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Abstract

We examine the high-frequency return and volatility of major cryptocurrencies and reveal that spillovers

among them exist. Our analysis shows that return and volatility clustering structures are distinct among dif-

ferent cryptocurrencies, suggesting that return and volatility might have different spillover patterns. Further

investigation via minimal spanning trees points out that BTC, LTC and ETH are the most relevant cryp-

tocurrencies in general, serving as connection hubs for linking many other cryptocurrencies. However, their

role is challenged lately, potentially due to the increased usage of other cryptocurrencies in time.

Keywords: Cryptocurrency, Bitcoin, Network, Spillover, Minimal Spanning Tree, Hierarchical Clustering,

Machine Learning

1. Introduction

The rapid development of cryptocurrencies as a financial product appears to have taken many regula-

tory systems by surprise. While research to uncover the many systemic repercussions of this digital finance

evolution continues to expand at pace, much evidence points toward substantially differing characteristics

associated with these new financial products relative to traditional financial products on which much regu-

lation has been honed over time. The development of cryptocurrencies has been further advertised by the
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unprecedented price appreciations that have taken place across a number of assets, particularly that of Bit-

coin. These products have therefore offered substantial opportunities to a number of speculative investors,

not to mention a transmission vehicle through which those with illicit needs can take advantage of regu-

latory circumvention. Research, however, has questioned if this price evolution could be a symptom of

other deeper issues such as the presence of financial bubbles (Corbet et al., 2018b; Fry, 2018). Whether for

investment or illicit rationale, demand for cryptocurrency continues to grow and another market issue is the

presence of fake cryptocurrency, or frauds as generated within ‘pump-and-dump’ scenarios (Corbet et al.,

2020a).

To identify such illicit tactics, further developing our understanding of cross-product correlations and

spillovers is of substantial benefit. For example, Griffins & Shams (2020) investigated Tether’s influence

in market values of cryptocurrencies. They found that purchases with Tether were timed following market

downturns and resulted in substantial rises in Bitcoin prices. Besides, less than 1% of the hours in which

Tether experienced a large volume of transactions is associated with 50% of the increase in Bitcoin prices

and 64% of other top cryptocurrencies, drawing the damning conclusion that Tether was used to provide

price support and manipulate cryptocurrency prices. Along with this source of instability, cryptocurrency

exchanges as well as individual currencies have experienced several sophisticated hacking events, further

damaging the confidence in this asset class. The resulting sharp declines in the prices of cryptocurrencies

are often not just limited to the cryptocurrency that has been targeted, but also spillover to other cryptocur-

rencies.Also, we must note that such spillovers can be instigated by a relatively low number of market

participants1.

Considering such developments and accusations being made with regards to cryptocurrency markets, it

is of particular importance that research focuses on mechanisms through which abnormalities and irregular

behaviour can be identified. One such point of focus is that of spillovers between cryptocurrency markets,

and indeed their changing behaviour over time. In this study, we focus on two type of spillovers among

the major cryptocurrencies, namely return and volatility spillovers. Our analysis shows that both types of

spillovers exist however they have quite different pattern among cryptocurrencies. We further reveal that

BTC, ETH and LTC are the key cryptocurrencies in both of these spillover patterns as they link many

1See Gandal et al. (2018) which identified the impact of suspicious trading activity on the Mt.Gox Bitcoin exchange theft.
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cryptocurrencies to each other. On the other hand, we see that their central role among the network has

been challenged lately once we focus on only the recent sub-sample of our data. We use a Lasso approach

(least absolute shrinkage and selection operator) to estimate the autoregressive vector model (VAR) with all

cryptocurrencies. This method allows us to choose only a few coefficients and not all of them in the VAR

model, simplifying the model, making it more parsimonious while maintaining good accuracy.

We structure the article as follows. In the Section 2, we present a thorough overview of the main

cryptocurrency research relating to pricing spillovers that exist to date. In Section 3 we discuss the data

used and present some basic statistics. We then briefly present the methodology used to analyze the inter-

connectivity between the sample cryptocurrencies in Section 4. Section 5 discusses the main empirical

results, while we conclude the paper in Section 6.

2. Previous Literature and Hypotheses Development

The breadth of coverage relating to research on cryptocurrencies has expanded exponentially in recent

years, with a thorough review of such development provided by Corbet et al. (2019b), which outlined price

efficiency, price volatility and the presence of criminality within the products and the exchanges on which

they trade as of immediate concern. Spillovers within cryptocurrency markets were largely indicative of a

number of broad phenomena, while also providing evidence of a maturing and developing financial product.

