

respectively. 
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As previously stated, the performance of the clock-recovery 

operation, or in other words the locking of the QDash-MLLD 

under the injection of a 40 Gb/s NRZ data stream, is assessed 

by analyzing the radio frequency beat-tone signals obtained at 

the laser output. The RF spectra of the ~40 GHz beat-tones are 

depicted in Figs 2(a) and 2(b) for injected data streams whose 

carrier wavelengths are set at 1535 and 1550 nm, respectively. 

In these measurements, the ESA is set to a 20 MHz span and 

30 kHz resolution bandwidth. As illustrated in Figs. 2(a) and 

2(b), the noise contribution on the beat-tone signals changes 

with the wavelength of the injected data. As a consequence, the 

carrier-to-noise ratio varies with the carrier wavelength, 

changing from 40 to 31 dB for carriers at 1535 and 1550 nm, 

respectively. A complete set of experimental CNR 

measurements is shown in Fig. 3 for carrier wavelengths 

ranging from 1533 to 1556 nm. At this point it is important to 

stress that the synchronization of the QDash-MLLD with NRZ 

data has been performed in spite of the lack of strong clock 

tones on the injected signals. Furthermore, a linewidth of ~8 Hz 

is measured when setting the ESA at a 600 Hz span and 10 Hz 

resolution bandwidth, regardless of the carrier wavelengths. 

Such a reduction of the beat-tone linewidth in comparison to 

that obtained when the QDash-MLLD is operating in passive 

mode-locking conditions is a signature of the good quality of 

the external locking process and therefore of the clock-recovery 

operation [12]. 

In regards to the characteristics of the recovered clock pulses, 

on average they feature a temporal width of 1.6 ps and a time-

bandwidth product of 0.61, irrespective of the wavelength 

detuning. Considering a collected power of 1.6 mW and a 

repetition rate of 40 GHz, the recovered clock pulses exhibit a peak power of 25 mW. In addition, rms timing jitter ranging from 

260 to 370 fs is measured with the sampling oscilloscope. As depicted in Fig. 3, an increasing trend in the rms timing jitter is 

observed with the wavelength detuning resulting from a reduction in the CNR and an increment in the phase noise. 

IV. CONCLUSIONS 

An experimental investigation on the wavelength tunability of a clock-recovery process has been presented. Despite the fact 

that the injected data signal lacks a strong base-line component at the clock frequency, good performance of the mode-locking 

process is observed in terms of the CNR and linewidth of the beat-tones at 40 GHz, as well as in the width and rms timing jitter of 

the recovered clock pulses at the QDash-MLLD output. 
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Fig. 2. RF spectra of beat-tones measured at the output of the QDash-MLLD 

subject to the injection of data signals whose carrier wavelengths are set to 

1535 nm (a) and 1550 nm (b). 

 

 
 

Fig. 3. Carrier-to-noise ratio of the ~40 GHz beat tones and timing jitter of the 

recovered clock signals in terms of the wavelength detuning between carrier 

and clock pulses. 
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