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Abstract

Deep neural networks trained with standard cross-
entropy loss memorize noisy labels, which degrades their
performance. Most research to mitigate this memorization
proposes new robust classification loss functions. Conversely,
we propose a Multi-Objective Interpolation Training (MOIT)
approach that jointly exploits contrastive learning and clas-
sification to mutually help each other and boost performance
against label noise. We show that standard supervised con-
trastive learning degrades in the presence of label noise
and propose an interpolation training strategy to mitigate
this behavior. We further propose a novel label noise de-
tection method that exploits the robust feature representa-
tions learned via contrastive learning to estimate per-sample
soft-labels whose disagreements with the original labels
accurately identify noisy samples. This detection allows
treating noisy samples as unlabeled and training a classi-
fier in a semi-supervised manner to prevent noise memo-
rization and improve representation learning. We further
propose MOIT+, a refinement of MOIT by fine-tuning on
detected clean samples. Hyperparameter and ablation stud-
ies verify the key components of our method. Experiments
on synthetic and real-world noise benchmarks demonstrate
that MOIT/MOIT+ achieves state-of-the-art results. Code is
available at https://git.io/JI40X.

1. Introduction
Building a new dataset usually involves manually la-

beling every sample for the particular task at hand. This
process is cumbersome and limits the creation of large
datasets, which are usually necessary for training deep neu-
ral networks (DNNs) in order to achieve the required per-
formance. Conversely, automatic data annotation based
on web search and user tags [29, 22] leverages the use of
larger data collections at the expense of introducing some
incorrect labels. This label noise degrades DNN perfor-
mance [3, 52] and this poses an interesting challenge that
has recently gained a lot of interest in the research commu-
nity [45, 41, 23, 50, 12, 1, 28, 55, 13, 31].

In image classification problems, label noise usually in-
volves different noise distributions [22, 55]. In-distribution
noise types consist of samples with incorrect labels, but
whose image content belongs to the dataset classes. When
in-distribution noise is synthetically introduced, it usually
follows either an asymmetric or symmetric random distribu-
tion. The former involves label flips to classes with some
semantic meaning, e.g., a cat is flipped to a tiger, while
the latter does not. Furthermore, web label noise types are
usually dominated by out-of-distribution samples where the
image content does not belong to the dataset classes. Recent
studies show that all label noise types impact DNN perfor-
mance, although performance degrades less with web noise
[22, 34].

Robustness to label noise is usually pursued by identify-
ing noisy samples to: reduce their contribution in the loss
[23, 11], correct their label [1, 28], or abstain their classifica-
tion [42]. Other methods exploit interpolation training [53],
regularizing label noise information in DNN weights [13], or
small sets of correctly labeled data [18, 55]. However, most
previous methods rely exclusively on classification losses
and little effort has being directed towards incorporating sim-
ilarity learning frameworks [32], i.e. directly learning image
representations rather than a class mapping [45].

Similarity learning frameworks are very popular in com-
puter vision for a variety of applications including face recog-
nition [44], fine-grained retrieval [37], or visual search [35].
These methods learn representations for samples of the same
class (positive samples) that lie closer in the feature space
than those of samples from different classes (negative sam-
ples). Many traditional methods are based on sampling pairs
or triplets to measure similarities [7, 19]. However, super-
vised and unsupervised contrastive learning approaches that
consider a high number of negatives have recently received
significant attention due to their success in unsupervised
learning [5, 14, 27]. In the context of label noise, there are
some attempts at training with simple similarity learning
losses [45], but there are, to the best of our knowledge, no
works exploring more recent contrastive learning losses [24].

This paper proposes Multi-Objective Interpolation Train-
ing (MOIT), a framework to robustly learn in the presence



of label noise by jointly exploiting synergies between con-
trastive and semi-supervised learning. The former intro-
duces a regularization of the contrastive loss in [24] to learn
noise-robust representations that are key for accurately de-
tecting noisy samples and, ultimately, for semi-supervised
learning. The latter performs robust image classification
and boosts performance. Our MOIT+ refinement further
demonstrates that fine-tuning on the detected clean data can
boost performance. MOIT/MOIT+ achieves state-of-the-
art results across a variety of datasets (CIFAR-10/100 [26],
mini-ImageNet [22], and mini-WebVision [29]) with both
synthetic and real-world web label noise. Our main contri-
butions are as follows:

1. A multi-objective interpolation training (MOIT) frame-
work where supervised contrastive learning and semi-
supervised learning help each other to robustly learn
in the presence of both synthetic and web label noise
under a single hyperparameter configuration.

2. An interpolated contrastive learning (ICL) loss that
imposes linear relations both on the input and the con-
trastive loss to mitigate the performance degradation
observed for the supervised contrastive learning loss in
[24] when training with label noise.

3. A novel label noise detection strategy that exploits the
noise-robust feature representations provided by ICL to
enable semi-supervised learning. This detection strat-
egy performs a k-nearest neighbor search to infer per-
sample label distributions whose agreements with the
original labels identify correctly labeled samples.

4. A fine-tuning strategy over detected clean data
(MOIT+) that further boosts performance based on sim-
ple noise robust losses from the literature.

2. Related work
We briefly review recent image classification methods

aiming at mitigating the effect of label noise on DNNs and
recent contrastive learning methods.

Noise rate estimation Using a label noise transition ma-
trix can mitigate label noise [36, 18, 48]. Patrini et al. [36]
proposed to correct the softmax classification using a tran-
sition matrix. The estimation of this matrix is, however,
challenging. The authors in [48] estimate the matrix by ex-
ploiting detected noisy samples that are similar to anchor
points (i.e. highly reliable detected clean samples), while
Hendrycks et al. [18] directly use a set of clean samples.