Such developing maturity further has manifested in a number of issues similar to other traditional markets

such as interlinkages between return prediction and liquidity (Wei, 2018), varying underlying dynamic pro-

cess generating the prices and volatility (Bariviera, 2017; Celeste et al., 2020; Akyildirim et al., 2020b),

interactions with monetary policy announcements (Corbet et al., 2017, 2020b), the presence of negative

bubbles (Fry & Cheah, 2016), heavy tails (Fry, 2018; Begusic et al., 2018), mean reversion (Corbet & Katsi-

ampa, 2020), finite loss boundaries similar to that of commodity markets with extended left tail correlations

(Feng et al., 2018), long-memory and heteroskedasticity (Phillip et al., 2018), multifractality (Stavroyian-

nis et al., 2019; Lahmiri & Bekiros, 2020a,b) and indeed, the presence of pricing bubbles (Corbet et al.,

2018b). Yi et al. (2018) identify that connectedness within cryptocurrency markets fluctuates periodically

and has presented an increasing trend since 2016. Kumar & Anandarao (2019) found similar results, but

particular evidence of volatility spillovers after 2017. Bouri et al. (2018) used ST-VAR GARCH-in-mean
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models for the period 2010 through 2017 to find that Bitcoin returns move in a similar manner to those of

other major asset classes in both bull and bear market states, but such result are time and market dependent

should the diversification benefits presented by Corbet et al. (2018c) and Akhtaruzzaman et al. (2020) have

continued over time, and indeed Baur et al. (2018) who found contradictory evidence where transaction data

supported the product’s position as a highly speculative asset. Katsiampa et al. (2019a) found differenti-

ating impacts of positive and negative shocks on various cryptocurrencies’ conditional volatility, capturing

the asymmetric effects of good and bad news accordingly. Further, Katsiampa et al. (2019b) used BEKK-

GARCH models to show the existence of bi-directional positive shock transmission effects between Bitcoin

and both Ether and Litecoin, and uni-directional shock transmission from Ether to Litecoin. Akyildirim

et al. (2020a), while presenting considerable effects of both fraudulent and regulatory unease within the

industry on Bitcoin price formation, also verify that Bitcoin derivatives dominate price formation relative

to spot markets, while much evidence suggests that these same Bitcoin futures contracts were most likely

to be a source of speculation rather than hedging (Corbet et al., 2018a, 2019a). When analysing the cross-

correlations between cryptocurrencies, Stosic et al. (2018) found that a major part of the eigenvalues of the

cross correlation matrix do not agree with those of the random matrix theory, suggesting an information

based component hidden in the cross-correlation structure of cryptocurrencies.

While developing a cryptocurrency composite index, Zhang et al. (2018) identified persistent cross-

correlation with the computed index and the Dow Jones Industrial Average. Such cross-correlations are

also subjected to the presence of sustained levels of high unconditional volatility with sudden, sharp price

swings as outlined by Chaim & Laurini (2018). Similarly, Bouri et al. (2018) found that Bitcoin price

movements are quite similar to those of various assets, in particular commodities, thus, Bitcoin is not

isolated completely. Yi et al. (2018) found that fifty-two cryptocurrencies are strongly interconnected and

large-cap cryptocurrencies are the ones that spill volatility over others. Omane-Adjepong & Alagidede

(2019) explored market coherency and volatility causal linkages of seven leading cryptocurrencies using

wavelet-based methods. The authors find three distinct results including diversification benefits, an ability

to somewhat predict volatility feedback linkages and a link between correlations and both trading levels

and market volatility. Ji et al. (2019a) found that the linkages between return and volatility was not due

to market capitalization when investigating six large cryptocurrencies, specifically finding that Litecoin
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and Bitcoin are at the core of the connected network of returns, which developed on their other study (Ji

et al., 2019b) that used a dynamic entropy-based approach to reveal the direction of return spillovers where

cryptocurrency returns are found to become more connected.

This research builds on that which also focused on not just cryptocurrency markets, but traditional fi-

nancial assets also. When considering commodity markets, Arouri et al. (2012) investigated the volatility

spillovers between oil and stock markets in Europe, identifying evidence of significant volatility spillover

effects. The identification of such interlinkages are found to be of the utmost importance when considering

the role of oil price risk and the process of portfolio management. Ji & Fan (2012) identified strengthen-

ing interlinkages during crisis between crude oil and other non-energy commodity markets. Awartani &

Maghyereh (2013) found that return and volatility transmissions are bi-directional, albeit asymmetric be-

tween oil and stock markets in the Gulf. Liu et al. (2017) identify varying evolution features of spillover

effects between the oil and US stock market, and both oil and Russian stock markets. Das et al. (2018)

examined the stock market co-movement and volatility spillover dynamics in the Pacific to find limited di-

versification benefits, and both strong co-movement and volatility comovements during periods of financial

crisis. Baumhl et al. (2018) found that such volatility spillovers decrease when markets are characterized

by greater temporal proximity. Such spillovers were also identified between stock returns and exchange

rate changes (Kanas, 2000) and throughout European equity markets (Baele, 2005), however, such financial

market interlinkages were found to have a relatively larger effect on volatility than contagion, but both are

statistically significant.

