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Abstract

In the wake of rapid advances in automatic affect analysis, commercial automatic
classifiers for facial affect recognition have attracted considerable attention in recent
years. While several options now exist to analyze dynamic video data, less is known
about the relative performance of these classifiers, in particular when facial expressions
are spontaneous rather than posed. In the present work, we tested eight out-of-the-box
automatic classifiers, and compared their emotion recognition performance to that of
human observers. A total of 937 videos were sampled from two large databases that
conveyed the basic six emotions (happiness, sadness, anger, fear, surprise, and disgust)
either in posed (BU-4DFE) or spontaneous (UT-Dallas) form. Results revealed a
recognition advantage for human observers over automatic classification. Among the
eight classifiers, there was considerable variance in recognition accuracy ranging from 48
% to 62 %. Subsequent analyses per type of expression revealed that performance by
the two best performing classifiers approximated those of human observers, suggesting
high agreement for posed expressions. However, classification accuracy was consistently
lower (although above chance level) for spontaneous affective behavior. The findings
indicate potential shortcomings of existing out-of-the-box classifiers for measuring
emotions, and highlight the need for more spontaneous facial databases that can act as
a benchmark in the training and testing of automatic emotion recognition systems. We
further discuss some limitations of analyzing facial expressions that have been recorded
in controlled environments.
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Introduction 1

The ability to accurately detect what other people are feeling is an important element of 2

social interaction [1]. Only if we can perceive the affective state of an individual, will we 3

be able to communicate in a way that corresponds to that experience. In the quest for 4

finding a ‘window to the soul’ that reveals a view onto another’s emotion, the 5

significance of the face has been a focus of popular and scientific interest alike. Since 6

the publication of Charles Darwin’s book The Expression of the Emotions in Man and 7

Animals [2], facial behavior has been considered to play an integral role in signaling 8

emotional experience. According to Darwin, facial movements became associated with 9

emotions as biological remnants of actions that once served survival-related purposes [3]. 10

Whilst he did not postulate an intrinsic link between emotions and facial expressions, 11

his work became fundamental to the emotion-expression view of Basic Emotion Theory 12

(BET). Originally proposed by Tomkins [4], BET assumes that there are a limited 13

number of emotions (e.g., happiness, sadness, anger, fear, surprise, and disgust) that are 14

characterized by signature expressions [5,6]. The emotions with which these expressions 15

are associated are claimed to be basic, primary, or fundamental in the sense that they 16

form the core emotional repertoire [6,7]. Facial behavior, accordingly, has been seen as a 17

“readout” [8] of these subjective feeling states, comprising specific configurations of facial 18

muscle actions that are prototypical, innate, and universal. 19

In recent years, the traditional view that certain emotional states are signaled by a 20

matching facial expression has been challenged. Even though BET has obtained popular 21

support [1], evidence for a unique emotion-expression link is inconclusive [9]. As such, it 22

is possible for an individual to feel an emotion without expressing it. Alternatively, not 23

every facial expression may communicate an affective state [10,11]. Debates about the 24

role and function of facial movements have led to alternative frameworks such as the 25

social constructivist approach [12–17]. In this view, faces are best conceived of as tools 26

displaying signals in social interaction that can vary across cultures, situations, and 27

individuals [18]. Although contemporary views of emotion consider facial activity within 28

a rich set of socio-cultural and contextual factors, BET has been so far the primary 29

focus of scientific research. 30

Inspired by the vision of an emotionally intelligent machine, efforts have been 31

targeted towards computer systems that can detect, classify, and interpret human 32

affective states. This involves the ability to recognize emotional signals that are emitted 33
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by the face [19,20], post-hoc from video recordings as well as in real-time from a live 34

stream camera [21]. In the wake of rapid advances in computer vision and machine 35

learning, competing computational approaches now exist that focus on the analysis of 36

facial expressions. Automatic facial affect recognition has significant advantages in 37

terms of time and labor costs over human coding [22] and has been envisioned to give 38

rise to numerous applications in fields as diverse as security, medicine, education, 39

telecommunication, automotive, and marketing industries [23,24]. While the 40

computational modelling of emotional expressions forms a narrow, although increasingly 41

common, approach, the ultimate aim is to build human-computer interfaces that not 42