Noisy sample rejection Rejecting or reducing the contri-
bution to the optimization objective of noisy samples can
increase model robustness [23, 10, 45, 22]. Jiang et al. [23]

propose a teacher-student framework where the teacher es-
timates per-sample weights to guide the student training.
Defining per-sample weights is also exploited in [10] via
an unsupervised estimation of data complexity. Nguyen et
al. [33] iteratively refine a clean set to train on by measur-
ing label agreements with ensembled network predictions.
Cross-network disagreements and updates [11] lead to ro-
bust learning by training on selected clean data [51]. Also,
[46] propose a loss for standard training together with cross-
network consistency to select the clean samples to train on.

Noisy label correction Correcting noisy labels to replace
or balance their influence is widely used in previous works
[38, 12, 1, 30]. Bootstrapping loss [38] correction ap-
proaches exploit a perceptual term that introduces reliance
on a new label given by either the model prediction with
fixed [38] or dynamic [1] importance, or class prototypes
[12]. More recently, Liu et al. [30] introduced a perceptual
term that maximizes the inner product between the model
output and the targets without need for per-sample weights.

Noisy label rejection Rejecting the original labels by re-
labeling all samples with the network predictions [41] or
learned label distributions [50] mitigates the effect of label
noise. Recently, several approaches perform semi-supervised
learning [9, 25, 34] by treating detected noisy samples as un-
labeled, thus rejecting their labels while exploiting the image
content. Their main differences are in the noise detection
mechanism: Ding et al. [9] exploit high certainty agree-
ments between the network predictions and labels, Kim et
al. [25] use high softmax probabilities after performing neg-
ative learning, and Ortego et al. [34] look at the agreements
between the original and relabeled labels using [41].

Other label noise methods Zhang et al. [53] proposed an
interpolation training strategy, mixup, that greatly prevents
label noise memorization and has been adopted by many
other methods [1, 28, 22, 34, 30]. Harutyunyan et al. [13]
quantify the amount of memorized information via the Shan-
non mutual information between neural network weights
and the vector of all training labels, and encourage this to
be small. Thulasidasan et al. [42] add an abstention class to
be predicted by noisy samples due to an abstention penalty
introduced in the loss. Robust loss functions are studied
in several works by jointly exploiting the benefits of mean
absolute error and cross-entropy losses [54], a generalized
version of mutual information insensitive to noise [49], or
[31] combinations of robust loss functions that mutually
boost each other. Furthermore, several strategies to prevent
memorization can be exploited together and DivideMix [28]
is a good example as it uses interpolation training, cross-
network agreements, semi-supervised learning, and label
correction.
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Figure 1. Multi-Objective Interpolation Training (MOIT) for improved robustness to label noise. We interpolate samples and impose the
same interpolation in the supervised contrastive learning loss LICL and the semi-supervised classification loss LSSL that we jointly use
during training. Label noise detection is performed at every epoch to enable semi-supervised learning and its result is used after training to
fine-tune the encoder and classifier to further boost performance.

Contrastive representation learning Recent works in
self-supervised learning [27, 5, 24] have demonstrated the
potential of contrastive based similarity learning frameworks
for representation learning. These methods maximize (mini-
mize) similarities of positive (negative) pairs. Adequate data
augmentation [43], large amounts of negative samples via
large batch size [5] or memory banks [14, 47], and careful
network architecture designs [6] are usually important for
better performance. Regarding the label noise scenario for
image classification, no works explore the impact of incor-
rect labels on contrastive learning and only Wang et al. [45]
incorporate a simple similarity learning objective.

3. Method
We target learning robust feature representations in the

presence of label noise. In particular, we adopt the con-
trastive learning approach from [24] and randomly sample
N images to apply two random data augmentation opera-
tions to each, thus generating two data views. The resulting
training minibatch {(xi, yi)}2Ni=1 of image-label pairs xi and
yi consists of 2N images. Every image is mapped to a
low-dimensional representation zi by learning an encoder
network fθ and a projection network gφ with parameters θ
and φ. In particular, an intermediate embedding vi = fθ (xi)
is generated and subsequently transformed into the repre-
sentation wi = gφ (vi). Finally, zi = wi/ ‖wi‖2 is the
L2-normalized low-dimensional representation used to learn
based on the per-sample loss:

Li (zi, yi) =
1

2Nyi − 1

2N∑
j=1

1i 6=j 1yi=yjPi,j , (1)

Pi,j = − log
exp (zi · zj/τ)∑2N

r=1 1r 6=i exp (zi · zr/τ)
, (2)

where Pi,j denotes the j-th component of the temperature
τ scaled softmax distribution of inner products zi · zj of

representations from the positive pair of samples xi and xj ,
which can be interpreted as a probability. Pi,j is aggregated
in Eq. 1 across all Nyi samples xj in the minibatch sharing
label with xi (yi = yj) except for the self-contrast case
(i = j), as defined by the indicator function 1B ∈ {0, 1}
that returns 1 when condition B is fulfilled and 0 otherwise.
Minimizing Li implies adjusting fθ and gφ to pull together
the feature representations zi and zj when they share the
same label (yi = yj), while pushing them apart when they
do not. Also, the gradient analysis in [24] reveals that Eq.
1 focuses on hard positives/negatives rather than easy ones.
Note that having two data views implies that Li contains an
unsupervised contribution equivalent to the NT-Xent loss [5].

