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Abstract

Industrial incidents causing injury and fatality generate substantial costs to publicly traded firms.

Risks associated with these potential incidents are not limited to only those companies that might

be directly involved. Theoretically, stock markets are designed to self-regulate safety standards

by decreasing company valuations should an incident occur, due to anticipated increased costs.

This paper examines the sectoral consequences of such incidents in the United States, that is, the

spillover effects of an industrial incident on firms operating in similar industrial operations. This

is identified through the transmission of contagion within stock market sectors at the time of such

incidents using a dynamic conditional correlation (DCC) multivariate GARCH methodology. The

results indicate larger incidents, as measured by the number of injuries and fatalities, generate the

largest contagion effects. Also, smaller competitor companies experience the largest contagion as

measured by volatility effects as a result of sectoral chemical incidents, indicating that investors

perceive increased risk factors and/or additional regulatory costs when valuing these companies in

the period thereafter. We hypothesise that the observed reaction originates from expected increases

in future sectoral operating costs through anticipated legislative and/or regulatory changes as well

as uncertainty in the period immediately after an incident.

Keywords: Dynamic correlation, DCC-GARCH, Contagion, Industrial incident, Crisis

management, Stock markets.
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1. Introduction

Investors and markets are quick to respond to new information and take it into account when

assessing risks and returns on investments. Often studies focus only on the companies that expe-

rienced the industrial incident while neglecting to study the impact of this incident on the wider

sector. However, the damage from organisational crises like industrial incidents may not be limited

to just the incident company and the impact of an event in one corporation may be felt across a

cluster of co-located businesses or even an entire sector. This impact may be evidenced by reputa-

tional damage, a loss of consumer confidence, an increase in regulation, a move towards competing

products and, of course, a financial impact. From a financial perspective contagion may refer to

the ‘spillover effects of an economic shock from one firm to others, typically others in the same in-

dustry’ (Kalra et al. [1995]). Studies of this contagion effect have been undertaken in the aftermath

of the 1982 Tylenol crisis (Dowdell et al. [1992]), the Bhopal disaster (Kalra et al. [1995]) and the

Fukushima nuclear accident (Basse Mama and Bassen [2013]).

Since risk can be generated internally or externally, effective risk management begins with an

assessment of the key hazards facing an organisation. One method of identifying risk factors, for

publicly traded companies, is to measure the impact of an event (external or internal to the or-

ganisation) on the stock prices of the company. Methodologies for measuring this impact have

evolved. The DCC-GARCH model, developed by Engle [2002], was found to significantly improve

upon the Constant Conditional Correlation (CCC)-GARCH model developed by Bollerslev [1986].

This improvement stemmed from the relaxation of the constant correlation assumption by allowing

time-varying correlation. The number of unknown parameters was also limited in the DCC-GARCH

model. The main advantage of using this type of approach is the detection of time-varying condi-

tional correlations, which captures dynamic investor behaviour in response to news and innovations

and to corporate crises and the subsequent response by the organisation. Contagion effects due

to herding behaviour and flights to quality1 during turmoil periods can also be uncovered through

these mechanisms (Syllignakis and Kouretas [2011]).

Forbes and Rigobon [2002] define contagion as a ‘significant increase in the cross-market cor-

relation during a turmoil period’. Therefore, it is necessary to compare the correlation between

1A flight to quality occurs when investors move their capital away from riskier investments to the safest possible
investment vehicles. It is usually caused by uncertainty in international financial markets.
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stock markets during the pre-crises period to the period of time defined as ‘being in-crisis’. If two

markets are moderately correlated during the period of stability, and a shock to one market leads to

a significant increase in market co-movements, this can be defined as financial contagion. However,

if two markets are moderately correlated during the two periods, this can sometimes be attributed

to market interlinkages rather than contagion (Mighri and Mansouri [2013]). It is necessary to

segregate these two financial market phenomena. The application of the DCC-GARCH models

has recently become a key focus of financial econometrics as the threat of widespread contagion

increased. This model can be used to shed light on underlying questions based on the time-varying

effects of correlation within competitor firms and the chemical sector at large, the effects on stock

market correlations during periods of crises, or indeed contagion effects stemming from a chemical

incident.

Our paper contributes to the empirical literature by showing that expectation of penalties,

fines and regulatory or legal punishment for firms that experience chemical incidents that result in

injuries and fatalities are reflected in the stock market reaction to the news of such incidents. Similar

stock price reaction is also found in the stock prices of the incident companies’ main competitors

indicating that the financial market expects increased regulatory burden across the sector. It may

also suggest that markets attach a greater uncertainty to the entire sector in the aftermath of an

incident because it is initially unable to identify firms that are more likely to have a similar incident.

Our focus makes this paper unique with regard to literature on the financial costs in the aftermath

of chemical incidents.

The outline for the rest of this paper is as follows. Section 2 discusses the relevant previous

literature. In Section 3, we discuss the model and our empirical framework. Section 4 describes the

data and in Section 5, we present the results. Section 6 concludes the paper.

2. Previous Literature

There have been multiple attempts to quantify the effects on stock markets from a variety

of incidents in recent times. Industrial incidents have received much attention along with legal

and reputational costs as a result of product recalls. Chemical incidents remain an important

focus, particularly given the potential for significant long-term human, environmental and legal

cost. Salinger [1992] and Herbst et al. [1996] investigate the stock market response to catastrophes
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such as the Bhopal chemical explosion2 and the Exxon-Valdez oil spill3 and show that in the first

month following those two major incidents, abnormal losses range between -12% (Exxon-Valdez

oil spill) and -30% (Bhopal explosion). Capelle-Blancard and Laguna [2010] examine the stock

market reaction to industrial disasters between 1990 and 2005 and show that petrochemical firms

experience a drop in market value of 1.3% over the two days immediately following the disaster.

The authors present evidence indicating that this loss is significantly related to the seriousness of

the incident as measured by the number of casualties and by chemical pollution. The authors find

that each casualty corresponds to a loss of $164 million and a toxic release results in a loss of

approximately $1 billion.

Scholtens and Boersen [2011] investigate the short-term response of stock markets to energy

accidents analysing 209 energy accidents in the period 1973 to 2007. The authors find that the stock

market does not show a significant short-term reaction regarding energy accidents; such accidents

appear to be viewed as a ‘normal’ part of doing business in the eyes of financial markets. Ferstl

et al. [2012] investigate the impact of the Japanese nuclear disaster in Fukushima-Daiichi on the

daily stock prices of French, German, Japanese and US nuclear utility and alternative energy firms

using a three-factor model through joint tests by multivariate regression models and bootstrapping.

Significant abnormal returns are uncovered for Japanese, French and German firms. Investigating

the same incident, Kawashima and Takeda [2012] find that stock prices of firms with nuclear power

plants decline sharply after the incident. Whether or not the firms used the same type of reactors

as those at Fukushima station does not affect stock prices. The authors observe an increase of both

systematic and total risks in the post-Fukushima period, indicating that negative reactions are

caused by structural changes in society and regulation. Konar and Cohen [2001] report on a study

that relates the market value of firms in the S&P500 to objective measures of their environmental

performance. The authors find that bad environmental performance is negatively correlated with

the intangible asset value of firms. In fact, a 10% reduction in emissions of toxic chemicals results

2The Bhopal disaster, also referred to as the Bhopal gas tragedy, was a gas leak incident in India, considered the
world’s worst industrial disaster. It occurred on the night of 2 December 1984 at the Union Carbide India Limited
(UCIL) pesticide plant in Bhopal, Madhya Pradesh. Over 500,000 people were exposed to methyl isocyanate (MIC)
gas and other chemicals. The official death toll 3,787.