only detect but also respond to emotional signals of the user [25,26]. To this end, 43

computer algorithms generally follow three steps in classifying emotions from human 44

facial behavior. First, they identify and track one or more faces in a video stream based 45

on morphological features and their configuration. Second, they detect facial landmarks 46

and evaluate their changes over time. Finally, they classify the configuration of 47

landmarks according to specific labels, categories, or dimensions [27]. It is within the 48

context of the last step where BET has exerted a profound impact on how expressive 49

behavior is analyzed. Despite inconclusive scientific evidence in support the BET [9], 50

most computer models have adopted its perspective by focusing on the six basic 51

emotions [28,29]. That is, they output a categorical emotion label from a limited set of 52

candidate labels (i.e., happiness, sadness, anger, fear, surprise, and disgust), derived 53

from the assumption that emotional expressions correspond to prototypical patterns of 54

facial activity [7]. 55

In the last three decades, substantial progress has been made in the area of 56

automated facial expression analysis by recognizing BET’s six categories. Zeng, Pantic, 57

Roisman and Huang [30], for example, reviewed 29 vision-based affect detection 58

methods, pointing towards the proliferation of programs and platforms that are 59

concerned with classifying distinct emotions. As demonstrated by the first Facial 60

Expression Recognition and Analysis (FERA) challenge, emotion recognition by the top 61

performing algorithm was already being reported in 2011 at a rate of 84% [31]. Together 62

with recent news reports that forecast a bright future for emotionally intelligent 63

machines [32,33], the impression arises that the automatic inference of basic emotions 64

may soon be a solved problem [34]. The majority of past efforts, however, relied on 65

in-house techniques for facial affect recognition. As such, they involve classification 66

algorithms that have been developed and benchmarked in individual laboratories, often 67

using proprietary databases of emotion-related images and videos. Historically, those 68

were not easily accessible for systematic interdisciplinary and cross-laboratory research. 69

Given that automated methods for measuring facial expression patterns have now 70

matured, 16 providers of commercially available classifiers have recently been identified 71

[35,36]. These classifiers are marketed for monitoring and evaluating human affective 72

states across a range of domains. As a consequence, their performance can be assessed 73

more freely and openly. Interestingly, however there exists little validation research that 74

has investigated the overall and relative performance of these automatic classifier. 75

In a study by Lewinski, den Uyl and Butler [37], the commercial FaceReader 76

classifier (VicarVision) was tested on static facial images of posed expressions, achieving 77

a recognition rate of 89%. Using similar sets of static basic emotion stimuli, Stöckli et 78

al. [38] reported performance indices of 97% and 73% for Facet (Emotient) and Affdex 79

(Affectiva), respectively. While Facet was found to exceed human judges in classifying 80

emotions on these standardized sets of static emotional portrayals, its accuracy dropped 81

to 63% for dynamic stimuli depicting real-life facial expression imitations. A 82

performance index of 80% was recently reported using FaceReader in the context of 83

dynamic expressions that were enacted to also mimic a basic emotion display [39]. 84

When testing the software CERT (a precursor of Facet) on subtle dynamic (i.e., 85
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non-prototypical) facial stimuli, Yitzhak et al. [40] found that emotion classification 86

accuracy for subtle expressions (21%) was significantly reduced in comparison to highly 87

intense and stereotypical expressions (89%). Such a large performance drop did not 88

occur for human observers (79% vs. 88%), who were able to identify the relevant 89

emotion expression in the absence of prototypical facial movements. Importantly, none 90

of the above studies examined emotion recognition in spontaneous affective displays. 91

Given that there are fundamental differences between posed and spontaneous stimuli 92

in their appearance and timing [41], it is important to draw a distinction between the 93

two expression types. Spontaneous displays (similar to posed ones) may occur in a 94

controlled setting (often in the laboratory), but the resulting emotional expression is 95

induced (i.e., via presentation of emotionally laden pictures/movies) rather than 96

instructed [42]. As such, they have distinct temporal and morphological profiles due to 97

differences in emotion elicitation; the technical features (e.g., camera angle, head 98

movement, illumination) remain largely the same. Subjecting only deliberately 99

displayed expressions to automatic classification, analysis, and benchmarking may 100

provide insufficiently robust validation results. Consequently, affective analyses based 101