Within the guidance of such research on cryptocurrency, this work focuses on a number of specific

hypotheses that provide substantiative information value surround the development of cryptocurrencies as

a viable financial product:

h1: Do return spillovers between cryptocurrency markets change over time?

h2: Do volatility spillovers between cryptocurrency markets change over time?

h3: Using hierarchical clustering, are broad cryptocurrency volatility spillovers sourced solely within the

largest cryptocurrencies of BTC, ETH and LTC?
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3. Data

The high-frequency data used in this study is obtained from Kaiko Digital Asset Store, leading provider

of institutional grade cryptocurrency market data. Kaiko covers raw trade order book data of 10,000+

currency pairs across 70+ exchanges.2 In this study, we use specifically the data from Bitfinex Exchange as

it offers the most liquid order book in the world. Bitfinex platform boasts a suite of order types in addition

to margin trading and margin funding, which all make it to be one of the most efficient cryptocurrency

exchanges in the world.

The dataset covers the period from 1 April 2013 to 23 June 2018. The starting date covers only the trade

data of Bitcoin. Within this time period, we have seventy-seven cryptocurrencies trading against the US

dollar. However, the earliest starting date for many of the cryptocurrency data is 10 August 2017. Hence,

to keep the number of cryptocurrencies and number of observations large enough for robust conclusions,

we use 15-minute frequency data with two filtering mechanisms. First, we filter for cryptocurrencies which

have data starting on 10 August 2017 (17:45 UTC) and is still available on the last day of our sample, 23

June 2018 (23:45 UTC). Second, we filter for the cryptocurrencies having less than 1% non-trading time

interval within this period. According to these criteria, we have twelve cryptocurrencies, namely Bitcoin

Cash (BCH), Bitcoin (BTC), Dash (DSH), EOS (EOS), Ethereum Classic (ETC), Ethereum (ETH), Iota

(IOT), Litecoin (LTC), OmiseGO (OMG), Monero (XMR), Ripple (XRP), and Zcash (ZEC). For each coin,

we take the 15-minute log-returns, i.e., ln(pt+15m)− ln(pt), to use in our spillover analysis. For the volatility,

squared returns are used. We provide the summary stats of cryptocurrency return and squared return series in

Tables 2 and 3 respectively. Moreover, the cross-correlation between returns (volatility) series are displayed

in Figure 8 (Figure 9).

As of the end of our sample period, there are 1545 different coins traded in the global cryptocurrency

markets3 where our sample represents more than 79% of the total market capitalization. Accordingly,

sample used in this study is a good representative of the whole cryptocurrency markets.

2For recent studies that use Kaiko as the data provider, see Makarov & Schoar (2020); Akyildirim et al. (2020a); Aslan &
Sensoy (2020); Mensi et al. (2019).

3https://coinmarketcap.com/historical/20180623/
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4. Methodology

In Table 1 we present our connectedness table that summarizes the measures we use to compute spillovers4

Let si j be the fraction of cryptocurrency i’s H-step forecast error variance due to shocks in cryptocurrency

j. In this case the pairwise connectedness from j to i is:

Ci← j = si j. (1)

We allow spillovers from cryptocurrencies in each other to be asymmetric Ci← j , C j←i. Therefore, we

can calculate net pairwise connectedness using following expression5:

Ci j = C j←i −Ci← j. (2)

The general connectedness measure from all other cryptocurrencies to cryptocurrency i is:

Ci←• =

N∑
j=1, j,i

si j, (3)

whereas the total directional connectedness from cryptocurrency j to others is:

C•← j =

N∑
i=1,i, j

si j. (4)

—————————————-INSERT TABLE 1 HERE——————————————–

In order to construct our connectedness measures we first estimate a Vector Autoregression (VAR)

including all cryptocurrencies and their lags. Optimal lags are chosen according to Bayesian Information

Criterion. Since we are working on return level series which are stationary, no trend variable is included

in the VAR model. We use BigVar in R to employ a Lasso estimator, this procedure effectively shrinks the

4We follow Diebold & Yilmaz (2012), Diebold & Yilmaz (2014), and Barunik & Krehlik (2018). We use the R packages written
by Krehlik (2020), Nicholson et al. (2019) and Csardi & Nepusz (2006).