3The Exxon Valdez oil spill occurred in Alaska, March 24, 1989, when Exxon Valdez, an oil tanker owned by Exxon
Shipping Company, spilled 10.8 million US gallons of crude oil. It is considered to be one of the most devastating
human-caused environmental disasters. The oil eventually covered 1,300 miles (2,100 km) of coastline, and 11,000
square miles (28,000 km2) of ocean.
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in a $34 million increase in market value.

Other event-studies of note include Kong [2012], who studies the melamine contamination inci-

dent in China to determine how investors respond to corporate social responsibility events in China,

where long term financial benefits can be obtained through increasing focus on social responsibility.

Salin and Hooker [2001] observe mixed volatility effects from stock market reaction to food recalls.

Xu et al. [2012] investigate the stock market’s reaction to information disclosure of environmental

violation events in China. The authors estimate that the average reduction in market value is much

lower than the estimated changes in market value for similar events in other countries, demonstrat-

ing that the negative environment events of Chinese listed companies currently have weak impacts

on the stock markets. Coleman [2011] examined market efficiency in a natural environment using

minute-by-minute share prices following industrial disasters causing fatalities and sudden Chief Ex-

ecutive Officer (CEO) deaths. Prices of affected firms start to react within an hour of shock events

and fall by 3%, but half of this fall is reversed prior to the first media reports with the balance

reversed by the next trading day. The author interprets this as market overreaction as risk-averse

investors respond to uncertainty created by the shock, prices returning to pre-shock levels once

it is clear that the event is not worse than the expectations already built into valuations. Arin

et al. [2008] investigate the effects of terrorism on stock market returns and volatility. Using six

different financial markets, they show that terror has a significant impact on both stock markets

and the stock market volatility, and the magnitude of these effects are larger in emerging markets.

Blose et al. [1996] examine the stock returns experienced by NASA contractors associated with the

Challenger Space Shuttle explosion and find significantly negative average abnormal returns on the

shares of NASA contractors.

There is much literature on financial contagion as a result of economic crises. This same liter-

ature has moulded our approach when quantifying the contagion effects created through chemical

incidents. King and Wadhwani [1990] and Yang and Bessler [2008] investigate the October 1987 US

stock market collapse and find clear evidence of contagion channels during the stock market collapse.

The East Asian crisis received similar attention. Masih and Masih [1999] find evidence of leadership

of US stock markets over East Asian markets in both the short-term and long-term. Caporale et al.

[2005] test for contagion within the East Asian region using a parameter stability test. They find

that contagion effects were present in the selected sample, consistent with crisis-contingent theories

of asset market linkages. Khan and Park [2009] also find strong evidence of herding contagion when
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analysing time-varying correlation coefficients for the same sample of countries.

Kenourgios et al. [2011] investigate financial contagion in a multivariate time-varying asymmet-

ric framework, focusing on four emerging stock markets (Brazil, Russia, India, and China) and

two developed markets (US and UK). The authors use a multivariate regime-switching Gaussian

copula model and the asymmetric generalised dynamic conditional correlation (AG-DCC) approach

on data between 1999 and 2006, uncovering confirmation that contagion effects transfer from des-

ignated crisis countries to all other countries. Developing countries are also more prone to financial

contagion, with industry-specific turmoil having a larger impact than country-specific crises. Mark-

wat et al. [2009] show that stock market contagion occurs as a domino effect, where confined local

crashes evolve into more widespread crashes. Using ordered logit regressions, the authors find sig-

nificant evidence that global crashes do not occur abruptly but are preceded by local and regional

crashes. Karanasos et al. [2014] examine the impact of financial crises on various stock market

indexes. They show the existence of dynamic correlations and time varying volatility spillovers.

Forbes and Rigobon [2002] present evidence indicating that correlation coefficients are condi-

tional on market volatility, and under certain assumptions, it is possible to adjust for this bias.

Using this adjustment, the authors find that there was virtually no increase in unconditional corre-

lation coefficients (thus no contagion) during the 1997 Asian crisis, 1994 Mexican devaluation and

the 1987 US market crash. The authors find a high level of market co-movement in all periods

investigated, but denote this as interdependence. Similarly, Rodriguez [2007] models dependence

with switching-parameter copulas to study financial contagion using daily returns from five Eastern

Asian stock indices during the Asian crisis and from four Latin American stock indices during the

Mexican crisis. Evidence is uncovered of changing dependence during periods of turmoil. Structural

breaks in tail dependence are found to be a dimension of contagion phenomenon.

Numerous econometric approaches have been used to quantify the effects of industrial incidents.

One of the most popular methodologies is that using a GARCH methodology. Wang et al. [2002]

investigate stock market reaction to food recalls in this manner to uncover time-varying volatility

in the series as a result of food recalls due to bacterial contamination. The authors find that the

initial food recall undertaken by the company is associated with reduced mean returns and higher

volatility of the companies included in the study, with volatility across firms suggesting potentially

industry-wide repercussions due to these incidents. Using a similar GARCH methodology with the

addition of exogenous variables (GARCH-X), Shah et al. [2009] investigate exchange rate volatility
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after Central Bank intervention in Pakistan and show that intervention operations are very effective

as they not only affect exchange rate levels, but also reduce exchange rate volatility.

Ramchand and Susmel [1998] investigate volatility and cross correlation across major interna-

tional stock markets using a switching ARCH (SWARCH) technique. The authors find that the

correlations between the US and other world markets are on average 2 to 3.5 times higher when

the US market is in a high variance state as compared to a low variance regime. The SWARCH

model is also found to lead to higher Sharpe ratios. Ahlgren and Antell [2010] use co-breaking to

model co-movements between stock markets during crises and to test for contagion. The authors

find evidence of co-breaking between developed stock markets and the main evidence of co-breaking

in emerging stock markets is found at the time of the 9/11 terrorist attacks in 2001. Short-term

linkages during times of crisis are uncovered but there was no evidence of contagion.

In this paper, we extend the GARCH methodology and use a Dynamic Conditional Correlation

(DCC) Multivariate GARCH methodology, to specifically investigate the contagion effects caused by

our sample of chemical incidents. The DCC-GARCH model, developed by Engle [2002], significantly

improves upon the Constant Conditional Correlation (CCC)-GARCHmodel developed by Bollerslev

[1990] by capturing dynamic investor behaviour in response to news and innovations. Contagion

effects due to herding behaviour and flights to safety during turmoil periods can also be uncovered

through these mechanisms (Syllignakis and Kouretas [2011]).