on deliberate and often prototypical displays are likely to be substantially less reliable 102

with respect to spontaneous expressive behavior. This issue is further exacerbated by 103

the general trend to train computer algorithms on posed expressions that are highly 104

intense and homogeneous [43]. The third step in automated facial expression analysis 105

typically involves a training set of human-labelled stimuli to make inferences about a 106

much larger population of faces and facial expressions in which they occur [30]. Unless a 107

computer system is validated on posed as well as spontaneous facial actions, its use in 108

the public and private sector will likely prove inadequate. As the affective computing 109

market is projected to grow considerably, with growth estimations reaching $41 billion 110

by 2022 [44] and $90 billion by 2024 [45], a systematic multi-system evaluation of 111

commercial automatic classifiers using both types of emotional expressions is needed. 112

The present research aims to fill this gap by testing 8 commercially available 113

automatic classifiers and comparing their recognition performance to human observers. 114

To this end, facial stimuli were sampled from two large databases that depict emotions 115

either in a posed or spontaneous form. All of the examined expressions are dynamic to 116

reflect the realistic nature of human facial behavior [46,47]. Following common 117

approaches in the development of these classifiers, itself a contentious issue beyond the 118

scope of this article, we focused on the recognition of the six basic emotions identified 119

by BET. 120

To assess the emotional content of expressions, participants selected the emotion 121

label that best fits with a stimulus (forced choice). We predicted the classification 122

accuracy of posed stimuli to exceed that of spontaneous ones, with generally reduced 123

performance of the automatic classifiers compared to human observers in the context of 124

spontaneously occurring expressions. Given the predominance of posed datasets for the 125

training of classifiers, confusion patterns found for automatic classification should be 126

more similar to those produced by human observers when analyzing deliberate affective 127

displays. 128

Materials and methods 129

For the present research, two well-known dynamic facial expression databases were 130

chosen: BU-4DFE [48] and UT-Dallas [49]. Both are annotated in terms of emotion 131

categories, and contain either posed or spontaneous facial expressions. To evaluate the 132

accuracy of emotion recognition, we compared the performance achieved by human 133

judges with those of 8 commercially available automatic classifiers. To this end, we first 134

conducted a judgment study with naive human observers. Second, we assessed the 135
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performance of the automatic classifiers on the same databases, and employed standard 136

metrics for all human versus automatic classifier-based comparisons. 137

Stimulus material 138

Based on a recent review of 22 dynamic facial expression databases [50], we selected two 139

datasets that are publicly available to the research community. BU-4DFE and 140

UT-Dallas both contain large amounts of videos portraying the six basic emotions. 141

Besides conceptual differences in elicitation method and thematic approaches, stimuli 142

from the two databases are similar in the sense that they depict frontal head shots at 143

close distance with comparable expressive intensity envelopes, a static camera view, and 144

adequate illumination. All videos are rendered in color and captured with a frame-rate 145

of 25 frames per second. While BU-4DFE contains particularly high-resolution video 146

data (1094x1392; UT-Dallas: 720x480), both provide adequate resolution for facial 147

analysis that meets the expected requirements for automatic classification [50]. 148

The BU-4DFE database contains videos of posed expressions recorded from 78 149

individuals. They represent male and female subjects, mostly undergraduates, 150

graduates and faculty members with an age range of 18-45 years, recruited from the 151

State University of New York at Binghamton, USA. The majority of subjects are White, 152

although, the database includes some Asians, Blacks, and Hispanics. Each subject was 153

instructed by a psychologist to gradually portray the six basic emotions in distinct 154

sequences. As one video is missing from the database, a set of 467 videos was processed: 155

anger (78), disgust (78), fear (78), happiness (78), sadness (78), and surprise (77). 156

Expression sequences lasted on average 4s (M = 4.05, SD = 0.43), and started and 157

ended with a neutral face. 158

The UT-Dallas database is substantially larger and consists of videos of spontaneous 159

expressions recorded from 292 individuals and a total of 961 videos with basic emotion 160

labels recorded from different camera angles. They represent male and female students 161

with an age range of 18-25 years, recruited from the University of Texas at Dallas, USA. 162

