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ABSTRACT
In this work, we evaluate contrastive models for the task of image
retrieval. We hypothesise that models that are learned to encode
semantic similarity among instances via discriminative learning
should perform well on the task of image retrieval, where rele-
vancy is defined in terms of instances of the same object. Through
our extensive evaluation, we find that representations from mod-
els trained using contrastive methods perform on-par with (and
outperforms) a pre-trained supervised baseline trained on the Ima-
geNet labels in retrieval tasks under various configurations. This is
remarkable given that the contrastive models require no explicit
supervision. Thus, we conclude that these models can be used to
bootstrap base models to build more robust image retrieval engines.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.

KEYWORDS
Deep learning, Contrastive learning, Self-supervised learning
ACM Reference Format:
Tarun Krishna, Kevin McGuinness and Noel O’Connor. 2021. Evaluating
Contrastive Models for Instance-based Image Retrieval. In Proceedings of
ICMR ’21: ACM International Conference on Multimedia Retrieval (ICMR ’21).
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Large scale image retrieval, where the task is to search a large image
collection for the most relevant image/content for a given query,
is a fundamental task in computer vision. Since their inception,
convolutional neural networks (ConvNets) [22, 40] have become
the prominent approach for extracting descriptors for image re-
trieval. These descriptors perform very well in capturing the global
semantics of an image and this has led to state-of-the-art results
on many benchmark computer vision tasks [7, 18, 37].

The activations in the intermediate layers in ConvNets can be
used as a descriptor for an image. These descriptors are often fol-
lowed by some encoding methods for a compact representation.
These encoding techniques range from traditional approaches of
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VLAD [21], BoW [25], and Fisher vectors [28], to simple pooling
methods like Maximum Activation of Convolution (MAC) [2], Sum
Pooling of Convolution (SPoC) [4], Regional-MAC [42], etc. The
drawback of these methods is that these (off-the-shelf) network
are trained to reduce inter-class variance through supervision on
ImageNet classes, this might affect the performance of instance
retrieval (i.e. retrieving images that represent the same object or
scene as in a query), which is a more fine-grained task.

This drawback has been addressed in the literature by fine-tuning
[13, 14, 35, 38]. We hypothesise that a simpler approach could be to
retain a traditional off-the-shelf regime but instead use models that
are trained based on instance-wise supervision using similarity-
based learning. To this end, we investigate contrastive learning
based methods, i.e. trained in an unsupervised fashion using con-
trastive loss [16, 44]. This learning regime relies on learning a
meaningful embedding that captures inherent similarity between
instances using discriminative approaches [44]. This work inves-
tigates the effectiveness of contrastive methods that capture this
very idea of instance similarity. To summarize our contributions:

• we extensively evaluate contrastive methods as a fixed fea-
ture extractor across different benchmark;

• we provide experimental evidence showing that these mod-
els (trained without any explicit supervision) perform on par
with a pre-trained supervised baseline (Table 1 and 2);

• we further investigate the role of the dimensionality of the
feature embeddings for this task (Table 3).

2 RELATEDWORK
Conventional image retrieval methods [26, 41] relied on bag-of-
words models that exploit local invariant features such as SIFT [24]
and large visual vocabularies (e.g. [31]). To aggregate local patches
and build a global summary, encoding methods such as Fisher
vectors [28] or VLAD [21], have also been proposed [15, 30, 34].

Since the introduction of Deep-ConvNets, [11, 18, 22, 40] there
has been a paradigm shift to exploit deep features instead of hand-
crafted ones. Intermediate layers in convolutional nets can be used
as global or local descriptors. As a result, so-called off-the-shelf
[3, 36] features can be used for retrieval. Based on this authors in
[4] used sum pooling with a centre prior for aggregating features
across spatial dimensions. Other conventional encoding techniques
like VLAD [12] or Fisher kernels [29] have also been used in combi-
nation with these local feature maps. For example, in [25] proposed
BoW-encodings of convolutional features for instance retrieval,
whilst [42] proposed R-MAC using max activations over a grid of
windows of different scales to obtain compact representations.

Most of the off-the-shelf features are trained on ImageNet [39] to
reduce inter-class variance. However, this may degrade the perfor-
mance of an instance-based retrieval system. One way to address
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this is to finetune the model as shown in [5, 13, 14, 35, 38]. In the
context of image retrieval, most of the finetuning has been per-
formed on Landmark datasets [5], which further requires cleaning
of non-related images and potentially expensive post-processing.