In the presence of label noise, Eq. 1 incorrectly selects
positive/negative samples, which degrades the feature repre-
sentation z (see Tab. 2). To overcome this limitation and per-
form robust image classification under label noise conditions,
we propose a Multi-Objective Interpolation Training (MOIT)
framework that consists of: i) a regularization technique to
prevent memorization when training with the supervised
contrastive learning loss (Sec. 3.1), ii) a semi-supervised
classification strategy based on a novel label noise detection
strategy that exploits the noise-robust representation z to
measure agreements with the original labels y and tag noisy
samples as unlabeled (Sec. 3.2), and iii) a classifier refine-
ment on clean data to boost classification performance (Sec.
3.3). Fig. 1 shows an overview of MOIT.

3.1. Interpolated Contrastive Learning

Interpolation training strategies have demonstrated excel-
lent performance in classification frameworks [53, 40, 39],
and have further shown promising results to prevent label
noise memorization [53, 1, 28, 22]. Inspired by this success,
we propose Interpolated Contrastive Learning (ICL), a novel
adaptation of mixup data augmentation [53] for supervised
contrastive learning. ICL performs convex combinations of



pairs of samples as

xi = λxa + (1− λ)xb, (3)

where λ ∈ [0, 1] ∼ Beta (α, α) and xi denotes the training
sample that combines two minibatch samples xa and xb, and
imposes a linear relation in the contrastive loss:

LMIX
i = λLi (zi, ya) + (1− λ)Li (zi, yb) . (4)

The first and second terms in Eq. 4 consider, respectively,
positive samples from the class ya (yb) given by the first
(second) sample xa (xb). The selection of positive/negative
samples involves considering a unique class for every mixed
example. However, in most cases the input samples contain
two classes as a result of the interpolation, where λ deter-
mines the dominant one. We assign this dominant class to
every sample for positive/negative sampling. Intuitively, ICL
makes it harder to pull together clean and noisy samples with
the same label, as noisy samples are interpolated with either
another clean sample that provides a clean pattern beneficial
for training or another noisy sample that makes it harder to
memorize the noisy pattern.

Memory bank The number of positives and negatives se-
lected for contrastive learning depends on the minibatch size
and the number of dataset classes. Therefore, unless a large
minibatch is used during training, few positive and negative
samples are selected, which negatively affects the training
process [24]. To address limitations in computing resources,
we introduce the memory bank proposed in [47] to perform
robust similarity learning despite using relatively small mini-
batches compared to those in [24]. In particular, we define
a memory to store the last M feature representations from
previous minibatches and define a loss term LMEM

i similar
to LMIX

i in Eq. 4. While LMIX
i is estimated contrasting

the 2N minibatch samples across them, LMEM
i contrasts the

2N samples with the M memory samples, thus extending
the number of positive and negative samples. The final ICL
loss then aggregates the average batch and memory losses:

LICL = LMIX + LMEM . (5)

Sec. 4.3 shows the benefits of using ICL loss instead of the
original loss in [24] and Sec. 4.4 demonstrates the effect of
the memory bank on the overall method.

3.2. Semi-Supervised Classification

The goal is to predict a class c ∈ {1, . . . , C} by learning
a second mapping h(v) = gϕ (v) to the class space, where
C is the number of classes. Naı̈vely training a classifier
in the presence of label noise leads to noise memorization
[3, 52], which degrades the performance. Semi-supervised
learning, where noisy labels are discarded, can mitigate this

memorization [9, 28, 34]. We, therefore, propose to jointly
adopt semi-supervised learning with ICL. The former boosts
the performance achievable by the latter, while the latter
enables accurate label noise detection necessary for good
performance in the former.

Label noise detection We propose to measure agreements
between the feature representation zi (robust to label noise)
and the original label yi to identify mislabeled samples. To
quantify this agreement, we start by estimating a class prob-
ability distribution from the representation zi by doing a
k-nearest neighbor (k-NN) search:

p (c | xi) =
1

K

K∑
k=1

xk∈Ni

1yk 6=c, (6)

where Ni denotes the neighbourhood of K closest images
to xi according to the feature representation z. Eq. 6 then
counts the number of samples per class in the local neighbor-
hood Ni and normalizes the counts to estimate a probability
distribution. This distribution can be interpreted as a soft-
label that can be compared with the original label to identify
potential disagreements, i.e. noisy samples. However, the
labels y might be noisy, thus biasing the estimation of p. We,
therefore, estimate a corrected distribution p̂ using:

p̂ (c | xi) =
1

K

K∑
k=1

xk∈Ni

1ŷk 6=c, (7)

where we introduce corrected labels ŷ that are estimated
taking the dominant label inNi, i.e. ŷ = arg maxc p (c | x).
Finally, the disagreement between the corrected distribu-
tion p̂ (c | xi) and the label noise distribution given by the
original label yi is measured by the cross-entropy

di = −yTi log (p̂) , (8)

where T denotes the transpose operation. The higher di, the
higher the disagreement between distributions and the more
likely xi is a noisy sample. We select clean samples for each
class c based on di using:

Dc = {(xi, yi) : di ≤ γc} , (9)

where γc is a per-class threshold on di, which is dynamically
defined to ensure a balanced clean set across classes. To
perform this balancing, we use the median of per-class agree-
ments between the corrected label ŷi and the original label yi
across all classes. Sec. 4.4 illustrates the importance of this
balancing strategy as well as the corrected distribution p̂ over
p for achieving better performance. Note that a k-NN noise
detection that resembles Eq. 6 has been recently proposed
in [4]. However, we differ in that we propose a corrected



version in Eq. 7 that surpasses the straightforward k-NN of
Eq. 6 (see Tab. 3), we use k-NN during training, and always
avoid using a trusted clean set.