The majority of subjects are White, including some Asians, Blacks, and Hispanics. Each 163

subject watched a 10-minute video that included scenes from different movies and 164

television programs intended to elicit distinct emotions. Selected emotive instances were 165

extracted by the database authors, with expressive behavior corresponding to the six 166

basic emotions. Given the lack of any validation data for this database, the assignment 167

of a video to an emotion category reflects the subjective judgment of the database 168

authors. We selected the first out of two sets (up to participant ID 4660) from the 169

database to obtain a stimulus set of comparable size. This resulted in a total of 470 170

videos with an uneven amount of videos per emotion category: anger (3), disgust (119), 171

fear (13), happiness (196), sadness (38), and surprise (101). Given the complex nature 172

of spontaneous behavior, videos can include more than one type of facial expression [49]. 173

Spontaneous expressions lasted on average 6s (M = 6.11, SD = 0.68), and 174

started/ended with a neutral or expressive face. For a comprehensive review of both 175

databases, readers are referred to [50]. 176

Human observers 177

Fourteen participants (10 females, M age = 24.0, SD = 6.62), recruited via email from 178

the academic community in Germany, Turkey, and the UK, volunteered to participate 179

for free or a monetary reward in an online study. The study was approved by the 180

departmental ethics committee at University College London, UK. Informed consent 181

was obtained prior to participation. Data management and data treatment were 182

performed under the European GDPR legislation. Participants were told that short 183

videos of facial expressions would be presented. Their task was to indicate the label 184
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which best described the displayed expression. They were instructed to watch all 937 185

videos attentively and with sufficient rest periods. Videos were shown in an individually 186

randomized order and with scrambled file names to avoid guessing of the correct labels. 187

In line with common categorization paradigms, emotion recognition was assessed 188

through a forced-choice task. This required participants to make a selection among the 189

following emotion labels: anger, disgust, fear, happiness, sadness, surprise, no/other 190

emotion. We opted for this response format to allow for direct comparability with the 191

automatic classifiers’ recognition data using pre-specified emotion labels. As shown in 192

prior research, adding a no/other emotion escape option does not change the overall 193

level of target emotion recognition [51]. Instead, it only prevents agreement on incorrect 194

labels when the target emotion label is absent [52]. 195

In addition to the standard classification task, participants were asked to evaluate 196

each video on perceived genuineness of the expressed emotion, using a 7-point Likert 197

scale (1 -very posed, 7 -very genuine). An expression was defined as genuine if the 198

person is truly feeling the emotion, in contrast to a posed expression which is simply 199

put on the face in the absence of a corresponding emotion. Results showed that 200

participants judged posed expressions as significantly less genuine than spontaneous 201

ones (BU-4DFE: M = 3.42, SD = 1.79; UT-Dallas: M = 4.6, SD = 1.81; 202

t(13, 023) = −37.39, p < .001, d = 0.66), thereby validating the two different emotion 203

elicitation approaches for database construction. 204

Automatic classification 205

The 937 video stimuli (467 BU-4DFE, 470 UT-Dallas) were submitted to automatic 206

facial expression analysis by the following eight automatic classifiers: Affectiva’s Affdex, 207

CrowdEmotion’s FaceVideo, Emotient’s Facet, Microsoft’s Cognitive Services, 208

MorphCast’s EmotionalTracking, Neurodata Lab’s EmotionRecognition, VicarVison’s 209

FaceReader and VisageTechnologies’ FaceAnalysis. These automatic classifiers can be 210

used either through an Application Programming Interface (API), a Software 211

Development Kit (SDK) or a software platform. All of them offer a prototypical basic 212

emotion approach by classifying facial expressions in terms of the basic six emotions 213

(anger, disgust, fear, happiness, sadness, and surprise). 214

Affdex (SDK v3.4.1) was developed by Affectiva which is a spin-off company 215

resulting from the research activities of the MIT Media Lab created in 2009 [53]. At 216

present, it is distributed by Affectiva (API and SDK) as well as iMotions (SDK 217

integrated in a software platform). Affdex’s algorithm uses Histogram of Oriented 218

Gradient (HOG) features and Support Vector Machine classifiers for facial expression 219

recognition [54]. 220

FaceVideo (API v1.0) was developed by the company CrowdEmotion founded in 221

2013. Its algorithm uses Convolutional Neural Networks, allowing the recognition of the 222

six basic emotions plus neutral. 223

Facet (SDK v6.3) was originally developed by Emotient and distributed by iMotions 224

in its software suite. Initially a spin-off company by the University of California San 225

