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Analysis of physiological changes related to emotions
during a zipline activity
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Abstract Despite the popularity of physiological wearable sensors in sport
activities to provide feedback on athletes’ performance, understanding the
factors influencing changes in athletes’ physiological rhythms remains a chal-
lenge. Changes in physiological rhythms such as heart rate, breathing rate
or galvanic skin response can be due to both physical exertion and psycho-
emotional states. Separating the influence of physical exertion and psycho-
emotional states in activities that involves both is complicated. As a result,
the influence of psycho-emotional states is usually underestimated. In order
to identify the specific influence of psycho-emotional states in physiological
rhythm changes, 28 participants were asked to participate in a zipline activity,
which involve little or no physical exertion while stimulating psycho-emotional
states. By using nonlinear analyses, results show that specific changes in phys-
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iological rhythms can be associated with phases in ziplining, after which they
can be related to emotional states felt during the activity. Regarding data
analysis of wearable sensors, this paper presents a workflow to identify sig-
nificant physiological patterns across multiple athletes performing the same
outdoor activity.

Keywords Emotion - Physiology - Wearable monitoring - Multivatiate
time-series - Nonlinear analysis -

Mathematics Subject Classification (2000) 62M10 - 62H12 -

1 Introduction

Wearable sensors are efficient tools for monitoring patients’ physical [1, 2] and
psychological health [3, 4] allowing the continuous and real-time tracking of
physiological changes. The use of wearable sensors for exercise and sport per-
formance monitoring have become common as the technology of the devices
have improved [5]. Indeed, there are hundreds of commercial devices for track-
ing exercise or sports activities [6, 7]. Performance monitoring devices are often
watches, belts or smart patches for individual [8, 9] or team sports [10-12]. By
using these wearable sensors and the associated software, individuals are able
to measure and analyse physiological rhythms in real time during exercise and
sport.

With the use of wearable sensors, physiological rhythms can be evaluated
both during controlled settings such as training [13, 14], as well as during out-
door competitions. Monitoring athletes in different settings is particularly im-
portant for accurate feedback, as outdoor competitions typically involve higher
stakes and different results and outcomes than training [15]. However, under-
standing the factors influencing changes in athletes’ physiological rhythms
remains a challenge. While an athlete’s physical exertion is one of the main
drivers of the physiological rhythms, psycho-emotional states can also influence
their evolution [16]. Outdoor activities triggering highly emotional experiences
are related to intense physiological changes (e.g. skydiving [17] or kitesurfing
[18]). A study on mountain biking revealed that physiological changes cor-
related not only with athletes’ speed, which increased physical exertion, but
also with the perceived difficulty of the track [19]. Therefore, by monitoring
physiological rhythms during an outdoor activity that involves little to no
physical exertion, the present study aims to identify the specific influence of
psycho-emotional states on physiological rhythms.

Among the different outdoor sports that can be analysed, the nature of
the zipline activity makes it particularly suitable when examining physiologi-
cal changes [20]. For example, ziplining can trigger intense emotions due to the
speed and height inherent of the activity, whilst also being a controlled activity
[21]. All participants of a zipline activity perform the same quasi-linear pattern
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Fig. 1 Theoretical evolution of emotional states during the zipline activity according to
valence and arousal dimensions [26].

of movement and are unable to deviate from it, providing a controlled environ-
ment for researchers studying physiological changes (see [22, 23]). Differences
between zipline participants will affect how sensor inputs (mainly visual but
also sound and vibrations) are appraised as well as the specific emotional re-
actions that are triggered [24]. People use a combination of experience and
individual skills to manage the feelings elicited by the potential danger posed
by elevated speed and height, as quickly as possible. Indeed, these physio-
logical changes are patterns which are associated with different psychological
states [16, 25] that follow a specific temporal evolution [19]: from anxiety to
fear, terror, triumph, exhilaration and relief (Figure [1]).