3. Methodology

In this analysis, we employ a multivariate GARCH model with Dynamic Conditional Correlation

(DCC) that allows for time-varying conditional correlation as proposed by Engle [2002]. In a first

step, we specify the mean equation as follows:

rt = µ1rt−1 + µ2rt−2 + µ3r
C1
t + µ4r

C2
t + µ5r

C3
t + µ6r

DJIA
t + εt (1)

where rt = (r1t, r2t, ..., rnt)
′ and εt = (ε1t, ε2t, ..., εnt)

′. Also, εt = H
1/2
t zt and εt/Ft−1 N(0, Ht).

zt : (nx1) is denoted as a vector of i.i.d. errors such that E(zt)=0 and E(zt, z
′

t) = 1. Finally,

Ht ≡ hijt∀i, j = 1, 2, ..., n is an (n x n) matrix of conditional variances and covariances of rt

conditional to previous returns. In the mean equation, we include an AR(1) term and the one

and two-day lagged equity returns as a measure of the impact of the company experiencing the
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industrial accident upon companies trading in a similar industry or sector. The term µnr
Cn
t is

added to test the impact of rt upon company n at time t. This term measures the direct impact

and the sign of the relationship between the equity market returns of the two companies during

the period of investigation. The term rDJIAt is added as an explanatory factor related to external

events not related to chemical incidents, that is, the effects of the Dow Jones Industrial Average

on the DCC-GARCH methodology. This is designed to obtain estimates as closely related to the

chemical incident company and the transmission of contagion effects while eliminating as much

of the effects of other non-related crises as possible. We then specify a multivariate conditional

variance as: Ht ≡ DtRtDt where Rt = ρijt is an (n x n) conditional symmetric correlation matrix

of εt at time t and Dt = diag
√
hit is an (n x n) diagonal matrix of conditional standard deviations

of εt at time t. The elements in the diagonal matrix Dt are the standard deviations from univariate

GARCH models:

hit = ωi + Σqi=1αiε
2
t−1 + Σpj=1βjht−j (2)

where ωi > 0; i ≥ 0; βj ≥ 0 and Σqi=1αi + Σpj=1βj < 1. The elements of H ≡ DtRtDt are

[Ht]ij =
√
hijhjtρij,t. As proposed by Engle (2002), the DCC-GARCH model is designed to allow

for a two-stage estimation of the conditional variance matrix ht. In the first stage, univariate

GARCH (1,1) volatility models are fitted for each of the stock return residuals and estimates of
√
hit are obtained. In the second stage, stock return residuals are transformed by their estimated

standard deviations from the first stage as zit = εit√
hit

. Then, the standardised residual zit is used to

estimate the correlation parameters. The dynamics of the correlation in the standard DCC-GARCH

model could be expressed as follows:

Qt = (1− a− b)Q̄+ azt−1z
′

t−1 + bQt−1 (3)

where a ≥ 0,b ≥ 0 and a+ b < 1. Qt = [q(ij, t)] is the time-varying covariance matrix of zt and

Q = E(zt, z
′

t) is a (n x n) unconditional covariance matrix of zt. In addition, Q0, the starting value

of Qt should be positive to guarantee that Ht would also be positive. In a bivariate setting, the

conditional covariance could be expressed as follows:

qij,t = (1− ai,j − bi,j)q̄ij + aijzi,tzj,t−1 + bijqij,t−1 (4)
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When specifying the form of the conditional correlation matrix Rt, two requirements have to

be considered. The first is that the covariance matrix Ht has to be positive and the second is that

all the elements in the conditional correlation matrix Rt have to be equal or less than unity. To

ensure both of these requirements in the DCC-GARCH model, the correlation matrix Rt could be

decomposed as:

Rt = Q
∗−1/2
t QtQ

∗−1/2
t (5)

where Q∗t = diag(Qt) =


√
q1,1,t · · · 0
...

. . .
...

0 · · · √qm,n,t

 and Rt =


1 · · · ρ1,n,t
...

. . .
...

ρ1,n,t · · · 1

 is a correlation

matrix with ones on the diagonal and off-diagonal elements are less than one in absolute value

as long as Q_t is positive. The correlation coefficient can therefore be expressed as: ρij,t =

qij,t√
qii,t
√
qjj,t
∀i, j = 1, 2, ..., n; i 6= j. As noted by Engle [2002], the DCC model could be estimated by

using a two-step approach to maximise the log-likelihood function. If we let θ denote the parameters

in Dt and ϑ, the parameters in Rt, then the log-likelihood is:

lt(θ, ϑ) =

[
−1

2
ΣTt=1nlog(2π) + log |Dt|2 + ε

′

tD
−2
t εt

]
+
[
ΣTt=1log |Rt| z

′

tR
−1
t zt − z

′

tzt

]
(6)

The first part of the log likelihood function is volatility, which is the sum of the individual

GARCH likelihoods. The log-likelihood function can be maximised in the first stage over the pa-

rameters Dt. Given the estimated parameters in the first stage, the correlation component of the

likelihood function in the second stage is maximised to estimate the correlation coefficients. Finally,

we examine the DCC-GARCH model’s change in behaviour before and after a chemical incident oc-

curs. In a first stage analysis, we estimate the impact of external shocks on the dynamic conditional

correlation features. The influence of the chemical incident has some particularly interesting effects.

Through the use of a dummy variable denoting the date of the chemical incident enables us to in-

vestigate the dynamic features of the correlation coefficient changes associated with the incident, in

terms of the pairwise correlations between the related companies’ equity markets investigated and

that of the incident company. We regress the time-varying correlation model as follows:
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ρij,t = ωij + Σpp=1ϕpρij,t−p + Σ2
k=1αkDMk,t + εij,t (7)

where ρij,t is the pair-wise conditional correlation coefficient between the stock return i of the

incident company and the stock returns j of the three largest sectoral trading partners. DM1 is a

dummy variable denoting the date of the chemical incident, thus indicating the expected onset of

sectoral contagion. The value of the dummy variables are set equal to unity for the period after the

chemical incident and zero otherwise. We use the Akaike Information Criterion (AIC) and Schwarz

Bayesian Information Criterion (SBIC) to determine the lag length of the above equation. From

the descriptive statistics of the time-varying correlation series, we find significant heteroskedasticity

in all cases using the White test which allows the independent variable to have a nonlinear and

interactive effect on the error variance4. Therefore, the conditional variance equation is assumed

to follow a GARCH(1,1) specification including a dummy variable identifying the exact date of the

incident, DMk(k = 1):

hi,t = A0 +A1ε
2
t−1 +B1hi,t−1 + Σ2

k=1dkDMk,t (8)

where A0 > 0, A1 ≥ 0, B1 ≥ 0 and A1 + B1 < 1. In the mean equation, the coefficient d1 is

statistically significant in all the incidents investigated.

We use the Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion

(SBIC) to determine the lag length of the above equation. From the descriptive statistics of the

time-varying correlation series, we find significant heteroskedasticity in all cases. The results are

discussed in section 5.

4. Data

This paper investigates industrial incidents in the United States between January 2000 and May

2014. After implementing an analysis of all industrial incidents from the United States Chemical

Safety Board (CSB) database, a search of the LexusNexis database using a variety of keywords was

conducted. The keywords used were chemical incident, industrial incident, pharmaceutical incident,

4We used the White Test (White [1980]) to determine as to whether there exists heteroskedasticity in our se-
lected methodological specification. Heteroskedasticity-consistent standard errors can be used if homoskedasticity is
rejected.
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oil incident and gas incident, and all keywords were combined with the words spill, explosion, fire,

accident. This method provided a sample of 179 individual incidents involving substantial property

damage, injury and/or deaths that involved publicly traded companies. The next stage was to find

the closest trading competitors of the identified incident companies (at the time of the incident). A

further search of financial markets using criteria including company size, business origins, location,

number of employees, revenues and range of products was used to identify suitable competitors

to analyse. The results of this analysis and the companies used in the corresponding contagion

analysis are found in Table 1.