5We have N2−N
2 net pairwise directional connectedness measures.
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VAR coefficients that do not contribute to forecasting accuracy to zero. In using this penalty method we

estimate a more parsimonious version of what would otherwise be an over-parameterised system.6.

5. Empirical Results

The contemporary correlation between cryptocurrencies is relatively high - between 33% and 73% and

all are statistically significant at the 1% level. This suggests that cryptocurrencies may be viewed as an asset

class. The greater or lesser correlation between these assets should depend on their characteristics, such as

use and trading, as well as number of investors, among others. This may suggest that by investing only in

cryptocurrencies the investor would be running idiosyncratic risk. This risk could arise, for example, from

regulatory changes due to greater difficulties in the use of these assets as a medium of exchange (classical

currency function).

In this sense, it would be crucial to evaluate if there is spillover between the different cryptocurrencies.

We use a new database - with intraday data - that allows this evaluation in different periods of time. Cryp-

tocurrencies are a relatively new type of asset and as a result a number of inefficiencies may arise, reflecting

on their prices and their evolution over time. Spillovers may reflect these inefficiencies as well as being

from a particular asset class.

Figure 1 presents the network, dendrogram and Minimum Spanning Tree for all cryptocurrencies in

our sample and the entire sample. In the upper part of the figure we show that all cryptocurrencies are

interconnected for both returns and volatility. The size of the node represents how relevant is that partic-

ular cryptocurrency in generating spillover to others cryptocurrencies. Our results suggest some degree of

heterogeneity in the relative impact of specific cryptocurrencies.

We also present the Dendrogram - Hierarchical clustering for all crytpocurrencies in our sample. When

we focus on the returns we find that ETH and BTC appear separate in a cluster, whereas all others are in a

different cluster. LTC appears by itself in the second cluster. An interesting finding is that the structure of

clustering is quite different for volatility. This suggests that volatility spillovers may present a significantly

different pattern from return spillovers. Therefore, risk managers and practitioners should evaluate both

when deciding investment and taking portfolio reallocation decisions.

6We test our procedure for different lag specifications, using 1,3,5 and 10 lags, and results remain qualitatively the same (Kang
& Lee (2019))
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The Minimum Spanning Tree complements this information. When we evaluate results for returns we

see that there are two main cryptocurrencies BTC and ETH, which are linked to all others. These two are

connected through LTC. Results for volatility are quite different, with ETH being one of the main cryp-

tocurrencies in the sample - linking most of the cryptocurrencies. This result is relevant for investors or

risk managers that have to decide how to allocate investments across cryptocurrencies or how to limit risks

in the portfolio. BTC, ETH and LTC seem to be relevant cryptocurrencies to keep track as they may link

spillovers from a subset of cryptocurrencies to others.

—————————————-INSERT FIGURE 1 HERE——————————————–

For further analysis, we divide the sample into four equal non-overlapping intervals and perform a sub-

period analysis to observe whether we see drastic changes through time with regard to return and volatility

spillover relationship between sample cryptocurrencies. Figure 2 presents the dendrogram for these four

distinct and non-overlapping time periods. Although ETH, BTC and LTC still seem to be key-players in the

cryptocurrency market their role - in terms of return spillover seems to be changing overtime. This may be

due to several factors such as changes in the uses and investment decisions on these cryptocurrencies, but

also due to regulatory changes that are occurring worldwide.

Figure 3 on the other hand, displays a large change in the hierarchical clustering. Volatility clustering

seem to change more abruptly than returns for the cryptocurrencies in our sample. Therefore, risk spillovers

may change even more significantly overtime than return, which suggests that keeping track of volatility

spillovers seems to be specially relevant in this market. The changing nature of the clusters suggests that

re-balancing portfolios that are specialized in these assets should be done on a more frequent basis than

we would do on more mature markets such as equity or bonds. Quarterly re-balancing may be better than

yearly as the dynamics of these assets’ connectedness may change substantially over time.

—————————————INSERT FIGURES 2 and 3 HERE——————————————-

We also evaluate the total connectedness in a return network (Figure 4) and volatility network (Figure
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5) and find that these cryptocurrencies are strongly linked overtime. Although the nature and the relevance

of specific assets may change over time they hold as an asset class. The changing size of specific nodes may

reflect, similarly to what we find using the dendrogram, how the relative importance of these assets change

over time.