Diego [55], Emotient was bought by Apple Inc. in 2017. For this reason, Facet is no 226

longer commercially available, but existing licences are still supported by iMotions. 227

Cognitive Services: Face (API v1.0) was developed by the company Microsoft on its 228

Azure platform and first released in 2015. It provides a suite of artificial intelligence 229

tools for face, speech, and text analysis. 230

EmotionalTracking (SDK v1.0) was developed by the company MorphCast founded 231

in 2013. EmotionalTracking SDK is a JavaScript engine requiring less than 1MB, that 232

works directly on mobile browsers (i.e, without remote server and API processing). 233

EmotionRecognition (API v1.0) was developed by the company Neurodata Lab 234

founded in 2016. Neurodata Lab provides a suite of tools for emotion recognition or 235
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annotation experiments such as face recognition, speaker diarization, body pose 236

estimation, heart rate and respiration rate tracking. Neurodata Lab’s 237

EmotionRecognition is available both in API and SDK. 238

FaceReader (software v7.0) was developed by VicarVison and is now distributed by 239

Noldus [37]. Initially presented in 2005 [56], the software uses Active Appearance 240

Models for face modelling and Convolutional Neural Networks for facial expression 241

classification [57]. All default settings were used for the video processing. 242

FaceAnalysis (SDK v1.0) was developed by the company Visage Technologies 243

founded in 2002. Visage Technologies provides solutions for facial expression recognition 244

as well as for ID verification using face recognition. 245

For all computer-based systems, performance indicators as reported in the present 246

research are based on the respective version indicated above. Results may be subject to 247

change with the release of newer versions. Because the type of output is not exactly the 248

same in each system, emotion recognition results were rescaled to the odds ratios of 249

recognition probability ranging from 0 to 1. 250

Data analysis 251

The data analysis focuses on a comparison in emotion recognition performance between 252

human observers and each of the eight automatic classifiers. It is important to note that 253

classification outputs differ slightly between humans and the machine. While human 254

observers are selecting an emotion label per video, automatic classifiers are providing a 255

recognition odds ratio for every emotion label frame by frame. Therefore, two separate 256

metrics were employed to identify the emotion recognized based on the calculation of a 257

confidence score. 258

For the human observer data, the emotion recognition index corresponds to the 259

emotion with the largest human confidence score among the six emotion labels (i.e., the 260

label chosen by the highest number of human observers). As such, the number of 261

correctly classified videos within an emotion category is divided by the total number of 262

videos per emotion category aggregated across all human observers. The process to 263

determine the recognized emotion label follows the equation (1) for each video: 264

EmoRecj,i = max

(
1

K

K∑
k=1

EmoReci,j,k

)
(1)

where i is a judged video, j is a category of emotion recognized (EmoRec), k is the 265

number of human observers choosing the label j, and K is the total number of human 266

observers for the video i. 267

In the context of the automatic classifiers’ data, the emotion recognition index 268

corresponds to the emotion with the highest recognition confidence score among the six 269

emotion labels. As such, it reflects the number of videos within an emotion category for 270

which a given automatic classifier correctly indicated the highest recognition confidence 271

score, divided by the total number of videos per emotion category. The automatic 272

recognition confidence score [58] corresponds to the sum of the odds ratios for a specific 273

emotion (e.g., happiness) aggregated per video-frame relative to the sum of the odds 274

ratios for all other emotions (e.g., anger, disgust, fear, sadness, surprise) [58]. The 275

process to determine the recognized label follows the equation (2) for each video: 276

EmoRecj,i = max

( ∑T
x=0 ψx.EmoReci,j∑J

j=1

∑T
x=0 ψx.EmoReci,j

)
(2)

where i is a processed video, j is a category of emotion recognized (EmoRec), tx 277

corresponds to the timestamp of the processed video and ψx,i,j the value of the odds 278
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ratio for the frame tx and for the emotion label j such as ψx,i,j = px,i,j/(1 − px,i,j). 279