Insert Table 1 about here

The financial market data in this study comes from Bloomberg and Thompson Reuters DataS-

tream. Due to data limitations the final sample reduced to 60 individual chemical incidents from

which results based on contagion effects could be obtained. This reduction occurred as a result of

significant market illiquidity, which resulted in mispricing which deemed the GARCH-methodology

to be insignificant. There were also issues with some companies of gaps in the data, created during

takeovers or when a company was in the process of being taken over. In this situation, the stock

price of the current parent company was deemed inappropriate for use as there was no connection

between the parent company and the incident company at the time of the chemical incident. The

resulting companies can be found in tables 2, 3 and 4, with the associated stock market tickers,

the date and place of the incident along with the number of injuries and fatalities associated with

each event. The incidents are further subcategorised based on the findings of the US CSB, for

which incidents are denoted as caused by company violations and safety errors, equipment failure

or vandalism. These designated outcomes were identified after substantial analysis and scrutiny of

each event.

Insert Tables 2 and 3 about here

After substantial analysis, the four year period around each of the chemical incidents was chosen

as the best period of investigation, that is two years before and two years after. As discussed in

Section 3, the GARCH-methodology requires a significant amount of data to obtain significant
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interlinkages between the identified companies from which to obtain contagion estimates. As noted

in Table 1, some companies had repeated chemical incidents during the period of investigation, and

in this regard, the same corresponding companies remained, but the dummy variables identifying

the incident period changed. Therefore, the results are specific to the incident.

Insert Table 4 about here

Proxies were also used to mitigate external factors as explained in Section 3. In this situation,

the Dow Jones Industrial Average was used to mitigate as much of the numerous crises periods

during the sample (2000-2014) were not related directly to chemical incidents. In this regard,

the resulting contagion estimates are as closely related to the incident company and their direct

competitors as possible. Data for this proxy was obtained from Bloomberg.

5. Results

Table 5 reports the estimates of the return and conditional variance equations as well as the DCC

parameters modelled on industrial incidences caused by company violations and safety errors. Table

6 and 7 represent the parameter estimates for incidents caused by equipment failure and human

error respectively. The constant terms in the mean equation (µ0) are significantly different from

zero for the majority of incidents. With the exception of three incidents (Models 2, 12 and 19), the

µ1 and µ2 terms are significantly positive for the remaining markets. The negativity of the AR(1)

term in the mean equation can be attributed to the existence of positive feedback trading, while the

positivity can be attributed to price frictions and partial adjustment. c1, c2 and c3 represent the

correlation coefficients as modelled in the mean equation and in isolation. The correlation dynamics

are explained in section three and are significant for all models with the exception of three (models

2, 11 and 27). These results identify the companies best represented as the closest trading rivals

of the incident companies, thus indicating an appropriate sample from which to draw contagion

results using the DCC-GARCH methodology. The findings indicate strong correlation dynamics

between the industrial rivals.

The parameters αi in the variance equations are statistically different from zero for all stock

returns. The coefficients for the lagged variance (βi) are positive and statistically significant at the

1% level for all stock markets. This justifies the suitability of the DCC GARCH (1,1) specification
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as the best fitting model to capture time-varying volatility. Moreover, the α1 + β1 is very close to

unity in all the markets investigated, indicating a high short-term persistence of the conditional

variance. Therefore, the volatility in the GARCH models displays a high persistence.

Insert Tables 5, 6 and 7 about here

Tables 5, 6 and 7 also reports the estimates of the bivariate DCC(1,1) model. The parameters

α and β of the DCC(1,1) models respectively capture the effects of standardised lagged shocks

(εt−1, ε
′

t−1) and the lagged dynamic conditional correlation effect (Qt−1) on current dynamic con-

ditional correlation. The statistical significance of these coefficients in each pair of equity markets

investigated indicates the existence of time-varying dynamic correlations. When α1 = 0 and β1 = 0,

we obtain Bollerslev [1990] Constant Conditional Correlation (CCC) model. The estimated coeffi-

cients α1 and β1 are all positive and satisfy the inequality constraint of α1 + β1 < 1 in each of the

pairs of stock markets investigated. As shown in Table 4, the parameter α is statistically significant

in all the pairs investigated. The parameter β1is also highly significant. The significance of both the

DCC parameters reveals a considerable time-varying co-movement and thus a high persistence of

the conditional correlation. The sum of these parameters are very close to unity, thus implying that

the volatility displays a high level of persistence. Also, since α1 + β1 < 1, the dynamic correlations

revolve around a constant level and the dynamic process appears to be mean reverting.

A GARCH(1,1) specification as seen in Equation 10 is used to identify the direct volatility

impacts on competitor companies after an industrial incidents. Tables 8, 9 and 10 present the

findings attributed to volatility impacts stemming from incidents caused by company violations,

equipment failure and human error respectively. ωij , α1 and β1 present the GARCH coefficients

which are significant at a minimum of the 10% level in all models except that of model 36. DM1

presents the GARCH volatility change for the incident company. As theoretically expected, this

coefficient is positive in all scenarios indicating increasing volatility in the period of the incident.

The smallest incident response is for that of the Honeywell chemical leak in August 2003 of 0.01%.

The largest incident response is for the Imperial Sugar Company fire and explosion in February

2008 of 1.06%. Represents MCdi represents the market capitalisation of contagion company 1,2

and 3 in the sample, where di represent the GARCH calculated volatility estimate.

Insert Tables 8, 9 and 10 about here
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Positive volatility changes are found in all correlation pairings investigated in the sample, in-

dicating direct contagion effects between the incident company and its closest associated trading

competitors. The smallest change is 0.01%, whereas the largest is 0.99%. Figure 1 presents the

relationship between the GARCH volatility estimates of the chemical incident company and the es-

timate of GARCH volatility for the competitor company. There is a positive relationship identified

in the results, thus indicating that larger chemical incidents, which are found to cause larger stock

market volatility, transfer larger amounts of volatility to competitor companies. In other words,

the most severe incidents as measured by the number of injuries and fatalities generate the largest

contagion effects. Also in Figure 1, we observe the relationship between the GARCH volatility esti-

mates for the incident company and the market capitalisation of the competitor companies included

in the sample. There is a clear negative relationship, indicating that smaller companies, on average,

experience larger volatility in their share price as a result of a competitor experiencing a chemical

incident. This is a very interesting finding. Larger competitors in the same industry as the incident

company experience an increase in volatility, but investors do not envisage the incident creating

extremely negative long-term effects. Whereas, small companies can possess substantial exposures.

Insert Figure 1 about here

We hypothesise that this effect may be as a result of an observed risk from investors of increased

legislative and/or regulatory changes as direct result of the chemical incident. Should this occur,

it would add significant expense to the competitor company in the form of training, mitigation,

and health and safety costs. Of course, this additional cost reduces the expected profit of future

periods, therefore investors act accordingly and reduce their expectation of future profits. Even

though the incident company itself may absorb the costs of the incident and continue their business

practices as before, smaller companies may actually become entangled through contagion effects,

placing emphasis on their viability and reducing the probability of long-term survival.

6. Conclusions

Risk of an industrial incident has implications not only for the company that experienced the

incident but also for other companies in the same industrial sector due to the likelihood of increased,

costly regulatory oversight and measures to reduce the chances of similar incidents occurring in the
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future. Overall, our results suggest that chemical incidents create significant contagion effects,

where market correlations increase and appear persistent for a period of time thereafter. These

increased correlations are consistent with a investors being less certain of the sector’s future. The

results indicate investor herding behaviour, as the incident company is directly impacted by a share

price decrease, but investors appear to view the incident as possessing sectoral consequences. These

results suggest interesting regulatory implications, both for self-regulation and regulatory policy. It

may well be the case that companies within a sector need to monitor each other since ‘the weakest

link’ (the company most prone to incidents due to internal shortcomings) in the sector will have an

adverse effect on the entire sector.