—————————————INSERT FIGURES 4 and 5 HERE——————————————-

When we evaluate changes in the Minimum Spanning Tree over our sub-periods we find that the role

of BTC, LTC and ETH remains important throughout the entire period (Figure 6). These cryptocurrencies

are in the center of the MST, linked to many others, in every sub-period. However, the evaluation of risk

spillovers reveal that the relative importance of specific cryptocurrencies may be changing overtime (Figure

7). Other cryptocurrencies appear relevant as we use more recent data - XMR, ETC, BCH and DSH. There-

fore, as cryptocurrencies are created risk managers would benefit from calculating risk spillovers between

them and tracking down the evolution of these spillovers.

—————————————INSERT FIGURES 6 and 7 HERE——————————————-

5.1. Robustness Tests

In Table 4 we present the spillover of the network into each of the cryptocurrencies. This measure is

directly taken from the forecast error variance decomposition. The first value in column a1 corresponds to

how much of the forecast error variance for ETH stems from shocks received from other cryptocurrencies,

for the subsample a1. This value is 100% minus the autoregressive term’s contribution to forecast error

variance. The last row denotes the network’s total connectivity, taken as a sum of the column in decimal

values. As we can the return spillover changes over time (for the different subsamples).

Table 5 shows the total contribution of each asset to the total network connectivity, as a percentage

term7. As we can see from the results, the ranking changes slightly over time (depending on the subsample),

suggesting that these cryptocurrencies’ relative importance varies.

7This is calculated as the total spillover from each asset divided by the total connectivity measure
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—————————INSERT TABLES 4 and 5 HERE———————————

We also present the Tables for the volatility connectivity which derives similar results (Table 6 and Table

6). The relative importance of these cryptocurrencies change slightly over time.

—————————-INSERT TABLES 6 and 7 HERE——————————–

In Table 8 we present the results of the GARCH(1,1) estimation for each cryptocurrency. We use the

residuals filtered for a GARCH(1,1) model to estimate the LASSO-VAR using our baseline specification,

with three lags (p = 3). In Table 9 we present results for the baseline case, the GARCH-filtered returns,

using ten lags (p = 10) and the GARCH-filtered returns using ten lags. As we can see, the results remain

qualitatively similar, with very little change.

We also perform this exercise for the percentage of connectivity from and results remain very similar

(Table 10). We find that changes occur when we split the sample. Therefore, the relative importance of

these cryptocurrencies may change over time. However, the lag length or filtering for GARCH effects has

minimal impact on the results, suggesting the results are robust for these changes.

—————————-INSERT TABLES 8 and 9 and 10 HERE—————————————

6. Final Considerations

Using intraday data of the most popular 12 cryptocurrencies (that cover 80% of the total cryptocur-

rency market capitalization), we find that there are relevant return and volatility spillovers between them.

However, when we analyze hierarchical clustering for our sample cryptocurrencies, return and volatility

clustering structures are quite different than each other suggesting that return and volatility might have dif-

ferent spillover patterns. Examining the minimal spanning tree structures reveals that BTC, LTC and ETH

are the most relevant cryptocurrencies as they link many others cryptocurrencies between themselves. How-

ever, their role is challenged in time (especially in the case of volatility spillovers) as we split our sample

into non-overlapping periods and focus on more recent data.

These changes in the dynamics of return and volatility spillovers may reflect many changes that have

been occurring in this market such as regulatory changes that have been introduced worldwide to cope with
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the innovations in financial markets and the increased usage of cryptocurrencies as medium of exchange

(money function) and investment opportunity.

From a policy-making perspective, such results are quite important. While Bitcoin remains the largest

and most well-known cryptocurrency, results suggest that it does not continue to generate most of the cen-

tralised volatility within broad cryptocurrency markets. In fact, evidence suggests that the three largest

cryptocurrencies, who would have possessed core influence upon other, more illiquid and smaller cryp-

tocurrencies, no longer have such control. Such evidence indicates further evolution of international cryp-

tocurrency markets, containing a number of self-sufficient, volatility generating and detached products that

are obtaining more independence from the original market dominating currencies, indicating a dilution of

influence from market regulation plans from within the largest and most liquid products alone.
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Tables and Figures

Table 1: Structure of the Connectedness Table

r1 r2 rN From others
r1 s11 s12 s1N

∑N
j=1 d1 j, j , 1

r2 s21 s22 s2N
∑N

j=1 d1 j, j , 2
. . . .
. . . .
. . . .
rN sN1 sN2 sNN

∑N
j=1 dN j, j , N

To others
∑N

i=1 di1
∑N

i=1 di2
∑N

i=1 diN
1
N
∑N

i, j=1 di j

i , 1 i , 2 i , N i , j

Table 2: Summary Statistics for Cryptocurrencies Returns.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