Semi-supervised learning We learn the classifier by per-
forming semi-supervised learning where samples in D are
considered as labeled and the remaining samples as unla-
beled. To leverage these unlabeled samples, pseudo-labeling
[2] based on interpolated samples is applied by defining the
objective

LSSL
i = −λỹTa log (hi)− (1− λ) ỹTb log (hi) , (10)

where the pseudo-label ỹa (ỹb) for xa (xb) is estimated as

ỹa =

{
ya, xa ∈ Dc
h̄a, xa /∈ Dc

, (11)

where h̄a is the softmax prediction for image xa without
data augmentation. The final Multi-Objective Interpolation
Training (MOIT) optimizes the loss:

LMOIT = LICL + LSSL. (12)

In summary, the proposed MOIT framework enables robust
training in the presence of label noise by learning robust
representations via contrastive learning that help in achieving
successful noise detection that discards noisy labels and
enables semi-supervised learning for classification. Note that
the method needs to learn useful features before performing
accurate noise detection; thus we start training with ỹ =
y,∀x in LSSL, i.e. a normal supervised training. We start
doing semi-supervised learning once reasonable features to
search for reliable nearest neighbors in Eq. 7 are learned and
the clean sample detection is made reliable. We assume that
good features are available soon after reducing the learning
rate, given that there is little risk of overfitting noisy labels
at earlier epochs when using a high learning rate, as often
reported in the literature [41, 50, 1].

3.3. Classification refinement

Supervised pre-training on relatively clean datasets such
as ImageNet [8] has proved to mitigate label noise memoriza-
tion [17, 22]. We, therefore, refine our MOIT predictions by
fine-tuning fθ and re-training gϕ on our detected clean set D
using a constant low learning rate. We name this fine-tuning
stage MOIT+. We train using mixup [53] and later introduce
hard bootstrapping loss correction [38] to deal with possible
low amounts of label noise present in D, thus defining the
following training objective:

LMOIT+
i = −λ

[
(δya + (1− δ) ỹa)

T
log (hi)

]
−

(1− λ)
[
(δyb + (1− δ) ỹb)T log (hi)

]
, (13)

where λ is the mixing coefficient from [53] as we are inter-
polating images as explained in Eq. 3, and δ is a weight to
balance the contribution of the original labels (ya and yb) or
the network predictions (ỹa and ỹb). This training objective
is similar to that used in [1], but different in that we do not
train from scratch using all data, or need to infer per sample
δ weights. Instead, we set δ = 0.8 as done in [38] to give
more importance to the original labels, which is reasonable
given that the training uses the detected clean data D. Note
that ỹa = arg maxc h̄a (ỹb = arg maxc h̄b) is the network
prediction for xa (xb) without data augmentation. As com-
mented before, MOIT+ starts with a mixup training without
bootstrapping (i.e. δ = 1.0) during the initial epochs to allow
adequate re-training of gϕ before trusting its predictions.

4. Experiments
We first run experiments on the standard benchmarks for

synthetic noise in CIFAR-100 [26] aiming at analyzing the
different components of our method. We further perform
comparative evaluations against related work using synthetic
label noise in CIFAR-10/100, controlled web noise in mini-
ImageNet [22], and the uncontrolled web noise from the
WebVision dataset [29].

4.1. Datasets

The CIFAR-10/100 datasets [26] contain 50K (10K) small
resolution images for training (test). For hyperparameter and
ablation studies, we keep 5K training samples for validation
using their correct labels. However, to facilitate comparison
with related work, we train with the full 50K samples and
use the 10K test set for evaluation (reporting accuracy in
the last epoch). For noise addition, we follow the criteria in
[50]: symmetric noise is introduced by randomly flipping the
labels of a percentage of the training set to incorrect labels;
asymmetric noise uses label flips to incorrect classes “truck
→ automobile, bird→ airplane, deer→ horse, cat→ dog”
in CIFAR-10, whereas in CIFAR-100 label flips are done
circularly within the super-classes.

Jiang et al. [22] propose to use mini-ImageNet and
Stanford Cars to introduce both web and symmetric in-
distribution noise in a controlled manner with different noise
ratios. We adopt the mini-ImageNet web noise dataset for
evaluation in a real scenario with several ratios, which con-
sists of 100 classes with 50K (5K) samples for training
(validation). For further evaluation against web noise, we
adopt the mini-WebVision dataset [28] that uses the top-50
classes from the Google image subset of WebVision [29].

4.2. Training details

We use a PreAct ResNet-18 (PRN-18) [16] as encoder net-
work in CIFAR following [1], while for mini-ImageNet we
use the ResNet-18 (RN-18) from [20] used in mini-ImageNet
for few-shot learning. For mini-WebVision we use a standard



Table 1. Training details. We always train from scratch. LR: Learn-
ing rate. B: Bootstrapping.

CIFAR mini-ImageNet mini-WebVision

Resolution 32× 32 84× 84 224× 224

Batch size 128 64 64
Mem. size 20K 100K 50K
Network PRN-18 RN-18 RN-18
Epochs 250 130 130
Optimizer SGD, momentum 0.9, weight decay 10−4

Initial LR 0.1 0.1 0.1
LR decay 125, 200 80, 105 80, 105
Decay factor ×0.1 ×0.1 ×0.1
SSL epoch 130 85 85
Decay factor ×0.1 ×0.1 ×0.1
Epochs (MOIT+) 70 50 50
LR (MOIT+) 0.001 (not reduced)
B epoch (MOIT+) 30 20 20

RN-18 [15]. We do not evaluate using other frameworks in
mini-ImageNet or WebVision [22, 28] due to limitations of
our computing resources. We, conversely, re-run the offi-
cial implementation of top-performing and recent methods
[53, 28, 30] in our framework. As projection head and clas-
sifier, we always use a linear layer that maps, respectively, to
a feature vector z of 128 dimensions and to the class space.

