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Abstract

Fouad Bahrpeyma

Multi-step ahead time series prediction

Time series analysis has been the subject of extensive interest in many �elds of

study ranging from weather forecasting to economic predictions, over the past two

centuries. It has been fundamental to our understanding of previous patterns within

data and has also been used to make predictions in both the short and long term

horizons. When approaching such problems researchers would typically analyze

the given series for a number of distinct characteristics and select the most ap-

propriate technique. However, the complexity of aligning a set of characteristics

with a method has increased in complexity with the advent of Machine Learning

and the introduction of Multi-Step Ahead Prediction (MSAP). We examine the

model/strategy approaches which are currently applied to conduct multi-step ahead

prediction in time series data and propose an alternative MSAP strategy known as

Multi-Resolution Forecast Aggregation.

Typically, when researchers propose an alternative strategy or method, they demon-

strate it on a relatively small set of time series, thus the general breath of use is

unknown. We propose a process that generates a diverse set of synthetic time se-

ries, that will enable a robust examination of MRFA and other methods/strategies.

This dataset in conjunction with a range of popular prediction methods and MSAP

strategies is then used to develop a meta learner that estimates the normalized mean

square error of the prediction approach for the given time series.



Chapter 1

Introduction

This dissertation is about time series predictions, the di�culty in selecting appro-

priate models to address particular problems and time series data, and being able to

ensure robust evaluations for new predictive models. In this Chapter, we present the

background and motivation for the research proposed in this thesis. In particular,

we will outline the main research questions and highlight the main contributions

that we believe will emerge form our work. In x1.1, we present an introduction

to Time Series predictive algorithms and highlight some use case applications. In

x1.2, we motivate the issues with time series predictions and present our problem

statement. In x1.3, we present the research questions that we address in this work

and articulate our contributions. Finally, in x1.4, we summarize the Chapter and

outline the structure of this dissertation.

1.1 Time Series and their Prediction Strategies

A time series can be considered to be a sequenced series of data points that corre-

spond to measurements of an object, phenomena or signal that are taken at equidis-

tant time points [47]. In this dissertation we focus on equidistant time series which

is consistent with the majority of the literature in the time series domain. Typi-

cally, they will correspond to a single series or signal and can be de�ned as a vector

1



x(t); t = 0 ; 1; 2; :::, where t is the time lapse andx is a random variable. The sam-

ples taken from the time series process are arranged in the original chronological

order of occurrence. Researchers have used exogenous variables to predict future

values of the series with varying levels of success. However, there is a considerable

body of work which advocates the use of theseries itself to predict future values.

The advantage of such an approach is that identifying the relevant input/exogenous

variables is non-trivial and the use of the signal itself is based on the principle that

there is a considerable volume of information in past values of the series [66].

Times series methods have been applied and studied in many disparate disciplines,

which include econometric models in �nancial decision making [251], signal process-

ing applications in physics [57], and to anticipate weather and climate changes in

climatology [82]. In addition to the subject type, time series methods have also been

applied to di�ering data outcome types. For example, time seriesclassi�cation was

used to analyse EEG signals in [234] and activity recognition in [125]. While time

seriesclustering was implemented on active community detection in mobile net-

works in [141] and trajectory clustering to improve query evaluation performance

in [141]. The extensive use of time series analysis in such a wide spectrum of ap-

plications has led to the development of a wide range of methods and prediction

strategies.

Traditionally, in time series prediction studies, the general approach has been to use

historical data to predict a single time point in the future, known as a One Step

Ahead Prediction (OSAP) strategy [277]. Most time series prediction approaches

require stationarity as a pre-requisite; a stationary process has a constant mean

and a constant variance. In 1905, Pearson identi�ed a class of prediction models

known as Random Walks (RW), that are based on the assumption that at each time

point the time series takes an identically independently distributed (iid) random

movement from the previous value [193]. RW is the simplest form of non-stationary

time series model and for the time seriesx t , is described in Eq. 1.1, wherewt is an

iid normal variable i.e., a zero-mean process with a constant variance� 2.

2



x t = x t � 1 + wt (1.1)

In practice, wt is usually assumed to be a Gaussian white noise orwt � N (0; � 2) ( �

is the variance), which is a special case of the Autoregressive (AR) processes [249].

Eq. 1.1 emphasizes that an RW assumes that all information regarding thefuture

of the signal exists in the available data. Almost two decades ago, RWs were the

predominant linear models used for time series data analysis, and especially the

case in �nancial applications [3]. Various adjustments and alterations have also

been made to RW in the literature such as RW with drift and error correction

terms [3]. However, RW has been shown to be an inappropriate choice for capturing

non-linear patterns [3,136].

RW is similar to another type of stochastic random processes known as theMarkov

Chain. Markov Chain is a stochastic process where the behavior evolves according to

an index t 2 T, in a random manner, and is characterized by the Markov property.

A process has the Markov property if its nth state only depends on its (n � 1)th

state. Markov models have also been used for time series prediction, such as in [105]

where the use of Markov prediction models in stock models has been studied.

Another class of predictive analyses was initiated in 1944 by Brown known asEx-

ponential Smoothing (ES) models [92]. The ES model has been widely accepted in

the time series community because of its ease of use. Winter [270] then presented

a similar method known as the Holt-Winters model, which comprised additional

steps for handling the concepts ofadditive trends and seasonality. Trend carries the

information associated with long term or low frequency behavior of the series. Many

time series exhibit a regularly repeating pattern known asseasonality, often under

the inuence of external periodic drivers such as seasons, weather or holidays.

Exponential smoothing (ES) is based on the belief thatrecent observations pro-

vide more information than older observations. ES assigns exponentially decreasing

weights to the lags as the lag gets older and then incorporates a weighted averag-

ing to obtain the forecast [142]. ES performs well when variables change over time
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slowly and can be described by Eq. 1.2, where� is the weight and 0� � � 1.

ŷt+1 = �y t + � (1 � � )yt � 1 + � (1 � � )2yt � 2 + ::: (1.2)

With ŷt+1 = l t , Eq. 1.2 is an expansion of a simple smoothing approach, shown in

Eq. 1.3:

l t = �y t + � (1 � � )ln� 1 (1.3)

where l0 is calculated by Eq.

l0 = �y =

nP

t=1
yt

n
(1.4)

A larger � value gives a higher weight to the original values and thus, a more

uctuated curve is obtained; while a smaller � results in a smoother signal. An

advantage of ES is that it devotes a greater signi�cance to recent observations and

thus, with the smoothing technique, random uctuations will have less impact on

the accuracy of the prediction results. The main shortcoming with ES approaches

derives from their initial assumption about the model that the uctuations in the

given time series should lay around a �xed level or change slowly. In the presence of a

signi�cant trend or seasonality, even an adaptive ES model fails to obtain accurate

forecasts [128]. Autoregressive (AR) models were introduced as one of the �rst

types of time series stochastic modeling methods [285], and are built by modelling

the current time points on lagged versions of themselves. The AR model with order

p is de�ned in Eq. 1.5.

ŷt+1 = c +
pX

t+1

� i yt � i + � t (1.5)

where � 1; :::; � p are the model parameters,c is a constant and � t is white noise.
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In 1937, Slutzky presented the concept of a Moving Average (MA) model [235],

which made a signi�cant contribution to the statistical time series analysis. The

MA model with order q is de�ned in Eq. 1.6.

ŷt+1 = � +
qX

i +1

� i � t � i + � t (1.6)

where � 1; :::; � q are the model parameters,� is the mean of the series and� 1; :::; � q

are the white noise error terms.

A year later, Wold [271] put the AR and the MA models together and introduced the

ARMA model which could describe a large class of stationary time series processes.

Wold's method was not properly implemented until technology provided researchers

with the computing power to optimize parameters for the AR (Eq. 1.5) and the MA

(Eq. 1.6) components of the ARMA model in the 1960s, shown in eq. 1.7.

(1 �
p0

X

i =1

' i L i )yt = (1 +
qX

i =1

� i L i )" t (1.7)

where L i is the shift operator.

Some studies have used decomposition techniques such as Wavelet transforms to

further improve prediction performance. For example, ARIMA has been used with

wavelet transform in [144] to forecast metal prices. Also, ES has been combined

with the wavelet transform to predict sediment load in [232].

Multi-Step Ahead Prediction. More recently, approaches have been proposed

which predict multiple future time points and these are known asMulti-Step Ahead

Prediction methods (MSAP) [28]. MSAP approaches have had a variety of applica-

tions, in areas such as wind speed prediction [261], Hydrological time series predic-

tion [138] and crude oil prices prediction [61]. In MSAP studies, several strategies

such as the Direct and Recursive approaches have been proposed. The existing

MSAP strategies including the Direct and the Recursive strategies are explained
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in details in Chapter 2, section 2.2. Both can be implemented using di�erent ma-

chine learning techniques, such as Neural Networks (NNs), Recurrent Neural Net-

works (RNNs) and Support Vector Regression (SVR). Throughout the literature,

researchers have implemented a wide range of both prediction methods and strate-

gies. The success of each method and prediction strategy has been shown to be

subject to the suitability of each approach to accommodate characteristics or fea-

tures within the time series. A good example of this is the ARIMA model which

was developed in the 1970s by Box and Jenkins [49]. This method relies on the as-

sumption that there should be a constant variance in the series under examination

and if this property is not present, can undermine future predicted outcomes. Even

modern machine learning approaches can have their predictive power reduced by

the characteristics of a particular dataset. Neural Networks are an example where

long term memory in the data weakens the algorithm's predictive powers [163].

Researchers incorporate an approach known as the Sliding Window (SW) to convert

a time series prediction problem to a classical supervised learning problem so that

machine learning techniques can be used for implementing time series prediction.

SW is a �xed length frame sliding over a time series, each time recording the covered

values as a new sample required for training machine learning models. In recent years

LSTM [97], RNN [178] and other machine learning approaches have received a lot of

attention in time series studies [203]. However, little attention has been given to the

appropriateness of these methods in improving MSAP performance and the time se-

ries characteristics where they work best. Typically, in OSAP one �nds that certain

approaches are appropriate when the data source has certain characteristics or fea-

tures. In order to examine the range of appropriate characteristics for a proposed

method researchers have implemented their approaches on either well-established

data repositories such as Kaggle [108] or have attempted to generate synthetic data.

Regardless of the strengths and weaknesses of each strategy or model, choosing the

appropriate approach can be challenging. The literature states that there is no uni-

versal approach/strategy that will outperform others when making predictions, and

this concept is known as the `No free lunch" theorem [272]. There have been at-
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tempts in OSAP, such as [262] and [156], to build recommender systems that relate

time series features/characteristics to method performance. This process is known

as prediction method selection or more recently,meta-learning, where a machine

learning technique is trained to recommend the appropriate method based on a set

of features [155]. Meta-learning for OSAP methods is gaining interest and has been

applied in a number of studies such as [262] and [29]. However, Meta-Learning

in MSAP has not received the same attention in the literature. This presents an

interesting opportunity for MSAP researchers.

1.2 Problem Statement

Times series analysis has a long history in Mathematics, Statistics and Econometrics.

Typically, the historical applications have been implemented with OSAP strategies

and the introduction of MSAP has shown some promise. One of the major challenges

that currently exists in time series prediction methods can be attributed to the error

accumulation that occurs when predicting forward. Typically, when using a OSAP

strategy, predicted values incorporate components of previous values such as in the

ARIMA model in Eq. 1.8; where L is the lag operator,d is the order of di�erencing' i

are the autoregressive parameters,� i are the moving average parameters, and" t are

the error terms. Eq. 1.8 is an extension of Eq. 1.7 with an additional di�erencing

parameter ' i .

(1 �
pX

i =1

' i L i )(1 � L )dX t = � + (1 +
qX

i =1

� i L i )" t (1.8)

As one moves forward in the prediction horizon the prediction errors will steadily

increase using a model such as that described in eq. 1.8. This is primarily due to the

use of predicted values as lagged inputs in the model. Reducing the reliance on the

predicted lagged components should in theory reduce the predictive error of future

models; Some MSAP approaches such as the direct strategy (de�ned in Chapter 2,

section 2.2) were presented to reduce this reliance.
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This strategy is known as the recursive strategy, and its main purpose is to retain

the autocorrelation structure (or sequential correlations) of the time series. An

alternative approach is to simply build a separate model for each of the future

steps using the actual lags for time points going back further in time, and is known

as the direct strategy. This will eliminate the need for the consecutive repeats of

OSAP over previously predicted values, but there will be a loss of information due

to the increased time gap between the predicted and the predictor time points.

Several new approaches have emerged each presenting a new theoretical basis to

mitigate the error accumulation or the intermediate information loss problem [244].

Researchers incorporate an approach known as the Sliding Window (SW) to convert

a time series prediction problem to a classical supervised learning problem so that

machine learning techniques can be used for implementing time series prediction.

SW is basically a �xed length window sliding over a time series, each time recording

the covered values as a new sample required for training machine learning models.

When attempting time series prediction, the choice of approach can often depend

on the characteristics within the data. The direct strategy, explained in section 2.2,

for example will be more relevant when there is long term memory in the data.

The results from the proposed MSAP stress test could then be compared to those

generated from other methods that are used regularly in the literature.

1.3 Research Questions and Contribution

We now proceed to articulating the research questions addressed in this research

which are across 3 broad topics: improvement of existing MSAP methods; a robust

validation framework for MSAP research; and the development of a pre-processing

step in the application of MSAP models, to assist the researcher in pre-selecting

good candidate models for time series prediction.

Research Question 1: Improving MSAP Models. Direct and recursive pre-

diction strategies, which are explained in detail in section 2.2, are well established
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techniques when attempting multi-step ahead predictions. Researchers in recent

studies have predominantly focused on combined approaches to avoid the exclu-

sion of sequential correlation in the direct strategy, or the accumulation of error

in the recursive strategy. This research question examines how the integration of

metrics derived from multi resolutional sliding windows together with a recursive

MSAP strategy can be used to reduce error accumulation. Therefore, this research

question can be stated as follows:

� How can the integration of metrics derived from multi-resolutional sliding

windows together with a recursive MSAP strategy can be used to reduce error

accumulation?

Research Question 2: More Robust Validation. A more robust evaluation for

new time series methods requires high volumes of data to ensure a high level of rigour

in testing. However, for many researchers, the availability of appropriate time series

repositories for the given task presents a barrier to this type of robust evaluation.

The term Diversity refers to the absence of focus on speci�c domain-speci�c features

in the universe of discourse.

A feature is any single value obtained from applying a test to the time series. Also,

the feature space is a multi-dimensional space in which each dimension corresponds

to a separate features. This research question can be stated as follows: With the

goal of constructing signi�cant numbers of time series, how can a dataset generation

strategy be developed to provide the following outputs?

� A dataset that can cover the potential feature space required to robustly test

time series algorithms

� Metrics that capture the diversity of the complete dataset generated.

Research Question 3: Meta-Learning. When attempting to model a time series
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dataset, researchers are often unable to identify the approach (model or algorithm)

that is most suitable for the proposed dataset. In this research question, we attempt

to connect the most appropriate technique from a list of common time series MSAP

approaches with the synthetic datasets generated as part of research question 2,

using features extracted from the generated time series. From this dataset, we

will build a machine learning model that will allow researchers to identify potential

candidate algorithms. Because we use time series features, we can use our analysis

to draw conclusion about real time series. Therefore, the research question can be

stated as follows:

� How can we build a machine learning model, using the time series generated in

research question 2, that will allow researchers to identify potential candidate

algorithms?

1.3.1 Contribution

The primary contribution from this thesis are associated with the research questions

outlined above and they are as follows:

� The initial challenge was to develop a MSAP strategy that would potentially

reduce the cumulative error that occurs in many competitor strategies. This

work was presented in [21] and demonstrated a positive outcome. We also

determined that there is a signi�cant improvement when the proposed strategy

is integrated with a Recurrent Neural Network.

� In order to test the strategy outlined above, we developed a synthetic data

generation approach that creates a uniquelydiverse test dataset. When ap-

plied to a proposed algorithm or strategy, researchers can use the generated

datasets to robustly test new time series models.

� We show how meta features generated from the characteristics of time series

can be used with a Random Forest regression model to estimate the normalized

mean square error for a particular set of algorithms. This approach allows
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researchers to narrow down the �eld of potential candidate algorithms for the

proposed dataset, with a signi�cant bene�t of reducing the volume of research

and experimentation that is generally required during a time series analysis.

1.4 Summary

In this Chapter, we presented a brief overview of the research area and the chal-

lenges faced in Multi-Step Ahead Prediction. We have also outlined the research

questions and contribution for this thesis. We now provide an outline structure for

this dissertation and describe the main goal of each Chapter.

In Chapter 2, we present our literature review for this research. In particular we

focus on the application of techniques that are currently being applied in MSAP,

where they are used and the weakness that have been encountered with them. In

Chapter 3, we give a high level description of our proposed methodologies and

explain how the di�erent steps combine to deliver our overall solution. The 3 main

contributions in this research are covered in the next 3 Chapters. Chapter 4 is used to

describe our proposed MSAP strategy. In Chapter 5, we present the synthetic data

generation strategy and show how our evaluation ensures that the overall dataset

is diverse and so does not favour any single time series model. In Chapter 6, we

introduce our meta learning approach that uses the characteristics of the generated

time series data as inputs to a regression model that predicts the normalised mean

squared error of a proposed technique. In Chapter 7, we present the evaluation,

�ndings and insights of our research. Finally, in Chapter 8, we present a summary

and discussion on future research in the area.
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Chapter 2

Related Research

In this Chapter, we present our review of the literature which cuts across a number of

topics and important issues in time series prediction research. Inx2.1, we present a

generalised discussion on time series methods in order to introduce some of the more

general open problems. We then examine multi-step ahead prediction strategies in

x2.2 as these form a core part of our research. The lack of time series data to robustly

evaluate prediction algorithms led a number of researchers to develop synthetic time

series. This step, also adopted in our research, has a number of signi�cant issues

discussed inx2.3. As part of our study, we discovered how adopting a meta-learning

step as part of an overall strategy could yield signi�cant bene�ts and in x2.4, we

present a critique of approaches that adopt a similar strategy. Finally, we present

an overall summary of our state of the art discussion inx2.5.

2.1 Time Series Modelling

The choice of time series method with either One Step Ahead Prediction (OSAP) or

Multi-Step Ahead Prediction (MSAP) strategies has been shown to have a signi�cant

impact on the predictive power of any analysis [205,244]. There are many methods

available to researchers, and each has its own advantages and disadvantages. The

choice of method has traditionally focused on the type of data that researchers are
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working with or the �eld of study, and have been classi�ed into two broad groups:

parametric and non-parametric. In this section, we will provide a review of research

in both groups with the goal of highlighting existing weaknesses and open research

problems.

2.1.1 Parametric Time Series Prediction

Time series prediction literature has been inuenced by a number of parametric

approaches and used to forecast future values for a variety of datasets [176]. The

term parametric implies that the model follows certain distributional assumptions

which when met, can give favourable results [96]. Parametric models have played an

important role in the advancement of predictive analyses, and led to the development

of some powerful methods such as ARIMA models, and their extensions, [48]. The

general properties of parametric models [295] are: stationarity, continuous sample-

path, normality, a �nite number of parameters and a rigid linear structure. Some

methods, such as ARIMA can best be applied to time series data where the time

series variance remains constant [287], while others can handle non-constant variance

[12]. As far back as 1926, AutoRegressive (AR) models were introduced as the �rst

type of time series stochastic modeling methods [285], and are built by modelling

the current time points on lagged versions of themselves. The AR model has been

used for load forecasting [162] and river ow forecasting [195]. Later in 1937, the

Moving Average (MA) model [235] was presented. The AR and the MA models

were put together in [271] and the ARMA model was introduced. In 1970, Box and

Jenkins proposed integrating a di�erencing component with the ARMA model to

bring stationarity to some non-stationary time series [49]. This new model was called

ARIMA and has been applied extensively in the time series community. In [263],

ARIMA was used to predict household food retail prices. This work categorizes 41

di�erent types of food into �ve groups based on the price movement trends: smoothly

rising, rising with uctuations, stable, horizontal uctuating and concave. Then, for

each category a di�erent ARIMA model was employed. ARIMA was studied in [196]

to forecast prices of three di�erent types of palm oil. The results were compared with
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those of AR, MA and ARMA models. In [104], ARIMA was conducted to forecast

drought using the VTCI index time series, in [297] to forecast food grain prices, and

in [242] to forecast Sugarcane yields. An ARIMA model was used to model the test-

day milk yields of dairy ewes in [167], and monthly reservoir inow was forecasted

using ARIMA and ARMA in [256]. Forecasting pre-monsoon rainfalls using ARIMA

was studied in [191], where the results report that the change in the trend in rainfall

which caused non-stationarity in the associated time series was captured properly.

ARIMA was also practiced in [278] for forecasting agricultural commodity prices.

Based on the AR and MA models, ARMA can be written as Eq. 2.1:

(1 �
p0

X

i =1

' i L i )X t = (1 +
qX

i =1

� i L i )" t (2.1)

With p0 = p � d in Eq. 2.1, the ARIMA (p; d; q) model can be generalized to Eq.

2.2:

(1 �
pX

i =1

' i L i )(1 � L )dX t = � + (1 +
qX

i =1

� i L i )" t (2.2)

whereL is the lag operator,d is the order of di�erentiation, ' i are the autoregressive

parameters, � i are the moving average parameters, and" t are the error terms.

ARIMA models can also be used to model a range of seasonal time series [51]. The

Seasonal ARIMA (SARIMA) model is identi�ed by ARIMA (p; d; q) � (P; D; Q)m ,

where (p; d; q) are the non-seasonal ARIMA parameters,m is the number of ob-

servations per season, and (P; D; Q) are conceptually similar to the non-seasonal

components but with the back shift of the seasonal period. SARIMA was used

in [148] for tra�c ow forecasting, in [24] to predict international tourism demand

and in [211] to predict the number of malaria incidents.

The Autoregressive Integrated Moving Average with Explanatory Variable (ARI-

MAX), is a version of ARIMA that allows the combination of linear regression and

ARIMA in order to be able to accommodate exogenous variables in the modeling

process [152]. In [35], an ARIMA model was used to predict groundwater levels and

then exogenous-variables were added (to build the ARIMAX model) to model the
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groundwater levels in response to estimates of land surface recharge.

Limitations with ARIMA approaches. The popularity of the ARIMA family

has roots in its exibility in describing a small class of time series data with simplicity

as well as the associated Box-Jenkins methodology for an optimal modeling process

[47]. However, a signi�cant drawback with ARIMA models is the assumption of a

rigid structure in the underlying time series and it can only model linear relationships

between the time series lags which is often unsuited to numerous real-world problems

[83]. A variety of non-linear stochastic models have been suggested to tackle this

shortcoming [183,287,288]. In comparison with new time series modeling techniques,

ARIMA is more interpretable but can be lessaccurate for certain data types [280].

2.1.2 Non-Parametric Approaches

Non-parametric models, make no presumptions about the presence of known struc-

tures such as the continuity of the sample sequence, stationarity and normality.

Thus, they have a greater applicability to a broader range of datasets [72]. The ad-

vent of Machine Learning (ML) provided the research community with a new class

of non-parametric time series models [96]. ML techniques such as Neural Networks,

Recurrent Neural Networks (RNN) or Long Short Term Memory (LSTM) o�er a

non-parametric approach to model non-linear systems without the need for prior

knowledge about the mathematical structure of the system. ML techniques have

shown a remarkable capacity to uncover inherent non-linear relationships between

time series lags and thus, eliminating the need for the manual speci�cation of the

model structure. An important disadvantage with non-parametric models and spe-

cially machine learning models is the lack of quanti�ed uncertainty at their outputs.

This issue has been an interesting topic of research in the past studies. For exam-

ple, in [122, 135, 137] studies were undertaken on the estimation of the prediction

intervals for Neural Network models. However, no standard method has yet been

presented for quantifying forecasts uncertainty in machine learning models and thus,
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quantifying forecasts uncertainty is out of the scope of this study. The time series

community, adopted ML techniques by converting the sequential supervised learning

problem of time series prediction to the classical supervised learning problem that

suits ML techniques [78]. However, challenges and issues with both parametric and

non-parametric have been reported in the relevant literature suggesting that more

considerations need to be taken when choosing an approach [55].

� Neural Networks

Neural Networks (NN) are a ML method inspired from the information handling

process of the brain's nervous system [73]. A NN is a layered architecture of compu-

tational units referred to as neurons. Neurons in the NN are organized in consecutive

layers where each neuron is connected to all neurons placed in the previous and the

next layer. A NN has an input layer, an output layer and at least one hidden layer.

The data records are presented to the NN in the format of input-output pairs, and

the network is trained via a gradient-descent based algorithm aiming at simulating

the output with respect to the associated inputs [75].

