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Abstract—This paper presents Adaptive VR (AVIRA), a
scheme that implements a Virtual Reality (VR) content-aware
prioritisation transport to extend Multipath TCP (MPTCP)
functionalities and improve its performance. To do so, AVIRA
monitors the subflows operation and forecasts subflows’ perfor-
mance by applying an Machine Learning (ML) approach to
evaluate a set of features - such as latency and throughput -
for every subflow available. This ML approach forecasts the
performance of these features through linear regression and
applies a linear classifier by using a weighted sum on the forecast
results. When the traffic of a specific VR component is detected,
AVIRA performs its prioritisation scheme by redirecting packets
to the subflow with the best set of forecasted features. AVIRA
outperforms the algorithms used for comparison and shows that
the use of an ML approach in a "low-level" application is viable,
especially in situations where the network features under scrutiny
are subject to higher variations. In these scenarios, the AVIRA
scheme can be outstandingly efficient.

Keywords—machine learning, multipath TCP, regression, vir-
tual reality, network transport improvement, neural network

I. INTRODUCTION

Between 2014 and 2019 [1], [2], HBO® Go streaming
services (a subsidiary of WarnerMedia® Entertainment) ex-
perienced instabilities and crashed, leaving thousands of US
customers off-line during one of the most popular TV shows,
"Game of Thrones". These were not isolated incidents but
public examples of a pressing matter: the demand for data.
As VR expands its popularity beyond the entertainment sector
[3] covering a vast range of areas (e.g., education [4], [5] and
medical rehabilitation [6]), its stringent demands for resources
makes this situation increasingly concerning.

The global IP traffic is expected to increase threefold
between 2017 and 2022 and reach 50 GB monthly IP traffic
per capita by 2022 [7]. The global number of Machine-to-
machine (M2M) connections is also expected to increase to
4.4 billion by 2023 (a four-fold growth) [8]. Although the high
level of research (e.g., adaptive multimedia [9] and HD video
over wireless networks [10]), the constant investments and the
development of new technologies (e.g., 5SG [11], Software-
Defined Networking (SDN) [12] and Network Function Vir-
tualisation (NFV) [13]), the demand increases even more
rapidly.

Alternatives to improve networks performance have been
proposed and multipath is among them. Despite all the
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progress in telecommunication networks, TCP has been the
main technology to reliably transfer data for IP networks
for nearly 40 years now [14]. However, as applications and
networks evolve, some limitations have surfaced (e.g., strict
order-of-transmission delivery and socket limited scope limit-
ing data transfer through multi-homed hosts). Several projects
addressing multipath technologies with different approaches
and intent usage have been suggested (e.g., Stream Control
Transmission Protocol (SCTP) [15] and Multipath Quick UDP
Internet Connection (MPQUIC) [16]). MPTCP technology in
particular (a multipath transport layer protocol that expands
TCP to enable data transport over multiple paths [17], [18])
is the object of study in this paper.

Furthermore, ML has been applied to several fields of
human knowledge and also used to improve networking per-
formance in a diverse set of approaches [19]. Given the variety
of network technologies and levels of complexity, several ML
algorithms have been explored to deal with intricate problems
and scenarios. Tasks demanding classification, regression or
decision-making techniques are candidates for implementing
ML algorithms and leveraging networking performance.

transport layer

~ MPTCP
v

MPTCP
scheduler

1T

Why

Content
Performance discriminator ML
tracker ~

ML regression

Wc/assifier

Fig. 1: AVIRA main blocks

This paper combines ML and MPTCP technology to pro-
pose AVIRA, an innovative scheme that improves MPTCP
management and, concomitantly, monitors VR content traf-
fic to develop a content-aware prioritisation policy. Indeed,
AVIRA can detect traffic of specific VR components and
redirects it to the subflow with the shortest Round-Trip Time
(RTT), based on subflows performance forecast. Figure 1
presents AVIRA’s architecture and main components. A more
detailed description can be found in Section III.



AVIRA’s prioritisation scheme can significantly enhance
the performance of many VR applications. For instance,
prioritising information such as Inertial Measuring Unit (IMU)
can improve the performance of applications that are highly
dependent on movement tracking while prioritising video
traffic can be key to ameliorate the performance of rich
multimedia applications.

The rest of this paper is organised as follows. Section II
surveys some related work on ML, MPTCP and VR concepts
studied in this paper. Section III describes AVIRA’s archi-
tecture and the ML algorithm. Section IV details the testbed
implementation and assessment results. Finally, Section V
concludes the paper and suggests future work.