BCH 30,456 0.00003 0.011 −0.179 −0.004 0.004 0.192
BTC 30,456 0.00002 0.007 −0.082 −0.003 0.003 0.055
DSH 30,456 0.00001 0.008 −0.086 −0.003 0.003 0.188
EOS 30,456 0.00005 0.011 −0.194 −0.005 0.005 0.174
ETC 30,456 −0.00000 0.009 −0.154 −0.004 0.003 0.127
ETH 30,456 0.00001 0.007 −0.083 −0.003 0.003 0.106
IOT 30,456 0.00002 0.012 −0.259 −0.005 0.005 0.213
LTC 30,456 0.00002 0.009 −0.125 −0.003 0.003 0.120
OMG 30,456 0.00001 0.011 −0.143 −0.005 0.004 0.191
XMR 30,456 0.00003 0.009 −0.113 −0.004 0.004 0.139
XRP 30,456 0.00003 0.011 −0.315 −0.004 0.004 0.315
ZEC 30,456 −0.00001 0.009 −0.131 −0.004 0.003 0.146
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Table 3: Summary Statistics for Cryptocurrencies Squared-Returns.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

BCH 30,456 0.0001 0.001 0.000 0.00000 0.0001 0.037
BTC 30,456 0.00004 0.0001 0.000 0.00000 0.00003 0.007
DSH 30,456 0.0001 0.0003 0.000 0.00000 0.00004 0.035
EOS 30,456 0.0001 0.001 0.000 0.00000 0.0001 0.038
ETC 30,456 0.0001 0.0004 0.000 0.00000 0.0001 0.024
ETH 30,456 0.0001 0.0002 0.000 0.00000 0.00003 0.011
IOT 30,456 0.0002 0.001 0.000 0.00000 0.0001 0.067
LTC 30,456 0.0001 0.0003 0.000 0.00000 0.00004 0.016
OMG 30,456 0.0001 0.0005 0.000 0.00000 0.0001 0.037
XMR 30,456 0.0001 0.0003 0.000 0.00000 0.0001 0.019
XRP 30,456 0.0001 0.001 0.000 0.00000 0.0001 0.099
ZEC 30,456 0.0001 0.0003 0.000 0.00000 0.0001 0.021

Table 4: Return Spillovers between Cryptocurrencies

To a1 a2 a3 a4 Full Sample

ETH 73.19% 73.40% 87.31% 82.95% 79.74%
BTC 72.05% 72.65% 87.74% 83.64% 79.44%
LTC 69.63% 70.80% 86.29% 81.69% 77.45%
ETC 68.28% 67.09% 85.73% 79.18% 75.63%
OMG 59.18% 65.15% 84.09% 69.40% 70.39%
DSH 56.44% 65.62% 85.10% 75.67% 72.86%
ZEC 53.73% 68.70% 83.75% 71.86% 71.87%
IOT 53.35% 60.64% 84.16% 78.68% 69.54%
EOS 52.80% 59.97% 86.01% 76.67% 70.66%
XMR 51.73% 69.69% 85.05% 75.43% 73.11%
BCH 44.44% 35.29% 85.68% 80.87% 61.81%
XRP 43.08% 56.78% 85.99% 81.32% 69.83%

Total connectivity 6.9790 7.6579 10.2688 9.3736 8.7234

*This table has the spillover of the other assets in the network into each of the cryptocurren-
cies. This measure is directly taken from the forecast error variance decomposition. Where
the first value in column a1 corresponds to how much of the forecast error variance for ETH
stems from shocks received from other cryptocurrencies, for the subsample a1. This value is
100% minus the autoregressive term’s contribution to forecast error variance. The last row
denotes the total connectivity in the network, taken as a sum of the column in decimal values.
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Table 5: Return Connectivity Contribution

Contribution
from

a1 a2 a3 a4 Full Sample

ETH 15.51% 12.34% 9.76% 11.11% 12.31%
BTC 14.45% 11.60% 10.18% 11.79% 11.90%
LTC 12.70% 10.58% 8.85% 10.06% 10.51%
ETC 11.49% 8.87% 8.39% 8.47% 9.38%
OMG 7.85% 7.99% 7.22% 4.83% 6.98%
DSH 6.54% 8.15% 7.80% 6.72% 7.77%
ZEC 6.07% 9.52% 7.00% 5.51% 7.46%
IOT 6.08% 6.60% 7.39% 8.23% 6.80%
EOS 5.73% 6.42% 8.62% 7.25% 7.21%
XMR 5.58% 9.97% 7.84% 6.70% 7.99%
BCH 4.10% 2.31% 8.34% 9.53% 4.75%
XRP 3.90% 5.65% 8.60% 9.81% 6.94%

*This table has the total contribution of each asset to the total net-
work connectivity, as a percentage term. This is calculated as the total
Spillover from each asset divided by the total connectivity measure.