Another way is to exploit methods that are trained to reduce
intra-class variance, as is the case in contrastive learning. Unlike in
supervised learning, these approaches learn to discriminate among
individual instances without any concept of categories. This work
[44] discusses this notion of instance discrimination. Building on
this, a simple formulation is presented in SimCLR [8]. The intu-
ition behind these approaches is to maximize the agreement among
augmented views of the same instance using Noise Contrastive
Estimation (NCE) [16]. Minimising NCE is equivalent to maximiz-
ing mutual information (MI) as was formally shown in CPC [27]
as InfoNCE. DIM [19] and AMDIM [6] further extend the idea of
InfoNCE across multiple views and scales. One of the downsides
of these approaches is that they require large batch sizes on large
GPU clusters. To address this drawback, the authors in [9, 17] intro-
duced MoCo, which uses an online and momentum updated offline
network that views contrastive learning as a dictionary lookup
task. Intuitively, the ability to discriminate among individual in-
stances inherently encoded through the learning makes contrastive
learning a good candidate for the task of instance retrieval.

3 CONTRASTIVE MODELS
Contrastive learning refers to learning by comparison. This compar-
ison is performed between positive pairs of “similar” and negative
pairs of “dissimilar” inputs, which is achieved via a contrastive loss
[8, 23] derived from Noise Contrastive Estimation (NCE) [16].

This work targets representative contrastive models for investi-
gation, which are diverse in terms of the way they fuse information.
Intuitively, this should lead to eachmodel spanning different feature
spaces from an image understanding perspective. The following
briefly describes the models considered in this study.
AMDIM:Augmented Multiscale DIM [6] extends the Deep Info-Max
(DIM) framework [19] by learning features extracted from multiple
views of a shared context. Local DIM maximizes MI across features
extracted independently from augmented views of each input along
with features across multiple scales with more powerful encoders.
MoCo: Momentum Contrast Representation Learning [9, 17] allevi-
ates the need for storing offline representations of the entire dataset
in memory [44] through the use of a dynamic memory queue. The
samples in the dictionary are progressively replaced. This approach
looks at contrastive learning as a way of building a discrete dictio-
nary (queue) of inputs (data samples) for a high-dimensional space.
We consider MoCo𝑣1 [17] and MoCo𝑣2 [9].
SimCLR: Simple framework for Contrastive Learning [8] is a simpli-
fied framework for contrastive learning compared to the previous
ones. Here stochastic data augmentations are applied on an input x
to get two views of x𝑖 and x𝑗 . Sequentially these augmented inputs
are passed through a base encoder f (.) followed by projection head,
a small network that projects representations from f (.) to space
where a contrastive loss is applied. We investigate SimClr1𝑥,2𝑥,4𝑥 .

4 EXPERIMENTS
This section describes our experimental setup for the evaluation.

4.1 Setup
We evaluate models on three standard benchmark datasets: Ox-
ford5k [31], Paris6k [32], and INSTRE [43]. Retrieval performance
is measured using mean Average Precision (mAP) following stan-
dard procedures for Oxford 5k and Paris 6k benchmarks and for
INSTRE evaluating mAP over 1200 images as described in [20].
We further evaluate the performance on revised rOxford 5k and
rParis 6k using the new evaluation protocol based on easy,medium,
and hard ground truth labels [33]. For the revised benchmarks we
report both mAP and mean precision@(10,5) (mp@10, mp@5).

The goal is not to fine-tune the models but instead evaluate them
as a fixed feature extractor to obtain visual descriptors. The base
encoder of each of the models is some flavour of ResNet1 with
varying complexity. To this end, we consider the output of the
last convolutional layer, i.e. just before the adaptive pooling layer,
as our descriptor, which leads to feature maps of size R𝐶×𝐻×𝑊 .
To obtain compact representations we use R-MAC (𝐿 = 3𝑎) [42]
over spatial dimensions to get a fixed representation of size R𝐶 .
We further post-process the vectors by applying 𝐿2 normalization,
PCA-whitening, and 𝐿2 normalization again.

We resize our input images to a fixed resolution of 724 × 724
giving a feature spatial dimension of 23 × 23 except in the case of
AMDIM where the dimensions are 40 × 40. However, we downsam-
ple this to 23 × 23 to keep uniformity across the evaluation. Also,
before running the final evaluation we first run each of the models
in training mode (PyTorch model.train() just feed-forward) to
tune the batch-normalization statistics to the current dataset and
then finally test models in evaluation mode (model.eval()).
Baseline. For comparing across all the contrastive models we use
ResNet50 [18] trained on ImageNet as a fixed feature extractor as
our pre-trained supervised baseline model. Note. For completeness
we also evaluate a fine-tuned model [38], which uses Generalized
Mean Pooling (instead of R-MAC) trained with Average Precision
loss (GeM (AP)) 2. The purpose of this is to provide an indicative
upper bound to the evaluation scores.
Ranking. We consider global search (G) in this evaluation. We
further integrate Global search with Average Query Expansion
[10] (AQE), DataBase Augmentation (DBA), [1] and Diffusion [45]
(DFS). For AQE we consider nearest neighbour 𝑁 = 10, for DBA
we consider 𝑁

′
= 20 while combining both of these we consider

𝑁 = 1 and 𝑁
′
= 20, based on the findings in [14].