According to Russell [27], affective states and emotions in particular can be
evaluated by their level of valence (i.e. if the emotion is positive or negative)
and arousal (i.e. level of psycho-physiological activation from low to high).
The dimensions of valence and arousal are key factors explaining the practice
of sports and outdoor activities [26]. By monitoring these dimensions, it is
possible to map the evolution of athletes’ affective states throughout the prac-
tice (e.g. during motorbike driving [28], mountain biking [19], running [29],
mountain hiking [30] or general training [31]). From a theoretical perspective,
ziplining should induce high levels of stress just before and during the first few
seconds of the activity [22, 32]. Therefore, initially a strong, negative emotional
state should be triggered, which then evolves to a strong, positive emotion.
This stress should also increase the physiological activation during the zipline.

By analyzing the dynamic changes of several physiological measures si-
multaneously it is possible to identify these individually triggered reactions.
Consequently, the zipline activity provides an opportunity to measure the
psycho-physiological correlates of individuals’ emotional experiences during a
high-intensity, controlled outdoor activity.
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Fig. 2 Description of the multivariate physiological sensor recording set up (not to scale).
EDA = Electrodermal Activity, ECG = Electrocardiogram, HR = Heart Rate, BR = Breath-
ing Rate, ST = Skin Temperature.

2 Method
2.1 Participants

After providing their written informed consent, 30 participants volunteered
for the study. This sample included 12 females and 18 males and their age
distribution has a mean (M) 28.3 and a standard deviation (SD) of 6.33. The
recruitment process included a medical check to ensure that no participants
had a history of cardiac abnormalities and that they were not using cardioac-
tive medication. Participants were informed that they could change their mind
and withdraw their consent at any point during the experiment. Two partic-
ipants decided not to take part in the experiment prior to the zipline task,
leaving 28 participants in total. The research project and procedure received
ethical approval by the School of Psychology Research Ethics Committee at
Queen’s University Belfast, United Kingdom (No 16-2016-17).

2.2 Measurements

For this experiment, the participants were equipped with five wearable sensors
(Figure [2)).

They wore a multiple sensor belt (Equivital EQ02, see [33, 34]) with two
main components: a bio-compatible fabric embedding multiple sensors and an
electronics module to gather and send data recorded by the sensors. The belt
recorded participants’ breathing rate (BR), external skin temperature (ST)
and electrocardiogram (ECG) from which heart rate (HR) was calculated.
The measurement accuracy of the Equivital EQ02 sensor belt is lower than
for the gold standard device for HR monitoring from ECG peak detection.
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All artifacts included, the mean difference (AM) between the Equivital EQ02
and the Holter ambulatory ECG Monitor is 7.08 bpm with a SD of 17%, and
a Pearson correlation (r) of 0.724 [34]. However, no significant difference has
been found between the Equivital EQO02 and the Polar S810i HR Monitor with
a AM of 1.2 bpm, a standard error of the estimate (SEFE) of 0.54, and a r of
0.98. Similarly, no significant difference has been found between the Equivital
EQO02 and the ADInstruments Metabolic BR Monitor with a AM of 0.2 rpm,
a SEFE of 0.19, and a r of 0.97, as well as between the Equivital EQ02 and
the ADInstruments ST Monitor with a AM of -0.1°C, a SEFE of 0.02, and a
r of 0.98 [33].

Participants also wore a wristband with two electrodes strapped on the
first phalanges of the middle and the ring fingers (Shimmer2, see [35]). The
wristband and electrodes recorded participants’ sudation through their elec-
trodermal activity (EDA). The Shimmer2 sensor is considered as the gold
standard wearable device for EDA measurement [36] (see also [37] for a qual-
itative benchmark of EDA measurement devices).