Stock markets appear to adequately punish companies at fault for chemical incidents and the

degree of punishment is affected by the reported cause of the incident. Not only has the incident

company to consider the cost of the incident in both clean-up and rebuilding costs, along with litiga-

tion costs and environmental penalties, but it must also absorb reductions in market capitalisation

as dictated by its share price. The findings of this paper present evidence that this effect is sectoral.

Investors appear to view all companies in the same way, therefore including the increased risk of

industrial penalties and regulatory/legislation changes in their valuations. The largest chemical

incidents are associated with the largest contagion effects as measured by GARCH volatility. In-

terestingly, the smallest companies also produce the largest increases in volatility, indicating stock

market sentiment that the validity of the company as a viable entity may be under threat, but this

contagion effect also influences smaller competitors in the same manner. More research is needed to

investigate the direct causes of this effect, but one could hypothesise that the potential regulatory

changes and costs that may be incurred from additional mitigation, training and health and safety

costs may have a significant influence.
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Figure 1: Incident GARCH volatility estimates compared with contagion GARCH volatility estimates and market
capitalisation

Note: The left-hand scatterplot represents the relationship between the GARCH volatility estimate of the
incident company and that of the GARCH volatility of the competitor company. The right-hand
scatterplot represents the relationship between the GARCH volatility estimate of the incident company
and that of the market capitalisation (measured as the natural logarithm of market capitalisation
measured in US$ billion on the day of the chemical incident).
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Table 1: Stock market tickers for companies (ranked by market capitalisation) in the same sector as those
who experienced an industrial accident.

Causation company Model Related Co. 1 Related Co. 2 Related Co. 3
ABLE - Able Energy 2 DK QDRSF SGU
BON - Bonduelle 57 LD SUCO WES
BP - BP Oil 4, 8, 17, 22, 38 CVX XOM âĂŞ
BRK.A - Berkshire Hathaway 25 GE UNP WMT
CAG - ConAgra Natural Gas 13 LSAL PEP TOF
CF - CF Industries 14 RNF TNH UAN
CVX - Chevron 20, 35 BP RDS.A TOT
CW - Arens Controls 19 CIR MOG.A MWA
DCI - Donaldson Enterprises 18 CLC CECE FTEK
DD - E.I. DuPont De Nemours Co 15 DOW MON HUN
DEDR.L - Delek Refining 11, 45 AVNR.L IE CDEV
DHR - Dover Chemical Company 34, 48 ALGN SI A
DOW - Dow Chemical Company 29, 31, 32, 49 XOM MON DD
EAGLU - Silver Eagle 28 PLAHF ZPLSQ NMO
FDML - Federal Mogul Holdings Corp 59 DAN GM TRW
GT - Goodyear 26, 58 CTB BRDCY MGDDY
HON - Honeywell 21, 40, 41 UTX BA EMR
IPSU - Imperial Sugar Co. 9 RAH MTSSF WWAY
JAH - Mapa Spontex 23 PHG XNNH SAVW
KRFT - Kraft Foods 39 MDLZ PEP SJM
MCS - Marcus Oil 43 AMC CKEC RGC
NLC - Nalco Holding 49 ARJ WCAA EIO
NWSA - News Corp 52 GCI PSO CBS
OAS - Oasis Petroleum 33 TPLM EOX BCEI
OXY - Oxydental Chemical Corp. 27 PAA CVX XOM
PKG - Packaging Corp of America 10 RKT IP MWV
PXP - Plains Exploration 42 APC CHK âĂŞ
SIAL - Sigma Aldrich 3 QGEN TECH APC
TMO - Frontier Scientific 24 GE PKI HBIO
TSN - Tyson Foods 5 HRL SAFM BRFS
TSO - Tesoro 16 PSX VLO HFC
UNP - Union Pacific 44 NSC CSX KSU
VE - Veolia Environnement 12 GDFZY AWK SZEVF
VLO - Valero Refineries 6, 36, 46, 53, 57 ALJ PSX TSO
WLK - Westlake Vinyls 37 AXLL XOM EMN
WSHP - Wasatch Laboratories 54 UNIS CFN JNJ
WST - West Pharmaceuticals 1 PNM UNS WEC
XEL - Xcel Energy 7 ATI RTI NNDIF
ZINC - Horsehead 30 CLC CECE FTEK

Note: The above table represents the associated companies to the causation company from which the chem-
ical incident occurred. A thorough analysis was undergone to identify the most similar trading companies,
based across a selection spectrum including size, business origins, location, number of employees, revenues
and range of products. Multiple model codes exist for some companies in the sample âĂŞ linked directly
with companies who had multiple chemical incidents between 2000 and 2014. The corresponding competi-
tor companies remain the same throughout the sample. In multiple scenario cases, the parent company of
postâĂŞtakeover is used. Prior to this, the stock price for the company that has been taken over is used.
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Table 2: Industrial accidents attributed to company violations and safety errors.

Model Data Source Ticker Disaster Type Date Location Injuries Fatalities
1 CSB WST Fire & Explosion 29/01/2003 Kinston 36 6
2 LN ABLE Explosion 14/03/2003 New Jersey 16 0
3 CSB SIAL Fire & Explosion 21/09/2003 Miami 1 0
4 CSB BP Fire & Explosion 23/03/2005 Texas City 180 15
5 RTN TSN Chemical Leak 31/10/2006 South Hutchinson 1 2
6 CSB VLO Fire & Explosion 16/02/2007 Sunray 4 0
7 CSB XEL Asphyxiation 02/10/2007 Georgetown 3 5
8 LN BP Chemical Explosion 14/01/2008 Houston 0 1
9 CSB IPSU Fire & Explosion 07/02/2008 Port Wentworth 42 14
10 CSB PKG Fire & Explosion 29/07/2008 Tomahawk 1 3
11 RTN DEDR.L Fire & Explosion 20/11/2008 Tyler 3 2
12 CSB VE Chemical Leak 04/05/2009 West Carrollton 2 0
13 CSB CAG Chemical Explosion 09/06/2009 Garner 25 4
14 RTN CF Chemical Exposure 16/11/2009 Rosemount 0 2
15 CSB DD Chemical Leak 23/01/2010 Belle 0 1
16 RTN TSO Fire & Explosion 02/04/2010 Anacortes 0 7
17 LN BP Chemical Spill/Release 20/04/2010 Texas 2 0
18 CSB DCI Fire & Explosion 08/04/2011 Waikele 1 5
19 LN CW Chemical Explosion 22/05/2012 Arlington 17 1

Note: The above table represents the main industrial incidents included in this analysis that were found to
have been attributed to company violations and safety errors. The ticker refers to the stock market identi-
fication code attributed to each company. The total number of injuries and fatalities have been taken from
official reports obtained from the United States Chemical Safety Bureau (CSB) or from a thorough search
of the LexusNexis database (LN).
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Table 3: Industrial accidents attributed to equipment failure.