We use a PCA dimension of 512 and evaluate on a global search
for R-MAC representations unless otherwise stated.

4.2 Results
Table 1 compares different models along with different expansion
techniques3. For a naive global search on Oxford 5k, the contrastive
approach achieves an mAP (%) of 59.40 while the baseline achieves
55.12. Overall best performance is achieved with AQE and DFS
for the baseline model (82.64) but this mAP score for SimCLR2𝑥
(82.34) is in the same range as the former. We also include results

1apart from simClr2𝑥,4𝑥 each uses ResNet50 as a backbone encoder
2https://github.com/naver/deep-image-retrieval
3here and in Table 2 GeM (AP) serves as a upper bound indicator rather than a
benchmark.

https://github.com/naver/deep-image-retrieval
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Table 1: Comparing mAP (%) score across different models. Bold (red) best performing ensemble if it exists.

G G G G G G G G
+AQE +DFS +DBA +AQE +DBA +DBA +DBA

+DFS +AQE +DFS +AQE
Dataset Method +DFS

Baseline 55.12 67.85 74.29 62.63 82.64 70.6 77.95 80.4
SimClr1𝑥 51.47 62.96 71.42 61.00 76.40 66.32 72.98 73.38
SimClr2𝑥 58.59 70.49 79.11 67.34 82.34 72.62 79.02 79.96
SimClr4𝑥 59.40 69.80 80.07 67.52 82.00 71.03 78.67 76.98
MoCo𝑣1 56.76 66.89 74.78 64.12 76.44 69.77 73.39 73.95

Oxford 5k MoCo𝑣2 58.36 67.49 75.26 65.09 78.07 69.86 72.52 72.86
AmDim 36.95 43.44 48.13 39.97 52.99 44.69 46.3 47.74
SimClr2𝑥+SimClr4𝑥 61.89 72.64 81.66 69.27 86.02 74.43 80.45 81.99
SimClr2𝑥+AmDim 57.06 67.37 75.63 64.69 77.77 69.29 72.84 74.51
SimClr2𝑥+MoCo𝑣2 61.33 71.58 78.97 68.47 82.33 72.94 78.36 79.03
SimClr4𝑥+MoCo𝑣2 61.87 71.97 80.86 68.20 84.02 72.94 78.56 79.57
SimClr4𝑥+AmDim 58.13 68.76 77.66 64.81 80.05 69.78 75.93 77.32
GeM (AP) 66.90 78.57 90.36 75.70 94.34 81.92 89.65 91.12
Baseline 41.46 61.76 83.74 64.71 90.17 75.56 90.17 90.62
SimClr1𝑥 42.28 61.15 85.16 64.36 90.17 74.45 89.37 90.49
SimClr2𝑥 44.48 59.65 89.39 63.28 91.61 71.91 90.82 91.48
SimClr4𝑥 44.96 56.3 88.98 60.40 90.18 68.46 88.18 88.74
MoCo𝑣1 43.22 60.34 83.13 63.00 86.9 72.11 87.91 88.73

Paris 6k MoCo𝑣2 49.72 64.46 88.02 67.06 89.86 75.01 88.65 89.01
AmDim 34.87 49.2 59.55 47.72 63.7 56.06 64.18 65.08
SimClr2𝑥+SimClr4𝑥 45.27 56.84 89.97 59.88 91.60 68.07 89.19 90.28
SimClr2𝑥+AmDim 44.45 60.06 86.71 63.02 89.06 71.12 88.46 88.76
SimClr2𝑥+MoCo𝑣2 47.93 61.46 90.92 64.96 92.47 72.37 90.42 91.08
SimClr4𝑥+MoCo𝑣2 47.44 58.44 90.40 61.88 91.97 69.48 89.00 89.93
SimClr4𝑥+AmDim 44.74 57.05 87.59 60.66 88.97 68.60 87.06 87.45
GeM (AP) 49.87 63.46 93.99 67.99 95.56 76.78 90.15 94.07
Baseline 36.64 64.42 71.7 63.96 76.43 74.32 16.41 76.13
SimClr1𝑥 27.51 47.85 55.38 47.34 60.61 57.73 21.00 61.15
SimClr2𝑥 36.68 57.04 66.47 56.89 69.48 65.27 24.93 67.18
SimClr4𝑥 44.76 63.73 73.51 63.26 75.02 70.17 28.79 70.54
MoCo𝑣1 33.44 54.88 66.31 54.84 70.1 64.65 29.25 69.8