II. RELATED WORKS

AVIRA is deployed at the transport layer of the Open
Systems Interconnection (OSI) model and sits on the top of the
MPTCP protocol. AVIRA monitors subflows’ activities and,
by applying an ML approach, forecasts subflows’ performance
based on its features - such as latency or throughput. It also
monitors the VR components and redirects specific packets to
the subflow that suits them best. This section gives an overview
of the main technologies deployed in this research paper.

MPTCP technology extends TCP to enable data trans-
port over multiples paths concurrently and transparently [17].
These multiple data flows are named subflows and MPTCP
ensures they operate with the application layers as regular
Transmission Control Protocol (TCP) sessions. This strategy
is defined to assure that all subflow connections act as regular
TCP session/connections, preserving compatibility by keeping
the interaction between OSI layers unaffected. This avoids
interference of middle-boxes [17], [18] (such as firewalls and
routers) and facilitates the adoption of MPTCP technology.

Many studies show that MPTCP can be optimised for
specific applications. For example, in [20], the authors studied
the impact of path selection in MPTCP performance. Their
results indicate that MPTCP congestion control algorithms
do not obviate the necessity of a better packet scheduler.
Their considerations about congestion control, buffer size and
an RTT-aware scheduler indicate that it is still necessary a
scheduler capable of improving MPTCP’s performance - even
if for a specific use, which is the goal of this work: applying
ML techniques to predict MPTCP subflows’ performance.

The use of ML in networking is not something new. Indeed,
ML techniques have been widely applied to several types
of networking applications, e.g., job scheduling and traffic
prediction [19]. They are also deployed at various levels of
the networking model, from a higher-level definition of the
geographic distribution of data centres to lower level forecast
of network traffic. The focus of this paper is the lower levels,
namely, the TCP transport layer.

In [21], the authors propose a transport layer targeting dis-
tributed machine learning. Nonetheless, the proposed approach
can lead to a long tail flow completion time and is not practical
for real-time applications. In [22], a congestion control scheme
"samples" the network for a period of time and collects results

for ulterior analysis. In [23], the authors described a through-
put prediction scheme to select an optimised initial bitrate for
streaming adaptation. A similar approach was presented in [24]
which analyses historical samples of networking features and
uses them to help define a more adequate TCP congestion size.
Despite having a similar logic, there are distinct differences,
in terms of methodology, when comparing AVIRA to the
aforementioned approaches. Although [22], [23], [24] sample
or measure "low level" network features, they use off-line
analysis and training mechanisms to implement their proposed
solutions. As described in details in Section III, rather than
using massive training data or large amounts of sample data,
AVIRA uses a reduced data set sampled in real-time and
applies simple ML algorithms to process such information.

IIT. AVIRA ARCHITECTURE AND ALGORITHM

AVIRA evaluates MPTCP subflows’ performance and al-
ters their management to promote a content-aware prioriti-
sation scheme targeting the motion-to-photon problem: the
time between the detection of a movement or action until
this interaction reflects the user’s experience. As detailed in
[25] work, in order to create an immersive VR experience,
several distinct components are involved. Figure 2 depicts
how some of these components interact to create the virtual
experience and how the interdependency between them creates
the motion-to-photon problem.
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Fig. 2: The motion-to-photon problem.

This is the reason why it is important to deliver a content-
aware functionality to a VR application (or any other applica-
tion demanding a prioritisation scheme) to improve how these
components are assembled together. To achieve this, AVIRA
implements the following:

A. Performance tracker

Monitors constantly subflows’ feature performance (e.g.,
throughput and/or latency) and creates a performance history
buffers for the operation. These history buffers are then used
to extract a forecast about features’ behaviour through the
application of linear regression algorithms.

B. Content discriminator

To promote a content-aware prioritisation policy, packets are
monitored constantly and, when specific traffic is identified
(i.e., by checking the packet headers), it is redirected to the



subflow that suits it the most (i.e., subflow providing the
highest throughput or shortest RTT).