Model Data Source Ticker Disaster Type Date Location Injuries Fatalities
20 LN CVX Fire 04/10/2001 Bakersfield 1 0
21 CSB HON Chemical Leak 20/07/2003 Baton Rouge 8 0
22 CSB BP Fire & Explosion 28/07/2005 Texas City 1 0
23 LN JAH Chemical Explosion 14/09/2006 Columbia 1 0
24 LN TMO Chemical Explosion 30/03/2007 Logan 1 0
25 LN BRK.A Explosion 17/02/2008 Springville 11 0
26 CSB GT Fire & Explosion 11/06/2008 Houston 0 1
27 RTN OXY Chemical leak 18/11/2008 Deer Park 15 0
28 CSB EAGLU Fire & Explosion 12/01/2009 Woods Cross 2 0
29 RTN DOW Chemical Explosion 10/03/2010 Freeport 1 0
30 CSB ZINC Fire & Explosion 22/07/2010 Monaca 0 2
31 RTN DOW Chemical Explosion 26/01/2011 Freeport 2 0
32 RTN DOW Chemical Explosion 29/06/2011 Freeport 3 0
33 LN OAS Fire & Explosion 14/09/2011 North Dakota 2 2
34 RTN DHR Fire 14/11/2011 Dover 5 0
35 RTN CVX Fire 06/08/2012 Richmond 14,003 0
36 RTN VLO Fire & Explosion 03/12/2012 Memphis 3 1
37 LN WLK Chemical Explosion 13/06/2013 Geismar 73 1

Note: The above table represents the main industrial incidents included in this analysis that were found
to have been attributed to equipment failure. The ticker refers to the stock market identification code at-
tributed to each company. The total number of injuries and fatalities have been taken from official reports
obtained from the United States Chemical Safety Bureau (CSB) or from a thorough search of the Lexus-
Nexis database (LN)
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Table 4: Industrial accidents attributed to human error.

Model Data Source Ticker Disaster Type Date Location Injuries Fatalities
38 CSB BP Fire 13/03/2001 Augusta 0 3
39 RTN KRFT Chemical Leak 23/12/2001 Maddison 1 1
40 CSB HON Chemical Leak 29/07/2003 Baton Rouge 0 1
41 CSB HON Chemical Leak 13/08/2003 Baton Rouge 1 0
42 LN PXP Fire 31/08/2004 Baldwin Hills 1 0
43 CSB MCS Fire & Explosion 03/12/2004 Houston 6 0
44 LN UNP Chemical Spill 06/03/2005 Salt Lake City 12 2
45 RTN RAH Explosion 19/07/2005 Louisville 0 0
46 CSB 1301 Fire & Explosion 06/10/2005 Point Comfort 16 0
47 RTN DEDR.L Fire 26/10/2005 Tyler 1 0
48 CSB VLO Asphyxiation 05/11/2005 Delaware 0 2
49 RTN NLC Chemical Leak 08/01/2007 Sugar Land 14 0
50 RTN DHR Fire 14/09/2007 Dover 1 0
51 RTN DOW Chemical Spill 13/11/2007 Freeport 1 0
52 LN NWSA Chemical Leak 17/12/2007 New York 5 0
53 RTN DOW Chemical Spill 11/04/2008 Freeport 1 0
54 LN WSHP Chemical Explosion 27/07/2009 Ogden 3 0
55 RTN VLO Fire & Explosion 29/04/2010 Memphis 1 0
56 RTN DOW Chemical Explosion 17/05/2010 Freeport 4 0
57 RTN BON Chemical Explosion 12/06/2010 Oakfield 1 0
58 RTN DOW Chemical Explosion 13/09/2010 Freeport 3 0
59 RTN VLO Fire & Explosion 06/03/2011 Norco 1 1
60 RTN GT Fire & Explosion 11/06/2011 Houston 7 1

Note: The above table represents the main industrial incidents included in this analysis that were found to
have been attributed to human error. The ticker refers to the stock market identification code attributed
to each company. The total number of injuries and fatalities have been taken from official reports ob-
tained from the United States Chemical Safety Bureau (CSB) or from a thorough search of the LexusNexis
database (LN).
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Table 5: Estimation results from the multivariate AR(1)-DCC-GARCH(1,1) model on industrial accidents caused by company violations
and safety errors

Ticker µ0 µ1 µ2 c1 c2 c3 ρ1 ρ2 ρ3 ωi αi βi

1. WST 0.0008** 0.0008** 0.0008*** -0.001** 0.0020*** 0.0001** 0.2917*** 0.4808*** 0.5014*** 0.0000*** 0.0944*** 0.8574***
2. ABLE 0.0039** -0.0006 -0.0001 -0.0011 0.0006** 0.0003* 0.3275 0.3937 0.4172 0.0006*** 0.1662*** 0.6845***
3. SIAL 0.0004 0.0004** - 0.0004 0.0003 0.0004** 1.4285*** 1.1893*** 1.6436*** 0.0006** 0.0443*** 0.9461***
4. BP# 0.0002 0.002** 0.008** 0.003*** 0.003 0.009* 0.6444*** 0.6563*** 0.7154*** 0.000*** 0.5686*** 0.9323***
5. TSN 0.0004* 0.0004* 0.0006 0.0012** 0.0005** 0.0018** 0.4785** 0.5814** 0.3799*** 0.0007** 0.0415*** 0.9436***
6. VLO 0.0007** 0.0011** -0.0003 0.0009** 0.0016** 0.0015 0.2779*** 0.8532*** 0.6651*** 0.0016* 0.0714 0.8649**
7. XEL 0.0003 0.0004* 0.0006 -0.0004 -0.0007** 0.0012** 1.0881*** 0.2742*** 0.4188*** 0.0004** 0.0795*** 0.9098***
9. IPSU 0.0010** 0.0001 0.0018** 0.0008** 0.009** 0.0007* 0.9166*** 0.4481*** 0.3354*** 0.0065*** 0.1718*** 0.7639***
10. PKG 0.0004** 0.0003 0.0004** 0.0005** 0.017** 0.0003* 0.5348*** 0.6722*** 0.4993* 0.0007*** 0.0428*** 0.9471***
11. DEDR 0.0002 0.0001 0.0003 0.0006** 0.0002** 0.0000 0.7144*** 1.1924*** 0.1271 0.0003 0.0764*** 0.9102***
12. VE 0.0006 -0.0006 -0.0006 0.0011** 0.0005 -0.0003 0.8853*** 0.3361*** 1.1434*** 0.0006 0.0562*** 0.9386***
13. CAG 0.0007 0.0002** 0.0000 0.0000 0.0002 0.0007** 0.0809*** 0.3636*** 0.7112*** 0.0003 0.0293*** 0.9681***
14. CF 0.0001** 0.0005* 0.0006 0.0015** -0.0002 -0.0002 0.7166** 0.6892** 0.3562** 0.0007* 0.0087** 0.9821***
15. DD 0.0008** 0.0004** 0.0009** 0.0001 0.0005** 0.0006 0.7362*** 0.5727*** 0.9232*** 0.0007** 0.0851*** 0.9018***
16. TSO 0.0015** 0.0008* 0.0021** 0.0017** 0.0019** 0.0009 0.7902*** 0.6651*** 0.6479*** 0.0012** 0.0176** 0.9309***
18. DCI 0.0002** 0.0009** 0.0000 0.0005 0.0006** 0.0002 0.5798*** 2.3099** 0.2863*** 0.0007** 0.0768*** 0.8839***
19. CW 0.0002 -0.0001 0.0018 0.0001 0.0007** 0.0003** 0.7477*** 0.6184*** 0.3458*** 0.0006 0.0631*** 0.9165***

Note: The above table reports the coefficients of the return and conditional variance equations as well as the DCC parameters of the incident
company and its three leading industry competitors. ∗ ∗ ∗, ∗∗ and ∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and
10% levels respectively.
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Table 6: Estimation results from the multivariate AR(1)-DCC-GARCH(1,1) model on industrial accidents caused by equipment failure