Table 6: Volatility Connectivity Contribution

Contribution
From

a1 a2 a3 a4 Full Sample

ETH 20.75% 12.03% 10.04% 10.86% 13.19%
LTC 17.14% 10.19% 9.60% 12.32% 12.47%
BTC 14.64% 9.43% 9.75% 12.31% 11.87%
OMG 11.62% 6.38% 7.16% 0.90% 5.76%
ETC 11.70% 9.26% 9.73% 2.80% 9.76%
IOT 4.54% 10.68% 7.90% 9.11% 10.02%
DSH 5.03% 3.04% 7.01% 10.97% 4.56%
EOS 4.79% 8.35% 8.07% 6.29% 7.95%
BCH 3.77% 2.95% 8.63% 11.64% 4.18%
ZEC 2.32% 9.83% 5.78% 5.50% 6.60%
XMR 2.19% 12.35% 8.22% 7.42% 8.27%
XRP 1.51% 5.51% 8.12% 9.88% 5.37%

*This table has the total contribution of each asset to the total net-
work connectivity, as a percentage term. This is calculated as the total
Spillover from each asset divided by the total connectivity measure.
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Table 7: Volatility Spillovers between Cryptocurrencies

To a1 a2 a3 a4 Full Sample

ETH 67.77% 66.58% 84.13% 70.74% 68.73%
LTC 64.05% 65.77% 83.13% 73.11% 67.79%
BTC 60.70% 61.02% 83.09% 73.20% 66.25%
OMG 56.57% 56.13% 79.11% 17.12% 50.29%
ETC 55.84% 58.84% 82.90% 39.39% 61.60%
IOT 34.73% 68.45% 75.06% 67.09% 61.31%
DSH 34.54% 28.67% 81.36% 70.71% 43.72%
EOS 34.54% 56.37% 81.50% 58.92% 56.93%
BCH 30.97% 36.11% 81.64% 71.61% 41.55%
ZEC 19.77% 65.38% 76.26% 56.48% 52.32%
XMR 18.41% 68.29% 82.06% 63.32% 57.78%
XRP 13.72% 67.59% 82.12% 68.80% 55.78%

Total connectivity 4.9161 6.9921 9.7235 7.3049 6.8404

*This table has the spillover of the other assets in the network into each of the cryptocurren-
cies. This measure is directly taken from the forecast error variance decomposition. Where
the first value in column a1 corresponds to how much of the forecast error variance for ETH
stems from schocks received from other cryptocurrencies, for the subsample a1. This value
is 100% minus the autoregressive term’s contribution to forecast error variance. The last
row denotes the total connectivity in the network, taken as a sum of the column in decimal
values.

19



Table 8: Results of the GARCH(1,1) estimation for each cryptocurrency

Dependent variable:

BCH BTC DSH EOS ETC ETH IOT LTC OMG XMR XRP ZEC

µ −0.00004 0.0001∗∗ −0.00003 −0.00003 −0.00001 0.00004 0.00002 0.00002 −0.00005 0.00002 −0.00002 −0.00004

(0.00004) (0.00003) (0.00003) (0.00004) (0.00003) (0.00003) (0.00005) (0.00003) (0.00004) (0.00003) (0.00003) (0.00003)

ω 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗

(0.00000) (0.000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

α1 0.127∗∗∗ 0.043∗∗∗ 0.071∗∗∗ 0.095∗∗∗ 0.099∗∗∗ 0.074∗∗∗ 0.080∗∗∗ 0.080∗∗∗ 0.080∗∗∗ 0.098∗∗∗ 0.154∗∗∗ 0.088∗∗∗

(0.005) (0.002) (0.003) (0.004) (0.007) (0.003) (0.003) (0.003) (0.003) (0.005) (0.006) (0.004)

β1 0.860∗∗∗ 0.951∗∗∗ 0.918∗∗∗ 0.901∗∗∗ 0.894∗∗∗ 0.922∗∗∗ 0.908∗∗∗ 0.916∗∗∗ 0.912∗∗∗ 0.893∗∗∗ 0.846∗∗∗ 0.903∗∗∗