NNs are highly popular among the researchers of various �elds because they are

theoretically able to model complex nonlinear functions with acceptable approxima-

tions. Also, NNs are a type of data-driven approach which can learn the structure of

the system solely by observing historical data and do not need to have prior knowl-

edge regarding the design of the system [289]. However, NNs (and other NN based

methods) contain complex mappings between inputs and outputs, a feature that is

di�cult to analyse and understand [227]. Furthermore, NNs use backpropagation,

which because of being a gradient descent type of training algorithm, cannot guar-

antee reaching the global minimum error [202]. Another important drawback with

the NN family of methods is the lack of theoretical solutions to specify the optimal

number of neurons in the hidden layers [174].

� Recurrent Neural Networks
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A Recurrent Neural Network (RNN) is a class of NNs that uses recurrent connec-

tions to provide the network with memory from a temporal sequence [75]. This

memory enhances the exibility of the network by processing sequential data as the

output of the neuron from the previous step yNeuron
t � 1 . This is then used to produce

the output for the current step output t . In the training process a back propagation

algorithm through time (BPTT) is used to adjust the weights which incorporate the

recurrent structure. The architecture of an RNN is shown in Fig. 2.1.

Figure 2.1: Neural architecture of the RNN

In Fig. 2.1, S0 are the previous states of the neurons andN i represents the state

of the i th neuron in the hiddden layer. Due to the recurrent feedback, a delay

function/operation is introduced to retain the activations until they are processed

at the next time step. The behavior of RNNs can be explained as a dynamical system

using the formulae in Eq. 2.3, whereX (t) and Y(t) are the RNN's input and output

vectors, WIH , WHH and WHO are the three connection weight matrices,f H and f O

are the hidden and output unit activation functions. Note that in Fig. 2.1, if the

inputs x1; x2; ::; xd include variables other than the time series lagsyt ; yt � 1; yt � 2; :::,

the non-lag variables are the same as the exogenous variables in an ARIMAX model

[152].
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h(t) = f H (WIH X (t) + WHH h(t � 1))

Y (t) = f 0(WHO h(t)) ;
(2.3)

where h(t � 1) is the state matrix of the neurons in the hidden layer in the previous

step.

The architecture of a recurrent neuron is shown in Fig. 2.2.

Figure 2.2: A simple neuron with one recurrent feedback

In the information processing mechanism of a recurrent neuron, the temporal in-

formation which is referred to asstate about the subsequent events is processed by

a non-linear activation function f H and the result is fed back to the neuron. In

RNNs (unlike NNs), the output of a recurrent neuron depends also on its previous

state st � 1, since the recurrent weight WHH informs the neuron about its previous

state st � 1. As shown in Fig. 2.2, the recurrent neuron has a cycle (the recurrent

feedback) and the neuron's output dynamically changes between time steps. Due

to this cycle, the behavior of the neuron is di�cult to interpret and the network

cannot be trained via traditional backpropagation algorithm [206]. However, the

recurrent structure of the recurrent neuron in Fig. 2.2 can be unfolded into a graph

which has no cycles and thus the output of the recurrent neuron does not change

between the unfolded time steps, which enables the network to be trained using the
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backpropagation algorithm. The unfolding operation converts the architecture of

the recurrent neuron (shown in Fig. 2.2) to a feedforward architecture, where the

degree of recurrence determines the number of hidden layers [173], shown in Fig.

2.3.

Figure 2.3: Unfolding

As shown in Fig. 2.3, unfolding converts the RNN's architecture into a feedforward

structure which has no cycles. Eq. 2.4 describes the variables shown in Fig. 2.3.

st = f H (wIH x t + wHH st � 1)

yNeuron
t = f O(wHO st );

(2.4)

where st is the state of the recurrent neuron at time t, xNeuron
t is the input to the

recurrent neuron at time t, yNeuron
t is the output of the recurrent neuron at time t,

f H is the activation function of the hidden layer, and f O is the activation function

of the output layer. Also, wIH , wHH and wHO are the input weight, the feedback

weight and the output weight, respectively.

In theory, a RNN has a memory of unlimited length. However, in practice, the

number of recurrences is limited to a few steps [75]. Elman NN (a simple RNN with

one hidden layer) was conducted to forecast the COMEX copper spot price in [150],

crude oil prices [181], stock returns [219] and wind speed [30].

� Support Vector Regression
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Support Vector Regression (SVR) is an extension of the Support Vector Machine

(SVM) classi�cation methods [189], and both are based on statistical learning theory

[258]. SVR follows the same principles as SVM, with a few modi�cations that enables

it to solve regression problems. The basic idea behind SVR is to use a tolerance

that maximizes the margin between hyperplanes given in Eq. 2.5.

yi = w:' (x i ) + b+ �

yi = w:' (x i ) + b� �
(2.5)

These hyperplanes are shown in Fig. 2.4.

Figure 2.4: SVR hyperplanes

For a time series prediction process, considerf (x) as the function that predicts the

value x̂ for a prediction horizon � t , based ond past observations (d is the number

of time series lags) as shown in Eq. 2.6.

x̂(t + � t ) = f (x t � d+1 ; x t � d+1 ; :::; x t ) (2.6)
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Eq. 2.7 emulates the prediction function of Eq. 2.6 as a SVR process:

f (x) = ( w:' (x)) + b: (2.7)

where ' (x) is the kernel function and chosen depending on the problem. The radial

Basis Function (RBF) and the Polynomial function are the most popular non-linear

kernel functions. Note that the number of lagsd is another hyper-parameter of an

SVR model and its optimal value is obtained through an input selection procedure.

By adding a slack variable, the objective of the SVR's learning process is to minimize

the cost function given in Eq. 2.8.

Min
1
2

kwk2 + C
nX

i =1

j� i j; (2.8)

with the following constraint:

jyi � wi x i j � j � i j; (2.9)

In Eq. 2.7, if the data is linear then ' is a linear function. Otherwise, ' (:) is required

to project the data into a higher dimension space which is appropriate for a linear

regression model [189]. The goal of the process is to �nd an optimal set of weights

w and the threshold b. A linear data is a data that is generated by a linear system

and a system is linear when its outputY system is created by a linear function of its

inputs X system [273], as shown in Eq. 2.10.

Y system = W:X system + B (2.10)

where, W is a �xed vector and B is the intercept.

SVR has the advantage that the computational complexities of the SVR process do

not depend on the dimensionality of the problem space [16]. However, an important

disadvantage of SVR is that increasing the number of training samples causes the

training time to grow exponentially [274]. It is hard to determine the trade o�
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between over-learning and under-learning for the SVR model, since the performance

of an SVR model highly depends on the choice of the kernel function and the �ne

tuning of the hyper-parameter, which is a di�cult task [25].

� Long Short-Term Memory

In theory, the recurrent structure of RNNs permits the network to incorporate long

term memory in a a temporal sequence. However, when using gradient based train-

ing methods and the backpropagation algorithm, RNNs usually fail in practice as

they su�er from both vanishing and exploding gradients. The Long Short Term

Memory network (LSTM) is a variant of RNNs which is capable of handing long

term dependencies and thus, enables the network to handle vanishing/exploding gra-

dients, [118]. The prototype Long Short-Term Memory (LSTM) has an input gate,

a forget gate, a memory cell, and an output gate. The forward pass in the training

process of an LSTM with one forget gate incorporated the functions presented in

Eq. 2.11.

Forget gate activation f t = � g(Wf x t + Uf ht � 1 + bf )

Input gate activation i t = � g(Wi x t + Ui ht � 1 + bi )

Output gate activation ot = � g(Wox t + Uoht � 1 + bo)

Cell state ct = f t � ct � 1 + i t � � c(Wcx t + Ucht � 1 + bc)

Output ht = ot � � h(ct )

(2.11)

In Eq. 2.11, x t , ht are the input and the output data vectors of the LSTM unit; Wf ,

Wi , Wo, bf , bi , bo, are the weights and biases of the input gate, the output gate and

the forget gate, respectively. � g is a sigmoid function, and � c and � h are hyperbolic

tangent functions; These are the default functions of the original LSTM model and

have been chosen to ensure a minimum level of generalization ability according to

the LSTM cell [118]. Also, the circle represents the dot product or element-wise

multiplication.

LSTM has all the abilities of RNNs but it can also preserve a long history of the
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past results using self connecting loops without being forgotten. In other words,

LSTM can process long data sequences and capture long-term dependencies but a

major drawback is its complexity [286]. The other shortcoming with LSTM is that

its training process requires a large number of samples. Also, LSTM has predomi-

nantly been used for classi�cation purposes where the output of the model is a class

denoted by a single categorical or multiple categorical variables. However, time

series prediction is naturally a regression problem where the output of the model

is a continuous variable. Therefore, not only are more training samples required,

but also the model behavior is far from the smooth function [186] required for time

series prediction purposes. The output of a time series prediction model should be

smooth because its target is a continuous real variable, as opposed to the output of

a classi�cation model which its output is a categorical variable.

2.1.3 Final Summary

In this section, we reviewed the most popular parametric and non-parametric tech-

niques used in the are of time series prediction. Each of these models can be used

as a tool for implementing OSAP and MSAP methods (shown in Table 2.1). Fur-

thermore, it was observed that each of the methods described have strengths and

weaknesses which makes each of them e�ective for a speci�c type of data. This

suggests that conducting an analysis on the choice of the appropriate model for

the given time series can help improve the prediction performance. We study this

problem in greater detail in Chapter 6.
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Table 2.1: Methods: Strengths & Weaknesses

Method Strengths Weaknesses

ARIMA 1) Works well on linear data 1) The assumption of a rigid structure

in the data, and 2) The assumption

that the data can be described by a

linear equation

SVR 1) SVR is robust to outliers and 2)

The decision model can be updated

1) Extensive memory requirement, 2)

Requires Feature Scaling, and 3) Suf-

fers from the curse of dimensionality

NN 1) The ability to work with incomplete

data, 2) Storing information on the

entire network, and 3)Can be used to

model non-linear data

1) Sensitive to di�erent random

weight initializations, and 2) Need for

and initial hyper-parameter optimiza-

tion

RNN 1) RNNs can process data of various

lengths, 2) RNNs can remember past

mid-term results throughout the time

which is very helpful in time series pre-

diction, 3) With increase in the size of

data the model size does not need to

change

1) Due to recurrent weights, the train-

ing is slow and 2) Possibility of vanish-

ing or exploding gradients

LSTM 1) Has the ability to process long time

lags, 2) In contrast to hidden Markov

models, LSTM does not require tan

a priori choice of a �nite number of

states, and 3) Can handle noise, dis-

tributed representations and continu-

ous values

1) requires a large number of train-

ing samples, 2) Can easily over�t,

3) Requires an extensive computation

power, and 4) They are highly sensi-

tive to di�ering random weight initial-

izations
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2.2 Multi Step Ahead Prediction Strategies

Time series prediction has traditionally focused on predicting outcome variables us-

ing time series models incorporating a One Step Ahead Prediction strategy (OSAP).

The incorporation of the time series model and the Multi Step Ahead Predic-

tion (MSAP) strategy have been shown to have a signi�cant impact on predictive

power [11]. MSAP approaches have been used to predict wind speed [100, 261],

Hydrological [18,63,203] and oil price time series [277,293]. The two major MSAP

implementation strategies are the direct (DIR) and the recursive (REC) approach,

where both have their own speci�c drawbacks and strengths. A number of ap-

proaches such as Direct Multiple Outputs (DirMo), Direct Recursive (DirRec), Mul-

tiple Inputs Multiple Outputs (MIMO) have been proposed to combine these in some

way to improve the the overall accuracy of predictions of MSAP [244].

In contrast to OSAP methods, where the prediction horizon (PH) consists of only

one interval, MSAP is not a straightforward problem, as the additional steps of

prediction add more complexities to the prediction process. Several MSAP strategies

exist among which the REC and the DIR approaches (which will be explained later

in this section) present two main and distinct perspectives. Other strategies suggest

either an extension of one or a combination of the two, to improve the performance

[45].

� The Recursive strategy (REC)

As mentioned previously, serial correlation between time series lags is one of the main

sources of information when developing prediction models. REC repeats an OSAP

method for each predicted point in the prediction horizon and will eventually use

predicted lagged values as inputs for time points later in the time horizon. Generally,

in REC [205], a single model performs OSAP several times during training, each

time addressing one time unit (TU) in the PH. Eq. 2.12 illustrates this approach

where d is the number of lags used as inputs to the OSAP method,t is time, and y

is the time series.
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ŷt+1 = f (yt ; :::; yt � d) (2.12)

An important advantage of REC is that it only needs to incorporate a single pre-

diction model and thus, in comparison with other MSAP strategies, REC is more

e�cient and thus deals with less computational complexities. This is particularly

so for problems that take many inputs and require continuous long-range fore-

casts [101, 247]. Therefore, studies such as [101] suggest that REC is more suited

for well-speci�ed models.

However, the major disadvantage of REC is the problem of accumulation of error

which occurs due the inaccuracy of the predictor. In fact, as shown in Eq. 2.12,

the �rst step of prediction ( ŷt+1 ) is made using actual inputs ,i.e.,yt ; :::; yt � d. But,

the second step of prediction (ŷt+2 ) requires yt+1 as an input which is not available

and thus, we will use the predicted valueŷt+1 , instead. Likewise, the third and

further steps of prediction are also made using predicted inputs. Therefore, if the

prediction model is not 100% accurate, ^yt+1 (the predicted value) is not equal to

yt+1 (the actual value) and thus, the input to the prediction model for the second

and further steps of prediction will be inaccurate. This causes accumulation of error

which is due to the inaccuracy of the prediction model.

� The Direct strategy (DIR)

DIR avoids the incorporation of lagged predicted values as inputs to future predic-

tions by modelling each point in the PH with the same data. However, DIR uses

the same inputs to make predictions for several steps and thus, lessens the impact

of serial correlation which is a necessary component in time series predictions [39].

A recent study highlighted the range of research projects which are addressing these

challenges [45]. Some strategies were developed to incorporate both DIR and REC

methods in an attempt to overcome the shortcomings of each individual strategy.

For each TU in DIR, one speci�c model is trained as shown in Eq. 2.13. Here,k

denotes the position of the TU being modeled, andL is the size of the PH.
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ŷt+ k = f k (yt ; :::; yt � d); k = 1 ; 2; :::; L (2.13)

However, a weakness is that DIR discards sequential correlation in a time series

which negatively impacts its performance [245].

DIR was also implemented in [34] using the Least Square-Support Vector Regression

(LS-SVR) as a multistep ahead prediction for daily river ow variation forecasting.

The authors also implemented DIR using an NN model and compared the results

with the results of the LS-SVR model.

In [102], the authors conducted a comparative analysis of DIR and REC for the

performance multi-periodic time series prediction. In their research, they reported

some studies suggesting that DIR can yield more accurate results. They have also

reported about the studies with a belief that DIR can outperform REC depending on

some factors such as the nature of the time series, the size of the prediction horizon,

the input selection criteria, the prediction horizons, and the prediction period [139].

Using experimental results on six time series datasets, they suggested that DIR

would yield more accurate predictions for multi-periodic time series. However, their

experiments were performed on only six time series which is not su�ciently large to

draw valid and generic conclusions.

� DirRec

In [240], a combined MSAP strategy called the DirREC strategy is presented, which

combines the principles of DIR and REC. Like DIR, DirREC predicts each TU in

the PH with a di�erent model and like REC, it uses the predictions of previous

TUs as additional inputs. For the time series [y1; :::; yN ], DirREC learns K models

according to Eq. 2.14.

ŷt+ k = f k (yt+ k� 1; :::; yt � d+1 ) (2.14)
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where d is a constant showing the lags,d � t � N � K and 1 � t � K . As shown

in Eq. 2.14, for each step of prediction, the model with a di�erent number of lags

is trained. For example, the �rst step ŷt+1 is predicted using lagsyt � d+1 ; :::; yt ,

but the second step ŷt+2 is predicted using yt � d+1 ; :::; yt+1 . The main drawback

with DirREC is that as the number of inputs (with prediction error) increases, the

complexity of the model increases correspondingly, without input selection [240].

� MIMO

MIMO (Multiple-Inputs Multiple-Outputs) [42] is another MSAP strategy that aims

at addressing the conditional interdependence assumption made by DIR, and the

accumulation of error in REC. MIMO, like DIR, considers one speci�c output for

each TU but all outputs come from a single model. MIMO returns multiple predic-

tions covering the entire PH by estimating one speci�c output for each TU as shown

in Eq. 2.15.

[ŷt+ K ; :::; ŷt+1 ] = f k (yt ; :::; yt � d) (2.15)

However, the main disadvantage with MIMO is that it incorporates the same model

structure for each TU which e�ectively limits its exibility [245]. More precisely,

ŷt+1 , ŷt+2 , ..., and ŷt+ k are all predicted using the same inputs in one prediction

model, regardless of the fact that the input yt � d might have no contribution the

further steps of predictions , i.e., ŷt+2 , ..., and ŷt+ k .

� DirMo

In [245], the authors combined DIR and MIMO in an attempt to take advantage

of the prominent characteristics of both methods as DirMo. DirMo partitions the

PH into several intervals of equal lengths (containings TUs), each modeled using

a di�erent MIMO model. Therefore, DirMo predicts PH by training n (n = PH=s)

MIMO models or Fk (k = 1 ::n) from time seriesy1; :::; yn , as illustrated in Eq. 2.16.
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�
ŷN + k:s ; :::; ŷN +( k� 1):(s+1)

�
= Fk (yN ; :::; yN � d) (2.16)

As shown in Eq. 2.16, DirMo uses the same inputs in all the MIMO models,i.e.

yN ; :::; yN � d, but the output of each MIMO model are predictions over a speci�c part

of the PH. For example, the �rst MIMO model, where k = 1, predicts ŷN ; :::; ŷN + s,

or simply the �rst s steps; and the second MIMO model predicts the seconds steps.

2.2.1 Critique for MSAP strategies

Among the existing strategies mentioned in this section, DIR and REC present the

most distinctive viewpoint and other methods borrow the concept from one or both

of these two approaches. In the literature, some studies such as [240] and [102]

suggest that DIR is in practice a more accurate strategy since it does not su�er

the accumulation of error. Many other studies such as [266] and [38] argue that

theory behind DIR is based on false assumptions due to ignoring the impact of

auto-correlation and su�ering from the intermediate information loss. Thus, one

cannot opt in favor of DIR due to observing a better accuracy over a limited number

of experiments. It seems that the literature would choose REC and suggest that a

limited number of successful practices cannot hide the aw in the theory of DIR.

Although, DirRec [240] was developed to improve the accuracy of both REC and

DIR, studies such as [276] showed that DirRec does not always exhibit a superior

performance in comparison with DIR and REC.

Some studies such as [42,44] introduced MIMO as a better strategy than REC and

DIR and claimed that MIMO has the ability to maintain the stochastic dependen-

cies between the forecasts and is also less a�ected by the accumulation of error.

However, studies such as [139] and [64] demonstrated that MIMO exhibits a weaker

performance in comparison with DIR and REC strategies. For the most part, a

MIMO model must deal with the complexity of recognizing the right inputs for each

output in the same model, as not all the inputs are needed to predict each output.

Other studies such as [245] and [248] compared DIR, REC and MIMO strategies with
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DirMo, and proposed that DirMo would outperform the others if optimal parame-

ters are used. More precisely, as DirMo presents a trade-o� between the exibility

of the prediction process and maintaining the stochastic dependencies among pre-

dictions, its performance depends on the choice of the controlling parameter [127].

The superiority of DirMo over DIR, REC, MIMO and DirRec was demonstrated

in studies such as [6] and [5] focusing on the appropriate choice of the controlling

parameter. However, recent studies also reported that the right choice of the con-

trolling parameter of DirMo may only keep its performance high in short horizons

and may not guarantee the performance over long horizons [5]. In [27], the authors

attempted to convert DirMo into a particle swarm optimization (PSO) problem and

use the meta-heuristic abilities of PSO to �nd the optimal parameters for DirMo.

However, [294] argued that the computational requirements of the PSO solution for

optimizing DirMo parameters was excessively high, and thus PSO-DRIMO is not

recommended.

An overview critique of existing MSAP strategies is provided in Table 2.2 to sum-

marize this section on MSAP strategies.

Table 2.2: MSAP Strategies: Strengths & Weaknesses

Strategy Strengths Weaknesses

Rec Accounts for serial correlation Accumulation of error

Dir Uses actual inputs to make predictions Is computationally complex and su�er

from the intermediate information loss

(ignores serial correlation)

DirRec Was developed to preserve the

stochastic dependencies between

forecasts

Growing complexity in long horizons,

Inaccuracy without input selection

MIMO Attempts to preserve stochastic de-

pendencies between the forecasts

The complexity of input selection

DirMo Attempts to preserve stochastic de-

pendencies between the forecasts

Is highly sensitive to the choice of the

controlling parameter
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As can be seen in Table 2.2, only REC does not su�er from the intermediate infor-

mation loss problem. In fact, REC in theory is able to make signi�cant forecasts,

and the problem of the accumulation of error only occurs as a result of the inac-

curacies of the predictor. One of our goals is to develop a new MSAP approach

which adopts the principles of REC and uses the forecasts at multiple resolutions

to improve the accuracy of MSAP.

2.3 Generating Synthetic Time Series

Performance assessment is the ultimate phase of the process when a new time series

method is developed. Practitioners often test their proposed methods on a large

volume of data to ensure the assessment quality. A new algorithm is tested over

various types of data (i.e, data with di�erent features, shapes, distributions, lengths

from di�erent domains and sources) to also identify its strengths and weaknesses.

Therefore, diversity is highly required for a robust assessment. There are numerous

competition and open source datasets that have been made available to the research

community, such as BCI [110] and Kaggle [246]. These datasets have allowed re-

searchers to test their methods more extensively. However, diversity is one the most

important features and is not provided in these datasets.

In the absence of appropriate datasets, researchers had to use arti�cial datasets and

incorporate surrogate or simulated/synthetic data to create a dataset that represents

the required properties.

Surrogate Data.

Data generation has been widely used in time series analysis through the use of

surrogate data analysis [236], synthetic data generation [231] or simulated data [262].

The surrogate method was initially introduced to di�erentiate between linear and

nonlinear processes [168]. The surrogate data are created to have the same statistical

attributes (such as the mean and variance) as the original data. However, they are

typically generated as a linear stochastic process [267].

31



Surrogate data analysis can be used as a means of estimating the impact of the scale

of a characteristic in a time series, through the comparison of the given time series

with surrogate series [236]. This can be demonstrated by estimating for example,

the impact of non-linearity in a time series in comparison with a series generated

from a linear models and thus, allows researchers to replicate statistical features

such as auto-correlation. Autocorrelation is a class of serial dependence and de�ned

as the correlation between successive data points of a time series [210].

Synthetic Data.

Many studies use synthetic data to practice performance testing. Studies such

as [134], [190] and [130] argue that the available large datasets are relatively ho-

mogeneous which limits their applicability for performance assessment purposes of

general time series methods. Smith-Miles in [237] asserts that the performance of

time series prediction methods relies on thediversity of the training data in order

that diversity allows the performance assessment to be generalized to a broad range

of unseen cases. Diversity is also an essential property for a time series benchmark

as a robust evaluation of time series methods requires the algorithm be tested over

various types of data [134]. The term "Homogeneous" points out a class of time

series which show the same types of features but may only be di�erent in local

uctuations or temporal patterns. Diversity was used to address time series which

are di�erent in any aspects such as distribution, the source process, low frequency

movements, entropy, complexity, memory.

Many studies generated synthetic time series to enhance their performance evalua-

tion. The majority of practices in time series generation typically assume a linear

structure such as the ARMA family of models [252]. These models establish fun-

damental statistical consistency, by means of reproducing the mean, variance and

autocorrelations of lags of the parent historical data [231]. However, many real-world

time series show substantially more complex statistical properties; for example, time

series with skewness rather than Gaussian distributions, or those characterized by

statistical inter-dependencies [251].
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In [231], a Markov chain model was used to generate synthetic data for a wind

speed time series analysis. Characteristics such as mean, standard deviation and

frequency distribution are predominantly used as assessment metrics. They also

evaluated autocorrelation and power spectral density to determine the persistence

structure of the series.

In [260], the authors presented a method that incorporates maximum entropy boot-

strapping to generate ensembles to create a large number of replicates from the

given time series data. Bootstrapping is a statistical process that allows for the es-

timation of the statistics on a population by (usually random) resampling the given

dataset with replacement. The authors used a seven step algorithm to create the

replicas and their algorithm needs to satisfy the ergodic theorem where the mean

of the original sample is preserved unchanged in the samples being generated. The

authors demonstrated that their method can retain the basic shape and the time

dependence structure of the time series' autocorrelation function. However, obvi-

ously, this method only focuses on low frequency approximation of the signal and

discards memory characteristics that are present in temporal uctuations.

Niu and Sivakumar [194] used the Morlet wavelet transform and developed a scale-

controlled approach for generating synthetic data for the daily streamow series of

the Pearl River basin in China. In this work, the Morlet wavelet transform �rst

decomposes the original time series and then the synthetic data are created by

performing the reconstruction on a random permutation of the categorized wavelet

coe�cients.