For human observers and for automatic classifiers, the emotion recognized is the 280

emotion having the highest confidence score among the six emotions. By selecting the 281

aggregated maximum confidence score as the indicator for emotion recognition, it is 282

possible that more than one emotion label applies to the same video if they share 283

identical overall confidence scores; in practice this occurred very rarely (S1 Fig). 284

A comparison is performed between the subjectively recognized emotion and the 285

emotion label that corresponds to the present facial expression as indicated by the 286

database authors [59]. If emotion labels are identical, the recognition is categorized as 287

“target”, else the recognition is categorized as “non-target”. A detailed overview of the 288

metrics for determining the confidence score, the recognized emotion label, and the 289

emotion classification score per video is provided in S1 Table (human observers) and S2 290

Table (automatic classifiers). The analysis of target vs. non-target recognition type 291

allows to compare classifiers’ overall accuracy for these video datasets regardless of 292

differences in recognition accuracy for specific emotions. 293

The classifiers’ accuracy can be evaluated by computing their Receiver Operating 294

Characteristic (ROC) curve and the corresponding Area Under the Curve (AUC). The 295

ROC curve and AUC values are obtained by comparing the confidence score for the 296

recognized label as the predictor against the type of recognition (i.e., target label coded 297

as 1 vs. non-target label coded as 0) as the response for each video. In this context, the 298

ROC curve is an indicator of the classifiers’ confidence in recognizing target and 299

non-target expressions. A good classifier will recognize target expressions with high 300

confidence and non-target expressions with low confidence. In contrast, a random 301

classifier will recognize non-target expressions with high confidence and target 302

expressions with low confidence. The corresponding AUCs are the probability that a 303

classifier will be more confident in recognizing the target expression than a non-target 304

expression. As such, the higher the AUC, the more confident the classifier is at 305

predicting target vs. non-target expressions. 306

Results 307

Before assessing emotion classification in terms of recognition performance, we tested 308

the interrater reliability of the multiple human observers and automatic classifiers 309

involved in this study. Fleiss’ Kappa showed significant agreements in emotion ratings 310

among the human observers (κ = 0.58, p < 0.001) and for the automatic classifiers (κ = 311

0.47, p < 0.001). 312

An analysis of the True Positive Rate (TPR) revealed that human observers 313

generally performed better than the automatic classifiers (humans observers: M = 72.48, 314

95%CI = [71.72; 73.24] vs. automatic classifiers: M = 53.88, 95%CI = [52.75; 55.01]). 315

As can be seen in Fig 1, the best performance was obtained by Emotient (M = 61.9, 316

95%CI = [58.79; 65.01]), followed by VicarVision (M = 57.31, 95%CI = [54.14; 60.48]), 317

Neurodata Lab (M = 56.78, 95%CI = [53.6; 59.95]), Visage Technologies (M = 55.07, 318

95%CI = [51.88; 58.26]), Microsoft (M = 52.61, 95%CI = [49.42; 55.81]), Affectiva 319

(M = 50.48, 95%CI = [47.28; 53.68]), MorphCast (M = 48.56, 95%CI = [45.36; 51.76]) 320

and finally CrowdEmotion (M = 48.35, 95%CI = [45.14; 51.55]). 321

Recognition accuracy 322

To further explore the classifiers’ diagnostic ability to discriminate between target and 323

non-target expressions, ROC curves were plotted and the AUC was calculated. As 324

illustrated in Fig 2, human observers exhibited the overall highest discrimination 325

accuracy, with AUC values close to 1, thereby visibly outperforming all computer-based 326
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Neurodatalab
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(Affdex)
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(EmotionalTracking)
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(FaceVideo)
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Fig 1. Mean True Positive recognition performance of human observers
and automatic classifiers. Errors bars represent 95% Confidence Interval.
(ref:roc-curve) Receiver operating characteristic (ROC) curves and
corresponding Area Under the Curve (AUC) depicting the True Positive
Rate (TPR) against the False Positive Rate (FPR) for human observers
and automatic classifiers separately for posed and spontaneous expressions.
The dotted diagonal line in the ROC space indicates chance performance.

systems. The performance of the latter can be described as fair in the context of posed 327

expressions. Interestingly, AUC scores were elevated in four out of the eight automatic 328

classifiers when expressions were spontaneous. This is also exemplified by the steeper 329