Ticker µ0 µ1 µ2 c1 c2 c3 ρ1 ρ2 ρ3 ωi αi βi

20. CVX 0.0003** 0.0008 0.0003 0.0001 âĂŞ0.0001 0.0005** 0.0524** 0.7623*** 1.6697*** 0.0007** 0.0814*** 0.8994***
21. HON 0.0002** 0.0002** 0.0002** 0.0003** 0.0002* 0.0001 0.9761*** 0.6269*** 0.6647*** 0.0008*** 0.0427*** 0.9549***
23. JAH 0.0001 0.0004 0.0008** 0.0007** -0.0019 0.0002 0.6154*** 0.1017*** 0.1588*** 0.0017*** 0.1225*** 0.8689***
24. TMO 0.0007** 0.0001** 0.0003* -0.0002 0.0001 0.0005** 0.4958*** 0.3884*** 0.5477*** 0.0012*** 0.0879*** 0.8910***
25. BRK 0.0001* 0.0007*** 0.0002* -0.0004* 0.0002* 0.0007 1.0150*** 0.2968*** 0.3155* 0.0005** 0.1143*** 0.8797***
26. GT 0.0002** 0.0001** 0.0005 0.0005** 0.0007 0.0001** 0.3388*** 0.2394*** 0.4537*** 0.0009 0.0338*** 0.9507***
27. OXY 0.0007** 0.0018** 0.0002** 0.0006** 0.0003 0.0002** 2.2292 0.7678*** 0.7313*** 0.0009*** 0.0576*** 0.9336***
28. EAGL 0.0001 0.0002 0.0004* 0.0007 0.0002 - 0.1677*** 0.2519*** - 0.0000 0.1615** 0.7889***
29. DOW 0.0001 0.0009 0.0001 0.0003** 0.0006** 0.0002 0.5300*** 0.4526*** 0.7256*** 0.0005* 0.0612*** 0.9313***
30. ZINC 0.0003 0.0003 0.0005 -0.0003* -0.0002* 0.0005* 0.9362*** 0.9233*** 0.4822*** 0.0009** 0.0422*** 0.9515***
33. OAS 0.0009* 0.0008** 0.0006** 0.0008** -0.0012* 0.0002** 0.5535*** 0.6342*** 0.3499*** 0.0009 0.0361** 0.9433***
34. DHR 0.0001 0.0002 0.0001 0.0007** 0.0003* 0.0003 0.8834*** 0.1219*** 0.5484*** 0.0008*** 0.0517*** 0.9319***
37. WLK 0.0004 0.0001* 0.0006 -0.0023* 0.0011** 0.0005** 1.0586*** 0.8755*** 0.6111*** 0.0009** 0.0469*** 0.9453***

Note: The above table reports the coefficients of the return and conditional variance equations as well as the DCC parameters of the incident
company and its three leading industry competitors. ∗ ∗ ∗, ∗∗ and ∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and
10% levels respectively.
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Table 7: Estimation results from the multivariate AR(1)-DCC-GARCH(1,1) model on industrial accidents caused by human error

Ticker µ0 µ1 µ2 c1 c2 c3 ρ1 ρ2 ρ3 ωi αi βi

39. KRFT 0.0002** 0.0003** 0.0001* 0.0004 0.0004** 0.0004* 0.5111*** 0.3811*** 0.3961*** 0.0009** 0.2399** 0.5807**
42. PXP 0.0001 0.0004 0.0007 0.0006** 0.0009 0.0013** 0.1355** 0.4158*** 0.5683*** 0.0006 0.0100 0.8298***
43. MCS 0.0011 0.009 0.0002** 0.0009 0.0002* 0.0001** 0.4299*** 0.7181*** 0.6177*** 0.0002 0.1483*** 0.8013***
44. UNP 0.0007** 0.0019** 0.0007** 0.0008** 0.0007 0.0001* 0.7771*** 0.3188** 0.1884** 0.0012*** 0.062*** 0.9248***
48. NLC 0.0005* 0.0005* 0.0002* 0.0003* 0.0007** 0.0002* 0.5024*** 0.2891*** 0.6637*** 0.0014** 0.0588*** 0.9173***
52. NWSA 0.0006 0.0004 0.0004 0.0001** -0.0003 0.0012** 0.4811*** 0.1605* 0.3074*** 0.0004 0.2238** 0.6648***
55. BON 0.0003* 0.0003* 0.0003* -0.0001 0.0003** 0.0004** 0.0997*** 0.7133*** 0.6872*** 0.0005 0.2487*** 0.4127***

Note: The above table reports the coefficients of the return and conditional variance equations as well as the DCC parameters of the incident
company and its three leading industry competitors. ∗ ∗ ∗, ∗∗ and ∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and
10% levels respectively.
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Table 8: GARCH model testing changes in dynamics conditional correlations of stock market returns after industrial accidents attributed
to company violations and safety errors.

Model ωij α1 β1 DM1 d1 MCd1 d2 MCd2 d3 MCd3
1 0.0000*** 0.0923*** 0.8593*** 0.0082** 0.0003 2.04 0.0008** 2.53 0.0211* 9.80
2 0.0006*** 0.1671*** 0.6835*** 0.0026 0.0007*** 1.90 0.0023*** 0.39 0.0005* 0.35
3 0.0000*** 0.0544*** 0.9459*** 0.0022*** 0.0001 54.75 0.0021* 5.69 0.0026*** 3.56
4 0.0000*** 0.0569*** 0.9323*** 0.0019*** 0.0034* 87.60 0.0035* 422.33 - -
5 0.0000*** 0.0414*** 0.9438*** 0.0029* 0.0006 22.19 0.0003 12.44 0.0027* 2.19
6 0.0000*** 0.0936*** 0.7635*** 0.0046 0.0012 1.08 0.0021*** 46.83 0.0004 8.07
7 0.0000*** 0.0794*** 0.9097*** 0.0070** 0.0008* 4.49 0.0009*** 0.18 0.0004 0.88
8 0.0000*** 0.0567*** 0.9324*** 0.0014*** 0.0002 87.60 0.0009* 422.33 - -
9 0.0000*** 0.0915*** 0.8585*** 0.0106* 0.0015** 0.53 0.0045*** 0.11 0.0003*** 0.19
10 0.0000*** 0.0427*** 0.9471*** 0.0055*** 0.0015 20.21 0.0059*** 7.16 0.0015 6.76
11 0.0000*** 0.0765*** 0.9099*** 0.0013 0.0099*** 11.41 0.0008 0.78 0.0001 0.25
12 0.0000*** 0.0562*** 0.9385*** 0.0032** 0.0007 8.94 0.0008 61.48 0.0016 9.06
13 0.0000*** 0.0293*** 0.9681*** 0.0006*** 0.0049 0.23 0.0016* 138.40 0.0043 0.22
14 0.0000** 0.0092** 0.9816*** 0.0037* 0.0038 0.58 0.0013 2.82 0.0049** 1.20
15 0.0000*** 0.0861*** 0.9005*** 0.0015** 0.0014* 62.12 0.0003 6.52 0.0019* 62.42
16 0.0009*** 0.0205** 0.9292*** 0.0043* 0.0007 9.67 0.0024 46.83 0.0007*** 27.71
17 0.0000*** 0.0565*** 0.9328*** 0.0032** 0.0001 87.60 0.0009*** 422.33 - -
18 0.0000*** 0.0769*** 0.8838*** 0.0005*** 0.0011 0.36 0.0008 3.05 0.0032 0.10
19 0.0000*** 0.0648*** 0.9145*** 0.0043** 0.0005 1.23 0.0016 2.94 0.0029 1.43

Note: The above table reports the estimated coefficients of the GARCH model based on the conditional correlations be-
tween the incident company and its three largest competitors, represented as d1,d1and d3. DM1 represents the GARCH
volatility estimated coefficient of the incident company itself. MCd1,MCd2 and MCd3 represent the estimated market
capitalisation of the three largest competitor companies respectively at the time of the chemical incident. ∗ ∗ ∗, ∗∗ and
∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and 10% levels respectively.
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Table 9: GARCH model testing changes in dynamics conditional correlations of stock market returns after industrial accidents attributed
to equipment failure.