In [84], a stochastic approach was presented to simulate long range persistence

of hydro-meteorological time series at multiple scales. The authors use a linear

stochastic model to generate synthetic data that replicates the Hurst-Kolmogorov

characteristics of the original process. The authors also claim that for their dataset,

their method could replicate both the stochastic (such as the mean and the variance)

and the Hurst-Kolmogorov as well as the seasonality properties of the original time

series, which is not provided by the existing methods at the time. However, this

method attempts to replicate temporal dynamics to create similar series.

33



In [19], the authors tried to use white noise to generate new patterns. This work

was mainly conducted on providing insight about the discriminatory attributes of

the data and presented an algorithm that exploits �ve di�erent features to generate

randomized time series data. The presented algorithm in this work makes use of

the Hierarchical Collective of Transform based Ensembles (HIVE-COTE) approach

to generate a set of time series with the same representation but dissimilar shapes.

This work was originally conducted to compare the performances of time series

classi�cation methods on the data for variant representations. However, in this

work, the authors focused on preserving the representation of of the given time series

and the implementation of diversity was only limited to local random alterations of

the shape of the patterns.

More recently, a machine learning technique known as Generative Adversarial Net-

works (GAN) [62] was used to generate similar datasets (almost identical in the low

frequency shape but di�erent in high frequency uctuations). GANs were originally

introduced as an approach that facilitates generative modeling via deep learning.

Despite adversarial training, GANs can implicitly learn the intrinsic dynamics of

time series and provide the ability to generate scenarios that share many similari-

ties to the original time series.

The GANs' training process forces the output of the network to follow the distribu-

tion of the given input. Most studies on GANs have focused on image generation,

but there is limited work on time series data. However, [185] did use GANs to

generate continuous sequential data representing classical music pieces. A similar

attempt was also made in [80], where GANs were used to reproduce musical symbolic

sequences.

In [86], the authors presented a Recursive GAN to create realistic looking medical

time series with the purpose of improving supervised learning (providing an abun-

dance of training samples). In [107], GANs were used to generate biosignals such as

EEG and ECG signals. Physicians usually use the patterns observed in these signals

to diagnose diseases and disorders, and make decisions about the potential treat-

ments. This work tried to generate synthetic biosignals to provide enough training
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samples for the machine learning tools employed to detect disorders based.

In [70], the authors presented an approach which makes use of hidden Markov

models (HMMs) and regression models for generating realistic synthetic behavior-

based sensor data to enhance the performance of machine learning approaches when

applied to health-care time series. This approach which in called SynSys was used to

generate activity sequence time series with the use of random processes. However,

since this work intends to create realistic looking time series, its output time series

need to be similar to the input series and thus cannot provide diversity.

In [204], the authors used GANs to generate a large amount of �nancial time series

in order to mitigate over�tting in machine learning time series models.

Past studies have also tried to use GANs to create diverse arti�cial data [292].

However, GANs were originally developed to create diverse data samples which have

similar distributional characteristics as the original data. Thus, the application of

GANs are limited to arti�cial training sample generation which can be used to

enhance supervised learning techniques.

More complex approaches have used deep learning for synthetic data generation,

such as [10]. In this work, the authors proposed a deep learning architecture which

incorporates a stack of multiple Long-Short-Term-Memory (LSTM) networks and

a Mixture Density Network (MDN) for Synthetic Sensor Data Generation. This

work attempted to develop a model that reproduces similar sequences of data which

preserve speci�c statistical properties.
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Table 2.3: Existing Synthetic Data Methods & Diversity

Ref. Year Approach Goal Diversity Focus

[231] 2005 Markov chain Provide numerous sam-

ples for training purposes

No

[260] 2009 Maximum

Entropy boot-

strapping

Preserves the time depen-

dence structure of ACF

No

[194] 2013 Morelet wavelet

transform

Generate daily streamow

time series

No

[84] 2014 Catalia Preserve the stochas-

tic and the Hurst-

Kolmogorov properties

No

[185] 2016 GANs Create similar musical

pieces

No

[19] 2017 HIVE-COTE Create randomized repli-

cates of a time series that

have the same representa-

tions

No

[86] 2017 Recursive GANs Provide similar looking

time series

Yes / To generate an

abundance of samples

[10] 2017 Stack of LSTM

and MDN

Synthetic Sensor Data

Generation

No

[80] 2018 GANs Produce similar musical

sequences

No

[62] 2018 GANs Generate similar time se-

ries

Yes / Provide more

training data

[107] 2018 GANs Generate synthetic bio

signals

No

[70] 2019 SynSys via

HMMs and re-

gression models

Create realistic looking

activity sequence time se-

ries

No

[204] 2020 GANs Generate a lot of time se-

ries

Yes / Mitigate over-

�tting in machine

learning problems
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Our review of the construction of synthetic time series con�rms the views of [169]

that the lack of a diverse benchmarking dataset for performance evaluation is a big

challenge in the area of time series area. Table 2.3 attempts to capture the lack of

focus on this issue of diversity across the various research e�orts we analyzed. The

existing synthetic time series generation methods all focus on providing similar time

series of the same general behavior, training samples for machine learning techniques

or an abundance of samples. Thus, this motivates the need for a new approach to

generating synthetic time series.

2.4 Approaches Using a Meta-Learning

As the �eld of time series analysis has expanded, the number of available meth-

ods/approaches has also increased and thus, has induced a greater level of com-

plexity when choosing a method/approach. Identifying an appropriate prediction

method for a time series dataset has evolved into a new area of research known as

Meta-Learning [56]. The concept behind Meta-Learning is to analyze a dataset for

a range of speci�c characteristics, which can then be compared to a metabase of

pre-learned methods, [14,15,155,262].

A comprehensive review of the literature shows that the general trend in method

choice follows the approaches used by predecessors who have had similar data types

[154,281]. For instance, in some domains (such as the wind speed prediction ), the

time series data are characterized by a phenomenon known as Chaos [99].

Another approach to prediction method selection was suggested in [179] which was

based on thegoodnessof the prediction performance. In simple terms, the method

to show the least prediction error is recommended to the user. In [37], a method

selection approach over exponential smoothing methods was proposed. This work

compared the traditional validation-based model selection approach by the informa-

tion criterion and showed that the information criterion approach exhibits a better

basis for model selection. The research conducted in [222] was one of the earliest
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studies suggesting that the accuracy of prediction methods changes in relation to

the properties of the time series. Studies on the prediction performance like the

M-Competition have somehow con�rmed this statement [171].

An expert system was suggested in [149] that extracts some characteristics from the

time series and recommends the appropriate method using a pre-trained knowledge

based system. The research conducted in [65] was the �rst of the kind that used NNs

as the method selector. The input of the NN was a set of features and candidate

predictions made by prediction methods and the output was the �nal forecast. Thus,

basically, this method uses an NN to choose which candidate forecast is the best

and returns the �nal forecast directly. However, most approaches recommend the

candidate method and this work returns the candidate forecast.

Arinze in [14] suggested a rule induction based approach for prediction method selec-

tion. This work trained a decision tree (the ID3 technique), which is a classi�cation

technique, based on a set of time series features to recommend the appropriate

prediction method. Based on the trained tree, a set of rules were then induced rep-

resenting the conditions in the feature space through which the prediction methods

are recommended. In [229], the authors used 26 features to train a discriminant anal-

ysis (DA) meta-learner in order to recommend the appropriate prediction among a

few statistical approaches.

Armstrong, in [15], suggested another approach that uses expert knowledge as well

as time series features to recommend the appropriate prediction methods. This

work also suggests a set of criteria for selecting the appropriate prediction method.

In [212], a prediction method selection approach was presented that works based

on ANOVA and Duncan multiple range tests on time series data. This method

selection approach were only applied to ARIMA, regression and a decomposition

based method.

More recently, prediction method selection was addressed as a meta-learning prob-

lem where the method selection interface is obtained via the use of machine learning

techniques.
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In [262], a rule induction approach was presented for prediction method selection.

In this work, the Self-Organizing Map (SOM) clustering and Decision Trees (DTs)

classi�cation techniques were applied to a set of characteristics including measures

for chaos, self-similarity and traditional statistics like trend, seasonality and kurtosis

to extract a set of interface rules for prediction method selection.

In [156], the authors built a large pool of meta-features and tried to relate the

model performance to these features using a number of approaches as the meta-

learner, including: NN, Decision tree, SVM, zoomed ranking of the best and zoomed

ranking of the combination. The Zoomed-Ranking method is an approach to ranking

multiple candidate models for a given time series prediction problem; The zoomed-

ranking approach ranks models based on their accuracy and execution times on a

set of data which are similar to the given time series. Information The work [215]

suggests a prediction method selection approach that recommends the appropriate

method based on out-of-sample rolling horizon weighted errors, which is an extension

of the classic selection criteria that uses the minimum one-step out-of-sample error

for performance evaluation.

In [269], the authors presented a prediction method selection approach which rec-

ommends the appropriate prediction method based on its previous performance on

similar datasets, and requires a database that keeps the historical records of the

predictors' performances. The similarity of time series' datasets is measured based

on a set of time series characteristics. In this work, Principal Component Analysis

(PCA) was used to reduce the dimensionality of the data.

Prediction method selection was studied in [89] for chaotic time series. This ap-

proach works based on meta-learning and the Self Organizing Map (SOM) and

Monte Carlo Cross Validation (MCCV). Monte Carlo Cross Validation generates

several random splits of the dataset into training and validation sets. For each split,

the model is trained by the training data, and the performance is evaluated using

the validation set. The �nal result is reported as the average of the error over the

splits of data.
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SOM provides a topology preserving mapping from the high dimensional space to

map units that preserves the relative distance between the points. Points that are

near each other in the input space are mapped to nearby map units in the SOM.

The SOM can thus serve as a cluster analyzing tool of high-dimensional data [140].

In [147], the authors studied the predictive accuracy of using di�erent feature sets

for a neural network meta-learner which recommends the appropriate method from a

set of four statistical forecasting models, This work makes use of error based features

(landmarkers) and statistical tests as time series meta-feature.

In [238], the authors presented an approach referred to as the self-learning (method

selection) approach that conducts cluster analysis to recommend the most appro-

priate prediction method.

When reviewing all of the papers above, we determined that an e�ective comparison

should focus to the following factors:

1. Prediction models

2. Features

3. Selection criteria

4. The incorporation of hyper-parameter selection

5. The provision of experimental results

6. The type of meta-learner (the method selection approach)

Prediction models . Prediction models are the candidate models among which the

meta-learner chooses its recommendation. These models can be classi�ed into two

types of models: stochastic models and machine learning models.

There are di�erent types of features used in the related works, which can be cate-

gorized into four general categories including:

� Statistical features such as variance and Skewness
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� Advanced features such as frequency domain features, Hurst and DFA which

are explained in details in in Chapter 5, section 5.3.1

� Judgemental features such as strong trend and non-linearity (used in [262])

Selection criteria . The Selection criteria is the metric based on which a can-

didate model is chosen among the available models. The most popular criteria is

error which indicates the out-of-sample accuracy of a candidate models over a set of

datasets. AIC, Variance, selection rules and Monte Carlo Cross Validation (MCCV)

are the other criteria used in the literature of this research.

Hyper-parameter selection . Hyper-parameter selection is an important phase

of the modeling process, specially when using machine learning techniques, and

the model's performance is not reliable without an appropriate hyper-parameter

selection. Therefore, when machine learning techniques are used as candidate mod-

els, hyper-parameter optimization should be performed before applying the meta-

learning approach.

Experimental results . Many studies support the evaluations by providing Ex-

perimental results, which is can demonstrate the ability of the proposed method in

practice.

Among the related works, a few studies failed to support their research via the pro-

vision of experimental results.

Meta-learner . Finally, the Meta-learner (the method selection approach) is the

core of a meta-learning mechanism, where the decision making algorithm is imple-

mented. For instance, [262] used DT as the meta-learner, while [238] used a cluster

analysis approach to implement their meta-learning approach.

Using the mentioned factors, a summary of the existing meta-learning approaches

for time series prediction is provided in Table 2.4. In Table 2.4 - columnSelection

criteria , Err, Var, RI and MCCV are the short terms for Error, Variance, Rule

Induction and Monte Carlo Cross Validation, respectively. Also, in column Feature

vector size, S, Med, L and VL are the short terms for Small, Medium, Large and

Very Large, respectively.
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Table 2.4: Comparison between the existing meta-learning approaches
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[37] 2006 X 7 7 7 7 7 AIC 7 7 X 7

[149] 1988 X 7 X X X L 7 7 7 7 ES

[65] 1994 X 7 X 7 X L Err 7 X X NN

[14] 1994 X 7 X 7 X M RI 7 7 X ID3

[229] 1997 X 7 X 7 X L Err 7 7 X DLA

[15] 2001 X 7 X 7 X L Err 7 7 7 Rules

[4] 2001 7 7 X X X L Err 7 7 X RBF

[217] 2004 X NN X X 7 L Err 7 7 X NOEMON

[262] 2009 X NN X X X L Err 7 7 X DT/SOM

[212] 2010 X 7 X 7 7 S Var 7 7 X ANOVA

[156] 2010 X X X X 7 VL Err 7 7 X DT

[215] 2011 X 7 7 7 7 7 Err 7 7 X ES

[269] 2013 X 7 X 7 X S Err 7 7 X DR

[89] 2014 7 X X 7 7 S MCCV 7 7 X SOM

[147] 2016 X 7 X X X VL Err 7 7 X NN

[238] 2016 X NN X X 7 M Err 7 7 X Cluster-Anal

[213] 2018 X 7 7 7 X M Err 7 7 X Judgements

By analyzing the results in Table 2.4, it can be seen that most of the related works

use stochastic models in their analyses. Among these works, only [156], [217], [262],

[89] and [238] have incorporated machine learning techniques to implement their

prediction models. Studies including [217], [262] and [89] only implemented NN

models in their studies. Studies such as [156] and [238] were the only studies that
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made use of the state of the art techniques, such as RNN and LSTM, in their analysis.

RNN and LSTM have recently received considerable attention due to their abilities

in processing time series data, and thus play an important role in current time

series prediction studies. However, special considerations are needed to be taken

into account when using these methods as they are highly sensitive to the choice

of their hyper parameters. Despite the the use of RNN and LSTM as candidate

models in [156] and [238], both of these studies failed to provide a valid evaluation

in their works as they did not pay attention to the problem of the hyper-parameters

selection. Hyper-parameters selection is an important concern when implementing

machine learning models because the capacity and the performance of ML techniques

are highly dependent upon the optimal choice of hyper-parameters. We also see that

none of the existing works represent the ability to recommend an appropriate model

for MSAP problems.

This �nal section of our literature review articulates the need for the last part of our

research contribution: a new meta-learning framework that uses a bootstrapping

approach to ensure the proper incorporation of RNN and LSTM in the selection

process. This should also suggest the appropriate model for MSAP problems where

others provided only recommendations for OSAP problems.

2.5 Summary

In this Chapter, we reviewed the literature of time series prediction in the areas

of Multi-step Ahead Prediction, Synthetic time series generation and Meta-learning

(for prediction method selection). We showed that several MSAP strategies have

been proposed, such as REC, DIR, MIMO, DirREC and DRIMO. However, the

problem of the accumulation of error in REC based strategies and the intermediate

information loss in DIR (as well as MIMO, DirREC and DirMo) have kept the area

open to development of new MSAP strategies. We also learnt that the existing

synthetic time series generation approaches failed to provide datasets su�ciently

robust to assess time series models. Finally, a review of meta-learning methods
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revealed that the existing approaches fail to focus on the problem of hyper-parameter

selection in machine learning models and also lack the ability to recommend MSAP

models.
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Chapter 3

Solution strategy

In Chapter 2, we reviewed the state of the art in terms of the research questions

and goals presented in Chapter 1. This Chapter presents an overview methodology

and research plan for how the main contributions of this work are delivered. Inx3.1,

we describe our overall approach and how we divide our research into a number

of logical steps. We then proceed to discuss our initial research into multi-step

ahead predictive models inx3.2, before motivating the requirement for synthetic

time series creation inx3.3, together with a description of our approach. In x3.4,

we outline the �nal step, which is the application of meta-learning to our overall

research methodology. In each case, we will articulate the scope and limitations to

this research before a summary is presented inx3.5.

3.1 Outlining Our Approach

The overall approach to this research can be outlined using �gure 3.1. There are

3 clear steps, briey outlined in this Chapter and described in detail in Chapters

4, 5 and 6. Each step has a validation component and at the conclusion, a �nal

validation takes place over all 3 steps to this research.

In �gure 3.1, the �rst step represents our attempt to improve on predictive time
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Figure 3.1: Outline Methodology

series models in the particular area of multi-step ahead prediction (MSAP). As

will be shown, this step results in a new MSAP model and our evaluation of this

work provided a clear requirement that we had not considered at the outset of this

research. In brief, the major �nding from this �rst step was the realisation that a

far larger set of time series was required to deliver the robust evaluation that all

new time series models require.

As a result, step 2 involved the creation of a large data collection together with a

validation framework to ensure that of the dataset was properly representative in

terms of the spread of time series characteristics. A total number of 50k time series

were created during the experiments, each has a length between 400 and 45,000

samples. The validation for step 2 determines and measures these characteristics as

they occur in the generated time series.

Initially, the creation and validation of synthetic time series was regarded solely as

a means to deliver robust validation of new MSAP models. However, this step also

highlighted the task facing time series researchers where the suitability of models

in the face of large numbers of time series, presents a challenge in itself. How does

one select an appropriate model when large numbers of time series are required
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for testing? Thus, the logical step for us was to devise a meta-learning method to

support time series researchers in the selection of the appropriate model, exploiting

the makeup (characteristics) of the particular time series.

The �nal step is a validation which takes all three components presented in this

dissertation and deliver an overall evaluation with insights from the entire breadth

of our research.

3.2 Developing New MSAP Models

In x2.2, we reviewed the literature of MSAP approaches and learnt that among the

existing methods, only REC has the proper theoretical basis to account for the serial

correlation (the autocorrelation structure) between time series lags. The problem

with REC is that as the prediction horizon extends, errors start to accumulate. The

review of the literature demonstrates that a large portion of prior research relies

on the auto-correlation structure of the time series to implement their prediction

models. Other than REC, the existing approaches su�er from the intermediate

information loss problem, which in practice is equivalent to making prediction based

on incomplete data (lag 1 is lacking, at least). Therefore, we focus solely on REC

and try to use the principles of REC to develop a more e�ective MSAP strategy.

Among the machine learning techniques reviewed inx2.1.2, and by incorporating

recurrent feedback loops, RNN and LSTM have shown their ability to process time

series data. However, LSTM requires a large number of training samples which is not

always available. Also, LSTM has predominantly been used to solve classi�cation

problems, where the output of the model is an �nite number of possible choices.

On the contrary, time series prediction is fundamentally a regression problem. This

motivates the requirement for a new approach to MSAP time series prediction and

this lies at the core of our research.

Our new approach to the MSAP predictive strategies is known as Multi-Resolution

Forecast Aggregation (MRFA), and incorporates an additional concept known as
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the Resolution of Impact (ROI). In Chapter 4, we present a new strategy for MSAP

problems which has the ability to alleviate error accumulation by retaining a far

higher proportion of actual historical data for each long term forecast. We will

present a novel MSAP strategy which uses machine learning models as a tool to

achieve our goal. We do not attempt to improve recurrent neural networks (RNN),

rather we use RNNs as a tool to implement our MSAP strategy. Additionally,

this is not an attempt to improve MSAP across all classesof time series data, but

to seek some improvement in the recursive strategy (REC) by incorporating more

accurate prior long term forecasts; A prior long term forecast is a prediction which

was previously made over multiple intervals.

Scope and Limitations. In terms of MSAP models, we can now state the scope of

our research. We limit our focus to univariate time series data. Since the proposed

approach is an MSAP strategy, it is independent of the modeling technique and

thus, any type of regression models such as NN, RNN and SVR can be used to

implement our strategy. We should also articulate the limitations to this research

component. We were unable to implement our strategy using LSTM due to the lack

of computational resources. Secondly, we only compare our strategy with REC,

since other approaches fail to retain the auto-correlation structure of the data.

3.3 Building a Robust Validation Framework

After developing the new Multi-Resolution Forecast Aggregation (MRFA) approach,

our research required a performance evaluation strategy to identify its strengths and

weaknesses. Having studied the literature, we realized that a robust performance

evaluation strategy for MRFA requires an appropriately large dataset. However,

as many other researchers have found, this dataset did not exist. Note that, when

"dataset" is used in a singular form, it means a collection of datasets.

As discussed in Chapter 2, researchers will ideally test their algorithms on a large

number of time series to establish their performance and capabilities. However,
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a large evaluation dataset is mainly used to ensure the algorithm is tested over

a large percentage of the feature space. The feature space is a multi-dimensional

space where each dimension represents a separate feature. Therefore, an appropriate

benchmark is one that covers a higher percentage of that metric space. We refer to

this requirement asdiversity and our assertion is that an appropriate benchmark for

time series methods assessment should contain adiverse set of time series, or should

exhibit a high level of diversity. Unfortunately, such a dataset is not available for

public use and the literature has not provided a standard source for such datasets.

The literature shows that when the appropriate dataset is lacking, practitioners

create their own datasets to resembles the required characteristics but the literature

also shows that in these cases, little attention was paid to diversity. As shown in

Chapter 2 using Table 2.3, most of the existing synthetic time series generation

methods (with any focus on diversity) have focused on providing training datasets

for machine learning techniques.

Fundamentally, training datasets and performance evaluation datasets have di�erent

data characteristics. A training dataset cannot have a high level of diversity, since

a training process should construct a model to solve aspeci�c problem that is

equivalent to a set of domain-speci�c features. However, diversity requires going

beyond a speci�c domain.

A training set is a large subset of the complete dataset and is used to train an

algorithm. A performance dataset is a large dataset to test the algorithm against

various aspects. In Chapter 5, we present a framework and methodology for the

generation and validation of synthetic time series that shows a high level of diversity.

Scope and Limitations.

We can now articulate the scope for the second major research undertaking of this

dissertation. As stationarity is a prerequisite for time series prediction algorithms,

we focus on a subset of stationarizable processes to generate our series. Further-

more, we limit our focus to component level interactions of time series data, which

is a typical approach in time series prediction applications. Therefore, the �rst as-

49



sumption is the data can be decomposed into a set of components (trend, seasonality

and irregularity) and as such, this decomposition has a real-world implications. We

simulate additive and multiplicative interactions when combining time series com-

ponents. As di�erent time series data can be constructed by speci�c functions types,

we will present a generic formula for time series construction. As a result, many

systems may fall out of the scope of this study, such as chaotic time series which

have dynamic structures.

We now highlight some limitations to our study. Seasonality is a repetitive pattern

and in general, can take any shape or form. However, without any loss of gener-

ality, we consider only four types of seasonality to create our time series: sinusoid,

impulsive, rectangular and step-wise. We use only di�erence-stationary processes

to simulate the irregular component. Since measuring cyclicality is a very di�cult

problem, we combine Trend and Cyclicality and use the term trend-cycle compo-

nent to represent this combination. Many time series attributes are uncontrollable

and cannot be jointly injected into time series data in a manual manner, such as

conditional heteroscedasticity and chaos. With uncontrollable attributes, we mean

that there is no known function to produce attributes A1; A2; ::: with pre-speci�ed

arbitrary values A1 = 1 ; A2 = :36; ::: into a single time series. For this reason, there

are various time series attributes that are not considered in our time series gener-

ation approach. Trend, Cyclicality, Seasonality and Irregularity are shown in Fig.

3.2.
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Figure 3.2: Time series components

3.4 Meta-Learning

Once it can be shown that a very high number of su�ciently diverse time series can

be generated, this research will be in a position to evaluate MRFA and compare

its performance with other methods. The experimental results in Chapter 4 will

suggest that MRFA does not outperform other methods over theentire dataset. A

review of the literature showed that we cannot expect an algorithm to outperform

against all other models and the literature refers to this �nding as the No free lunch

theorem.

Our analysis demonstrated that every time series has a set of predictive requirements

that only a narrow set of methods can provide the appropriate predictive abilities.

In other words, each time series has unique properties which each prediction model

performs well on a speci�c set of properties. Therefore, to �nd the best prediction

method for the given time series, one should pay attention to the time seriesfeatures.
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In Chapter 2, we showed that the literature refers to this problem as the method

selection problem. The method selection community adopted machine learning as a

powerful tool and converted the method selection problem into a learning problem

and referred to it as meta-learning. In meta-learning, a machine learning model

is trained to recommend an appropriate prediction method at the output based

on a set of time series features at the input. The literature also identi�ed two

signi�cant weaknesses in the existing meta-learning approaches. Firstly, most of

the past studies used only stochastic models and did not study the use of machine

learning techniques as their candidate prediction models. Second, past studies on

method selection failed to identify the essential role of hyper-parameters in the

performance of machine learning models. Hyper-parameters determine the capacity

of machine learning models and thus, the model's performance cannot be measured

accurately if the hyper-parameters are not selected appropriately.