To record participants’ context and vocal expression, a front-facing cam-
era (GoPro Hero 4) and a lavalier microphone (Sennheiser) were also worn. A
smartphone was also strapped to each arm of the participants. On the right
arm, a smartphone (iPhone 6, i0S v8.0) with the lavalier microphone recorded
sound via the application (Apogee v1.2, see [38]) as well as Global Positioning
System coordinates. On the left arm, a smartphone (One Plus X, Android
v6.0.1) was used to run an application recording and synchronizing the phys-
iological outputs from the wearable devices (SYNC v1.0, see [39]).

2.3 Procedure

The experiment took place in Todd’s Leap Activity Center based in Ballygaw-
ley, Co. Tyrone, Northern Ireland. The Todd’s Leap zipline hangs 50 meters
above the ground and is 500 meters long. Prior to the activity, participants
were provided with safety harnesses and given full safety advice by qualified
instructors. The safety advice session was also a break allowing participants
to rest after climbing the stairs of the takeoff tower so as to ensure that all
participants were at a physiological resting state. A period of 40 seconds was
recorded before leaving the jumping off platform and 40 seconds after reach-
ing the landing platform to allow for comparisons before, during and after the
zipline activity. Due to differences in duration of the zipline activity, all the
participants’ time-series data was rescaled on an index from 0 to 100.

2.4 Signal pre-processing

Participants were omitted from further analysis if one or more physiological
measurements reached exclusion criteria (Table, i.e. displayed measures that
are not physiologically possible [40, 41]. Following the application of these
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criteria, 10 participants were removed due to the presence of outliers and
artifacts in their recordings. The following analyses were performed on the
remaining 18 participants.

Table 1 Exclusion criteria given by unreasonably low or high physiological measures [40,

41].
Measurement Minimun  Maximum
Heart Rate (bpm) 50 220
Breathing Rate (rpm) 10 60
Skin Temperature (°C) 30 40
Electrodermal Activity (pS) 2 20

To analyse the ECG signal, an R-peak detection algorithm was applied.
Then, Heart Rate Variability (HRV) was extracted from the R-peak detection
using a frequency-domain analysis technique with least asymmetric Daubechies
wavelets. High Frequency HRV has been identified as a relevant feature to ex-
tract for emotion recognition [42] and the power temporal evolution in the High
Frequency band has been shown to correlate with participants’ emotional state
[43, 44].

Finally, EDA data provides relevant features for analysis of participants’
psychological state through the extraction of Skin Conductance Level (SCL)
and Skin Conductance Response (SCR) [45-47]. SCL represents the tonic level
of EDA which varies slowly over time, and can be interpreted as a representa-
tion of long-term responses to an event. In contrast, SCR represents the phasic
response of EDA, and is an aggregation of EDA peaks that respond to events
immediately.

2.5 Data analysis

Physiological time-series are challenging to analyse, mainly due to the resid-
ual distribution. A potential pattern in the residuals can indicate that linear
models are not suitable for fitting physiological measurements. Therefore, a
model with covariates and random effects should be implemented using Gen-
eralized Additive Mixed Models (GAMMSs) to fit with nonlinear patterns [48,
49] implemented in the R-package mgev [48, 50-53]. By estimating the degree
of smoothness of a Bayesian spline smoothing using restricted maximum likeli-
hood estimation [50, 54], GAMMs allow the identification of dynamic patterns
underlying time-series while taking into account participants’ idiosyncratic re-
sponse as follows:

Yis = a; + f(Xa) + ais + €5 (1)
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where ¢ is the participant index and s is the time in seconds. Y;, represents
the response variable of one of the physiological measures (i.e. either HR, HF
HRV, BR, ST, SCL or SCR) assuming a quasi-Gaussian distribution for the
fitting [55]. The response variable Y;; includes a specific intercept for each
participant (). A smooth effect over time f(X) is applied to model (Eq 1)
to predict the nonlinear evolution of the physiological measure. This smooth
effect f(X,) is built up in basic components, called the basis functions b;(X;),
such that:

k
f(Xe) = Zﬂ] X bj(Xs) (2)

where the regression parameters 3; are estimated by penalized likelihood max-
imization.