C. Machine learning algorithms

AVIRA’s ML algorithms description adopts a simplified
workflow described in [19] and summarises briefly how they
are applied here:

o Problem: subflows’ performance must be forecasted in
real-time using a reduced time-series to avoid memory
and/or processing overhead.

e Data: MPTCP subflow pool monitors and captures the
subflows’ behaviour in real-time to create a performance
history data in a time-series format.

o Analysis: the algorithms will extract specific features for
analysis and performance prediction.

o Model: first, a linear regression slope is used to predict
a feature’s behaviour in every subflow of the pool and
a linear classifier is used afterwards to choose the most
suitable subflow.

o Validation: AVIRA is compared to other algorithms (see
Section IV) with different approaches.

o Deployment: AVIRA acts as an MPTCP scheduler in the
[26] implementation used for tests and assessment.

D. Scheduler

The MPTCP scheduler behaviour is altered, based on the
results of the ML analysis, to deliver the best performance in
the next operation.

It is important to emphasise that AVIRA operates while
observing a few limitations concerning the ML computation.
As AVIRA captures and processes data in real-time, it is
mandatory to have a small footprint or processing overhead.
Unlike other algorithms which use off-line analysis and train-
ing data [19], AVIRA does not support heavy data sets for
both training or performance evaluation. The dataset used is a
time-series composed by a key-value pair that represents the
feature value for a given packet transport (e.g., at 00:00:11s
the packet had a throughput of 1Mb).

Also, AVIRA employs a simplified linear regression for
performance forecast and a quick linear classifier to choose
between the subflows. As it can be seen on Algorithm 1, the
implementation of those algorithms are straightforward and
poses no heavy computational overhead, which is important
for a process supposed to run in real-time. These ML algo-
rithms are detailed in the following subsections:

E. Linear regression

As a way to forecast subflows’ performance, AVIRA uses
a simple linear regression - which is a type of regression
analysis commonly used in machine learning algorithms based
on supervised learning. It means that for each feature analysed
(RTT, throughput, etc.) both the input variable x (or indepen-
dent variable) and output variable y (or dependent variable)
are known and there is a linear relationship between x and

v, as shown in Equation la. Simply put, the purpose of the
linear regression algorithm is to compute the values for by
and b; that best represent the linear relationship between
the independent and dependent variables. Equation 1b and
Equation 1c show how the values for by and b; are obtained.
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Where x is the independent variable (input), y is the
dependent variable (or output), by is the y-intercept (Equation
1b) and b, is the slope of the function (Equation 1c).

In practical terms, the x variable is a timestamp representing
the exact moment a packet is transported and the y variable
is the value of a specific network feature. These variables are
the components of the dataset used in all linear regression
forecasts. By forecasting how a specific subflow feature will
behave in the next interaction, a linear regression can help the
MPTCP scheduler choose the best subflow available in the
subflow pool. To illustrate how it chooses between subflows,
Figure 3 shows a hypothetical situation where a feature (e.g.,
latency) is monitored in a group of subflows.
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Fig. 3: Regression-based decision example

During operation, AVIRA has to decide which subflow
has the best chances of offering the best performance (in
this case, the lower latency). In the example in Figure 3, the
moment of decision is represented by the dotted yellow line
at t = 5. Although the last measured values are 60ms, the
linear regression (dotted line in each plot) forecasts a smaller
latency for f, when compared to f; for the next interaction
and, consequently, f> has higher chances to offer lower latency
for the next operation.



E Linear classifier

Once the subflows’ features are analysed, AVIRA applies
a classification algorithm to "combine" the subflow features
using a weighted constraint array to evaluate the subflows
considering multiple features. To do so, AVIRA examines the
subflows using a linear classifier approach, which models the
trigger boundary based on a linear combination of inputs.

Figure 4 depicts the subflow pool and its analysis using an
Artificial Neural Network (ANN) notation. By this notation,
the linear classifier in Figure 4(a) considers the subflow pool
features as the provider of the input layer and the analysis
combining the subflow features and weighted constraints as a
hidden layer.

(a) Features as an ANN

(b) Subflow as a neuron

Fig. 4: Linear classifier representation

In Figure 4(b), the subflow features and their weights are
represented by vectors, f and w respectively. The dot product
(or weighted sum) is applied to both vectors (Equation 2).
Usually, v performs as a threshold (or activation) function
computing the weighted sum (w X f) into a single result.
This activation function H(v) (Equation 3) defines whether
the neuron would be fired or not: the value is 1 if the analysed
conditions satisfy the weighted sum validating these conditions
or 0 if these conditions are not enough to classify a specific
neuron eligible as a solution. This is achieved by applying an
activation function as shown in Equation 4.

y=v(fx#) = fi-wi) @)
i=1
a1, ifv<=0
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f is the subflow’s features forecast in the previous process
and w are parameters used to adjust the relevance of each
feature and offers a mean to adapt to a specific domain or
applicability. H(v) is a Heaviside step function achieved by a
Sigmoid activation function defined in Equation 4.
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G. AVIRA Algorithm

Algorithm 1 describes the pseudocode for both linear re-
gression and linear classifier when a prioritised packet is

detected. First, the algorithm recovers the array used to store
the subflows’ performance buffer (Pp) and calculates the linear
regression (or forecast) of every feature stored there.