Model ωij α1 β1 DM1 d1 MCd1 d2 MCd2 d3 MCd3
20 0.0000*** 0.0815*** 0.8992*** 0.0003 0.0007 87.62 0.0019** 257.77 0.0037* 150.41
21 0.0000*** 0.0427*** 0.9549*** 0.0014** 0.0011* 88.75 0.0012 43.95 0.0011 93.63
22 0.0000*** 0.0568*** 0.9323*** 0.0003** 0.0005 87.60 0.0006 422.33 - -
23 0.0000*** 0.1255*** 0.8655*** 0.0042*** 0.0005* 28.58 0.0112 0.12 0.0094 0.03
24 0.0000*** 0.0879*** 0.8909*** 0.0001 0.0003** 257.27 0.0002*** 0.15 0.0001 5.12
25 0.0000*** 0.1168*** 0.8770*** 0.0025*** 0.0039*** 257.27 0.0013 91.53 0.0014* 238.22
26 0.0000*** 0.0342*** 0.9503*** 0.0018* 0.0001 28.26 0.0025* 1.90 0.0001 19.91
27 0.0000*** 0.0575*** 0.9337*** 0.0007* 0.0009** 239.46 0.0014** 21.40 0.0010 422.33
28 0.0000*** 0.1629*** 0.7872*** 0.0005 0.0031*** 0.61 0.0007 1.45 0.0041 0.11
29 0.0000*** 0.0614*** 0.9312*** 0.0014* 0.0015** 59.72 0.0012 62.42 0.0013* 422.33
30 0.0000*** 0.0425*** 0.9511*** 0.0048** 0.0019 0.36 0.0101** 3.05 0.0008 0.10
31 0.0000*** 0.0612*** 0.9313*** 0.0011*** 0.0002 59.72 0.0013* 62.42 0.0004 422.33
32 0.0000*** 0.0616*** 0.9309*** 0.0016* 0.0009*** 59.72 0.0017 62.42 0.0011 422.33
33 0.0000* 0.0361** 0.9431*** 0.0019 0.0009 2.35 0.0073* 0.52 0.0041 0.95
34 0.0000*** 0.0517*** 0.9321*** 0.0002 0.0022*** 19.19 0.0014 4.39 0.0009** 1.50
35 0.0000*** 0.0813*** 0.8995*** 0.0014* 0.0008* 87.62 0.0012 257.77 0.0003*** 150.41
36 0.0000 0.0312** 0.8222*** 0.0018* 0.0028* 1.08 0.0019 46.83 0.0036** 8.07
37 0.0000*** 0.0471*** 0.9451*** 0.0015*** 0.0012** 2.86 0.0009* 12.03 0.0009*** 422.33

Note: The above table reports the estimated coefficients of the GARCH model based on the conditional correlations be-
tween the incident company and its three largest competitors, represented as d1,d1and d3. DM1 represents the GARCH
volatility estimated coefficient of the incident company itself. MCd1,MCd2 and MCd3 represent the estimated market
capitalisation of the three largest competitor companies respectively at the time of the chemical incident. ∗ ∗ ∗, ∗∗ and
∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and 10% levels respectively.
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Table 10: GARCH model testing changes in dynamics conditional correlations of stock market returns after industrial accidents attributed
to human error.

Model ωij α1 β1 DM1 d1 MCd1 d2 MCd2 d3 MCd3
38 0.0000*** 0.0570*** 0.9321*** 0.0015*** 0.0012*** 87.60 0.0005** 422.33 - -
39 0.0000* 0.2427*** 0.5759*** 0.0002 0.0001* 60.32 0.0004 138.40 0.0004*** 10.48
40 0.0000*** 0.0814*** 0.8994*** 0.0001* 0.0002 88.75 0.0011 43.95 0.0006* 93.63
41 0.0000*** 0.0814*** 0.8994*** 0.0006*** 0.0006 88.75 0.0004 43.95 0.0005 93.63
42 0.0000*** 0.0208* 0.8366*** 0.0035 0.0019 54.75 0.0041* 17.01 0.0001*** 12.88
43 0.0000*** 0.1476*** 0.8023*** 0.0015*** 0.0009** 2.25 0.0007*** 0.79 0.0004 3.28
44 0.0000*** 0.0622*** 0.9249*** 0.0004 0.0008*** 30.21 0.0010 12.42 0.0008* 32.34
45 0.0000*** 0.0716*** 0.8971*** 0.0015 0.0014 11.41 0.0009* 0.78 0.0010*** 0.25
46 0.0007*** 0.0348* 0.7991*** 0.0021*** 0.0020 1.08 0.0029* 46.83 0.0008 8.07
47 0.0000*** 0.0708*** 0.9011*** 0.0024*** 0.0011** 0.75 0.0040*** 0.03 0.0014*** 0.16
48 0.0000*** 0.0613*** 0.9312*** 0.0005*** 0.0003 19.19 0.0019* 4.39 0.0007* 1.50
49 0.0000*** 0.0592*** 0.9169*** 0.0005*** 0.0001 59.72 0.0001* 62.42 0.0018** 422.33
50 0.0000*** 0.0177*** 0.9455*** 0.0031*** 0.0027*** 31.61 0.0013*** 7.80 0.0004*** 15.33
51 0.0000*** 0.0611*** 0.9314*** 0.0015* 0.0011* 59.72 0.0003 62.42 0.0003 422.33
52 0.0000* 0.2343*** 0.6577*** 0.0017*** 0.0006*** 8.92 0.0004** 285.33 0.0006*** 0.23
53 0.0000*** 0.0903*** 0.7703*** 0.0002 0.0001 1.08 0.0001*** 46.83 0.0027*** 8.07
54 0.0000*** 0.0612*** 0.9313*** 0.0003 0.0009 59.72 0.0002 62.42 0.0006 422.33
55 0.0000*** 0.0319*** 0.8733*** 0.0009*** 0.0007*** 0.35 0.0011 0.11 0.0008 9.23
56 0.0000*** 0.0613*** 0.9312*** 0.0019*** 0.0016* 59.72 0.0009 62.42 0.0012** 422.33
57 0.0000*** 0.2494*** 0.7114*** 0.0002 0.0029** 1.08 0.0001 46.83 0.0016*** 8.07
58 0.0000*** 0.0307** 0.8171*** 0.0014** 0.0011 28.26 0.0022 1.90 0.0043* 19.91
59 0.0000*** 0.07191*** 0.9170*** 0.0015 0.0019*** 3.64 0.0008*** 54.30 0.0007 10.93
60 0.0000*** 0.04288*** 0.9215*** 0.0008*** 0.0011** 21.45 0.0007* 13.18 0.0001*** 7.22

Note: The above table reports the estimated coefficients of the GARCH model based on the conditional correlations be-
tween the incident company and its three largest competitors, represented as d1,d1and d3. DM1 represents the GARCH
volatility estimated coefficient of the incident company itself. MCd1,MCd2 and MCd3 represent the estimated market
capitalisation of the three largest competitor companies respectively at the time of the chemical incident. ∗ ∗ ∗, ∗∗ and
∗ denote the significance of the GARCH(1,1) estimates at the 1%, 5% and 10% levels respectively.
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