The model also includes the random effects term a;s = Zb; where Z is
a random effects matrix and b; is a vector of random effects described by
b; ~ N(0,D). In this, D represents a covariance matrix. By adding random
effects for each participant, the model assumes between-participant hetero-
geneity but homogeneity within a participant’s data over time. The error term
€;s is assumed to be normally and independently distributed €;5 ~ N (0,02).
Because the data consists of time series, the assumption of model indepen-
dence may be violated. Therefore, a residual auto-correlation structure AR-1
was added to the model error (see [56] for an application to spatio-temporal
time-series):

€is = P€i—1,s + Nis (3)

This implies the following correlation structure:

1 ifs=t

plt=sl else

cor(€is, €1) = { (4)

Degrees of freedom above one indicate the importance of the “smooth”
term to estimate the variability of the data.

By using GAMMs it is possible to identify underlying trends in partici-
pants’ physiological changes. However, even though GAMMs assess time-series
changes, it does not provide a statistical analysis of where these changes hap-
pen. In contrast, a Significant Zero Crossing of the Derivatives (SiZer) ap-
proach is able to identify significant changes in the GAMM predicted values
[57]. SiZer methods allow for meaningful statistical inference while doing ex-
ploratory data analysis using statistical smoothing methods [58]. The SiZer
approach uses the first derivatives of GAMM predictions alongside confidence
intervals as follow:
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fi(x) £ aSD(f7,(x)) (5)

where ¢ is an appropriate Gaussian quantile set to 99% point-wise confidence
interval. The bandwidth parameter h is a positive number that determines
the estimated density of smoothing f [59, 60]. If the bandwidth parameter h
is too large, the fit has over-smoothed the data and thereby fails to detect
the transition from an increasing to a flat (or possibly decreasing) function.
If the bandwidth parameter h is too low, the fit is influenced by a very small
number of data points and overestimates changes in peaks or valleys. The
SiZer method (Eq 5) identifies when the curve of the slope shows a significant
alteration by evaluating when zero falls outside these confidence limits. Con-
sequently, by analyzing significant changes in physiological rhythms during a
zipline activity in which there is no or little exertion, it is possible to attribute
these fluctuations to changes in participants’ emotions.

3 Results

After removing outliers and artifacts, differences during the zipline activity
phases were observed for HR, BR, HF HRV, and SCL (Figure [3|). However,
no difference was found between phases mean for ST and SCR. The results
provided by the GAMMs showed significant changes over time for partici-
pants’ HR (F(7.36) = 7.8, p < 0.001), BR (F(6.82) = 2.37, p = 0.013),
SCL (F(8.63) = 49.4, p < 0.001) and HRV (F(2.66) = 6.96, p < 0.001)
whereas the physiological measures for ST (F(1) = 0.31, p = 0.578) and SCR
(F(1.87) = 1.15, p = 0.388) remained stable.

As an evaluation of the model fit, the Akaike Information Criterion (AIC)
was calculated for a simple Generalized Additive Model without random ef-
fects or autocorrelation, a GAMM without autocorrelation and a GAMM with
random effects and autocorrelation (Table . The lowest AIC indicates the
best model fit. The comparison of the AIC revealed that the GAMM with AR1
autocorrelation and participant as a random effect obtains the lowest AIC for
each of the physiological measures.

Based on the trend prediction extracted from the GAMMs, a SiZer method
was performed using a 99% point-wise confidence interval (Figure [4)). Using
GAMMs and SiZer methods, results indicated significant local changes in the
physiological pattern, which can be associated with the sequence of predicted
emotions (Table [3).