ROC curve in humans, indicating that the ability to discriminate between target and 330

non-target expressions was facilitated by spontaneous affective displays. Because 331

classification scores by human observers may vary with the number of observers under 332

consideration, we further calculated the AUC scores for every combination of the 14 333

observers (see S2 Fig). 334

To compare the AUC from each classifier, pairwise two-sided bootstrap comparisons 335

set to 2000 replications [60] were conducted (see S5 and S6 Tables for detailed results). 336

In the context of posed expressions, recognition rates by human observers had a 337

significantly higher AUC compared to those of all other classifiers (ps < .001). Among 338

the automatic classifiers, the pairwise AUC comparisons did not reveal any significant 339

differences except between Affectiva and CrowdEmotion (DAf−CE = 2.38, p = 0.017). 340

The pattern of results was similar for spontaneous expressions, with a higher AUC for 341

human observers in comparison to all other classifiers (ps < .001). Among the 342

automatic classifiers, AUCs from Microsoft, VicarVison, Emotient, Affectiva and 343

VisageTechnologies exceeded that from CrowdEmotion (ps < .05). 344

In addition to assessing the relative classification performance with ROC curves and 345

their corresponding AUC [61], unweighted True Positive Rates (TPR), Positive 346

Predicted Values (PPV), True Negative Rates (TNR) and F1 scores were calculated (see 347

S4 and S3 Tables for detailed results). 348
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Discussion 349

Following recent advances in automatic affect analysis, there has been a proliferation of 350

commercially available automatic classifiers designed to recognize human facial 351

expressions. Surprisingly, the number of independent peer-reviewed validation studies 352

for these automatic classifiers is small and generally limited to validation using 353

deliberately posed displays. The present study aimed to provide a multi-system 354

evaluation of eight commercial automatic classifiers using two types of stimuli: posed 355

expressions arising from instructions to portray a specific emotion, and spontaneous 356

expressions in response to emotion-eliciting events. On the basis of dynamic stimuli 357

sampled from two large databases, which differed on the described dimension of 358

comparison, results revealed a recognition advantage for human observers over the 359

automatic classifiers. The human recognition accuracy of 72% in the present study is 360

consistent with evidence reported in the literature for dynamic expressions [62–64]. 361

Among the eight classifiers tested in this work, we observed considerable variance in 362

recognition accuracy (ranging from 48% to 62%), wherein Emotient’s Facet and 363

VicarVision’s FaceReader appeared to outperform the competing classifiers. 364

Similar to past research [37,38], recognition indices for the two best performing 365

classifiers approximated those of human observers, suggesting high agreement in the 366

classification of posed expressions. However, accuracy of most classifiers was 367

consistently lower for spontaneous facial behavior. This could be due to the lack of 368

prototypicality, that is, greater expressive variability, inherent in spontaneous affective 369

responses. Because the emotional expression is induced via the presentation of 370

emotion-eliciting materials, spontaneous displays have different properties than those 371

that are deliberately instructed or enacted. For example, it has been shown that 372
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spontaneous facial actions differ in their temporal and morphological characteristics 373

(e.g., duration, intensity, asymmetry) from posed ones [65]. Furthermore, the overall 374

patterns of activity are often heterogeneous, which renders them more difficult to 375

discern because of their ambiguous emotional content [66–68]. Results based on 376

instructed and stereotypical facial portrayals may therefore not be directly transferable 377

to those derived from activity occurring in spontaneous situations. Although 378

dataset-specific features (i.e., uneven distributions of spontaneous stimuli across the six 379

emotion categories) might independently affect emotion recognition, both types of 380

stimuli were recorded under relatively controlled experimental conditions. 381

This conclusion further appears to be supported by the observed similarity in 382

patterns of confusion errors between humans and the automatic classifiers. While the 383

present results suggested considerable overlap in the type of confusions for posed 384

expressions, these correlations were much weaker in the case of spontaneous expressions. 385