In other words, sub-optimal hyper-parameters yield a sub-optimal model which is

crucial because the meta-learner compares the performances of the candidate models

to recommend the preferred method. Thus, comparing sub-optimal models will not

lead to any great improvement in performance. In Chapter 6, we introduce a meta-

learner that includes RNN and LSTM as candidate prediction models and also deals

with the problem of hyper-parameter selection using a bootstrapping mechanism.

We used REC and MRFA as the MSAP strategies and implemented them using �ve

candidate models including ARIMA, NN, RNN, SVR and LSTM. The Limitations

to this part of our research stem from the considerable computational requirements

necessary to fully validate our theory using a far wider set of machine learning

techniques. For this reason, it was necessary to stick to a smaller set of models.

3.5 Summary

We began our research with the purpose of better understanding the issues faced by

practitioners when solving time series prediction problems. In particular, we carried
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Table 3.1: Case study: Factors that are important when choosing a prediction model
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[166], 2002 ARIMA X 7 X X 7 7 7 7 7 7 H
[257], 2013 ARIMA X 7 X X X X 7 7 7 7 H
[36], 2005 ARIMAX X 7 X X 7 7 X 7 7 7 H
[275], 2017 ARIMA X X X X 7 X 7 X X X L
[264], 2011 ARIMA 7 X X X X 7 7 7 7 7 H
[197], 2006 ARIMA X X X X X 7 7 7 7 7 L
[103], 2010 ARIMA X 7 X X 7 7 7 7 7 7 H
[243], 2011 ARIMA X 7 X X X 7 7 7 7 7 H
[165], 2000 ARIMA X 7 7 X X X 7 7 7 7 L
[192], 2013 ARIMA X 7 X X X 7 7 7 7 7 L
[7], 2011 SARIMA X 7 X X X X 7 7 7 7 H

[209], 2013 ARIMAX X 7 X X X 7 X 7 7 7 H
[67], 2007 ARIMA-W 7 X X X 7 7 7 7 7 X H
[131], 2013 ARFIMA X 7 7 X X 7 7 7 7 X H
[13], 2011 GARCH X X X X X 7 7 7 X 7 H
[218], 2003 GARCH X X X X X 7 7 7 X 7 H
[268], 2004 GARCH X X 7 X 7 7 7 7 X X H
[298], 2007 NN X X X X X X 7 - 7 X H
[239], 1992 NN X X X X - 7 7 X 7 X H
[284], 2009 NN X X X X X X 7 X 7 X H
[26], 2006 NN X 7 X 7 7 7 X X 7 7 H
[180], 2012 NN X X X 7 7 7 X X 7 7 H
[283], 2013 NN X 7 X 7 7 7 X 7 7 7 H
[126], 2014 NN X X X X X 7 7 7 7 X H
[71], 2005 NN X 7 X X X X 7 7 7 7 H
[132], 2005 NN X 7 X X X 7 7 7 7 7 H
[106], 2007 NN X X X X X 7 7 7 7 7 H
[164], 2010 NN X X X X X 7 7 7 7 7 H
[230], 2007 NN X X X X X X 7 7 7 7 H
[158], 2013 NN X X X X X X 7 7 7 7 H
[120], 2005 NN-W X X 7 X X 7 7 7 7 7 H
[111], 2013 RBF X X X X 7 7 7 7 7 7 H
[296], 2012 RBF, NN X X X X 7 7 7 7 7 7 H
[298], 2007 ARIMA-NN X X X X X 7 7 7 7 7 H
[143], 2009 ARIMA-NN 7 X X X X 7 7 7 7 7 H
[184], 2017 ARIMA-NN X 7 X X X X 7 7 7 7 H
[282], 2016 ARIMA-RBF X 7 X X X 7 7 7 7 7 H
[114], 2016 Deep NN X 7 X X X 7 X 7 7 7 H
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out a case study on the Agri sector as a strategically pivotal sector of the Irish

economy. Table 3.1 shows a comparison of the related works taking into account

the factors determined to be important when choosing a particular method for a

range of time series prediction applications.

Table 3.1 illustrates the connection between the identi�ed factors and the model

type and can be summarized as follows:

� Conditional Heteroscedasticity cannot be easily handled by non-parametric

methods without incorporating GARCH models, as none of the research using

NN models could handle Conditional Heteroscedasticity. Studying ARCH and

GRACH is out of the scope of this research, please see [85].

� 5% (1 out of 17) of the parametric based methods and 16% (4 out of 25) of the

non-parameteric based methods showed robustness against noise or unknown

volatility. This suggests that non-parametric (machine learning) models have

shown better ability to deal with noise or unknown volatility.

� Machine learning methods can sometimes deal with seasonality without the

use of seasonal di�erencing as 16% ( 6 out of 25) of the machine learning based

methods did not require the data to de-seasonalized.

In this case study, we found that in comparison to parametric methods, machine

learning techniques have received a lot more attention recently. However, ARIMA

has remained consistently popular, as researchers have used it in a wide variety

of applications. We also found that ARIMA has also been combined with machine

learning techniques such as NNs and Radial Basis Function (RBF) networks in order

to improve prediction performance. This case study highlights the potential advan-

tage of using time series metrics as a means of directing researchers to appropriate

models. However, one of the major weaknesses in current time series analysis is

the lack of available disparate time series datasets to truly test the appropriateness

of new MSAP strategies. Having a framework to benchmark algorithms would be

invaluable to researchers, and would allow for the creation of an automated model
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selection recommender system.
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Chapter 4

Multi-Resolution Forecast

Aggregation

As shown in Chapter 2, there are two distinctive perspectives when solving MSAP

problems, known as the recursive or REC strategy and the direct or DIR strategy.

Before presenting any new MSAP model, it is important to understand how these

strategies are impacted by outstanding research issues. Inx4.1, we discuss the three

challenges in MSAP predictive modelling that we address as part of our research.

In x4.2, we describe how we resolve these three challenges in our MSAP approach

as they inuenced our decision making and design. Inx4.3, we present our multi-

resolution forecasting strategy called MRFA as a new form of MSAP modelling, and

deliver a comparative analysis to validate and understand the impact of MRFA in

x4.4. Finally, in x4.5, we summarize our research to this point and outline the next

step.

4.1 Introduction

A wide variety of phenomena are characterized by time dependent dynamics that

can be analyzed using time series analysis methods. Various time series analysis
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techniques have been presented in the literature, each addressing certain aspects of

the data. In time series analysis, forecasting is the process of determining what may

happen at a later time point. Forecasting methodologies have traditionally fallen

under two broad groups; one step ahead prediction (OSAP) which seeks to predict

the next time point for a given dataset, and multi-step-ahead-prediction (MSAP)

which seeks to predict multiple time points ahead.

Time series prediction has applications in various �elds, however, the length of

the prediction window varies depending on the requirements of the problem. In

general, one can classify predictions into either a short-run (single prediction) or

long-run (prediction of multiple responses) time horizon. Extending an analysis

from a short run, or OSAP, to a long run response is known as MSAP and the period

applied to the MSAP is known as the Prediction Horizon (PH). While MSAP and

OSAP problems di�er with regard to length of the prediction horizon, challenges

are still prevalent in both problem sets. In this chapter, we focus on three particular

challenges when solving an MSAP problem: serial correlation, uncertainty, and long

term memory.

Motivation.

As reviewed in Chapter 2, existing MSAP approaches have been developed under

the inuence of two distinctive viewpoints presented by the recursive (REC) or

the direct (DIR) strategies. However, as described in Chapter 2 section 2.2, DIR

su�ers from intermediate information loss as a result of discarding serial correlation,

while REC su�ers from error accumulation due to the inaccuracy of the predictor.

Existing solutions tend to address a trade-o� between these two perspectives [21,

203, 244]. However, except for REC, other strategies do not pay attention to the

role of serial correlation and thus, only REC can provide a valid theoretical basis for

MSAP. Our approach is to develop a new MSAP strategy known as Multi-Resolution

Forecast Aggregation (MRFA), which incorporates an additional concept known

as the Resolution of Impact (ROI). MRFA is shown to have favourable predictive

capabilities in comparison to a number of state of the art methods.
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REC predominantly relies on serial correlation and DIR predominantly relies on

the use of the actual data to predict the entire PH (which is a type of long term

memory). The nature of time series data dictates that the choice between the

two forms is not a binary choice problem. Researchers have attempted to create

hybrid forms of both strategies, such as the DirRec, MIMO and DIRMO strategies.

However, these strategies are either inexible (DirRec) or overly complex (MIMO

and DirMo). Capturing the long term memory and serial correlated dynamics of a

series requires the strategy to adapt to the individual time series. In this research,

we propose a more sophisticated approach that uses the principles of REC and DIR

in an adaptive way.

Contribution. In this Chapter, a novel MSAP approach is presented based on the

principles of REC which addresses the shortcomings of the original REC strategy by

introducing a concept known as the Resolutions of Impact (ROI). The introduction

of ROI is an attempt to address the limitations of the sliding window technique; The

sliding window is explained in details in section 4.3.1. The introduction of a sliding

window enables ML algorithms to be applied to time series data [76]. The ROI

approach captures the length of the time period over which the time series signal

reacts (in the future) to various local patterns (at present). In our evaluation, a

comparative analysis is conducted which compares the forecasting capabilities of

our approach with the current state of the art methods for the Irish Pig Price

dataset.

4.2 Basis for Our Approach

In this section, we discuss why serial correlation, uncertainty, and long term mem-

ory provide a challenge for MSAP researchers and then articulate how these three

challenges, denoted by the black circles in Fig. 4.1 inuence our new MSAP strategy.

Serial Correlation. A large class of time series data are attributed by serial cor-

relation where predicting over any steps requires the value of previous steps. The

58



Figure 4.1: Our approach for addressing three main MSAP challenges

most primitive tool for characterizing serial correlation is the Autocorrelation Func-

tion (ACF), which is frequently used as a tool to con�gure ARIMA models reviewed

in Chapter 2. A time series is said to have serial correlation (or more formally an

autocorrelation structure) when ACF shows a strong dependence at the most recent

lags specially lag one. Researchers have predominantly used autocorrelation as the

basis for their predictive approach [52,66]. This suggests that serial correlation plays

a pivotal role in time series prediction and must be considered.

Typically, in the recursive strategy or REC, predictions are estimated using multiple

one step ahead predictions. When the prediction strategy moves forward in time,

predicted values can be used as inputs in the prediction process. In practice, REC is

implemented by training a regression model, however, a major drawback with REC

is the error accumulation that accrues over longer prediction horizons. REC or the

recursive strategy can be implemented using any regression model and is not limited

to AR or ARIMA. As mentioned in Chapter 2, REC incorporates a number of OSAP

steps and the error accumulates over time as more (previously) predicted values are

used as the input to the OSAP model. In DIR, all the steps in the prediction horizon
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are predicted usingthe same inputs, usually based onactual data. The strength of

DIR is that all the steps are predicted using actual data and the model is not fed

by inaccurate inputs (unlike in REC). However, the drawback of DIR is it discards

and ignores serial correlation between lags as the prediction horizon moves forward.

Reviewing the processes of DIR and REC strategies reveals a limitation in DIR where

it ignores the role of serial correlation in the accuracy of MSAP [245]. However, de-

spite the error accumulation problem, REC has a solid strength in theory, [39].

Additionally, serial correlation between lags is one of the main pillars in the predic-

tion process in univariate time series. As a result, we adopted the recursive strategy

(REC) shown in Fig. 4.1 as the basis of our prediction strategy to account for serial

correlation.

Long Term Memory. Past research has shown many processes are characterized

by long term memory or values that have long term persistence (long term persistent

autocorrelation structure) [79]. Long term memory di�ers from serial correlation as

serial correlation relies on most recent time points. This means that methods that

use a narrow �xed length sliding window discard or ignore the presence of long

term memory in the signal and thus, make predictions based on partial information.

Subsequently, methods like ANNs and SVR cannot be used for predicting long

term memory processes [202]. Sliding window is a necessary component in the

implementation of the recursive strategy. We will explain Sliding window in section

4.3.1.

Theoretically, RNNs (Recurrent neural networks) have the ability to predict long

term memory processes as they retain a higher level of historical information. In

practice, RNNs also have the potential to address the vanishing/exploding gradient

problem [118,173]. There are more advanced methods like LSTM that can be used

when predicting long term memory processes but due to the large number of learning

parameters in these methods, there is a signi�cant chance of over or under �tting.

This issue is further compounded if the number of available training samples is low.

Based on our assessment of previous research, we adopted RNNs (shown in Fig. 4.1)
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as the tool for implementing our MSAP strategy to address the long term memory

issue.

Note that serial correlation and long term memory are related since long-term mem-

ory can be encoded in serial correlation. However, serial correlation mainly address

the most recent lags while a long term memory may refer to a long sequence of past

lags. Uncertainty. The presence of noise or uncertainty may impact the perfor-

mance of MSAP strategies. When implementing MSAP, there are two sources of

uncertainty: uncertainty that comes from the data and uncertainty introduced by

the model. To mitigate the impact of the data uncertainty, researchers typically

smooth the data. Smoothing will reduce the impact of outliers but can dampen

patterns in the signal and reduce the the predictive power of serial correlation [94].

In our approach, we use RNN models and train each model using both original and

smoothed outputs to deal with the uncertainty caused by noise (data uncertainty).

However, we train our RNN models by actual inputs so as not to dampen serial

correlation. In our approach, we assign weights to the models based on their accu-

racy. Therefore, if the serial correlation is very strong in a given time series, the

corresponding model shows an improved accuracy and receives a greater weight,

when calculating the �nal output.

Uncertainty of the model output incorporates uncertainties of any sources in the

model, i.e, from model structure, the training algorithm, or parameter uncertainty.

In order to deal with uncertainty introduced by the model, multiple models are

typically employed and their results are aggregated to obtain an improved model.

This resembles the function of ensemble methods where multiple methods are used

to estimate the same output [91]. In our approach, we use multiple RNN models to

address model uncertainty. As shown in Fig. 4.1, we incorporate multiple models

to address model uncertainty and incorporate forward smoothing to address data

uncertainty.

There are also two other types of uncertainty: Parameter uncertainty and forecasts

uncertainty. Parameter uncertainty is a very interesting topic and can generally
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be considered as a sub-problem in model uncertainty and sometimes in data un-

certainty. Based on [145], parameter uncertainty can account for sampling errors,

variability, and measurement errors. This de�nition introduces parameter uncer-

tainty as a sub-problem in data uncertainty which is out of the scope of this re-

search. Based on [175], Model Parameter Uncertainty accounts for the incomplete

knowledge of the model parameters or inputs. When input uncertainty is the case,

an input selection mechanism should be implemented prior to the training phase,

which is a very interesting but challenging task. Unfortunately, in machine learn-

ing problems, input selection usually requires a large dataset and can be very time

consuming, and thus is out of the scope this research due to our limitations in time

and computing power. Uncertainties in model hyper-parameters can be addressed

in a hyper-parameter optimization task usually implemented using a grid search

mechanism which is an NP-hard problem. Forecast uncertainty is predominantly

addressed using prediction intervals. Although forecast uncertainty is an important

problem, it actually appears in the results. Unfortunately, there is no standard

method for measuring forecast uncertainty in machine learning problems and thus,

we do not study forecast uncertainty in this thesis.

4.3 MRFA Methodology

In previous section, we outlined the three challenges that the research into a new

MSAP strategy must overcome, and for each challenge, we outlined our solution.

However, addressing all three challenges in a single model requires focusing on the

interactions between the components and an adaptation mechanism that could drive

the modeling process to solve MSAP problems. In this section, we present the new

MSAP strategy, known as Multi-Resolution Forecast Aggregation (MRFA), that

employs the principles of REC and incorporates a new concept known asResolution

of Impact to address all three challenges. We �rst introduce Resolution of Impact,

then proceed to a description of the MRFA architecture, before the model building

process is described.
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4.3.1 Resolution of Impact

Resolution of Impact (ROI) is the analytical engine of MRFA and plays a pivotal role

in the overall approach. Using ROI for guidance, we analyze the size of the future

time horizon over which local patterns have impact. The simplest representation of

ROI is the sliding window (SW) technique, which is typically applied to time series

to convert data into a format for suitable for machine learning prediction models. A

machine learning technique requiresinputs and outputs for their training procedure,

and SW returns these two components for machine learning models. SW is a �xed

size window moving over the time series, that returns the last unit of the covered

area as theoutput and the remaining units as the input. ROI di�ers from SW in

that both SW and ROI return the same data as the input, but the output returned

by ROI is the smoothed data at a pre-speci�ed resolution. This di�erence between

SW and ROI is illustrated in Fig. 4.2.

Figure 4.2: Resolution of Impact

Using Fig. 4.2, it can be seen that SW is equivalent to ROI at resolutionr = 1.

At greater resolutions, ie. r > 1, a smoothed signal or the average of the signal

over the next r units is returned by ROI as the output. ROI, when analyzed at

multiple resolutions, provides a simple quantitative tool for assessing memory in the

signal. The simplest way to quantify memory in the signal, is to assess how many

time series lags are required to be incorporated in the model in order to accurately
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predict the signal. Therefore, long term memory can appear in a smoothed signal

with longer resolutions . In ROI modeling, if there is a long term memory in the

signal, the ROI models with longer resolutions will show higher levels of accuracy.

We adopted multi-resolution analysis of ROI in MRFA to deliver an improvement

in our MSAP strategy.

Note that the size of SW is �xed and chosen as a hyper-parameter, but the size

of ROI can vary as determined by the resolution set being de�ned as a hyper-

parameter. Also, in ROI, the output values are averaged to produce a new output.

At �rst glance, it might raise an issue of discarding the autocorrelations between the

outputs. However, autocorrelations are only important when used as inputs or when

each output is predicted separately using a multiple-inputs multiple outputs model

discussed earlier in section 2.2. Also, smoothing/averaging the outputs enables the

model to deal with outliers and also to detect patterns in a larger scale.

4.3.2 MRFA Architecture and Components

By introducing the multi-resolution analysis of ROI, we provided an ability to assess

the future horizon that the current pattern (the input sequencereturned by ROI) can

predict directly. To implement this, we used multiple RNN models, each addressing

ROI at a di�erent resolution. We refer to the output component returned by ROI as

the prediction Horizon (PH). Fig. 4.3 depicts the Multi-resolution analysis of ROI

using multiple RNN models.

Aside from the exploitation of memory properties in the signal, we use the multi-

resolution ROI analysis shown in Fig. 4.3 to address both data and model uncer-

tainties. Using multiple models, we can simulate the traditional approach used in

ensemble methods for dealing with model uncertainty. As shown in Fig. 4.3, the

time unit under PH1 has been covered byR separate RNN models and we use

the RNNs in an ensemble manner to address model uncertainty. Also, since the

outputs of the RNN models are smoothed values, our approach also addresses data

uncertainty. Note that the inputs to the RNN models are chosen from actual data,
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Figure 4.3: Multi-resolution ROI

which enables us to train the RNN models and build our MSAP strategy based on

accurate inputs.

Figure 4.4: The architecture of MRFA

The schematic view of the proposed MRFA approach is illustrated in Fig. 4.4.

Here, MRFA uses d time series lags, i.e,yt ; yt � 1; : : : ; yt � d+1 as the input sequence

of ROI (or the local pattern) and then uses N RNN models to analyze ROI at
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N resolutions. Choosingd is an input selection problem and depending on the

problem can be determined using a trial and error process. The outputs of the

RNN models are then bu�ered for usage in further prediction steps. Thebu�er is a

memory that keeps previous results andaggregation is an equation through which

the �nal forecast is obtained which is explained in Eq. 4.4. The �nal forecasts are

then calculated by aggregating weighted averages of the RNNs bu�ered outputs.

The process of MRFA contains three main phases: training the forecast models at

multiple resolutions, determining the model weights, and forecast aggregation.

Training the Forecast Models. In MRFA, for each resolution r 2 R, where

R is the set of working resolutions, a separate RNN prediction model is deployed.

Resolution r de�nes the forecast target of an RNN model, as the mean value of the

signal over the next interval of length r . In MRFA, the resolution determines the

forecast target of the corresponding RNN model while, for every RNN, the input is

fed from the time series of highest resolution, i.e., the signal itself. An RNN model

of resolution r is trained to perform a one step prediction in resolution r from the

past values of the time series of highest resolution. For multi-step ahead forecasting,

a feedback loop is conducted in the MRFA model, as illustrated in Fig. 4.4. As

shown in Fig. 4.4, we reduced the e�ects of error accumulation encountered in the

recursive strategy by incorporating a multi-resolution analysis of ROIs in MRFA.

As shown in Fig. 4.4, the feedback loop feeds the RNN model by a delayed version

of the forecasts, for further estimates until the entire PH is forecasted. For the

time seriesyt , the output of the RNN model which is modeling the time series at

resolution r is denoted by ( PH r ) in Eq. 4.1.

PH r (t)
r 2 R

=
1
r

rX

i =1

yt+ i (4.1)

Determining Weights.

The MRFA model assigns weights to the outputs of the RNN models. The weight

reects the inuence of the speci�c model in the corresponding resolution. Reliability
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can be determined by the model performance which represents the model's accuracy

for a single step ahead prediction problem. In [23], a reciprocal value of nMSE is

used as model weight. For a single step forecasting model, the weight at resolution

r i.e. Wr is calculated using Eq. 4.2, wherenMSE r represents the accuracy of the

RNN model which is employed at resolutionr .

Wr =
1

nMSE r
(4.2)

nMSE =
1

nT est

nT estX

i =1

(
yi � ŷi

YMax � YMin
)2 (4.3)

The nMSE parameter for the RNN model for modeling signalY is calculated using

Eq. 4.3, whereYMax and YMin are the maximum and minimum value of Y , and

yi and ŷi are the actual and estimated value of Y respectively, for the i th test

sample. nT est is the number of out of sample forecasts and thus, in Eq. 4.3 nMSE is

calculated for nT est test samplesi = 1 ; ::; nT est. Weights in Eq. 4.2 do not need to

sum to 1, because (as shown later in Eq. 4.4) our aggregation approach standardizes

the �nal forecast by incorporating the weights ( Wr ) in its denominator.

Forecast Aggregation.

In this phase, the forecasts made by the RNN models at di�erent resolutions are

aggregated to provide forecasts for the entire PH. For every TU in the PH, a set

of candidate forecasts are introduced by the RNN models. At a speci�c resolution,

the �nal forecast is obtained by aggregating the candidate values introduced by the

RNN models at di�erent resolutions through weighted averaging in Eq. 4.4, where

ŷr (t + 1) is the forecast made by the RNN model of resolutionr .

ŷ(t + 1) =

P

r 2 R
Wr

r � 1P

i =0
ŷr (t + 1 � i )

P

r 2 R
rW r

(4.4)
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Eq. 4.4 demonstrates how multiple time points contribute to the prediction estimate.

This is because in MRFA, a RNN wherer > 1 provides a partial forecast for more

than a single step. Therefore, as long asr covers the delayi in ŷr (t + 1 � i ), the

corresponding forecast can be used to improve the accuracy. Also, as shown in Eq.

4.4, we use previous predictions in order to assist in current predictions. We do this

because more recent predictions are less accurate with the recursive strategy.

4.4 MRFA Evaluation

We now turn our attention to the validation of the MRFA model which is presented

in 2 parts now. Firstly, we present a sensitivity analysis which his necessary to �ne

tune hyper parameters and then proceed to discuss our comparative evaluation.

4.4.1 MRFA Parameter Settings

In this section, we tackle the issue of hyper parameter settings for our evaluation.

Our goal is to examine all possible combinations of hyper parameter selection in

order to obtain the optimal con�guration. These settings are crucial to our compar-

ative evaluation in the following section. This step includes a sensitivity analysis on

the signi�cant levels of the parameters reported in MRFA analysis.

Figure 4.5: The Irish pig price
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The performance of MRFA is highly dependent on the performance of its RNN

models and its resolutions. In this study, the same RNN con�guration was employed

in each experimental cycle. MRFA was studied for 7 resolutions (N = 7 in Fig. 4.4)

ranging from r1 = 1 to r7 = 7 in size, meaning 7 RNNs were implemented in

every experiment. Two parameters were identi�ed as having major contributory

factors to the performance of the RNN models: (1) the number of lags being fed

as inputs into RNNs, i.e. delays, and (2) the RNN's degree of recurrence that

determines the highest number of steps that the neurons in the RNN's hidden layer

can remember its own previous outputs. The recurrence delay parameter determines

the number of previous outputs for each neuron in the hidden layer to be included

in the calculation of the �nal output. Fig. 4.6 presents a sensitivity analysis and

shows the performance of MRFA for di�erent values of recurrence delay versus delay

(time series lags).