INSTRE MoCo𝑣2 33.36 51.79 60.66 50.47 62.56 58.83 22.38 59.77
AmDim 24.34 37.92 45.47 36.69 47.14 42.74 29.47 47.71
SimClr2𝑥+SimClr4𝑥 45.58 63.94 73.54 63.54 74.81 70.54 28.73 70.75
SimClr2𝑥+AmDim 39.37 59.02 68.85 59.09 71.14 66.68 26.19 67.93
SimClr2𝑥+MoCo𝑣2 41.99 60.99 70.42 60.64 72.24 68.41 26.09 68.69
SimClr4𝑥+MoCo𝑣2 47.07 65.23 74.64 64.93 76.12 71.42 27.09 71.26
SimClr4𝑥+AmDim 45.83 63.88 74.25 63.84 75.28 70.83 30.07 71.60
GeM (AP) 20.78 31.37 34.85 30.29 38.06 35.93 18.48 37.54

of ensembling contrastive methods4, which seems to give a further
performance boost (in red in Table 1). A similar inference could
be drawn for Paris 6k where the best mAP for global is achieved
by MoCO𝑣2 (49.72) while the overall best (91.61) is achieved with
AQE and DFS for SimClr2𝑥 . A further boost can be observed for the
ensemble. In the case of the INSTRE dataset, we see a similar pattern
for global search with mAP 44.76 corresponding to SimClr4𝑥 while
the overall best is achieved with AQE and DFS for the baseline

4The R-MAC representations are concatenated and dimensionally reduced via PCA

(76.43) while the best result achieved for contrastive models is
75.02 for SimClr4𝑥 . This clearly indicates that contrastive methods
trained to reduce intra class variance capture the notion of instance
similarity which is being reflected in this evaluation. Also expansion
techniques further boosts the performance over global search.

To further consolidate our findings, we also conducted an evalua-
tion on the revised rOxford 5k and rParis 6k datasets as depicted in
Table 2. On rOxford 5k SimClr2𝑥 gives the best performance on all
labels. mP@10 is almost 70% for the easy category, with the drop in
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Table 2: Comparison on global ranking across different model. Bold (red) best performing ensemble if it exists.

Easy Medium Hard
Dataset Method mAP mp@5 mp@10 mAP mp@5 mp@10 mAP mp@5 mp@10

Baseline 45.65 67.55 61.81 32.89 64.00 58.57 12.10 23.71 19.43
SimClr1𝑥 47.17 69.78 63.90 31.98 65.24 57.52 9.52 20.57 15.86
SimClr2𝑥 54.95 76.69 69.49 38.54 73.14 65.33 14.41 31.21 22.93
SimClr4𝑥 54.65 74.80 68.37 38.57 73.71 65.05 14.05 30.07 22.79
MoCo𝑣1 48.29 68.48 64.36 33.57 64.43 58.58 9.27 20.05 15.62

rOxford 5k MoCo𝑣2 52.69 72.33 65.86 36.49 67.24 59.24 10.72 23.38 18.67
AmDim 21.24 38.31 31.35 17.54 36.38 32.57 4.11 5.92 6.33
SimClr2𝑥+SimClr4𝑥 55.23 76.15 68.87 39.60 74.29 65.64 15.01 29.43 23.97
SimClr2𝑥+AmDim 52.08 72.28 65.51 36.19 66.86 58.57 10.20 21.64 17.64
SimClr2𝑥+MoCo𝑣2 55.11 76.47 69.35 38.46 70.52 62.57 12.51 27.12 21.83
SimClr4𝑥+MoCo𝑣2 53.98 72.40 67.90 38.31 70.10 64.69 13.38 28.43 23.13
SimClr4𝑥+AmDim 49.23 70.76 64.00 35.72 67.62 61.33 11.72 23.79 18.80
GeM (AP) 64.07 84.93 80.56 51.03 89.43 83.86 30.30 54.86 44.00
Baseline 47.20 91.14 87.00 31.63 93.71 91.71 10.44 57.14 43.43
SimClr1𝑥 49.35 93.14 89.52 31.61 95.71 92.00 8.93 46.57 38.43
SimClr2𝑥 54.28 94.00 91.14 34.47 96.00 92.86 10.87 62.00 49.71
SimClr4𝑥 54.97 93.71 91.71 35.39 96.29 94.86 12.34 66.57 56.29
MoCo𝑣1 50.47 92.29 89.71 31.48 95.14 92.57 8.13 46.57 36.29