Table 1 presents the training details for MOIT and
MOIT+. We interpolated input samples as proposed in [53]
with α = 1 (i.e. λ is sampled from a uniform distribution),
and apply standard strong data augmentations to achieve
successful contrastive learning1 in MOIT: random resized
crops, horizontal flips, color jitter and gray scale transforma-
tions. For MOIT+ and all other methods, mixup as well as
standard augmentations are used (CIFAR: random horizontal
flips and random 4 pixel translations, mini-ImageNet and
mini-WebVision: random resized crops and random horizon-
tal flips). We double the epochs in MOIT+ for 80% noise
in CIFAR-10/100 as there are few selected clean samples,
which make epochs extremely short. We always use τ = 0.1
temperature scaling for contrastive learning and increase the
memory size in mini-ImageNet and mini-WebVision to deal
with reduced batch size. Note that MOIT+ finetunes the
model in the last epoch when training MOIT.

In practice, the noise ratio and distribution are not usually
known a-priori; we therefore use a common configuration
for training our method (mixup α, k-NN parameter K, loss
function, D balancing criterion, δ for MOIT+), and only
modify typical hyperparameters (batch size, memory and
epochs). We use the official implementations of DivideMix
(DMix) [28] and ELR [30]. However, DMix adopts specific
configurations for different datasets and even for different

1https://github.com/HobbitLong/SupContrast

Table 2. Weighted k-NN evaluation in CIFAR-100.

Symmetric Asymmetric
0% 40% 80% 10% 40%

SCL 72.66 58.32 41.00 71.11 68.00
ICL 75.30 66.38 53.60 74.34 72.04
MOIT 75.76 67.42 55.58 74.86 72.60

noise ratios and types in the same dataset. To perform as
fair as possible a comparison without degrading DMix re-
sults, we select a single parametrization of DMix in every
dataset based on the most repeated configuration in [28].
This affects the CIFAR configuration (CIFAR-10: λu = 0,
CIFAR-100: λu = 150) as mini-WebVision has a unique
configuration that we also adopt for mini-ImageNet. We
run DMix and ELR for the same number of epochs as our
method respecting suggested learning rates and equip ELR
with mixup for a fair comparison with DMix and our method
that both use interpolation training. Note that ELR+ in [30]
uses mixup, but we do not use it for comparison as it involves
using a second network and a weight averaging.

4.3. Supervised contrastive learning and label noise

We start by analyzing supervised contrastive learning be-
havior in the presence of label noise and how introducing
interpolation training impacts the learned representations.
We evaluate the quality of representations using a weighted
k-NN (k = 200) evaluation typical in unsupervised learning
[21]. Tab. 2 reports this evaluation using the embedding
z extracted after the projection head (model from the last
training epoch) and the true labels in the training set. This ex-
periments show that Supervised Contrastive Learning (SCL)
[24] performance degrades when there is label noise (the
noise-free accuracy of 72.66 decreases). The proposed reg-
ularization using Interpolated Contrastive Learning (ICL)
mitigates label noise drops and outperforms SCL in the noise-
free case, validating the utility of imposing a interpolated
behavior in the contrastive loss. Note that ICL and MOIT
(joint ICL and semi-supervised classification) perform worse
in the asymmetric case than in the symmetric case. This
occurs due to the former having label flips that keep some
semantic meaning (e.g. cat→dog), while the latter does not
(e.g. cat→truck). Semantic noise is more informative dur-
ing ICL, which leads to better performance and less room
for semi-supervised learning improvement in MOIT com-
pared to ICL. We train SCL and ICL using a memory bank
for 350 epochs with initial learning rate of 0.1, divided by
10 at epochs 200 and 300. Note that contrastive learning
frameworks tend to be very sensitive to hyperparameters
[5, 14, 24] (learning rate, temperature, data augmentation,
etc.), a behavior that we also observed when training them
alone in the presence of label noise. We experimentally
found that averaging the contrastive losses of the minibatch



Table 3. Classification accuracy for different noise detection strategies and K values for 40% asymmetric noise in CIFAR-100.

K 5 10 25 50 100 150 200 250 300 350

k-NN (p) Acc. 59.42 61.74 64.84 66.10 67.18 67.42 67.46 67.68 67.14 66.94
k-NN (p̂) Acc. 62.28 65.30 68.58 70.56 71.16 71.22 71.24 71.42 70.98 70.80

Table 4. Effect on classification accuracy of the balancing strategy
for the clean set D in CIFAR-100. A: Asymmetric. S: Symmetric.

Unbalanced Min Max Median

A-40% 69.58 52.88 62.58 71.42
S-40% 66.28 63.26 66.12 66.58

LMIX and the memory LMEM helped convergence in SCL
and ICL and used it in this experiment. Adding a classi-
fication objective, as done in the proposed MOIT method,
stabilizes this behavior and achieves better representations
than SCL and ICL alone (see Tab. 2).

4.4. Label noise detection analysis

We exploit the feature representation z by searching the
closest K neighbors to estimate a corrected soft-label p̂ in
Eq. 7 and measure agreements with the original labels y.
Tab. 3 shows that using this corrected soft-label p̂ (bottom)
rather than the soft-label p from Eq. 6 (top) results in better
performance due to improved label noise detection: precision
and recall for p̂ are 90.83 and 87.84 compared to 80.20 and
84.43 for p. The method is also not very sensitive to the
value of K once it is set to a high enough value. We adopt
K = 250 for the remaining experiments. We further study
the effect of balancing the clean set D (see Tab. 4). In
particular, we experiment by balancing with the minimum
(Min), maximum (Max), or median (used by our method)
number of agreements between corrected ŷ and original y
labels across classes. The median consistently outperforms
the others as it poses a better trade-off than the Min (Max),
which restricts (extends) the samples to select in classes
with many (few) agreements. Here the unbalanced criterion
considers as clean all samples that satisfy ŷ = y.