Further analyses showed that discrimination accuracy (i.e., the AUC) was on average 386

lower for all eight automatic classifiers. Thus, the manner in which affective information 387

is automatically extracted is almost certainly not the same compared to how human 388

observers achieve the task [29,69]. Such discrepancies can likely be explained by the 389

quality and quantity of data available to train computer-based systems. Although 390

several efforts have been reported over the last few years on the automatic analysis of 391

spontaneous displays [55,70], most current automatic classifiers have typically been 392

trained and tested using posed or acted facial behavior. Besides their limited ability to 393

transfer to the subtlety and complexity of spontaneous recordings [43], the highly 394

standardized form of prototypical expressions makes it difficult to generalize beyond 395

specific training sets. 396

At the technical level, the problem of over-fitting is likely to be prevalent. That is, 397

the classifiers may have learned to respond too closely to artificially uniform training 398

sets, thereby losing flexibility when they are applied to unexpectedly subtle and 399

ambiguous expressions. To develop more robust models in the future, it will be 400

important to obtain and train on more databases that display spontaneous and even 401

naturalistic behavior [34]. The latter type of behavior denotes affective responses 402

recorded in real-life settings (i.e., “in the wild”). Because naturalistic expressions are 403

not elicited in the laboratory, they are the least experimentally controlled [42] ; as such, 404

they have multiple social functions and are driven by a variety of socio-cultural and 405

contextual influences. To achieve this aim, metadata in the form of self-reports, 406

behavioral coding [71], and physiological (facial EMG), or neuroscientific measures 407

(EEG, fMRI) are needed to specify the emotional content of recordings. Such 408

annotation of large video sets can help accelerate the progress of affective computing 409

research by providing more comprehensive benchmarks for the training and testing of 410

automatic classifiers on spontaneous expressions. 411

While BET is the most commonly used taxonomy in affective computing, it must be 412

noted that such a perspective is unlikely to reflect the full range of everyday emotions. 413

Typically, emotional behavior “in the wild” involves a wide variety of affective displays 414

that span a substantial number of emotional states beyond the basic six. Even if this 415

may include prototypical AU configurations, emotion expressions are likely to vary 416

across cultures, contexts and individuals [9]. Also, one cannot assume a one-to-one 417

correspondence between the experience and expression of emotion [28]. Given that facial 418

expressions fulfill a range of functions (e.g., appraisals, action tendencies, social motives), 419

it is unlikely that they always signal current emotions in the sense of a “readout” [3,17]. 420

Just because a person is smiling does not mean that s/he is happy. Computer-based 421

systems using the BET perspective to detect discrete emotions from facial displays may 422

therefore stand on questionable theoretical and empirical grounds. Also, expressions 423

span a large range of psychological phenomena. To account for this complexity, a few 424
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tentative efforts in computer vision have recently started to address non-basic affective 425

and mental states such as interest, pain, boredom, and frustration [72,73]. By extending 426

the number of emotion categories, automated methods might overcome their current 427

limitation of classifying a small set of emotion labels that are insufficient to describe the 428

complexity of human expressive behaviors. Consequently, we may be able to gain a 429

fuller understanding of the signals and functions of affective phenomena in the future. 430

Prospective approaches to automatic classification of human affect should further 431

aim to integrate relevant contextual information, as well as learn to better suppress 432

irrelevant information. Both databases used in this work comprised stimuli recorded 433

under relatively controlled conditions, and depicted full frontal shots with neutral 434

backgrounds and steady head poses. While these databases have kept contextual 435

variations across senders constant, information about the wider physical environment 436

and situational factors is likely to be critical to human perception outside the 437

laboratory. Apart from the present limitation of using only two datasets, this would also 438

make the stimuli more representative of the situations in which classifiers are actually 439

employed. Past research, for example, has shown that the same facial expression is 440

interpreted differently depending on the social context in which it occurs [74,75]. 441

Moreover, context helps to disambiguate between various exemplars of an emotion 442

category [76]. Failures to address the relative role of context may therefore lead to 443

difficulties in classification processes generalizing to real-world settings with natural 444

expressions. Issues regarding the poor generalization capacity of machine analyses have 445

recently led to a call for new regulations in the use of affective computing technologies, 446

especially when applied to organizational and decision-making processes [77]. It will fall 447

to future research to train and test relevant computer systems on more ecologically valid 448

and meaningful materials that are representative of a wider range of emotional and 449

situational contexts. The present study is a first attempt to provide a systematic 450

multi-system evaluation of current commercial automatic classifiers using the basic six 451

emotions. By doing so, we hope to help pave the way for the development of more 452

robust automatic classifiers in the future. 453
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