Figure 4.6: Sensitivity analysis: Recurrence delay versus time series lags

As PH (the lengths of the prediction horizon) grows longer, more uncertainties are

added to MSAP. Fig. 4.7 illustrates the MRFA's accuracy with respect to increase

in PH. The results in Fig. 4.7 shows that an increase in PH (the length of the
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Figure 4.7: Accuracy of MRFA with respect to prediction horizon

prediction horizon) lowers the accuracy of predictions.

4.4.2 Comparative Analysis

For the MRFA evaluation, six state of the art methods have been chosen for com-

parative analysis: ARIMA [46], NN [117], RNN [151], DIR [17], MIMO [43], and

ARIMA-NN [183]; DIR and MIMI were both implemented using ANN. The prior

sensitivity analysis on the NN model suggests a combination of 12 hidden neurons

and a sliding window of size 10. The sensitivity analysis indicated that the RNN

model exhibits minimum error variance when characterized by 10 input delays, 6 re-

currence delays, and 12 hidden neurons. The ARIMA parameters of the ARIMA-NN

models are also identi�ed by analyzing Autocorrelation Function (ACF) and Partial

Autocorrelation Function (PACF) plots, introducing ARIMA( p=1,d=1,q=1) as the

appropriate model; where p is the order of the AR component, q is the order of

MA model, and d is the di�erencing order. The performance of the NN model for

modeling residuals was a�ected by the size of the sliding window and the number

of hidden neurons. Sensitivity analysis on these factors demonstrates that the mini-

mum error variance is reached when the sliding window is of size 13 and the hidden

layer contains 10 neurons. Performance comparisons between MRFA, ARIMA, NN,

RNN, DIR, MIMO and ARIMA-NN with respect to growth in PH are illustrated

in Fig. 4.8. In these experiments, 5 percent of the data were used as the test set

70



in a bootstrapping procedure and the rest were used as training. Note that due

to the need for a period of 52 samples for each MSAP test experiment and also

a continuous set of samples for the training set, no more than 5 percent could be

separated for the test set. Otherwise, the training performance could be reduced

due to the lack of adequate training samples.

Figure 4.8: PH comparison between MRFA and ARIMA, NN, RNN, DIR, MIMO,
and ARIMA-NN

Fig. 4.8 shows how MRFA outperforms ARIMA, ARIMA-NN, RNN, and NN at

every PH. The comparison also reveals that, as PH increases, there is an increase in

prediction error. However, this increase occurs more slowly for MRFA than ARIMA,

ARIMA-NN, RNN, DIR, MIMO, and NN.

20 di�erent time series were chosen for analysis in this research and were taken from

disparate monthly, weekly, daily and hourly data sources. The monthly series were:

lake Erie levels (1921-1970), monthly milk production in pounds ormmp (1962-

1974); and the number of persons employed in Australia (1978-1991). The weekly

time series were: two Irish beef prices (2011-2018); Irish pig prices, 2007-2016;

German pig prices (2008-2016); Canadian barley (2008-2016); and German feed

barley (2008-2016). The daily time series were: foreign exchange rates (1979-1998);

minimum temperatures in Melbourne (1981-1990); total female births in California

(1959-1959); mean temperature of the Fisher River (1988-1991); bike share variables
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(2011-2012); and births in USA between 1978 and 2015. Hourly data was taken from

one series measuring hourly carbon dioxide emissions. In these experiments, for each

time series, 10% of the data has been chosen to make out of sample forecast as the

test set and the experiments were conducted in a bootstrapping process; The rest

of the data was used for training purposes.

In order to characterize each dataset, di�ering tests and metrics were applied.

The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)

plots [47] were analyzed to con�rm the existence of seasonality. Conditional Het-

eroscedasticity was examined using the Ljung-Box Q test [47] on the squared residual

series. Also, the Hurst exponent and Detrended Fluctuation Analysis (DFA) were

conducted on the data to characterize memory in the time series. The Hurst ex-

ponent and DFA are explained in details in Chapter 5, section 5.3.1. Table 4.1

shows these characteristics as well as the frequency, sample size and type for each

of the original time series. Type is determined based on DFA analysis, explained in

detail in section 5.3.1. Gaussianity is evaluated using D'Agostino'sK 2 test [69] and

denoted by H for high, L for low, V for very low, and 0 for no Gaussianity.

Table 4.1 presents the results for 8-step-ahead prediction using MRFA and the

recursive strategy implemented by NN, SVR, ARIMA, RNN and LSTM. In this

table, m l e l, m m p, and m n o e indicate lake Erie water levels, monthly milk

production pounds, and the level of employment in Australia, respectively (Monthly

data). H Um 3P and S Um 2P indicate two Irish beef prices, IreCent is the Irish

pig price, GerCent is the German pig prices, CanBar is Canadian barley prices and

GerFBar is the German feed barley prices (weekly data). Daily foreign exchange

rates are denoted by df ex r, daily minimum temperatures in Melbourne by d m t,

daily total female births in California by d t f b, mean daily temperature of Fisher

River near Dallas by m d t f, daily bike share variables by db sh1, d b sh2 and

d b sh4, a US economic series by Ecunem, births in US in 1978 and 2015 by USB 78

and US B 15, (Daily data) and hourly carbon dioxide emission by LNOxEm.

Results and Discussion.
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Table 4.1: Experimental results

ID Frequency

T
im

e
series

G
aussianity

S
am

ple
size

S
easonality

S
tationarity

C
H

H
urst

exp
onent

D
FA

S
am

ple
entropy

T
yp

e

M
in

error

A01 M m l e l L 600 12 N Y 0.59 1.17 0.88 Non-stationary MRFA
A02 M m m p L 156 12 N N 0.69 1.52 0.68 Brownian noise MRFA
A03 M m n o e V 759 12 N Y 0.97 1.28 0.29 Non-stationary NN
A04 W H Um 3P H 357 52 N Y 0.93 1.79 0.41 Non-stationary MRFA
A05 W S Um 2P L 357 52 N Y 0.92 1.68 0.60 Non-stationary SVR
A06 W IreCent V 512 52 N Y 0.92 1.86 0.32 Non-stationary MRFA
A07 W GerCent V 468 52 N Y 0.86 1.58 0.53 Non-stationary NN
A08 W CanBar V 468 52 N N 0.88 1.64 0.20 Non-stationary LSTM
A09 W GerFBar V 468 52 N N 0.86 1.63 0.25 Non-stationary NN
A10 D d f ex r V 4774 365 N Y 0.95 1.52 0.05 Brownian motion SVR
A11 D d m t V 3650 365 Y N 0.90 1.08 1.62 Pink noise ARIMA
A12 D d t f b V 365 - Y Y 0.61 0.69 2.20 Stationary NN
A13 D m d t f V 1461 365 N N 0.88 1.24 0.73 Non-stationary MRFA
A14 D d b sh4 V 731 - N Y 0.51 0.66 2.05 White noise ARIMA
A15 D d b sh2 V 731 - N N 0.72 1.05 0.88 Pink noise MRFA
A16 D d b sh1 V 731 - N N 0.77 1.07 0.87 Pink noise MRFA
A17 D Ec unem V 574 - N N 1.00 1.58 0.23 Brownian noise MRFA
A18 D US B 15 V 365 - N N 0.09 0.08 0.65 RNN RNN
A19 D US B 78 V 365 - N N 0.23 0.29 1.21 Anti-correlated LSTM
A20 H LNOxEm 0 8081 24 Y N 0.39 0.37 0.45 Anti-correlated ARIMA

For each time series shown in table 4.1, the method with the minimum prediction

error (column Min error ) is reported asthe preferred method. The prediction error

is calculated as the average nMSE. For each series, the order of theSARIMA (p; d; q)

model was obtained using the maximum likelihood using a Kalman �lter [116]. A

detailed discussion on optimal models is beyond the scope of this research and

is expanded upon in detail in [279, 291]. The experimental results based on the

application of the methods discussed are presented in Table 4.1.

We can see there are relationships between the preferred method (columnMin

error ) and time series characteristics in Table 4.1. Obviously, drawing strong con-

clusions requires studying a relatively larger number of time series. However, based

on our experiments with the 20 series in Table 4.1, the following insights can be
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drawn:

� Sample entropy of values close to zero indicate low levels of complexity, and

thus, higher predictive probabilities. For A19, A14, A12, and A11, the sample

entropies were relatively high with the best performance exhibited by ARIMA

(2 series), NN and LSTM. However, we expected ARIMA to outperform all

the other methods on low sample entropy series, since such series are often

predictable and ARIMA performs well on highly predictable data.

� MRFA is suitable method for predicting Brownian motion (Brownian motion

will be explained in detail in section 5.3.1), as MRFA was the preferred method

on 2 of the three Brownian motion series (A02, A10 and A17). Brownian mo-

tion is a type of self-similar processes which is identi�ed using DFA analysis

which is explained in details in section 5.3.1. We expected LSTM to show

a good performance on Brownian noise as LSTM has the ability to predict

complex series. However, MRFA is based on RNN models which are struc-

turally similar to LSTM and we believe that for this reason, MRFA showed

comparable performance on these time series.

� MRFA is a good method for predicting Pink noise (Pink noise will be explained

in detail in section 5.3.1), as MRFA outperformed on 2 of 3 pink noise time

series (A11, A15 and A16). Pink noise is an unusual characteristic in time

series as it presents a trade-o� between the probable predictability of Brownian

motion and the complete unpredictability of white noise. Our interpretation is

that MRFA delivered the best performance due to the incorporation of several

RNNs, as they are able to capture complex dynamics in nonlinear time series.

� ARIMA and NN are approaches suited to predicting stationary time series

(indicated by stationary and white noise in column type ). It suggests that

ARIMA and NN which are characterized by relatively smaller sample entropy

(compared to RNN, LSTM and MRFA) are predominantly suitable for series

which have a steady mean, variance and auto-correlation. However, white

noise (series A14) is an unpredictable process and this explains why this result
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Figure 4.9: Methods and Performance

as reliable as could be expected.

� These results demonstrate that MRFA is a good choice of model when Gaus-

sianity is signi�cant, as in 6 out of 16 series which the distribution of their

uctuations is highly similar to Gaussian distribution (H and V), MRFA was

the preferred method.

� NN is an appropriate method when dealing with CH, as NN outperformed

the other methods for these series. We expected LSTM to show higher per-

formance as LSTM was specially designed to process complex events, such as

CH, in time series data.

Fig. 4.9 outlines the number of times each method was chosen as the preferred

method. There is strong evidence that the performance of di�erent methods are

a function of the time series characteristics involved. The evidence also suggests

that MRFA is a robust performer as it is either the preferred method or was one

of the high performers on the majority of the series examined with a preferred

candidate score of 50%. In particular, it was the preferred method on 80% of the

series when applied to series with either Brownian or pink noise and scored 44%

when applied to data with non-stationary. MRFA, NN and LSTM all appeared

to perform well when non-stationarity or CH existed within the data. As would

be expected, ARIMA performed well with non hetroscedastic data, and is a much
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easier method to implement in comparison to machine learning approaches such as

MRFA, NN, RNN or LSTM.

In summary, we demonstrated where MRFA showed superior performance over other

methods which involved many aspects. However, the major drawback with our

analysis is the small size of the testing benchmark; it only contained 20 time series.

This leads to a �nal conclusion that a more robust validation will require a far

higher number of time series and from this, we should be able to extract a deeper

understanding of the behaviour of both our model and those that are used in a

comparative analysis.

4.5 Summary

In this Chapter, we presented our recursive approach which we have named, Multiple

Resolution Forecast Aggregation, an approach that addressed the shortcomings of

the original REC model by using the Resolutions of Impact concept. We examined

the e�cacy of this approach using 20 time series in a study on the behaviour of Irish

Pig Price data. Our evaluation showed that the preferred method for certain models

depends on thecharacteristics of the underlying time series. As such, a large number

of time series which exhibit a more diverse range of characteristics is required to

generate stronger predictive models. However, our literature review suggests that a

large dataset with this guarantee ofdiversity does not exist. This provides a clear

requirement for the next step in our research: an approach to construct a large

number of time series with the appropriately diverse range of characteristics.
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Chapter 5

Establishing Diversity in

Synthetic Time Series

In the previous Chapter, we motivated the requirement for a methodology to gener-

ate a large number of time series which comprised a rich level ofdiversity in terms

of time series characteristics. In this Chapter, we introduce a framework to both

generate the time series data and to validate its diversity. In section 5.1, we provide

a background to this aspect of our research before discussing time series charac-

teristics in section 5.2 and presenting the methodology for constructing time series

in section 5.3. We then present evaluation metrics in section 5.4 before discussing

the results of our evaluation in section 5.5. Finally, in section 5.6, we present our

conclusions to this Chapter.

5.1 Background and Motivation

When assessing the performance of a Time Series prediction method or strategy,

researchers are typically faced with the challenge of identifying appropriate datasets

for training and testing purposes. Typically, the researcher will use a dataset that

has originated from their speci�c domain of interest, or if the cost of data collection
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is prohibitive, they will attempt to generate synthetic/simulated data that reects

the characteristics of the identi�ed problem. In order to avoid costly data collection,

synthetic data has been used in many di�ering �elds of research in place of real or

live data [159]. It has also been shown to be useful when attempting to evaluate

proposed methods [133], assist in data imputation [259] or supplement training

datasets when machine learning approaches require a su�cient volume of data [208].

Public repositories of real data have been established by researchers in an attempt

to provide domain-speci�c examples (or several domains) among which Kaggle and

UCI are the most well-known [1,2].

Data generation processes mainly focus on simulating training data for speci�c prob-

lems where data samples share a set of domain-speci�c characteristics. These charac-

teristics are modi�ed with a random component whose distribution is characterised

within the domain and thus, synthetic time series will typically share the same time

series characteristics [182]. However, in order to evaluate the performance of a time

series method,diversity has been shown to be the main requirement in training

datasets [177]. Unfortunately, in the available time series repositories, diversity has

not been promoted as an underlying characteristic. As shown in Chapter 2, previous

research on time series generation has focused on enhancing the availability of data,

with simulated data sets consisting of data series with similar characteristics. In

this research, the focus on the application of new and existing time series prediction

techniques requires that any proposed approach be tested on a variety of diverse

series. The overall intention is to understand the range of characteristics that suit

any particular method. Generating diverse datasets and subsequently implementing

the proposed and existing time series prediction algorithms on these synthetic time

series will allow researchers to assess the breath of application for their proposed

approach.

To �nd the strengths and the weaknesses of an algorithm, its performance should

be evaluated against diverse types of data [22, 60]. Researchers have used several

time series data repositories such as Kaggle, UCI, NN5 and M5 [124]. However,

these repositories do not provide a wide and diverse range of time series and thus,
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prevent researchers from examining the appropriateness of their proposed algorithm

under a variety of conditions. Many time series in the M5 collection contain missing

values for which features such as entropy cannot be measured. In addition, applying

detrending and deseasonalizing on the M5 series cannot be done with 100 % accuracy

since their trend and seasonality models are not available; this leaves unknown

uctuations on the remainder which leads to inaccurate evaluation of features. At

present, stress testing time series algorithms with datasets that have a diverse range

of time series characteristics, has not received signi�cant attention in the literature.

Also, even forecasting competitions don't pay attention to the diversity of time

series characteristics. The aim of this step in our research is to develop an approach

that will create a large dataset that comprises a wide range of disparate time series.

These time series can then be used by the scienti�c community to establish the

appropriate application area of any future prediction algorithms.

Contribution Performance evaluation is an essential component in the development

of time series prediction algorithms. The choice of datasets used to test a new

approach can have a considerable impact on its perceived applicability in a real world

environment. Typically, when there is a lack of appropriate datasets, researchers

have generated arti�cial datasets during their testing phase. In time series analysis

this strategy has been applied but has predominantly focused on generating similar

time series with moderate uctuations in the datasets. In this research, we present a

time series generation algorithm that creates sets of time series with a diverse range

of characteristics. In particular, we focus on time series with long term memory and

stationarizable irregularities.

In this Chapter, we present a framework that generates a set of disparate time

series fortime series prediction purposes. By diversity, we mean di�erent combi-

nations of time series features and thus, a diverse time series collection is expected

to contain time series representing di�erent possible combinations of features. Time

series data usually consist of four components: Trend, Seasonality, Cyclicality and

Irregularity. The majority of studies conducted on time series prediction empha-

size the necessity of stationarity and thus, valid time series prediction has generally
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been implemented with detrending and de-seasonalizing operations as mandatory

pre-processing steps [290]. Also, Cyclicality is typically unpredictable and often re-

moved when performing de-seasonalizing or detrending. Thus, the remainder (i.e.,

irregularity) can be stationarized in order to apply predictive analyses. The major-

ity of past studies assume that the irregular component is a white noise and contain

random uctuations, such as [109, 187, 188, 221, 265]. However, many studies have

shown that irregularity can carry important information, and retain long term mem-

ory [253]. Therefore, based on the de�nition of irregularity [253], we conclude that

the irregular component is expected to be stationarizable, carry information, have

long term memory and exhibit random uctuations. With our approach, we simu-

late irregularity using fractional Browning motion (fBm), which is a stationarizable

random process and characterized by long term memory. We also introduce a new

measure for assessing diversity and as a result, improve the quality of assessment.

5.2 Time Series Characteristics

Fundamentally, a time series is composed oftrend (T), seasonality (S), cyclicality

(C) and irregularity (I ) components [51]. Trend carries the information associated

with long term or low frequency behavior of the series. Many time series exhibit

a regularly repeating pattern known as seasonality, often under the inuence of

external periodic drivers such as seasons, weather or holidays. Both seasonality

and cyclicality are the result of repeated patterns, however, the di�erence is that

seasonality hasconstant repeating intervals whereas cyclicality repeats overnon-

equal intervals [146]. There is also the concept of multi-seasonality which will be

incorporated later in Eq. 5.5. The Irregular component is the residual signal, when

the trend, seasonality and the cyclical components are removed. Typically, the

irregular component is assumed as a patternless signal that only presents random

uctuations [253].

The functional form of each time series is based on how these components are gener-

ated and combined. The degree or level of the presence of each item is known as the
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pro�le of the time series [51], where each time series component can be described

by its own individual time series.

Trend is often described as the change in the mean of the signal over time [48].

Practitioners in disparate �elds have di�ering opinions on how trend should be

interpreted. The most common interpretation is that trend is a reection of the

overall scale and magnitude of the signal. Many studies, identify the low frequency

component of the signal as the trend by decomposing the frequency domain signal

[41]. However, other studies have obtained trend by eliminating local uctuations

using smoothing [48].

Seasonality is typically identi�ed by regularly repeating patterns. Seasonality often

occurs under the inuence of external periodic drivers such as seasons, weather or

holidays. One needs only generate a regularly repeating pattern over equal intervals

to simulate seasonality [48].

Cyclicality is a long-term, upward or downward curve which usually represents

irregular swings. In most business and economic time series, cyclicality appears in

periods of many years (maybe decades) and thus, is often regarded as part of long

term trend. In �nancial time series, cyclicality occurs as broad swings around the

trend line [93], and di�ers from seasonal variations in that the length of time period

under consideration is not constant. In other words, seasonal variations can mainly

be anticipated, while cyclical variations are often considered to be unpredictable

[112].

The Irregular componentI is the part of the time series that cannot be described by

trend, cyclicality or seasonality and is measured as the residual of the signal after

removing trend, seasonality and cyclicality. Although irregularity is traditionally

considered as random and pattern-less uctuations, more recent studies believe that

it contains important information which does not appear in long-term or repetitive

structures [253].
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5.3 Methodology

In this section, we introduce our approach for generating synthetic time series. In

order to generate synthetic time series, one needs to �rstcreate each time series

component and then combine them. Thus, a time series generation process has

two phases: component generationand the combination of components. Since the

characterization of the non-equal intervals of cyclicality is not always possible, the

research community suggests that cyclicality and trend can be addressed as a joint

element i.e., the trend-cycle component [40, 115, 290]. We will �rst discuss how

we generate di�erent types of each component and in the following section, the

methods by which these components are combined are described. In the rest of

this section, we will �rst present our approaches for simulating the Trend-cycle

component, seasonality and irregularity in x5.3.1. Then, in x5.3.2, we will present

our models for combining these components.

5.3.1 Simulating Time Series Components

We now describe the functions used to simulate each of the three time series com-

ponents. We begin by presenting di�erent Trend-Cycle functions; then show how

Seasonality is introduced; and �nally, we present functions for Irregularity .

Trend-Cycle Components In general, trend can be linear or non-linear. Alinear

trend is simulated using Eq. 5.1 wherea is a constant showing the slope of the

linear line. A linear trend is shown in Fig. 5.1.

y = a � t + b (5.1)

where b is the y intercept.
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Figure 5.1: A linear trend

The shape and the boundaries of anon-linear trend depend on the problem do-

main. In this research, two general functional forms have been considered to gener-

ate non-linear trends. The �rst is a piece-wise linear function representing a trend

changing direction at k pre-speci�ed points, yet remaining linear between each two

consecutive points as shown in eq. 5.2. The second form is the trend-cycle com-

ponent presented in [123]. Eq. 5.2 has a curve consisting ofn changing points

p1 < p 2 < : : : < p n , between each consequent pair showing a linear behavior but

with a di�erent slope a1; a2; : : : ; an , where b1; b2; : : : ; bn are constant.

y =

8
>>>>>><

>>>>>>:

a1t + b1 ; 0 � t < p 1

a2t + b2 ; p1 � t < p 2

:::

an t + bn ; pn� 1 � t < p n

(5.2)

In our implementation, p1; p2; :::; pn are �xed values chosen between 1 and the length

of the time series. An assumption made in this research is that the trend is a

continuous curve so that at t = pi ; i < n , no abrupt fall or rise occurs in the curve,

shown as a constraint in Eq. 5.3.

ai (t = pi ) + bi = ai +1 (t = pi ) + bi +1 (5.3)

Fig. 5.2 depicts the constraint of continuity represented in Eq. 5.3.
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Figure 5.2: The piece-wise linear trend

The cyclical component can be added into the trend-cycle component through the

introduction of a second order long term seasonal component [51]. Here, the trend-

cycle component is created using Eq. 5.4 which uses asinusoidal function both with

and without multiples of a linear function, with � is a constant.

8
<

:

y = a � sin (�t ) simple

y = at � sin (�t ) multiplied by a linear function.
(5.4)

Note that the sin function should be implemented as a low frequency signal, with a

large value of� , in order to simulate long term e�ects in the trend-cycle component.

A simple sinusoidal trend is shown in Fig. 5.3.

Figure 5.3: A simple sinusoidal trend

A sinus function multiplied by a linear trend is shown in Fig. 5.4.

84



Figure 5.4: A sinus function multiplied by a linear trend

Seasonality Components. In our approach, it is assumed that seasonality can be

simulated by impulse, step-wise, triangular or a combination of sinusoidal functions

of di�ering scales and phases; where smoothing is conducted randomly to avoid

passing sudden big changes. Sinusoidal patterns can be simulated using one or a

combination of multiple sinusoidal functions as shown in Eq. 5.5, where,� 1 and � 2

are the weights; � 1 and � 2 are the phases for the sinusoidal functions; andyt the

time series. Note that � 0; � 1; � 0 and � 1 are constants.

yt = � 0sin (� 0t) + � 1sin (� 2t) (5.5)

A Step-wise pattern is a type of latch function (with two stable states) that changes

between two values at �xed intervals shown in Eq. 5.6, wherep (p � 0) is the period,

t is time and m is an integer.

yt =

8
<

:

1 2mp < t < 2mp + 1

0 2mp + 1 < t < 2mp + 2
(5.6)

The step-wise function is shown in Fig. 5.5.
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Figure 5.5: The Step-wise function

The Triangular function is similar to the step-wise function where the step-wise

e�ect occurs in the slope of the line. Eq. 5.7 implements the triangular function

with a �xed slope � , where b0 and b1 are constants,p is the period, t is time, m is

an integer.

yt =

8
<

:

�t + b0 2mp < t < 2mp + 1

� �t + b1 2mp + 1 < t < 2mp + 2
(5.7)

The Triangular function is shown in Fig. 5.6.

Figure 5.6: The Triangular function

Impulsive seasonality has a discrete pattern that has a value of 1 at �xed intervals

and 0 otherwise. The implementation is shown in Eq. 5.8, where t is time, andp is

the period.

y =

8
<

:

1 bt=pc = t=p

0 otherwise
(5.8)

The Impulsive function is shown in Fig. 5.7.
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Figure 5.7: The Impulsive function

Note that the Impulsive function only has one non-zero value over each interval,

while the step-wise function switches on-o� (1/0) at the start of each interval. Ir-

regularity Components. The irregular component can be studied in terms of

complexity and memory (or correlation). Providing a formal de�nition for time

series complexity is a di�cult and challenging task. Past studies have tried to ex-

plain complexity as the degree of disorder (randomness) or unpredictability in the

signal [200]. Memory reects how consistently the signal relies on its past: if not

a�ected by or contaminated with random uctuations. If this component is not

formed by a completely random process or under the inuence of unknown external

random forces, the assumption is the presence of Long Range Dependence (LRD)

which is caused by a memory bu�er [33].