4.5. Joint training ablation study

Tab. 5 illustrates the effect of removing key components
of our method on classification accuracy. Removing semi-
supervised learning (SSL) involves training the classifier
using mixup, which results in substantial degradation due
to label noise memorization. Removing the memory (M)
decreases performance due to the limited batch size used
(128), which provides few positives/negatives for supervised
contrastive learning with 100 classes. Not balancing (B) the
clean setD to perform SSL also decreases performance. The
criterion used to select clean samples without balancing was

Table 5. Ablation study for MOIT and MOIT+ in CIFAR-100. A:
Asymmetric, S: Symmetric, SSL: semi-supervised learning, M:
memory, B: Balanced clean set, r-t C: Re-training classifier, s-DA:
strong data augmentation.

S-40% A-40%

(MOIT) w/o SSL 62.82 53.73
(MOIT) w/o M 66.10 68.88
(MOIT) w/o B 66.28 69.58
MOIT 66.58 71.42

(MOIT+) w/o r-t C 69.54 73.32
(MOIT+) w/ s-DA 67.98 71.90
MOIT+ 70.68 73.58

to select every sample x satisfying the agreement ŷ = y as
studied in Sec. 4.4. Regarding the classifier refinement done
by MOIT+, re-training the classifier (r-t C) and avoiding the
use of strong data augmentation impact performance. The
former might prevent some slight memorization behavior
in the classifier occurring during MOIT, while the latter
avoids the strong data augmentation that harms classification
accuracy but is required for successful contrastive learning.

4.6. Synthetic label noise evaluation

Tables 6 and 7 evaluate the performance of MOIT and
MOIT+ in, respectively, CIFAR-10 and CIFAR-100 for dif-
ferent levels of symmetric and asymmetric noise and report
average accuracy for each dataset to ease comparison. We
compare against some relevant and recent methods from the
literature [53, 1, 50, 49, 28, 30] and demonstrate that MOIT
and MOIT+ achieve state-of-the-art results. We achieve es-
pecially robust results for asymmetric noise, which is more
realistic than symmetric as label flips are done considering
semantic similarities between classes. We run DMix (eval-
uation done without ensembling both networks) and ELR,
while using the remaining results from [34], which used the
same network architecture and label noise criterion. DMix
[28] and, especially, ELR outperform our method for some
noise levels, but experience important drops at high noise
levels, which penalize the average performance. We stress
that our label noise criterion (also adopted in [23, 45, 34])
considers 40% noise as 0.4 probability of flipping the label
to an incorrect class, and not to any class as reported in the
DMix and ELR papers [28, 30], which results in 40% being
more challenging in our setup.



Table 6. Performance in CIFAR-10 with symmetric and asymmetric
noise. (*) Denotes that we have run the algorithm.

Symmetric Asymmetric Avg.
0% 20% 40% 80% 10% 30% 40%

CE 93.85 78.93 55.06 33.09 88.81 81.69 76.04 72.50
Mix [53] 95.96 84.76 66.07 20.38 93.30 83.26 77.74 74.50
DB [1] 79.18 93.82 92.26 15.53 89.58 92.20 91.20 79.11
DMI [49] 93.88 88.33 83.24 43.67 91.11 91.16 83.99 82.20
PCIL [50] 93.89 92.72 91.32 55.99 93.14 92.85 91.57 87.35
DRPL [34] 94.08 94.00 92.27 61.07 95.50 92.98 92.84 88.96
DMix* [28] 94.27 95.12 94.11 35.36 93.77 92.47 90.04 85.02
ELR* [30] 95.49 94.49 92.56 38.23 95.25 94.66 92.88 86.22

MOIT 95.17 92.88 90.55 70.53 93.50 93.19 92.27 89.73
MOIT+ 95.65 94.08 91.95 75.83 94.23 94.31 93.27 91.33

Table 7. Performance in CIFAR-100 with symmetric and asymmet-
ric noise. (*) Denotes that we have run the algorithm.

Symmetric Asymmetric Avg.
0% 20% 40% 80% 10% 30% 40%

CE 74.34 58.75 42.92 8.29 68.10 53.28 44.46 50.02
Mix [53] 77.90 66.40 52.20 13.21 72.40 57.63 48.07 55.40
DB [1] 64.79 69.11 62.78 45.67 67.09 58.59 47.44 59.35
DMI [49] 74.44 58.82 53.22 20.30 68.15 54.15 46.20 53.61
PCIL [50] 77.75 74.93 68.49 25.41 76.05 59.29 48.26 61.45
DRPL [34] 71.84 71.16 72.37 52.95 72.03 69.30 65.69 67.91
DMix* [28] 67.41 71.39 70.83 49.52 69.53 68.28 50.99 63.99
ELR* [30] 78.01 75.90 72.89 36.83 77.08 74.61 71.25 69.51

MOIT 75.83 72.78 67.36 45.63 75.49 73.34 71.55 68.85
MOIT+ 77.07 75.89 70.88 51.36 77.43 75.13 74.04 71.69

Table 8. Performance evaluation on controlled web noise in mini-
ImageNet. We run all methods.

0% 20% 40% 80%

Mix [53] Best 61.18 57.76 52.88 38.32
Last 58.96 54.60 50.40 37.32

DMix [28] Best 57.80 55.86 55.44 41.12
Last 55.84 50.30 50.94 35.42

ELR [30] Best 63.12 61.48 57.32 41.68
Last 57.38 58.10 50.62 41.68

MOIT Best 67.18 64.82 61.76 46.40
Last 64.72 63.14 60.78 45.88

MOIT+ Best 68.28 64.98 62.36 47.80
Last 67.82 63.10 61.16 46.78

4.7. Web label noise evaluation

Tables 8 and 9 illustrate the superior performance of
MOIT/MOIT+ when training in the presence of web label
noise in mini-ImageNet [22] and mini-WebVision [28]. The
results demonstrate that MOIT/MOIT+ are robust to web
noise and that they do not need careful re-parametrization

Table 9. Performance evaluation in mini-WebVision. We run all
methods.