(0.005) (0.002) (0.004) (0.004) (0.007) (0.003) (0.004) (0.003) (0.003) (0.006) (0.006) (0.004)

Obs. 30,456 30,456 30,456 30,456 30,456 30,456 30,456 30,456 30,456 30,456 30,456 30,456

Log Lik −104,178.8 −116,941.7 −111,259.6 −100,168.5 −106,927.7 −115,517.8 −96,817.7 −110,738.7 −100,685.3 −106,751.5 −107,409.4 −107,049.6

AIC −6.841 −7.679 −7.306 −6.578 −7.022 −7.586 −6.358 −7.272 −6.612 −7.010 −7.053 −7.030

BIC −6.840 −7.678 −7.305 −6.577 −7.020 −7.585 −6.357 −7.271 −6.610 −7.009 −7.052 −7.028

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01, GARCH(1,1) fit

20



Table 9: Robustness check (GARCH(1,1) Filtered)

Percentage of connectivity to

Baseline GARCH p10 GARCH p10

ETH 9.14100616% 9.14100554% 9.13991833% 9.13991623%

BTC 9.10613081% 9.10612992% 9.10324558% 9.10324136%

LTC 8.87885827% 8.87885772% 8.87504954% 8.87504501%

ETC 8.66989635% 8.66989499% 8.66832182% 8.66831745%

XMR 8.38062602% 8.38062333% 8.37407961% 8.37407272%

DSH 8.35278031% 8.35277484% 8.34062651% 8.34061375%

ZEC 8.23885934% 8.23885606% 8.23185114% 8.23184259%

EOS 8.10026349% 8.10026362% 8.10163271% 8.10162879%

OMG 8.06950173% 8.06949951% 8.07067954% 8.07067394%

XRP 8.00493717% 8.00493746% 8.00677706% 8.00677922 %

IOT 7.97147828% 7.97147715% 7.9689369% 7.96893101%

BCH 7.08566206% 7.08566127% 7.09785709% 7.09784957%

Total 8.72342375 8.72342213 8.72158972 8.72158412

*Robustness check spillover: Contribution to each cryptocurrency.
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Table 10: Robustness check (GARCH(1,1) Filtered)

Percentage of connectivity from

Baseline GARCH p10 GARCH p10

ETH 12.3099114% 12.3099038% 12.2917709% 12.2917562%

BTC 11.8982463% 11.8982534% 11.9119895% 11.911995 %

LTC 10.5059337% 10.5059273% 10.4703189% 10.4702954%

ETC 9.38407162% 9.38406749% 9.37798389% 9.37797417%

XMR 7.99145995% 7.99145822% 7.98262959% 7.98263332%

DSH 7.77393279% 7.77393076% 7.7792921 % 7.77928949%

ZEC 7.45702134% 7.45701924% 7.46435939% 7.46435688%

EOS 7.20931641% 7.20931617% 7.2014107 % 7.20140582%

OMG 6.98246031% 6.98245713% 6.99462789% 6.99462289%

XRP 6.94230218% 6.94230368% 6.94425646% 6.94426303%

IOT 6.79830402% 6.798304 % 6.78666614% 6.78665961%

BCH 4.74703988% 4.74704023% 4.77367034% 4.77365988%

Total 8.72342375 8.72342213 8.72158972 8.72158412

*Robustness check spillover: Contribution from each cryptocurrency.
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(a) Network - Returns - Full Sample (b) Network - Volatility - Full Sample

(c) Dendrogram - Returns - Full Sample (d) Dendrogram - Volatility - Full Sample

(e) MST - Returns - Full Sample (f) MST - Volatility - Full Sample

Figure 1: Full sample analysis of spillover networks, dendrograms, and minimal spanning trees. Sub-figures on the left panel
examine returns whereas sub-figures on the right panel focus on volatilities.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 2: Dendrogram - returns spillovers for four non-overlapping sample periods.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 3: Dendrogram - volatility spillovers for four non-overlapping sample periods.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 4: Network analysis - cryptocurrency return spillovers for four non-overlapping sample periods.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 5: Network analysis - cryptocurrency volatility spillovers for four non-overlapping sample periods.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 6: MST analysis - cryptocurrency returns spillovers for four non-overlapping sample periods.
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(a) Period 1 (b) Period 2

(c) Period 3 (d) Period 4

Figure 7: MST analysis - cryptocurrency volatility spillovers for four non-overlapping sample periods.
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Figure 8: Plot of the contemporaneous correlation of returns of cryptocurrencies.
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Figure 9: Plot of the contemporaneous correlation of volatility of cryptocurrencies.
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