Before beginning the zipline activity, there was a significant increase in
HR, BR and SCL, indicating an increase in participants’ arousal due to the
appraisal of potential ‘danger’. During the first part of the zipline, there was
a second significant increase in HR and SCL, and a significant decrease of
BR. These changes can be explained by the thrill of jumping out and by the
increase of zipline acceleration. In the second part of the activity, as the zipline
speed decreases, participants’ data showed a significant decrease in HR and
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Table 2 Comparison of the model fitness with AIC. GAM is the model without random
effect or autocorrelation, GAMM no AR1 the model without autocorrelation and GAMM
with random effect or autocorrelation.

model GAM GAMM no AR1 GAMM full

HR
df 9.78 5.00 6.00
AIC  16910.35 14861.41 11186.83
BR
df 10.12 5.00 6.00
AIC  10583.95 9827.13 6598.57
ST
df 3.00 5.00 6.00
AIC 5574.77 -1207.23 -7919.51
HRV
df 5.14 5.00 6.00
AIC  42383.69 41581.69 41308.01
SCL
df 5.53 5.00 6.00
AIC  9313.66 5382.87 -4761.18
SCR
df 10.66 5.00 6.00
AIC 1998.76 2039.72 1110.50

Table 3 Correspondence of physiological changes with the predicted emotions according
to each phase of the zipline activity. The ‘4’ sign indicates a significant increase of the
physiological measure, the sign ‘-’ a significant decrease and ns. indicates no significant

change.

before take off during landing after
Measure Anxiety Fear Terror  Triumph  Exhilaration  Relief
Heart Rate + - + - - -
Breathing Rate + - ns. ns. + -
Skin Temperature ns. ns. ns. ns. ns. ns.
Heart Rate Variability ns. ns. ns. ns. + +
Skin Conductance Level + ns. + - - -
Skin Conductance Response ns. ns. ns. ns. ns. ns.

SCL. HRV did not increased until the participants reach the platform, which
can be interpreted as a negative emotional state due to the potential difficulty
of reaching the platform. Finally, a significant decrease in HR, BR and SCL
was observed by the end of the activity. This increase could be a reflection of
participants’ relief after finishing the zipline activity.
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4 Discussion

During a zipline activity, significant changes in participants’ physiological
rhythms were observed. Such changes in physiological rhythms can occur be-
fore or after an event [61]. An accurate response to an event is facilitated by
a physiological pre-activation [62]: increases in heart rate and breathing rate
lead to better blood irrigation of the muscles to provide the best behavioral re-
sponse to the triggering event. Changes in skin temperature and sudation levels
are typical side effects of the increase in heart rate and breathing rate. The
skin regulates body temperature by increasing or decreasing sudation levels
and thereby assist the body’s thermoregulation system in order to maintain its
homeostasis. In addition, an increase in hand sudation can also improve the in-
dividual’s grip, which is particularly relevant in this activity. Thus, antecedent
physiological changes are triggered not only by the comparison between sen-
sor inputs and behavioral response expectation but also by the uncertainty of
the results of the future behavioral response. Subsequent physiological changes
happen because of changes in the physiological rhythms after the event. These
are the behavioral responses to the event so that the body can adjust to a new
accurate behavior depending on the consequences of the previous behavior
[63].

Despite improvements in multimodal sensor recording and their decreased
size, improvements to the shape and size of associated belts and wristbands
can be made, particularly for the purposes of sport monitoring. Indeed, sensors
can affect individuals’ performance due to their inconvenience (e.g. the sensors
can cause discomfort and a heightened awareness that data is being recorded
can make the individuals uncomfortable). Furthermore, the EDA sensor on the
finger may bother or limit the range of the movement for the user, highlighting
the need for less obtrusive sensors [64]. This is particularly the case for sports
involving the use of the hands to grip or manipulate the environment as well as
for sports involving handlebars, steering wheels or sticks such as driving, cy-
cling or skiing. While the use of EDA sensors in the former is limited, their use
in the latter is promising. Therefore, future research should consider chang-
ing the sensor placement. For example, the thenar and hypothenar eminence
or foot sites could be used instead of the proximal phalanx to measure EDA
activity. This may reduce distortion in the data due to the sensors rubbing
against the zipline equipment.