Mix [53] DMix [28] ELR [30] MOIT MOIT+

Best 74.96 76.08 73.00 78.36 78.76
Last 73.76 74.64 71.88 77.76 78.72

depending on the noise level or distribution to achieve state-
of-the-art performance. The results in Tab. 8 further confirm
that the improvements are consistent across noise levels.
It is interesting to observe that, although MOIT+ consis-
tently outperforms MOIT, the improvements compared to
CIFAR experiments tend to be smaller. We think that a
plausible explanation is the dominance of out-of-distribution
samples in web-noise, which makes label correction via
semi-supervised learning less beneficial. Note that we run
M, DMix, EReg, and MOIT for the same number of epochs
(130) in both mini-ImageNet and mini-WebVision.

5. Conclusion
This paper proposes Multi-Objective Interpolation Train-

ing (MOIT), an approach for image classification with deep
neural networks that robustly learns in the presence of both
synthetic and web label noise. The key idea of MOIT is to
combine supervised contrastive learning and classification
in such a way that they are both robust to label noise. Inter-
polated Contrastive Learning regularization enables learning
label noise robust representations that are used to estimate a
soft-label distribution whose agreement with the original la-
bel allows identification of correctly labeled samples. MOIT
then treats the remaining samples as unlabeled and trains
a label noise robust image classifier in a semi-supervised
manner. We further propose MOIT+, a refinement of our
model by fine-tuning the model while re-training the im-
age classifier. We conduct experiments in CIFAR-10/100
with synthetic label noise and in mini-ImageNet and mini-
WebVision with web noise to demonstrate that MOIT and
MOIT+ achieve state-of-the-art results when training deep
neural networks with different noise distributions and levels.
Future work will explore instance-dependent label noise as
well as how to simplify the contrastive learning framework
by using class prototypes.

Acknowledgements

This publication has emanated from research conducted
with the financial support of Science Foundation Ire-
land (SFI) under grant number SFI/15/SIRG/3283 and
SFI/12/RC/2289 P2.

References
[1] E. Arazo, D. Ortego, P. Albert, N. O’Connor, and K. McGuin-

ness. Unsupervised Label Noise Modeling and Loss Cor-



rection. In International Conference on Machine Learning
(ICML), 2019.

[2] E. Arazo, D. Ortego, P. Albert, N.E. O’Connor, and K.
McGuinness. Pseudo-Labeling and Confirmation Bias in
Deep Semi-Supervised Learning. In International Joint Con-
ference on Neural Networks (IJCNN), 2020.

[3] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio,
M.S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio,
and S. Lacoste-Julien. A Closer Look at Memorization in
Deep Networks. In International Conference on Machine
Learning (ICML), 2017.

[4] D. Bahri, H. Jiang, and M. Gupta. Deep k-NN for Noisy
Labels. In International Conference on Machine Learning
(ICML), 2020.

[5] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A Simple
Framework for Contrastive Learning of Visual Representa-
tions. In International Conference on Machine Learning
(ICML), 2020.

[6] X. Chen, H. Fan, R. Girshick, and K. He. Improved Baselines
with Momentum Contrastive Learning. arXiv:2003.04297,
2020.

[7] S. Chopra and R. and Y. LeCun Hadsell. Learning a similarity
metric discriminatively, with application to face verification.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2005.

[8] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009.

[9] Y. Ding, L. Wang, D. Fan, and B. Gong. A Semi-Supervised
Two-Stage Approach to Learning from Noisy Labels. In
IEEE Winter Conference on Applications of Computer Vision
(WACV), 2018.

[10] S. Guo, W. Huang, H. Zhang, C. Zhuang, D. Dong, M.R.
Scott, and D. Huang. CurriculumNet: Weakly Supervised
Learning from Large-Scale Web Images. In European Con-
ference on Computer Vision (ECCV), 2018.

[11] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[12] J. Han, P. Luo, and X. Wang. Deep Self-Learning From
Noisy Labels. In IEEE International Conference on Computer
Vision (ICCV), 2019.

[13] H. Harutyunyan, K. Reing, G. V. Steeg, and A. Galstyan. Im-
proving Generalization by Controlling Label-Noise Informa-
tion in Neural Network Weights. In International Conference
on Machine Learning (ICML), 2020.

[14] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum
Contrast for Unsupervised Visual Representation Learning.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings
in Deep Residual Networks. In European Conference on
Computer Vision (ECCV), 2016.

[17] D. Hendrycks, K. Lee, and M. Mazeika. Using Pre-Training
Can Improve Model Robustness and Uncertainty. In Interna-
tional Conference on Machine Learning (ICML), 2019.

[18] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel. Using
Trusted Data to Train Deep Networks on Labels Corrupted by
Severe Noise. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[19] E. Hoffer and N. Ailon. Deep metric learning using Triplet
network. arXiv:1412.6622, 2018.

[20] Y. Hu, V. Gripon, and S. Pateux. Leveraging the Fea-
ture Distribution in Transfer-based Few-Shot Learning.
arXiv:2006.03806, 2020.

[21] J. Huang, Q. Dong, S. Gong, X. Zhu. Unsupervised Deep
Learning by Neighbourhood Discovery. In Int. Conf. on Mach.
Learn. (ICML), 2019.

[22] L. Jiang, D. Huang, M. Liu, and W. Yang. Beyond Synthetic
Noise: Deep Learning on Controlled Noisy Labels. In Inter-
national Conference on Machine Learning (ICML), 2020.