� (k) � c� jkj � (5.9)

Eq. 5.9 is used to determine if a process has LRD, wherek is the number of

lags, c� is a positive constant and 0 < � < 1. Thus, a process has LRD when

the sum of autocorrelations � (k) decays to 0 slowly. When there is a memory in

the signal we can expect that with increase in the number of lags (k), the sum of

the autocorrelations for the k lags do not fade to zero immediately. Otherwise, no

information from the past values are carried over the autocorrelations.

The Hurst exponent H [250] is one of the most popular methods to measure LRD.

H attempts to explain LRD as a property of stochastic self-similar processes.x(t) is

self-similar with the Hurst exponent H , when for a stretching factor � the rescaled
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processx(�t ) is equal to the original processx(t) in terms of distribution as in Eq.

5.10, where := denotes equality in terms of distributions.

x(t) := � � H x(�t ) (5.10)

If the uctuations are stationary (the process has a constant mean and a constant

variance), the process is said to have fractional Brownian motion (fBm ). Based

on [33], the auto-correlation function for fBm processes is de�ned in Eq. 5.11.

� (k) =
1
2

(jk + 1 j2H � 2 jkj2H + jk � 1j2H ) (5.11)

Based on [250], applying a �rst-order Taylor expansion to� (k) from Eq. 5.11 delivers

the functionality in Eq. 5.12, for k ! 1 .

� (k)
H (2H � 1)jkj2H � 2 ! 1 (5.12)

It can be inferred from Eq. 5.12 that the autocorrelation � (k) / j kj2� 2H when

H > 1
2 , based on [250].

Eq. 5.12 explains the behaviour of the irregular component using the well known

Taylor method [33]. Since the Hurst exponent (H ) is the core of the equation and

is an input parameter to our time series generation function 5.12, we will provide a

brief overview of its usage.

The Hurst exponent [121] was proposed to model the cyclic behavior of Nile oods

and is conceptually close to Brownian motion, where temporal uctuations are inde-

pendent and the standard deviation� at step n scales proportionally as� / n
1
2 . The

study found that temporal uctuations are not independent and show a pattern of

a power law with an exponent over 1
2 , a non-stationary process equivalent tofBm .

The fBm processes are characterized by long range dependence, i.e, future uctua-

tions are inuenced by past uctuations and the sign of movements are less likely to
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change frequently. However, the phenomenon is fundamentally has a probabilistic

formation where oscillations preserve the stochastic structure of the quantity, yet

exhibit long-term memory. In such processes, the scaling of the standard deviation

is proportional to � / nH .

Note that such processes possess a probabilistic-statistical nature and thus, from

some point on, the signal will saturate but slightly uctuate around a quite low

value. However, long term memory remains a general property of the process. Eq.

5.9 is not only bounded to the non-stationary process offBm , but can also explain

the stationary process of the fractional Gaussian noise (fGn ) shown in Eq. 5.13,

where BH is an fBm with a Hurst exponent equal to H .

fGn H (t) = BH (t + 1) � BH (t); (5.13)

In order to accommodate various theories, where the irregular component is treated

as fractional Brownian motion (either with a zero-mean or carrying information),

three major noise model types were incorporated:

� fractional Gaussian noise (fGn), which represents stationary series with a con-

stant mean and variance;

� fractional Brownian motions (fBm), which are non-stationary series with time-

dependent variance [160];

� multi-fractal Brownian motion (mBm), which is considered for the case where

the H•urst index H is a function of time t.

fGn, fBm and mbm are frequently used by researchers to simulate real world systems

due to their similarity to natural processes. The Fractional Brownian motion family

appear as a very natural object as it has the three of the following characteristics:

[172]: continuous Gaussian, self-similarity and stationary uctuations. To simulate

fGn, fBm and mBm, this study uses the Davies-Harte algorithm [74]. In Craigmile

[68], the authors demonstrated that the Davies-Harte can be used to generate such
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stationarizable Gaussian processes. We used the Davies-Harte method to generate

fGn, fBm and mBm in our research.

5.3.2 Combining Time Series Components

It is important to note that there is no standard way of combining these components

to generate a time series. Studies such as [81] consider the irregular component as

the base and manipulate it by adding trend and seasonality to create time series

data. In our time series construction method, we consider all possible additive and

multiplicative combinations of trend-cycle T c
t , seasonality St and irregularity I t ,

using the approach presented in [123]. There are 8 possible models for combining

T c
t , St and I t , shown in Table 5.1.

Table 5.1: Time Series Component Combinations

Model Description

1 Yt = T c
t + St + I t The additive model

2 Yt = ( T c
t + St )I t Trend-Seasonality additive multiplied by the Irregularity

3 Yt = ( T c
t + I t )St Trend-Irregularity additive multiplied by the Seasonality

4 Yt = ( St + I t )T c
t Seasonality-Irregularity additive multiplied by the Trend

5 Yt = T c
t St + I t Trend-Seasonality multiplicative added to the Irregularity

6 Yt = T c
t I t + St Trend-Irregularity multiplicative added to the Seasonality

7 Yt = St I t + T c
t Seasonality-Irregularity multiplicative added to the Trend

8 Yt = T c
t St I t The Multiplicative model

In Table 5.1, Model 1 is a pure additive model, and is the most widely used model

in the time series community. Model 8, is a multiplicative model, and is the second

most popular model among time series researchers. The other models in Table

5.1 are also used in the time series studies withModel 3 and Model 5 being more

popular because they incorporate irregularityI t using an addition operation. In this

research, all 8 combinations are implemented during time series construction.
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5.4 Validation Metrics

The literature has outlined a variety of metrics that allow the researcher to under-

stand the characteristics of the series. The following have been used extensively in

the literature:

� Long-Range Dependence

� Complexity

� Fisher Information

� Normality

Long-Range Dependence measures the degree of dependence (correlation) over

long intervals of time, and indicates the level of \memory" in a time series. LRD can

be assessed using the Hurst exponent and Detrended Fluctuation Analysis (DFA).

DFA is a more systematic method for assessing LRD in comparison to the Hurst

exponent. Based on the evaluation of DFA on LRD, correlation can be categorized

into six well known classes, which are shown in Table 5.2.

Table 5.2: Interpretation of DFA

Value Type

0 < � < 1=2 Negatively-correlated
� ' 1=2 Uncorrelated, white noise
1=2 < � < 1 Correlated
� ' 1 1/f-noise, pink noise
� > 1 Non-stationary, unbounded
� ' 3=2 Brownian noise

The output of the DFA analysis or � can be interpreted as follows (based on Table

5.2): � = 1 indicates perfect (self) similarity in the data [113] ; � = 1=2 represents

no similarity (or no memory); 1=2 � � � 1 describes positive correlation, with

similarity (memory) increasing with the values of � ; � � 1=2 indicates negative
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correlation; � > 1 indicates that while correlations exist, they cannot be described

in the form of a power-law relationship. A special case where� = 1 :5, indicates

Brownian noise or the integration of white noise. � also provides information about

the roughness of the time series where larger values of� belong to smoother time

series. 1=f noise can be interpreted as a compromise between the complete unpre-

dictability of white noise (very rough landscape) and the very smooth landscape of

Brownian noise.

An important advantage of DFA is that it allows for the detection of long-range

correlation in non-stationary time series. Alternatively, the Hurst Exponent has

been the traditional metric for LRD [121], and divides time series data into three

categories: Negatively-correlated 0< � < 0:5, Uncorrelated � ' 0:5 and Correlated

0:5 < � < 1.

The Complexity of a time series can be evaluated using Entropy measures [226].

In this research, a number of entropy measures have been implemented, including

Shannon entropy, Spectral entropy and SVD entropy.

� Shannon entropy: For a signal y with sample size N , sample entropy is

calculated by Eq. 5.14, which is the negative logarithm of the conditional

probability that a sub-series of length m matches point-wise with the next

point with tolerance (distance less than) r [223].

H (Y ) = �
NX

i =1

p(yi ) log p(yi ) (5.14)

� Spectral entropy: Spectral entropy is calculated based on Shannon entropy,

and quanti�es the spectral complexity or the randomness of the power spec-

trum of the time series over a long period of time [216]. Spectral entropy is

calculated by Eq. 5.15.

Hs = �
NX

k=1

Pk ln(Pk ) (5.15)
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where k represents the frequency� k and Pk is calculated by Eq. 5.16

Pk =
j� k j2

P
i j� i j

2 (5.16)

In Eq. 5.16, j� k j2 is the Fourier power spectrum of the signal at frequency� k .

� SVD entropy: SVD entropy is an indicator of the dimensionality of the time

series, i.e. the number of eigenvectors needed for an adequate explanation of

the given time series [9]. the SVD-entropy of the time series y is calculated by

Eq. 5.17.

E(X ) = �
1

log(N )

NX

j =1

Vj log(Vj ) (5.17)

In Eq. 5.17, Vj is a normalized eigenvalue of the matrixXX T

Vj = �
s2

jP
k s2

k
(5.18)

where s2
j is an eigenvalue of the matrixXX T .

X is a matrix that is obtained by conducting a delay-embedding operation known

as the Hankelization of the time seriesH � (x), shown in Eq. 5.19 with the delay

parameter � , [95].

H � (x) =

2

6
6
6
6
6
6
4

y1 y2 � yN � � +1

y2 y3 � yN � � +2

...
...

. . .
...

y� y� +1 � yN

3

7
7
7
7
7
7
5

(5.19)

Fisher information (FI) [225] is a measure of information content in data. FI

quanti�es the amount of information the data represents about an unknown pa-

rameter and determines how much information can be obtained about an unknown

parameter from a speci�c amount of data.
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For the time seriesX and its associated density functionf y;� (y) that depends on the

parameter � 2 � and � k the k-th element of � , FI is calculated in our implementation

using Eq. 5.20

F I (f y;� ) � k =
Z

f y;� (y)
�

@ln f y;� (y)
@�k

� 2

dy (5.20)

FI is a function of the variability of the data in such a way that variability has an

inverse relationship with FI, meaning that high variability leads to low FI [224].

Also, in contrast to Shannon entropy that is a general measure of smoothness, FI

provides a local measure of smoothness, since FI is calculated based on the derivative

of the probability distribution function (PDF) [54]. Therefore, in comparison with

Shannon entropy, FI has more sensitivity to perturbations that a�ect the PDF. A

considerably disordered time series exhibits a uniform (or unbiased) PDF that is

wide and smooth and thus, is an indication of unpredictability [54]. This is an

indication of low predictability or low values of FI. In contrast, a time series with a

solid structure (or a small degree of disorder) shows bias to certain states and the

PDF is steeply sloped about these states, leading to a high FI.

Normality tests are used to determine whether a data set follows the normal distri-

bution. In this research, we use Kurtosis, Skewness and the Gaussianity of the Dif-

ferences (GoD) to measure the normality of the generated time series [90].Kurtosis

measures the number of outliers in the dataset with respect to a normal distribu-

tion: when Kurtosis is high, the dataset has a higher number of outliers (heavy tail

in the distribution); when kurtosis is low, the outliers are low to none (light tail).

Skewnessmeasures the symmetry of the distribution: when positive, the distribu-

tion has a longer or fatter tail on the right side; when negative, the left side of the

distribution has a longer or fatter tail; when zero, the distribution is symmetrical.

GoD measures the normality of the distribution of the �rst lag di�erence (change)

of the time series. In this research normality was measured using the Shapiro-wilk

test [220].
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5.5 Evaluation

5.1.

In this section, we examine the disparity of 53,637 time series each has a length

between 400 and 45,000 samples that were generated using the approach outlined

in section 5.3. To create each time series, �rst, the implementation method of

each time series component (Trend-cycle component, seasonality and Irregularity)

is chosen. For example, Trend-cycle component= Linear-sinusoidal, seasonality =

step-wise and irregularity= fractional Brownian noise. In the next step, coe�cients

and constants in the implementations of these components are speci�ed. At the end,

the created time series components are combined into a single time series using a

model chosen from Table 5.1. Initially, we use individual histograms to graphically

represent the diversity of the generated time series for each feature. We then evaluate

the diversity of the combined set of features using the multivariate entropy score

presented in [214]. Finally, we propose an alternate metric which measures the

coverageof the dataset within the metric feature space. A number of examples of

the generated time series are depicted in Fig. 5.8.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.8: Examples of the generated series

One approach to improve this section can be to compare the diversity of our series

with that of famous time series repositories such as Kaggle. However, some of our

features such as Spectral entropy require stationarity as a pre-requisite prior to
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the implementation of the algorithm. Also, we used DFA analysis which requires a

su�ciently long time series in order to produce valid results [254]. In [8], the authors

suggested that a time series of 256 samples is insu�cient for reliable application of

DFA analysis. Our experiments showed that many of kaggle time series cannot

be stationarized by a simple di�erencing and need to be studied for stationarity,

individually. Also, a large number of kaggle time series are short series for which

DFA analysis cannot o�er accurate results. An appropriate study on Kaggle time

series requires conducting various stationarization strategies as well as dealing with

the small sample size problem in DFA analysis. Due to some limitations such as

time and computing power and man power, performing experiments on kaggle time

series is beyond the scope of this research. We will consider this as a priority step

in the future works.

5.5.1 Visualizing Diversity using Histograms

The diversity of the generated time series can be visualized using histogram graphs.

A histogram is a two dimensional bar chart that represents the distribution of data

over a continuous interval where each bar displays the frequency of the data at the

corresponding interval.

The Detrended Fluctuation Analysis (DFA) method was applied to the generated

series in order to calculate LRD with the LRD histogram shown in Fig. 5.9.

This demonstrates that the generated synthetic series contain negatively-correlated

0 < � < 1
2 , white-noise � ' 1

2 , positive correlation 1
2 < � < 1, Pink noise � ' 1,

Brownian motion � ' 3
2 and unbound non-stationary time series and thus, encapsu-

late all forms of long range dependence. Note that our interpretation from diversity

is not to have a uniform distribution of values over (0; 2), but we expect to have at

least one sample for each bin in the histogram shown in Fig. 5.9.

We evaluate the complexity of the generated series using Shannon, Spectral and

SVD entropies. Fig. 5.10 shows that for the generated series, Shannon entropy

can take a value between 8.6 and 14.5, and 95% of the time series have an entropy
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Figure 5.9: Results for LRD Metric (DFA)

Figure 5.10: The histogram of Shannon entropy

between 9 and 12.

The histogram of the Spectral entropy is shown in Fig. 5.11. In practice, based

on [255], spectral entropySEnt represents the uniformity of the power spectrum

distribution and greater values report that the power spectral distribution of the
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Figure 5.11: The histogram of Spectral entropy

signal is closer to the uniform distribution. Fig. 5.11 shows that a large number of

the series show low spectral entropy 0< SEnt � 1 and also a large number of series

show a very high spectral entropy 1< SEnt .

Figure 5.12: The histogram of SVD entropy

The results shown in Fig. 5.12 suggest that almost 50% of the generated series are
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very complex (SVD Entropy � 1); some series are slightly complex (low values of

SVD entropy correspond to non-uniform distribution of the singular values which is

an indicator of low-complexity); and the rest of the series have mid-to-high degree

of complexity. Therefore, Fig. 5.12 shows that we have low-complex, mid-complex

and highly complex series. Although the number of series in these three categories

are not equal and the spread is not uniform, but our interpretation from diversity

is to have at least one time series in each category.

Figure 5.13: Results for Stationarity

The distribution of the p-values reported by the Dickey-Fuller stationarity test is

shown in Fig. 5.13. A p � value � 0:05 indicates that the series is stationary and

results show that a signi�cant number of series� 40% fall into this interval. There

are also numerous series with ap � value � 0:05 demonstrating that the generated

series contain both stationary and non-stationary time series.

In Fig. 5.14, the Kurtosis results show the expected diversity of negative (series

of light tails or series of no outliers), zero (occasional outliers) and positive values

(series of heavy tails or series with signi�cant or numerous outliers). This is a strong

indicator of diversity across the datasets.

Skewness results are presented in Fig. 5.15, and show a large number of time series
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Figure 5.14: Results for Normality (Kurtosis)

Figure 5.15: Results for Normality (Skewness)

with negative skewness (series with a fatter or longer tails on the left side), zero

skewness (series of symmetrical distribution) and positive skewness (series of heavy

or long tails on the right side). Once again, this indicates a high level of diversity

across the datasets.
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Figure 5.16: Results for Normality (GoD) or the p-values p-value from Shapiro Wilk
test

Fig. 5.16 illustrates the distribution of the gaussianity of the di�erences. A p-value

of 1 indicates that the series follow a normal/Gaussian distribution and a p-value

of 0 indicates non-normality. The results show the generated series cover the entire

range between zero and complete normality and thus, demonstrates a high level of

diversity for the generated series.

The histogram of the Fisher information metric for the generated time series is

shown in Fig. 5.17. The histogram of the Fisher information shows that for a

large number of series, FI is close to zero. This indicates that these series are

characterized by highly complex structures in the series and thus, exhibit a limited

degree of predictability. The �gure also shows that the dataset covers a wide range

of values between 0 and 1 and thus, the dataset contains time series of various

degrees of predictability.

Summary. Overall, the histogram graphs provide visual evidence of the diversity

of individual features. Our results indicate that the synthetic time series show

an acceptable diversity over individual features. Additionally, the entropy metrics

indicate that our series are generally of high complexity.
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Figure 5.17: Results for the Fisher Information

5.5.2 Multivariate Entropy Score

For this part of our evaluation, we employed a Multivariate Entropy Score for diver-

sity, that incorporates multiple evaluation metrics of the entire synthetic dataset.

The Multivariate Entropy Score is based on Shannon's entropy function which is

frequently incorporated to measure the amount of information in an encoded mes-

sage [214].

H (X ) = �
SX

i =1

p(x i ) log p(x i ) (5.21)

The function is shown in Eq. 5.21, wherex1; x2; :::; xS are the possible values ofX ,

p(x i ) is the probability of observing x i or X = x i and S is the number of categories

for an individual metric.

Our interpretation of diversity is interpreted as a measure of evenness[214], which

provides a normalized value forH (X ) based on its maximum, and shown in Eq.

5.22.

103



Hmax (X ) = �
SX

i =1

1
S

log
1
S

= log S (5.22)

Therefore, the diversity of feature X is calculated by Eq. 5.23.

HE (X ) =
H (X )

Hmax (X )
= �

1
logS

SX

i =1

p(x i ) log p(x i ) (5.23)

As shown in Eq. 5.23,HE (X ) is obtained by dividing H (X ) by Hmax (X ) which is

a type of standardization of H (X ) to take a value between 0 and 1. As a result, the

diversity of feature X is explained as a value between zero and one.

Assuming that all features have the same signi�cance, the diversity for a multivariate

(multi-feature) dataset with k features can be obtained using Eq. 5.24, whereH

will range between 0 (zero diversity) and 1 (maximum diversity).

H =
1
k

kX

i =1

HE (X k ) (5.24)

Due to the presence of a correlation between some of the metrics, only 5 metrics were

chosen to be used for assessing the diversity including: Spectral Entropy, Kurtosis,

Skewness, GoD and DFA. In order to implement this metric, each feature was cat-

egorized into buckets/zones that have been traditionally used by researchers. The

categorization of the features, later shown in Table 5.3, are as follows:

� Spectral Entropy was categorized into three categories including A:X < 1,

B:1 � X < 9 and C:9� X .

� Kurtosis was categorized into three categories including A:X < � 0:3, B:� 0:3 �

X < 0:3 and C:0:3 � X , based on [228].

� Skewness was categorized into three categories including A:X < � 0:3, B:� 0:3 �

X < 0:3 and C:0:3 � X , based on [228].

� GoD was categorized into two categories including A:X < 0:02 and B:0:02 �
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X .

� DFA was categorized into seven categories including A:X < 0:45, B:0:45 �

X < 0:55, C:0:55 � X < 0:95, D:0:95 � X < 1:05, E:1:05 � X < 1:45,

F:1:45 � X < 1:55, G:1:55 � X .

Table 5.3 shows the breakdown of the proportion of series that belong to each of the

categories outlined above. An N/A implies that this category is not appropriate for

that metric.

Table 5.3: Proportion of dataset relative to time series characteristic

Feature A B C D E F G

Spectral Entropy 0.42 0.28 0.29 N/A N/A N/A N/A

Kurtosis 0.59 0.25 0.15 N/A N/A N/A N/A

Skewness 0.07 0.58 0.35 N/A N/A N/A N/A

GoD 0.70 0.3 N/A N/A N/A N/A N/A

DFA 0.017 0.012 0.092 0.035 0.190 0.067 0.584

Table 5.4: H scores for each metric

Feature H (X ) Hmax HE

Spectral Entropy 1.55 1.58 0.98
Kurtosis 1.366 1.58 0.86
Skewness 1.25 1.58 0.79
GoD 0.88 1.00 0.88
DFA 1.837 2.80 0.65

Table 5.4 shows theHmax and HE of each metric for the full dataset. These interim

results are used to calculate the diversity as our �nal evaluation is to measure the

diversity and coverage rate. Here,H (X ), Hmax and HE which were obtained using

equations 5.21, 5.22 and 5.23, and show that the level of diversity for each of the

metrics examined ranges between 0.65 for DFA to 0.98 for Spectral Entropy. Based

on Table 5.4 and Eq. 5.24, the overall diversity scoreH for the dataset was0.83.

The obtained diversity , ie. 0.83, is very close to 1 (as the maximum possible value)
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and far from zero (as the value for a zero diversity), which demonstrates that our

dataset exhibits a signi�cant level of diversity.

5.5.3 Metric Space Coverage

The feature space for the data is identi�ed as all potential category combinations

of the metrics outlined above in Table 5.4. Apart from the the evennessaspect of

diversity which was measured in the previous section, diversity must be measured

in terms of the coverageof the feature space. This issue has not received attention

in the literature and in our view, must be considered when aiming for a diverse

dataset. Assume that featuref 2 F , hasn categories. For a feature setF of sizeM

(M is the number of features), where each featuref i has ni categories, the number

of possible combinations (or the feature space size)f S is obtained by Eq. 5.25.

FS =
mY

i =1

ni (5.25)

It is then necessary to check if a speci�c combination of features exists in the dataset.

Note that we do not have control over all the features when creating a time series.

We only determine the initial Hurst value of the irregular component, the values of

the coe�cients, the combination model, the length of the time series, and measure

the features on the �nal time series. The coverage forj th category of feature f i

(1 � j i � ni ) is indicated by C(i; j i ) and calculated by Eq. 5.26.

8
<

:

C(i; j i ) = 1 Combination exists

C(i; j i ) = 0 otherwise
(5.26)

Therefore, the Coverage Rate (CR) for the entire dataset is calculated by Eq. 5.27.

Based on Eq. 5.27, CR is always between zero and one, or more precisely 0< CR �

1. The highest possible value for the coverage rate (CR) is 1, which indicates a full

coverage. The lowest value for CR, however, is always greater than zero on a non-

empty dataset, as a non-empty dataset always contains at least one combination.
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CR =

MP

i =1

n iP

j i =1
C(i; j i )

f S
(5.27)

For this evaluation, we selected a measure of diversity that reects thepercentage

coverageof the samples over thepotential feature space. Using Table 5.3, there are:

3 categories for spectral entropy; 3 categories for Kurtosis; 3 categories for Skewness;

2 categories for GoD; and 7 categories for DFA. Thus, based on Eq. 5.25, there is a

total of (3 � 3 � 3 � 2 � 7) 378 possible feature combinations (f S=378).

Fig. 5.18 shows the number of time series where a speci�c category was represented

by our synthetic data while Fig. 5.19 shows the coverage of categories that the

dataset represented.

Figure 5.18: Number of series in each category

In Fig. 5.18, the horizontal axis entitled as "category id" represents 378 di�erent

categories of time series each corresponding with a unique combination of features,

and the vertical axis represents the number of series attributed to the corresponding

combination of features.

Based on Eq. 5.26 (as shown in Fig. 5.19 ), our 50K dataset has at least one time

series for 272 combinations (out of the 378 possible combinations) and thus, based

on Eq. 5.27, the coverage percentage for our dataset is 72%. This demonstrates

that our dataset exhibits a signi�cant level of coverage over the feature space and

thus, is an appropriate benchmark for time series prediction algorithms assessment.
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Figure 5.19: Coverage

Sensitivity Analysis

We also performed a sensitivity analysis on the categories of Spectral density and

GoD, for which we did not provide references supporting our choice of categories.

First, the threshold for GoD has been changed from 0.02 to 0.05, and thusp(GoD <

0:05) = 0:71 and p(0:05 � GoD) = 0 :28. As a result, the Multi-variate Entropy

Score = 0:834 and the coverage rate = 0:719. Second, the number of categories in

Spectral entropy has been changed from 3 to 2 categories, and the threshold has been

set to 1. Thus, p(SpectralE ntropy < 1) = 0 :425 and p(1 � SpectralE ntropy ) =

0:575. As a result, the Multi-variate Entropy Score = 0:830 and the coverage rate

= 0 :821. Note that Spectral entropy does not provide a standard (a value between

0 and 1) metric. In order to address this issue, we replaced Spectral entropy with

SVD entropy (SVDEnt), with three categories: A = SV DEnt < 0:2 , B = 0 :2 �

SV DEnt < 0:8 , and C = 0 :8 � SV DEnt [241]. As a result, the Multi-variate

Entropy Score = 0:779 and the coverage rate = 0:7248.