While the naturalistic environment is an advantage of the current study,
recording physiological measurement of outdoor activities is difficult. The con-
text itself is a challenge due to the vibration which can interfere with the
measurements taken. Contrary to lab experiments, field experiments bring a
high percentage of artifacts and corrupted data. For example, some incoher-
ent data from the Global Positioning System coordinates, HR, ECG and EDA
measures had to be removed in this study. Other technical limitations such as
battery life of the sensors and potential network disconnection provide addi-
tional problems that need to be solved. The accurate synchronization of data
streams is also a challenge. These limitations need to be taken into account
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for the monitoring of athletes in practice contexts and measures can be im-
plemented to reduce the effect of artifacts and corrupted data in the analysis.
Simple measures to implement would be to increase the number of participants
and to increase the number of repeated measures in the experimental design.

Furthermore, there are some limitations to the experiment design. As par-
ticipants were not asked to disclose their familiarity with ziplining and other
extreme sports, it is possible that some had prior experience of highly sen-
sational activities such as bungee jumping, skydiving or even ziplining. The
extent to which experienced participants are emotionally influenced by such
activities is likely to be less than novice participants. However, if this is the
case, the effect size found in the current paper is likely to be underestimated
in comparison with the true effect size. To take this participant effect into
account, future investigations could use a repeated measure design to measure
the potential decrease within participants’ emotional response (e.g. compar-
ing multiple laps on multiple days in motor sports or repeated trail/slopes
for downhill biking/skiing/snowboarding). An alternative procedure would be
to perform a repeated measurement experiment design by comparing zipline
slope angles and lengths in a randomized order to evaluate the intensity of
participants’ physiological response.

Finally, even if contextual and technical variables are controlled between
the participants, inter-individual variables continue to be a potential limi-
tation. For example, although all participants wore the closest fitting belt
size, differences in body shape and size still led to minor artifacts in the data
streams. Similarly, it is difficult to control for participants’ overall health, diet,
resistance to cold weather and even their mood on the day, all of which can
influence the recording of physiological measurement. Even if the participant
experiences warmth or cold during emotional experiences, the external tem-
perature variability for each participant is low. As the duration of the zipline
activity was less than 10 minutes, it is likely that the time period was too short
for fluctuations in the skin temperature data. Skin conductance response is de-
rived from the electrodermal activity which in turn occur due to an affective
response to a specific stimuli. The distribution of the skin conductance data
reveal that these responses were limited during experiment. Rather, the elec-
trodermal activity in the current study reflect a general level of stress rather
than specific stimuli responses.

By measuring physiological changes during an outdoor activity which in-
volves little to no exertion, this study reveals there is a significant influence of
psycho-emotional states on the manifestation of physiological rhythms. While
wearable sensors are becoming more common in the evaluation of athletes’
performance, the importance of taking psycho-emotional states into account
for monitoring athletes is essential when interpreting results from the sen-
sors. Even if it is difficult to separate the physical exertion from the psycho-
emotional influence, the latter play an important role in athletic performance
for many of sports [65, 66].
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5 Conclusion

Wearable technologies can provide substantial physiological data, allowing in-
dividuals to monitor their performance during physical activity. Knowing when
heart rate, breathing rate or electrodermal activity changes is essential for the
production and reproduction of high-performance activities. It is even more
important to understand why these physiological signals change. Among the
factors underpinning physiological changes, athletes’ emotions have a clear in-
fluence on performance even if it is difficult to measure this influence. In this
study, ziplining offers a convenient setting to evaluate the variability of phys-
iological rhythms during activities which are otherwise highly similar across
several trials. As physiological changes triggered before or after an event are re-
lated to the context rather than physical exertion, their variability is a relevant
indicator of whether athletes’ decision making process is correct. By monitor-
ing physiological changes, it is possible to analyse the optimal patterns and
thereby infer individuals’ psychological response that occurs during outdoor
activities. Taking the influence of athletes’ psychological states into account
can provide important information for athletes to evaluate their progress, help-
ing them to differentiate between emotion and exertion.
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