[23] L. Jiang, Z. Zhou, T. Leung, L.J. Li, and L. Fei-Fei. Mentor-
Net: Learning Data-Driven Curriculum for Very Deep Neural
Networks on Corrupted Labels. In International Conference
on Machine Learning (ICML), 2018.

[24] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A.
Maschinot, C. Liu, and D. Krishnan. Supervised Contrastive
Learning. arXiv:2004.11362, 2020.

[25] Y. Kim, J. Yim, J. Yun, and J. Kim. NLNL: Negative Learn-
ing for Noisy Labels. In IEEE International Conference on
Computer Vision (ICCV), 2019.

[26] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Technical report, University of
Toronto, 2009.

[27] P. H. Le-Khac, G. Healy, and A. F. Smeaton. Contrastive
Representation Learning: A Framework and Review. IEEE
Access, 8:193907–193934, 2020.

[28] J. Li, R. Socher, and S.C.H. Hoi. DivideMix: Learning with
Noisy Labels as Semi-supervised Learning. In International
Conference on Learning Representations (ICLR), 2020.

[29] W. Li, L. Wang, W. Li, E. Agustsson, and L. Van Gool. Web-
Vision Database: Visual Learning and Understanding from
Web Data. arXiv: 1708.02862, 2017.

[30] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda.
Early-Learning Regularization Prevents Memorization of
Noisy Labels. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[31] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bai-
ley. Normalized Loss Functions for Deep Learning with Noisy
Labels. In International Conference on Machine Learning
(ICML), 2020.

[32] K. Musgrave, S. Belongie, and S.-N. Lim. A Metric Learning
Reality Check. In European Conference on Computer Vision
(ECCV), 2020.

[33] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen,
L. Beggel, and T. Brox. SELF: Learning to Filter Noisy
Labels with Self-Ensembling. In International Conference
on Learning Representations (ICLR), 2020.

[34] D. Ortego, E. Arazo, P. Albert, N. O’Connor, and K. McGuin-
ness. Towards Robust Learning with Different Label Noise



Distributions. In International Conference on Pattern Recog-
nition (ICPR), 2020.

[35] D. Picard A. Histace E. Klein P. Jacob. Metric Learning With
HORDE: High-Order Regularizer for Deep Embeddings. In
IEEE International Conference on Computer Vision (ICCV),
2019.

[36] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu.
Making Deep Neural Networks Robust to Label Noise: A
Loss Correction Approach. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[37] Q. Qian, L. Shang, B. Sun, J. Hu, H. Li, and R. Jin. SoftTriple
Loss: Deep Metric Learning Without Triplet Sampling. In
IEEE International Conference on Computer Vision (ICCV),
2019.

[38] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A.
Rabinovich. Training deep neural networks on noisy labels
with bootstrapping. In International Conference on Learning
Representations (ICLR), 2015.

[39] D. Han S. J. Oh S. Chun J. Choe Y. Yoo S. Yun. CutMix:
Regularization Strategy to Train Strong Classifiers with Lo-
calizable Features. In IEEE International Conference on
Computer Vision (ICCV), 2019.

[40] R. Takahashi, T. Matsubara, and K. Uehara. RICAP: Random
Image Cropping and Patching Data Augmentation for Deep
CNNs. In Asian Conference on Machine Learning (ACML),
2018.

[41] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint
Optimization Framework for Learning with Noisy Labels. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

[42] S. Thulasidasan, T. Bhattacharya, J. Bilmes, G. Chennupati,
and J. Mohd-Yusof. Combating Label Noise in Deep Learning
Using Abstention. In International Conference on Machine
Learning (ICML), 2019.

[43] Y. Tian, C. Sun, B. Poole, P. Krishnan, C. Schmid, and P.
Isola. What Makes for Good Views for Contrastive Learn-
ing? In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[44] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li,
and W. Liu. CosFace: Large Margin Cosine Loss for Deep
Face Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[45] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and
S.-T. Xia. Iterative Learning With Open-Set Noisy Labels. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018.

[46] H. Wei, L. Feng, X. Chen, and B. An. Combating noisy labels
by agreement: A joint training method with co-regularization.
In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2020.

[47] H. Zhang W. Huang M. R. Scott X. Wang. Cross-Batch
Memory for Embedding Learning. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[48] X. Xia, T. Liu, N. Wang, B. Han, C. Gong, G. Niu, and
M. Sugiyama. Are Anchor Points Really Indispensable in
Label-Noise Learning? In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

[49] Y. Xu, P. Cao, Y. Kong, and Y. Wang. L DMI: An Information-
theoretic Noise-robust Loss Function. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[50] K. Yi and J. Wu. Probabilistic End-To-End Noise Correction
for Learning With Noisy Labels. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[51] X. Yu, B. Han, J. Yao, G. Niu, I. W. Tsang, and M. Sugiyama.
How does Disagreement Help Generalization against Label
Corruption? In International Conference on Machine Learn-
ing (ICML), 2019.

[52] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Un-
derstanding deep learning requires re-thinking generalization.
In International Conference on Learning Representations
(ICLR), 2017.

[53] H. Zhang, M. Cisse, Y.N. Dauphin, and D. Lopez-Paz. mixup:
Beyond Empirical Risk Minimization. In International Con-
ference on Learning Representations (ICLR), 2018.

[54] Z. Zhang and M. Sabuncu. Generalized Cross Entropy Loss
for Training Deep Neural Networks with Noisy Labels. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2018.

[55] Z. Zhang, H. Zhang, S. O. Arik, H. Lee, and T. Pfister. Dis-
tilling Effective Supervision From Severe Label Noise. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020.