5.6 Conclusions

Researchers using time series data are often faced with the problem of insu�cient

data for the purposes of testing and validating their algorithms. In this Chapter, we

presented a methodology for the creation of a large number (53,637) of time series

which are made available to the research community [20]. Their construction had
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an emphasis ondiversity and a validation framework to ensure a robust evaluation

of the synthetic datasets created. Our method comprised 5 well-known time series

features and used a multivariate entropy measure to examine the diversity of the

created time series based on these �ve features. The experimental results showed

that our overall dataset measured diversity at 83.4%, which we believe to be a

signi�cant achievement. We have also proposed a new diversity assessment measure

called thecoverage ratewhich reects the coverage of the dataset over the full feature

space. The results show that our series exhibit a coverage rate of 72%, which delivers

a signi�cant contribution for such a large dataset.
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Chapter 6

A Meta-Learner for MSAP

Model Selection

In the �nal part of the 3-step approach to this research, we turn our attention to the

requirement for a meta-learning process which attempts to select the best performing

model from a set of candidate models. We begin with an introduction in section 6.1

where we discuss challenges and our contribution to tackling this particular problem.

In section 6.2, we formalize a methodology that helps identify an appropriate time

series prediction method based on a meta-analysis of the characteristics of that time

series. In section 6.3, we implement our proposed strategy to provide a validation of

its strengths and weaknesses. We �nish this Chapter by providing some conclusions

in section x6.4.

6.1 Introduction

With the increase in the number of available time series prediction methods, the

complexity in time series model selection becomes more acute. Generally, the de-

cision process required when choosing a method can involve a detailed assessment

of the time series using metrics such as those outlined in Chapter 5. Even when
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using 5 metrics as in our experiments, the number of possible combinations of the

discretized time series characteristics rose to 378.

As discussed in Chapter 2, there seems to be two broad approaches to �nding pre-

diction solutions: parametric and non-parametric estimation methods. Parametric

methods such as ARIMA have proven to be successful in the past. However, there

is an increasing trend in the use of non-parametric machine learning approaches,

which in theory make less assumptions about the distribution of the data [129]. In

practice, machine learning approaches require a substantial amount of computation

time and convergence has been found to be an issue, as there often exists a high

level of non-linearity in the solution space [170].

Each time series dataset has a unique set of time series characteristics, and as

stated in Chapter 2, over the complete time series feature space no one method

outperforms all others. This phenomenon is known as the "no free lunch" theorem

[272]. Traditionally, practitioners have used their own expert knowledge to relate

time series to an appropriate model [222]. However, this solution is now becoming

less appropriate with the growing number of models available and thus, requires an

automated approach to identify candidate methods using metadata collected from

a time series [156]. Thus, in this �nal part of our research, we propose a model

selection approach that takes a set of time series features as inputs and estimates

the performance of a given prediction method.

Finding the appropriate prediction method for a given dataset is a continuing chal-

lenge in time series prediction problems. Generally, it requires the researcher to

match the time series characteristics with the most appropriate models. This �eld

of study is known as Meta-Learning and requires the researcher to characterise a

time series with a number of metrics, which are then used in the selection process

of an appropriate algorithm. A meta-learner is typically developed using a classi�er

such as a Support Vector Machine (SVM) or a decision tree.

Time Series analysis has traditionally been implemented using parametric tech-

niques, which have relied upon method speci�c assumptions being met. With the
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advent of machine learning in time series analysis a considerable number of new

approaches have become available to researchers. Theoretically, machine learning

approaches have no prede�ned assumptions but in practice, it has been shown that

methods like RNNs outperform NNs when there is long term memory in the time

series. Additionally, if the solution space for the individual method is close to lin-

ear, then parametric methods should have comparable predictive performance to

machine learning techniques [87]. In this research, we propose a Meta-Learning

strategy that attempts to identify appropriate time series prediction methods from

a list of well known and popular approaches. We use ARIMA, NN, SVR, LSTM

and RNN as the candidate models. It should be noted that SVR, LSTM and RNN

have not been included in previous Meta-Learning studies. In addition, the existing

Meta-Learning studies have predominantly focused on one step ahead prediction

strategies while the focus of our research is multi step ahead prediction. Finally, our

approach also focuses to the problem of hyper-parameter selection which has not

received signi�cant attention in the literature.

Challenges.

While the use of meta-learning in times series is gaining traction, there are still chal-

lenges to be addressed. We highlighted in Chapter 2 that the majority of research

e�orts in meta-learning for prediction method selection, did not include machine

learning techniques as candidate models but chose to focus on parametric methods.

Furthermore, studies such as [156] which used machine learning techniques as candi-

date models, did not address the complexities arising in the training phase of these

techniques. What was also shown in the literature review in Chapter 2, was that

existing meta-learning strategies have not addressed issues caused by feature space

coverage, hyper-parameter selection or model uncertainty caused by the random

initialisation phase in machine learning prediction models.

In Chapter 2, we reviewed how previous approaches have not used state of art

techniques, such as SVR, RNN and LSTM, as candidate models in their meta-

learning strategies. While we intend to adopt these approaches, choosing hyper-
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parameters and initial random assignments of the input weights will have an impact

on the capacity and performance of the model and thus, can adversely a�ect the

models rating when compared to other approaches. This will require the usage of

bootstrapping to help alleviate the problems caused by hyper-parameter selection

and model uncertainty.

Contribution.

This research proposes a Meta-Learning strategy that can be used to help identify an

appropriate multi step ahead prediction (MSAP) approach, given a particular set of

time series features as inputs. One important di�erence between our approach and

the existing approaches is that unlike existing approaches which use classi�ers in the

meta-learner, we use a regression model to implement the meta-learning strategy.

Using this regression model we estimate the performance of the given candidate

models on a given time series. This will give the practitioner the exibility to avoid

the uncertainties involved in relying on a single preferred prediction model.

In Chapter 5, we presented a range of metrics that are currently used to interpret, un-

derstand or describe a time series dataset. These metrics have been used (partly) as

input features in the training of the learning component for previous meta-learning

learning strategies and a selection of them will be used in this research to implement

meta-learning. In the validation phase of this part of our research, we show that

these metrics such as DFA, Hurst Exponent, and Shannon entropy, can be used as

inputs to identify the MSAP method with the lowest normalized Mean Square Error

(nMSE), and incorporate two MSAP strategies in our analysis: REC and MRFA.

Finally, we include an approach to manage hyper-parameter selection to address

issues of poor performance.

6.2 Meta-Learning Methodology

The principle behind the meta-learning is based on identifying an appropriate multi

step ahead prediction (MSAP) method given a set of characteristic metrics taken
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from a speci�ed dataset. Inputting these metrics into a pre-built model results

in a recommendation. For this part of our research, we use a regression model to

implement meta-learning. However, we may refer to the proposed model by di�erent

terms such as meta-learner or the prediction model selection approach.

Our approach is designed to model the performance behavior (error) of a prediction

model with respect to a set of time series meta-features. This provides us with

a system that has the generalization ability to estimate the performance of the

prediction model on unseen time series. In e�ect, it will attempt to estimate the

error of a given model with respect to the meta-features of a given series, and can

be broken down with the following components as part of the overall architecture:

� Input Features: a set of time series features listed in section 6.2.1.

� Candidate Model Pool: the set of MSAP models outlined in section 6.2.2.

� Hyperparameters Settings: hyperparameters for each model as explained in

section 6.2.3.

� Standardized error: the error metric that is independent of the magnitude of

the signal, explained in section 6.2.4.

� Regression machine learning model: The regression model used for implement-

ing the meta-learner which is described in section 6.2.5.

In our proposed approach, the goal of the meta-learner is to approximate a function

denoted byG. Formally, G calculates theerror of the modelm when used to predict

a given time series with the set of time series meta-featuresF . The output of the

meta-learner is described by Eq. 6.1, whereG is the solution of model m on with

features F .

error = G(m; F ) (6.1)

114



6.2.1 Input Features

The input meta-features used in this research for implementing our Meta-Learner are

listed below and fully described earlier in Chapter 5, where diversity was discussed

in terms of time series characteristics.

� Shannon Entropy: For a signal y with sample sizeN , sample entropy is the

negative logarithm of the conditional probability that a sub-series of length

M matches point-wise with the next point with tolerance (distance less than)

r .

� Spectral entropy: Spectral entropy is calculated using Shannon entropy and

quanti�es the spectral complexity or randomness of the power spectrum of the

time series over a long period of time.

� SVD entropy: SVD entropy is an indicator of the dimensionality of the time

series, i.e. the number of eigenvectors needed for an adequate description of

the given time series.

� Fisher information (FI) is a measure of information content in data. FI

quanti�es the amount of information the data represents regarding unknown

parameters and determines how much information can be obtained from a

speci�c amount of data.

� Kurtosis measures the number of outliers in the dataset with respect to a

normal distribution: when Kurtosis is high, the number of outliers is high;

when kurtosis is low, the number of outliers is low or zero.

� Skewness measures the symmetry of the distribution.

� Gaussianity of the Di�erences (GoD) measures the normality of the dis-

tribution of the �rst lag di�erence of the time series. We implemented the

Shapiro-wilk test.

� The Hurst exponent H attempts to explain LRD as a property of stochastic

self-similar processes.

115



� Detrended Fluctuation Analysis (DFA) is a method for evaluating the

statistical self-similarity of a signal.

� Stationarity can be de�ned as the state where the statistical properties of the

given time series such as mean, variance and auto-correlation remain steady

over time.

6.2.2 Candidate models

As stated previously, the objective of our meta-learning approach is to estimate

the nMSE based on a proposed multi-step ahead predictionMSAP . However,

an MSAP approach consists of two components: the MSAP strategy (e.g., re-

cursive REC or multi-resolution forecast aggregation MRFA ), and the prediction

model (e.g., neural networkNN, recurrent neural network RNN and support vec-

tor regression SVR). The prediction model is the core computational element of

an MSAP strategy and thus, an MSAP strategy (recursive REC, direct DIR and

multi-resolution forecast aggregation MRFA ) can be implemented using di�erent

prediction models. For instance, REC, DIR and MRFA (as MSAP strategies) can

be implemented using either NN, RNN or SVR. Therefore, any MSAP approach is

a (Strategy-model) strategymodel combination like REC NN , REC SV R, REC RNN ,

DIR NN or MRFA RNN . In this research, we refer to eachStrategymodel combi-

nation as a separatecandidate model. We now provide a brief description of each

model used in our experiments and validation.

MSAP Strategies. We previously reviewed existing MSAP strategies and dis-

cussed their strengths and limitations in Chapter 2. We learnt that except for the

recursive strategy (REC), all others su�er from intermediate information loss due

to discarding serial correlation. We developed MRFA based on the principles of

the recursive strategy (REC) to improve the accuracy of MSAP. We now focus on

REC and MRFA as the core MSAP strategies for the meta-learner, since they were

developed to retain serial correlation when making predictions.

Prediction models. In Chapter 2, we reviewed the current state of the art time
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series prediction models including ARIMA, SVR, NN, RNN, and LSTM. In this

research, we are speci�cally interested in using machine learning approaches as can-

didate models due to their recent popularity and success in time series prediction

application. We will �rst briey study the use of these models in the past meta-

learning studies (focusing on time series prediction). Table 6.1 investigates the use

of the current state of the arts prediction models in the past meta-learning studies;

wherein at least one machine learning prediction method was used in their set of

candidate models.

Table 6.1: Candidate Models used in existing Meta-Learning Approaches

Works Year ARIMA SVR NNs RNNs LSTM

[262] 2009 X 7 X 7 7

[212] 2010 X 7 7 7 7

[156] 2010 X 7 X X 7

[215] 2011 X 7 7 7 7

[269] 2013 X 7 7 7 7

[89] 2014 X 7 X 7 7

[147] 2016 7 7 X 7 7

[238] 2016 X 7 X 7 7

Table 6.1 shows that ARIMA has been the most popular candidate model, followed

by NN. RNN was used once, in spite of its widespread popularity in time series

analysis over the past decade. SVR and LSTM have not been studied as candidate

models in the past meta-learning studies. However, LSTM has recently received

considerable attention in time series prediction applications, primarily due to its

ability to handle long term memory. Also, SVR has been widely used for prediction

purposes in time series studies, because of its good generalization abilities. Our

reasons for using ARIMA, NN, RNN, SVR and LSTM is described below, with

Table 6.2 summarising the strategy-model combinations that are used as candidate

models in this research.

ARIMA [47] has been a very popular prediction model in the time series commu-

nity and has shown a powerful prediction ability among the stochastic prediction
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Table 6.2: Strategy-Model Combinations for Candidate Models

Engine n Strategy REC MRFA

ARIMA REC ARIMA |

SVR REC SV R MRFA SV R

NN REC NN MRFA NN

RNN REC RNN MRFA RNN

LSTM REC LST M |

models. ARIMA pays a particular attention to the autocorrelation structure in the

time series and thus is an important prediction model. ARIMA is a parametric

model and is not able to capture the non-linear structure of time series. Di�erenc-

ing has been widely used to remove long term components such as the nonlinear

trend-cycle component. However, when dealing with a nonlinear trend-cycle com-

ponent, di�erencing can leave unknown non-linearities in the results. Since ARIMA

is incapable of implementing forward smoothing, it cannot be used for modeling

ROI and thus, ARIMA cannot be used as the model in MRFA. ARIMA was only

implemented in the REC strategy (REC ARIMA ).

SVR [189] is gaining popularity due to its good generalization ability and its low

complexity. We used SVR in our implementation due to the following: its ability in

solving high-dimensional problems; SVR avoids local minima and over�tting prob-

lems; and it needs less a priori known parameters in comparison with ANN [233].

We used SVR to implement both REC and MRFA (REC SV R and MRFA SV R).

A Neural Network [73] was added to the candidate pool due to its widespread

popularity in time series prediction community. The biggest challenge in imple-

menting the NN models is the choice of hyper-parameters. We used NN with both

REC and MRFA strategie: We have both REC NN and MRFA NN .

A Recurrent Neural Network [75] is a powerful machine learning technique for

solving sequential problems. The incorporation of feedback recurrent weights in the

structure of RNNs allows them to keep track of long historical mid-term results of
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the network. We used RNN due to its ability in processing sequential data. RNN

was used with both REC and MRFA strategies (REC RNN and MRFA RNN ).

LSTMs [118] are increasing in popularity because of their ability to avoid the

vanishing/exploding gradient in RNNs which allows LSTM to process longer term

memories. We used LSTM to implement REC but due to the lack of su�cient

computational resources, we could not use LSTM to implement MRFA: (we only

have REC ARIMA )

6.2.3 Machine Learning Hyper-Parameter Tuning

In this research, we have a particular interest in using machine learning candidate

models such as NN, SVR and RNN, which were originally developed to learn from

the data and thus, are forced to address two major issues: 1-the choice of hyper-

parameters and 2-Selection of the validation set.

Hyperparameters Selection. In machine learning problems, hyperparameters

are the non-learned parameters which control the capacity of the model for learn-

ing the dynamics of the given problem. Hyperparameter optimization has been

identi�ed as one of the major challenges in the relevant literature. However, it is

a time consuming and computationally expensive task and thus, hyperparameters

optimization is impractical when a large volume of prediction experiments should

be implemented. To build a meta-learner for prediction method selection, a large

number of time series should be predicted by a number of candidate prediction mod-

els. Therefore, applying hyperparameters optimization to each candidate model for

each individual time series is a computationally demanding and hence, impractical

task.

Validation Set Selection. When training a machine learning prediction model,

the given dataset is split into two sets: the training set and the validation set.

The validation set is used to avoid over�tting and check if the learning objective is

reached. Selection of the validation set is another task in machine learning problems

that should be managed carefully in order to avoid over�tting.
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In this approach, to resolve the problem of hyperparameter tuning for each pre-

diction model, we propose the following strategy: for each hyper-parameterhi

(1 � i � I ), a set of choicesci is considered and the model's error (in terms of

nMSE ) is recorded for all the possible combinations of hyperparameters (a total of
Q I

i =1 ci combinations). At the end, the averagenMSE is reported.

However, for each individual combination of the hyper-parameters, we measure the

error (nMSE ) using a bootstrapping process in order to avoid over�tting. In a

bootstrapping process, a number ofk=5 validation sets are randomly selected from

the data and the average prediction error over the selected set is reported. These

validation sets are out of sample continuous bootstrapped samples.

Depending on the choice of hyperparameters, machine learning models can exhibit

instability at the output, meaning that the model produces a di�erent output at

each experiment (given the same input). This instability is due to the incorporation

of random initial weights (for instance in neural networks), which is a part of the

learning algorithm. To overcome the output's instability, we repeat each experiment

d=10 times and report the average error (nMSE ).

Therefore, the total number of experiments is calculated by Eq. 6.2, whereN is the

number of the available candidate models, andI j is the number of hyper-parameters

in the j th candidate model.

N Experiments = d � k �
NX

j =1

I jY

i =1

ci (6.2)

Hyperparameters Variables. For each series, the order of theARIMA (p; d; q)

model was obtained using the exact maximum likelihood using a Kalman �lter. A

detailed discussion on optimal ARIMA models is beyond the scope of this research

and is expanded upon in detail in [279,291]. The ranges of the hyperparameters used

in the evaluation of machine learning models this research are outlined as follows:

� The Lags or simply the size of the sliding window employed to predict the

given time series, ranges from 4 to 12 steps backward.
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� The set of neurons in the hidden layer of the NN model wasf 4,6,8,10,12g.

� The number of Neurons in the hidden layer of the RNN model wasf 4,6,8,10g

and the number of recurrent connections wasf 1,2,3,4,5,6,7g.

� The C-value for the SVR model ranges wasf 0.1,0.5,1,10,100,1000g.

� The number of cells in the LSTM model wasf 6,8,10,12g.

Note that for seasonal data the lag might be 24 or 365. However, we assume that

there is no prior knowledge about the size of seasonality. If the size of seasonality

is known, the signal should be deseasonalized before making predictions.

6.2.4 Standardized Error

As stated previously, the initial goal of the meta-learner is to estimate the error

of a candidate prediction model given a certain set of time series meta features.

To implement our method, an error metric is needed to represent the prediction

accuracy of candidate models that is independent of the magnitude of the signal.

The Mean Squared Error (MSE) is the most popular metric of prediction accuracy in

regressions models and is calculated based on the signal's magnitude, 6.3. However,

this metric must be standardized in order to relate each machine learning methods

performance, as it incorporates a scale dependency with the original series.

nMSE =
1
N

NX

i =1

(
yi � t i

Max (y) � Min (y)
)2 (6.3)

This research makes use of the normalized MSE (nMSE) to overcome the problem

of scale dependency in the MSE. The nMSE provides independence of scale, and is

calculated using Eq. 6.3. In order to improve the performance of our Meta-Learner,

we trained it using log(nMSE ).
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6.2.5 The Regression Model

In order to predict the candidate model error for a given time series, a machine

learning regression approach needs to be implemented on the results of each can-

didate model (strategy-method combination) implementation for each series. The

features of each series and a machine learning regression model (the meta-learner)

will then be used to predict the nMSE value. The schematic view of our regression

based Meta-Learner is shown in Fig. 6.1, where time series features and candidates

from the Model Pool are fed into the regression model which generates a score for

each combination.

Figure 6.1: Schematic View of Regression based Meta-Learner

The Meta-Learner can be implemented using any machine learning regression model

such as NN or SVR, that approximates a real-valued variable (nMSE of of a can-

didate model) given a set of features. However, to provide better accuracy, our ap-

proach used an Ensemble regression model. A lot of studies into ensemble methods

have been carried out and they tend to assert that an ensemble regression approach

(with combining multiple regression models) presents a better generalization ability

than individual models [59, 161]. Ensemble approaches have shown an enhanced

robustness to noise and stability in comparison to single regression techniques [59].

Thus, we developed the meta-learner using Random Forest regression which is a

well-known ensemble technique in the research community [161]. The Random For-

est Regressor is a bagging ensemble technique and works based on regression trees.
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The idea behind bagging techniques is that combining multiple methods will improve

the accuracy. The RF regression approach can be considered as a meta-estimator

that integrates the results of multiple prediction methods to give more accurate re-

sults. The learning algorithm of The Random forest regression allows the regression

tree components to grow to the maximum depth of the data using a combination of

variables, and will not be pruned back.

Studies such as [201] argue that choosing an appropriate pruning method is a more

inuential factor than the variable selection metrics for determining the performance

of tree based algorithms [201]. However, the authors in [50] showed that as the

number of regression trees in the Random Forest increases, the generalization error

always converges even without pruning the regression trees and over�tting is not a

problem due to the Strong Law of Large Numbers [88].

A Random Forest (RF) regression approach receives an input vectorX = x1; x2; :::; xp,

wherep is the number of input features. The RF regression approach then createsK

regression treesT1(x); T2(x); :::; Tk (x) wherein each time all the regression trees es-

timate one speci�c actual value Ŷ1 = T1(X ); Ŷ2 = T2(X ); :::; Ŷm = Tm (X ). Finally,

the RF regression approach returns an average of all the outputs from the regression

trees as the �nal output, using Eq. 6.4.

Output RF (X ) =
1
k

KX

k=1

Ŷk (X ): (6.4)

As shown in Fig. 6.2, the Random Forest Meta-Learner has two sets of inputs: time

series features and candidate prediction models. It means that our meta-learner

is trained to estimate prediction error for multiple candidate models. In order to

improve the performance of our (RF-based) Meta-Learner, the candidate models

are fed to the Meta-Learner using a binary feature vector of sizeJ � 1, where J

indicates the number of available prediction models. The encoding ofJ candidate

models into the binary feature vector is illustrated in Fig. 6.3.

As shown in Fig. 6.3, the binary feature vector can only contain one non-zero
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Figure 6.2: Random Forest Meta-Learner

element at a time. The �rst candidate model is represented by a vector of all zero

elements, while the rest of the candidate models are each represented by one speci�c

non-zero element in the feature vector.

7-Step Strategy. The steps to train the Meta-Learner and recommend the pre-

ferred method is outlines as follows:

� Extract features F from time series data.

� Apply candidate prediction models M to the time series and recordnMSE .

� Train the Random Forest model usingF and M as inputs, and nMSE as the

output.

� Extract features from the test data.

� Apply the model to the extracted features for each candidate model.

� Sort the candidate models based on their estimated nMSE.

� Recommend the model that has the least nMSE.
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Figure 6.3: Encoding Candidate Models into a Binary Feature Vector

6.3 Evaluation

In this section, we present an evaluation of the meta-learner over a 20 step predic-

tion horizon. We begin with a preliminary analysis in order to best con�gure the

evaluation; then proceed to describing the experimental setup for our validation,

before �nishing with a presentation and discussion of the results.

6.3.1 Preliminary Analysis

As stated previously, the inputs to the meta-learner are the time series features and

a candidate model, with the output being the model with the appropriate nMSE.

This implies that the training dataset requires a candidate model (strategymodel )

to be implemented on each time series. For our experiments, 8 candidate models

were selected, and each of these required bootstrapping and a grid hyper-parameter

combination strategy to be applied, giving rise to a large number of estimations for

each series calculated by Eq. 6.2.

This is a considerable challenge and requires an extensive volume of computations

for each series. In order to solve this, we decided to use the time series generation

process outlined in Chapter 5 to create a synthetic dataset of time series. The

experiments in this Chapter were run on a sample dataset containing 5,819 time

series (out of the 53k series generated) due to hardware infrastructure limitations
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on this project. As discussed in the previous Chapter, understanding the diversity of

the dataset and its relevance to an overall feature space was measured using feature

space coverage and diversity (multivariate entropy). In the dataset generated for

this part of our research, we had a feature space coverage of 30 % and a diversity

of 50%.

In order to determine that the dataset was well balanced, an experiment was con-

ducted which compared a variety of MSAP model/strategy combinations. These in-

cluded MRFA (using RNNs as the core prediction model) and REC (using ARIMA,

NN, SVR, RNN and LSTM) to understand if there was a bias in the method choice

for the dataset. Fig. 6.4 compares the performance of each MSAP method on the

generated series. Each method is ranked in terms of its performance with the count

of top ranked and second placed methods shown.

Figure 6.4: Performance Analysis

The results in Fig. 6.4 illustrate that the best performing model, ARIMA, per-

formed best on only 24% of the datasets, with the MRFA model having a similar

performance, was best on 20% of the datasets. Signi�cantly, the results presented

in Fig. 6.4 demonstrate that no single method outperformed the others across all

datasets.
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6.3.2 Experimental Setup

For the preliminary analysis, we implemented the recursive strategy (REC) using

ARIMA, NN, RNN, SVR and LSTM and implemented the MRFA strategy using

only an RNN. For the main evaluation, we implement MRFA using NN, RNN and

SVR to further assess the performance of MRFA as a multi-step ahead prediction

strategy. In fact, we implemented all candidate models introduced in Table 6.1.