rParis 6k MoCo𝑣2 55.77 92.86 89.24 36.32 94.86 92.14 11.71 60.00 50.43
AmDim 38.62 80.29 73.71 25.92 82.57 75.71 6.36 25.14 19.57
SimClr2𝑥+SimClr4𝑥 55.54 94.00 91.86 35.59 96.00 94.00 12.37 66.29 56.00
SimClr2𝑥+AmDim 53.71 93.71 90.43 34.57 95.14 93.14 10.46 55.71 46.00
SimClr2𝑥+MoCo𝑣2 57.00 93.43 91.00 36.66 95.14 93.29 11.88 64.00 52.43
SimClr4𝑥+MoCo𝑣2 56.86 94.29 91.71 36.61 96.29 94.86 12.68 69.43 55.57
SimClr4𝑥+AmDim 54.65 92.86 90.57 35.06 95.71 93.43 11.41 61.14 48.71
GeM (AP) 54.90 94.38 91.95 37.36 98.86 97.00 14.65 76.86 63.71

Table 3: Comparison ofmAP (%) across different PCAdimen-
sion and the true dimension.

PCA-Whitening True
Dataset Method 32 64 128 256 512 1024 2048 dim.

Baseline 48.31 54.61 56.68 57.52 55.12 49.44 37.23 58.47
SimClr1𝑥 34.96 44.96 54.17 54.79 51.47 44.16 34.94 50.63
SimClr2𝑥 36.79 47.96 60.32 61.68 58.59 49.82 24.62 53.72

Oxford 5k SimClr4𝑥 35.32 45.86 57.77 61.70 59.40 53.83 44.71 41.94
MoCo𝑣1 29.90 41.95 54.62 57.38 56.76 50.20 39.37 38.73
MoCo𝑣2 39.92 47.88 57.92 60.43 58.36 52.14 40.05 51.76
AmDim 11.52 15.30 21.71 28.71 36.95 37.58 30.73 16.10
Baseline 72.22 71.83 63.65 53.40 41.46 28.99 17.89 68.36
SimClr1𝑥 69.90 73.29 66.62 54.58 42.28 30.7 20.06 66.60
SimClr2𝑥 75.21 77.90 69.25 57.83 44.48 33.05 23.27 72.20

Paris 6k SimClr4𝑥 77.16 78.04 69.19 57.29 44.96 35.02 25.79 72.89
MoCo𝑣1 56.84 63.63 61.87 54.07 43.22 32.57 21.63 53.66
MoCo𝑣2 70.08 75.11 71.24 61.66 49.72 35.73 22.98 69.99
AmDim 21.49 33.96 41.19 40.85 34.87 26.82 17.85 25.50
Baseline 26.44 34.92 38.68 38.55 36.64 29.25 20.20 33.03
SimClr1𝑥 16.47 23.27 29.01 30.35 27.51 21.85 15.97 21.85
SimClr2𝑥 18.42 26.83 35.88 39.67 36.68 29.64 21.57 25.94

INSTRE SimClr4𝑥 18.92 28.97 40.45 46.99 44.76 36.68 27.65 28.98
MoCo𝑣1 20.08 27.85 33.77 36.24 33.44 26.66 18.46 23.01
MoCo𝑣2 19.00 27.38 34.34 36.22 33.36 26.86 18.79 26.22
AmDim 10.65 15.88 20.55 24.15 24.34 20.45 14.45 10.25

performance for hard label. Similarly, on rParis 6k, SimClr4𝑥 gives
the best performance with mP@10 over 90 for easy and medium,
but again this drops off for hard labels. As in the Table 1, here

ensembling further boosts performance. Again, contrastive models
surpass the baseline pre-trained supervised model.
Effect of descriptor dimension on performance. Table 3 re-
ports our findings for global search5. Interestingly, true dimensions
(𝐿2 normalized R-MAC representations) appear to perform worse
for almost all the models. The best dimension varies across the
dataset but it is never the true dimension. This could be attributed
to dimensions with small principal components being noisy and
redundant and adversely affecting performance.

5 CONCLUSION
This work evaluated contrastive models for the task of instance-
based image retrieval. Our evaluation found that these methods are
on par with those trained on class labels. In fact, in many settings in
Table 1, 2 contrastive approaches surpass the supervised model. The
quantitative evaluation shows that these contrastive methods can
easily surpass supervised models without any explicit supervision.
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