Note that, as stated in Chapter 4, MRFA is originally developed with RNN and this

section implementsMRFA NN and MRFA SV R for comparison purposes.

The results of applying the 8 candidate models (introduced in Table 6.1) to our

series highlighted a number of series wherenMSE > 1. Typically, the nMSE would

be expected to be between 0 and 1. However, on certain occasions it can exceed 1

when predictions become highly erratic, and is an indication of poor performance or

failure. Based on Eq. 6.3, if the di�erence between a prediction and its equivalent

target value is greater than the di�erence between the maximum and the minimum

values of the actual time series, i.e., ^yt � yt > max (Y ) � min (Y ) ( where Y is the

time series,yt is the actual value at time t and ŷt is the predicted value at time t),

then nMSE > 1. The majority of the failures was caused by the incorporation of

Brownian motion when simulating irregularity. This adds a high level of random-

ness to the time series leading to high errors. However, it also reects poor poor

prediction performance and is due to the inappropriate choice of model. For 8 steps

prediction, a total of 7450 failures were identi�ed, which is about 21:3% of the entire

dataset (34914 records). In this analysis, failures were excluded as they can bias

any proposed learner.

To investigate how successfully thegoodnessof �t for the performance estimator,

our evaluation used the Pearson's correlationR as the main performance metric [31].

Note that our model is a meta-learning model whose output in the predicted nMSE.

R was used to give a single metric for the performance of the model predictability

of the nMSE. The output of R is a value between -1 and 1, where the proximity to

1 implies that the proposed model is demonstrating a reasonable �t.R is calculated
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by Eq. 6.5:

R =
P n

i =1 (yi � �y)( ŷi � �̂y)
q P n

i =1 (yi � �y)2
P n

i =1 (ŷi � �̂y)2
(6.5)

Having built the dataset, the Random Forest regression (ensemble) approach was

used as the main approach to build the Meta-Learner and the following machine

learning approaches were also used to compare the results: NN, SVR, and Decision

Tree. We previously explained the typical architecture of NN and SVR approaches in

Chapter 2, and explained the basis of a typical Random Forest regression approach

in x6.2.5.

We implemented the NN model using a Multi-Layer Perceptron with one hidden

layer and nine neurons in the hidden layer, which was the architecture that yielded

the highest accuracy. The SVR Meta-Learner was implemented using a built-in

grid-search python library called the skit-learn [207] for optimizing C and  as the

hyper-parameters of the model. We have already described SVR, Random Forest

and Neural Networks. In this Chapter, we also use Decision Tree Regression to im-

plements meta-learner and compared the results with our Random Forest regression

model.

6.3.3 Results and Discussion

The initial implementation of the meta-learner adopted the R of the training and

test data without excluding the failures for one step ahead prediction and is shown

in Fig. 6.6 and Fig. 6.5, for the test and training data, respectively. We used a

Multi-Layer Perceptron with one hidden layer and nine neurons was trained on 80%

of the records, and the remaining 20% was used to validate the trained model.

The results in Fig. 6.5 show that if the failures are not removed from the dataset,

there will be a training bias (shown in Fig. 6.5a) on the estimation of lognMSE

resulting that a broad range of values (from -7 to 0.8) are falsely estimated as zero.
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This is crucial because it downgrades the performance of the meta-learner and leads

to inaccurate recommendations. As shown in Fig. 6.5, the training bias has led

to a signi�cant number of wrong estimations (pay attention to the vertical line of

points on the right side of Fig 6.5b). This demonstrates that the exclusion of the

failures should be considered as a pre-processing step prior to the training of the

meta-learner.

(a) Before failure exclusion (b) After failure exclusion

Figure 6.5: Actual versus Predicted values for training data before and after failure
exclusion

(a) Before failure exclusion (b) After failure exclusion

Figure 6.6: Actual versus Predicted values for test data before and after failure
exclusion

The results beforeand after excluding the failures from the test samples for one step

ahead prediction are shown in Fig. 6.6.
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Here, it can be seen that the removal of the failures from the training samples has

resolved the issue of the bias. Thus, this decision resulted in better actual versus

predicted �gures, when compared with the resultsbefore excluding the failures.

Comparing the results in Fig. 6.5b and Fig. 6.5b also illustrates that the removal

of failures has led to narrower spreads around the regression line, both for training

and test data and thus. enhanced the performance of the meta-learner.

The results are summarized in Table 6.3, showing that �ltering failures leads to a

signi�cant improvement in the R of the performance estimator. We use the Random

Forest Ensemble regression model as our proposed approach to implement the meta-

learner.

Table 6.3: R for the performance estimator

Data R (un�ltered) R (�ltered)

Train 0:814 0:934

Test 0:802 0:916

Fig. 6.7 shows the performance of our Random Forest Meta-Learner in terms of

actual versus predicted values for 9 prediction steps.
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(a) One step ahead predic-
tion

(b) Two step ahead predic-
tion

(c) Three step ahead predic-
tion

(d) Four step ahead predic-
tion

(e) Five step ahead predic-
tion (f) Six step ahead prediction

(g) Seven step ahead predic-
tion

(h) Eight step ahead predic-
tion

(i) Nine step ahead predic-
tion

Figure 6.7: The actual versus predicted values for Random-Forest Meta-Learner
over 9 Prediction Steps

These �gures represent the actual lognMSE versus the predicted lognMSE and

the closer the regression line to the identity line, the more accurate the meta-learner

is. Also, the results show that the meta-learner performs better on higher steps

ahead prediction. Note that the meta-learner estimated the performance of a pre-

diction model and we use of the log function at the output of the meta-learner. The

absolute value of the log nMSE is larger for more accurate predictions (at lower

steps) and thus the di�erence between the predicted and actual value of nMSE is

higher. Therefore, the meta-learner is more accurate in longer prediction horizons.

Regression Model Choice.
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In this research, we use di�erent methods to implement meta-learning to com-

pare their performance with our chosen RF Meta-Learner. We implemented meta-

learners using Neural Networks, SVR and Regression Decision Tree (DT). We used

trial and error to obtain the best con�guration of the used techniques as a more

formalised approach is outside the scope of this research. Fig. 6.8 compares the

performances of RF, DT, NN and SVR when employed to implement the Meta-

Learner for 20 steps ahead prediction, for both the training and the test samples.
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(a) Decision Tree ensemble re-
gression train

(b) Decision Tree ensemble re-
gression test

(c) Neural Network train (d) Neural Network test

(e) Random Forest Ensemble
train

(f) Random Forest Ensemble
test

(g) SVR train (h) SVR test

Figure 6.8: Comparing SVR, NN, DT and RF Meta-Learners in terms of predicted
versus actual results

The left side of Fig. 6.8a shows the training performances of the meta-learners and

plays an important role in our validation strategy, and demonstrates that over-�tting

is not an issue.
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Fig. 6.8a shows that, apparently, the decision tree model has over�tted to the

training data and thus, is not a reliable choice for implementing the meta learner.

Over�tting means that the model has overly �tted to the training data and thus,

the model has only learnt to reproduce the observed data and fails on unseen data.

Over�tting is not always a negative property, as many models may over�t but still

perform well on out of sample test data; In this case unseen data are not far di�erent

from the training data and thus diversity is not important. This contradicts the

purpose of our meta-learner where a generalization ability is required to predict

lognMSE for unseen data [153]. Both Neural networks and SVR have shown a wide

spread of the training points and their estimations around the regression line which

indicates a their low performance when used for implementing the Meta-Learner.

Figure 6.9: Comparison between Regression Models used in the Meta-Learner (R)

Fig. 6.9, compares the performances of the all four techniques used to implement

the meta-learner for eight step ahead prediction. It can be seen that The decision

tree has shown anR equal to one which is an indication of over�tting. Equal

performances on the training and the test sets indicate that the test samples are

very similar to the training samples and the model has only learnt to reproduce

the trained samples. Both SVR and NN show similar performance for their train
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and test sets which can be an indication of over�tting. The Fig. shows that RF

exhibits a better performance than SVR and NN both for training and test samples;

also, there is a signi�cant di�erence between theR results of the training and test

samples, which reduces the potential chance of over�tting.

Figure 6.10: Comparison between regression models for implementing the Meta-
Learner (R) over the entire prediction horizon

Fig. 6.10 compares the performances of the four machine learning techniques for

implementing the Meta-Learner over the entire prediction horizon. It can be seen

that for all the techniques used for implementing the Meta-Learner, the performance

degrades as stepping towards the end of the prediction horizon. Fig. 6.10 also

demonstrates the superiority of the RF model over the three other techniques used

for implementing the meta model.

Evaluation on real time series

In order to evaluate the meta-learner on real data, the meta-learner was implemented

on the 20 real time series introduced in Chapter 4. Based on the categorization

strategy presented in Chapter 5, these 20 series cover 13 categories (out of 378) in

the feature space. Also, the training set used to build the meta-learner covers 113

categories in the feature space. However, the 20 real series and the meta-learner's

training set only share 7 categories. We split the 20 real series into two categories:

1-Covered: the series that their feature space is covered in the training data, and

2-Non-covered: the series that their feature space is not covered in the training

data. There were 9 time series in the covered category and 11 time series in the non-
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covered category. As mentioned earlier, there are 8 di�erent candidateStrategymodel

models and thus, there will be 20� 8 = 160 test samples for the meta-learner,

in total. The distributions of the meta-learner's errors i.e., Actual log(nMSE ) �

P redicted log(nMSE ), for coveredand non-coveredseries are compared in Fig. 6.11.

Figure 6.11: Comparing the results for the series covered and not covered in the
training data

The results in Fig. 6.11 show that the median error for thecovered series is zero,

while the median error for the non-covered category deviates from zero, and this

suggest that the meta-learner demonstrates a better predictive power on the series

whose feature space is covered by the training data. This indicates that the Meta-

learner actually reduces the error and thus improves the predictive power, when

trained by appropriate data.

Fig. 6.12 illustrates our variance analysis on the zero-centred errors for covered and

non-covered series and shows that the meta-learner has a lower error variance over

the covered series.
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Figure 6.12: One way analysis of centred errors

We also performed at-test on the centered errors, and the obtained standard de-

viation for the covered and non-covered series were 0:97 and 1:52, respectively. A

one way ANOVA was performed on the 20 series using O'Brien test [198], Brown-

Forsythe test [53], Levene [157] and 2-sided F-test. [32]. These tests are popular

methods to test the assumption of the homogeneity of variances and were con-

ducted in this research to compare the homogeneity of variances for the covered and

non-covered categories. The results are summarized in Table 6.4:

Table 6.4: One way ANOVA on the centered errors

Test F Ratio DF p-Value

O'Brien 6.6264 1 0.0111

Brown-Forsythe 5.9521 1 0.0160

Levene 5.8510 1 0.0169

F Test 2-sided 2.4400 1 0.0004

The results are summarized in Table 6.4 demonstrate that the hypothesis of homo-

geneity of variances is not supported and thus, the variances are di�erent for the

covered and the non-covered categories.

Evaluation of Ranks

The �nal goal of the meta-learner is to provide a ranking of the candidate models
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from the most to the least accurate. We will then pick the top rank (the most

accurate) models and introduce them to the practitioner as the recommended mod-

els. Note that the predicted ranks are obtained by sorting the candidate models

according to the predicted lognMSE results (at the output of the meta-learner).

The performance of the meta-learner, in terms of ranking accuracy, is evaluated by

comparing the predicted ranks with the ranks induced by the actual lognMSE .

We performed a variance analysis on the di�erences between the actual and the

predicted ranks and compared the results for the covered and non-covered series in

Fig. 6.13.

Figure 6.13: One way analysis of rank di�erence

As shown in Fig. 6.13, the variance of rank di�erences is signi�cantly smaller for

the Covered category and thus, the meta-learner presents a better ranking of the

candidate models for the series whose feature space is covered in the training data.

We performed a t-test assuming equal variances to test whether the mean of rank

di�erences is di�erent for the coveredand the non-coveredseries. Thet-statistic was

� 2:305 with 138 degrees of freedom, and a signi�cance or p-value of 0:0226, which

was well within the 95% con�dence level.

To further investigate this issue, we also performed the Wilcoxon (Rank sums) tests

on the ranks where the score mean for the covered and and non-covered series were
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77:48 and 61:96, respectively. The Wilcoxon test indicated that the predicted ranks

were statistically signi�cantly more accurate for the covered category compared to

the non-covered category, Z = � 2:294 andp � V alue = 0 :0217.

The �nal step in the evaluation of the meta-learner is to investigate how accurately

the meta-learner identi�es the top rank models. The results on the 20 series show

that, the meta-learner correctly identi�ed the top two models for 7 out of 9 series

from the covered category, and 5 out of 11 series from the non-covered category. This

indicates that the meta-learner has 78% accuracy on the series that their feature

space was covered in the training data and 45% accuracy on the non-covered series.

6.4 Summary

In this Chapter, we presented a meta-learning approach for selecting the appropriate

method for univariate time series prediction using a set of time series features to

recommend an MSAP model. Unlike existing approaches that use classi�ers like [89,

147,213,215,238,269], we incorporated a regression method that estimates the log-

based Mean Squared Error, nMSE. To train our meta-learner, we used the dataset

that we previously introduced in Chapter 5, which was both su�ciently diverse and

large to provide a solid generalization ability for our meta-learning approach. The

R of the resulted predictions indicate that our meta-learner has 94% accuracy which

we feel is a good result given the size of the time series dataset used.
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Chapter 7

Meta-Learning: Findings and

Discussion

In this thesis, we introduced a new MSAP strategy known as MRFA; a time series

generation process with a new evaluation metric; and a meta-learner that uses a log

based mean squared error to select appropriate models for any given time series.

Our �nal task to is try to combine all of these research developments together to

deliver some new �ndings. While our meta-learner is designed to select the best from

a set of predictive models for a time series dataset, our �rst idea was to examine the

bene�t of the alternative approach: early elimination of those models that will never

be appropriate for the time series under study. In section 7.1, we present an early

detection system for predictive models not suited to the time series under study by

researchers. Our second idea was to use the large synthetic time series generated

in Chapter 5, together with the evaluation methodology developed in Chapter 6 to

provide a tougher threshold for our MRFA predictive model. In section 7.2, this

new evaluation is presented before we summarize the Chapter in section 7.3.
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7.1 Early Detection of Inappropriate Models

During the development of the meta-learner, we implemented 8 di�erent model

types for each time series dataset. As stated in previous Chapter, each candidate

model had an extensive bootstrapping and grid search applied. In a number of these

experiments, we were unable to get reliable results and found thenMSE > 1. This

indicates failure in delivering valid predictions, as the error has gone beyond the

scale of the uctuations in the original signal Y , i.e, error > Max (Y ) � Min (Y ).

An obvious assumption for nMSE > 1 is that the underlying candidate model is

not an appropriate method for the solution space in hand. This can be caused

by the functional form of the cost function and the level of complexity introduced

by the interaction between the model and the dataset. However, this result is not

unusual and in fact, should be expected as in many practical situations, we often

�nd that certain machine learning approaches are unsuitable for speci�c types of

data. Understanding which approaches are likely to fail should be highly bene�cial

as practitioners in the machine learning community must often try a number of

methods before they come across one that works. In other words, they are likely

to be many failed experiments before a successful model/dataset pairing is found.

This is one of the disadvantage with non-parametric methods, as they have no

underlying assumptions to guide the practitioner in their choice. This observation

led us to consider where our meta-learner could be employed as an early detection

system for inappropriate model choices.

Note that one reason fornMSE > 1 can be due to a convergence problem in the

machine learning model's training process. The convergence problem may occur as

a result of the small sample size problem, an inappropriate con�guration of hyper-

parameters or the failure of the learning algorithm. A detailed discussion of learning

algorithms is out of the scope of this thesis. However, to ensure that convergence

is not the reason behind failures (nMSE > 1 ), we used bootstrapping and also

reported the results as an average of multiple repeats of the experiment each with

a di�erent settings of hyper-parameters.
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7.1.1 Primary model

When considering an early detection (ED) function, the goal is to simulate a Binary

function denoted by ED. Formally, ED predicts class = Failure or class = Pass

and is a function of the modelm and the set of time series featuresF . The ED (early

detection) meta-learner receives the same input parameters as the meta-learner in-

troduced in the previous Chapter in section 6.2. However, the output (out) of this

model is de�ned as a binary variable, Eq. 7.1.

out =

8
<

:

0 ;nMSE � 1

1 ;nMSE > 1
(7.1)

As the outcome of this approach is a binary variable, classi�cation methods as

opposed to the regression approaches used in the previous Chapter were deemed

appropriate. This is described by Eq. 7.2, whereED is the solution of model m

with features F . Here, we used the Random Forest (RF) classi�er to implement the

ED Meta-Learner and thus, ED in Eq. 7.2 is an RF classi�er in our approach.

class = ED(m; F ) (7.2)
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Figure 7.1: Architecture of the Early Detection (ED) meta-learner

Fig. 7.1 illustrates the architecture of the Early Detection (ED) meta-learner. Ran-

dom Forest is a type of ensemble learning algorithm built upon the premise that

multiple classi�ers perform better that an individual classi�er [77]. RFs are com-

posed of many decision trees each making independent decisions, where decisions

are then aggregated to optimize decision making. The Random Forest classi�er is

illustrated in Fig. 7.2. An important property of Ensemble classi�ers is that they

are more robust to outlying cases than individual classi�ers.
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Figure 7.2: Random Forest Classi�er

In the experiments for this analysis, an 80/20 split of the data was used for the

train/test strategy. The performance of a classi�er can be evaluated using a concept

known as the confusion matrix, a table describing the performance of the classi�er

on a set of test data for which the true and false values are already known. In the

confusion matrix, the following terms play the roles: Positive (P) : The sample is

positive (the sample was actually aFail ) and Negative (N) : sample is not positive

(the sample was actually aPass);

� True Positive (TP) : sample is positive, and is predicted to be positive;

� False Negative (FN) : sample is positive, but is predicted negative;

� True Negative (TN) : sample is negative and is predicted as negative;

� False Positive (FP) : sample is negative but is predicted positive.

Note that because we present a failure detection model, a detection of a failure

indicates a positive result.
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Table 7.1: The performance of the failure classi�er

Predicted Class

Fail Pass

Actual class
Fail TP = 590 FN = 871

Pass FP = 361 TN = 5161

The results in Table 7.1 show that the overall accuracy is 82:36%, 590 records were

correctly identi�ed as failure ( TP = 590), 361 records were incorrectly identi�ed as

failure (FP = 361), 5,161 records were correctly identi�ed as pass (TN = 5161),

and 871 records were incorrectly identi�ed as Pass (FN = 871). The results suggest

that when the output of the model is Fail (precision or positive predictive value),

there is T P
T P + F P � 100 = 62% chance that the output is correct, and when the output

is Pass (negative predictive value ) there is a T N
T N + F N � 100 = 85:56% chance that

the output is correct. These results can be visualized using a Receiver Operating

Characteristic Curve (ROC), which is a graphical representation of Sensitivity or

True Positive Rate (TPR) versus speci�city or False Positive Rate (FPR) that in-

dicates the discriminatory accuracy of a classi�er as its decision criterion varies. In

comparison with sensitivity and speci�city, the Area under the ROC curve (AUC)

is a preferable accuracy metric [199].

The ROC curve and the corresponding area under the curve (AUC) for the results of

the RF classi�er is shown in Fig. 7.3. AUC is the integral of the values represented

by the black line in Fig. 7.3.

The results look positive on an initial examination of the RF classi�er on the ED

Meta-Learner, as the total accuracy of 82:36% is high and the AUC of 80:32% is

also a good result. However, as shown in Table 7.1, there is a signi�cant di�erence

between the number of samples in the classes and this suggests we may have imbal-

anced classi�cation problem. ThePass class is the majority and theFail class is the

minority and thus, the accuracy of the classi�er will be biased towards the majority

class. In the next section, we will present a solution to deal with the imbalanced
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Figure 7.3: The ROC curve for the classi�er

classi�cation problem.

7.1.2 Resolving Class Imbalance

In this research, we use a technique known as Synthetic Minority Oversampling

TEchnique (SMOTE) to overcome the class imbalance problem [58]. SMOTE sug-

gests that the class imbalance problem can be tackled by oversampling the minority

class. The algorithm �rst selects a sample from the minority class and identi�es its

k nearest neighbors. Then, a random sample from the identi�ed neighbors is chosen

and connected to the �rst sample to create the new synthetic sample.

Table 7.2: The performance of RF after SMOTE

Predicted Class

Fail Pass

Actual class
Fail TP = 927 FN = 592

Pass FP = 172 TN = 1347

As shown in Table 7.2, the number of test samples has been reduced as a result

of under sampling the majority class so that we have almost the same number of
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samples in the majority (Pass) and the minority (Fail) classes. We can see that for

positive predictions, T P
T P + F P � 100 = 84% which represents a 22% improvement over

the results before applying SMOTE. The negative predictive value is T N
T N + F N � 100 =

69:5% which has been reduced but it no longer su�ers from the class imbalance

problem. Our original goal was to also achieve a good performance for the minority

class and this improvement helps us to better detect inappropriate models.

Figure 7.4: Comparison between the results obtained before and after incorporating
SMOTE

Fig. 7.4 compares the ROC (and the corresponding AUC) of the Random Forest

Failure detection model before and after applying SMOTE. Here, the area under

curve (AUC) for the results obtained via SMOTE is signi�cantly larger than the

AUC obtained without SMOTE.

In order to ascertain an appropriate prediction method for this analysis, three ad-

ditional models (SVM, NN Classifer and Decision Tree) were also implemented as

part of the ED Meta-Learner. A Support Vector Machine (SVM) is a discrimina-

tive classi�cation technique that incorporates a hyper-plane to distinguish between

classes. SVM works based on mapping the data into a higher dimensional data space

in order to be able to create an optimal separating hyperplane in this space. The

Neural Network (NN) classi�er was also applied and is a member of neural network

family.
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The Decision Tree (DT) is a classi�cation technique that incorporates a hierarchical

tree structured decision making process to identify the correct class for a given

sample. In this tree structure, each internal node processes one particular data

attribute and based on the observed value, determines the next processing node

with leaves representing the class labels.

Figure 7.5: Compare ROC of all methods

For this part of our validation, SVM, NN and Decision tree classi�ers together with

SMOTE strategy for over sampling the data were also implemented, and the results

of their ROC's are compared with the Random Forest early detection model in Fig.

7.5. As can be seen, the RF early detection model has outperformed the SVM, DT

and NN classi�ers and indicates a larger AUC in comparison with those models.

Fig. 7.6 also compares the con�dence intervals of the ROCs of all the methods

Also Table 7.3 compares the signi�cance of the AUC for all the methods in terms

of min and max values.

The results shown in Fig. 7.6 and Table 7.3 were obtained in a bootstrapping process

where experiments were repeated over �ve di�erent train and test sets.

148



Figure 7.6: Compare ROC con�dence intervals of all methods

Table 7.4 presents the results for RF, SV, NN and DT classi�ers as used in imple-

mentations of the early detection model in terms of their confusion matrix elements.

The Random Forest classi�er has shown to have a signi�cantly better prediction ac-

curacy for the positive class in comparison with all other three methods, and its

prediction accuracy for the negative class is 69:5% was comparable to Decision Tree

71:14% which showed the best accuracy.

In addition to the accuracy measure, the performance of a classi�er can also be

measured by calculating the area under the ROC curve or AUC. AUC corresponds

to the probability that a random positive sample has a higher ranking than a random

negative sample, resembling the two sample Wilcoxon rank-sum statistic [119].

Fig. 7.7 compares the accuracy and AUC of the classi�ers used to implement our

failure detection model. This �gure shows that the RF classi�er outperforms SVM,

DT and NN classi�ers in terms of both accuracy and AUC.

149



Table 7.3: Comparison between RF, SV, NN and DT classi�ers in terms of the
confusion matrix

Method AUC min AUC max

Random Forest 0.826 0.852

SVM 0.770 0.796

Decision Tree 0.771 0.798

Neural Network 0.777 0.800

Table 7.4: Comparison between RF, SV, NN and DT classi�ers in terms of the
confusion matrix

Method TP FP TN FN Positive Accuracy Negative Accuracy

Random Forest 927 172 1347 592 84% 69:5%

SVM 937 238 1281 582 79:74% 68:76%

Decision Tree 1047 355 1164 472 74:62% 71:14%

Neural Network 1031 356 1163 488 74:33% 70:44%

Figure 7.7: Comparison of the Accuracy and AUC of the each Classi�er

7.2 MRFA Validation using a Large Time Series Dataset

In Chapter 4, we discovered that MRFA had a positive predictive ability when

combined with Recurrent Neural Networks and then compared with a number of
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