Algorithm 1: Linear regression and classifier usage.

Result: Forecast subflow
Input: Pp < subflow’s history performance buffer.
Wi, Wr; //weighted constraints (latency/throughput).
1 Vp; Il array of a feature from all subflows.
2 Vs Il array of a linear classifier results.
3 //computes linear regression for all subflows
4 foreach (V) in Pg) do

5 foreach feat in V), do

6 n++;

7 S, += feat.time;

8 Sy += feat.value;

9 Sxy += (feat.time . feat.value);
10 S,2 += pow(feat.time, 2);

1 end

12 y=3S8y/mn;

13 x=S8/n;

1 | o= ((F 4 Se) - (Fu Siy)) / (Sy2 - (1. pow(E, 2));
15 | by =Sy - (.Y .50)/ (S - (1. powE 2));
16 y = bg + by . current_time;

17 Vp.perf = y; /lupdate performance of a subflow
18 end

19 //computes linear classifier

20 L, < Ppg.getLatency();

21 T, « Pg.getThru();

22 for i « 1 to Pp.pool.size do

23 | Vi[i] « (Lo[i] « WLIi]) + (T [i] « Wr[i]);

24 VLi] « (17 (1 + (1/pow(e, VL [i])));

25 end

26 sort(Vy);

27 return Vp .get(0);

After that, the algorithm recovers specific features (in this
case, latency L, and throughput 7;,) and combines them with
the respective weighted constraints (Wy and Wr) using a
linear classifier to identify the subflow that offers the best
performance for the next operation.

IV. TESTBED AND ASSESSMENT

AVIRA uses a Network Simulator 3 (NS-3) open-source
MPTCP implementation [26] of the IETF RFC 8684 [17]
to implement, test and assess its simulation environment.
The simulation scenario consists of a Point-to-Point (P2P)
model with nodes having 1Mbps bandwidth rate and 2ms
default latency. A MpTcpBulkSender and a MpTcpPacketSink
application, configured in the source node (np) and the sink
node (n4) respectively, extend the original NS-3 implemen-
tations and are set up to send and receive data in a "bulk
copy" style, i.e., sending a large amount of data as fast as
possible over the MPTCP. Both source and sink nodes are
configured in single-homed mode, i.e., each node has one



NS-3 device. These nodes (source and sink) are connected
through other three intermediary devices to create two different
pathways and 8 subflows are set using different ports. For this
implementation, NS-3 defines automatically the routing tables
for establishing the traffic flow among these nodes. A summary
of the simulation environment is presented in Table I.

The simulation scenario implements a prioritisation scheme
where AVIRA identifies specific packets (content discrim-
inator) to trigger the ML processes (linear regression and
linear classifier) to evaluate and identify which subflow would
transmit the packet with the best performance. AVIRA as-
sumes that one packet out of 500 packets (1/500) is the
average between a simpler VR component (e.g., gyroscope
or accelerometer data) and more complex components (such
as video data packets) [27].

For assessment purposes, AVIRA is compared to three
algorithms: 1) the default MPTCP used in NS-3, labelled as
Default; 2) a Random Scheduler, labelled as Random; and 3)
a lowest RTT approach suggested by [28], labelled as Lowest.
Figure 5 illustrates how the traffic is distributed between the
different subflows (0 to 7) available in the MPTCP subflow
pool during the simulation.
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Fig. 5: Traffic distribution: algorithm vs subflow

Despite the algorithms having a slightly different final traffic
volume, due to eventual differences in the control informa-
tion, the same cannot be said about the distribution between
the subflows. When comparing AVIRA with the remaining
algorithms, it is evident that AVIRA allocates the traffic in a
more concentrated way. This concentration is mostly defined
by the forecast scheme during the prioritisation of packets -
eventually, the congestion control refuses the redirection to a

TABLE I: Simulation setup

Value

NS-3 open source MPTCP [26]
1200 seconds

Parameter

Environment
Simulation length

Number of nodes 5 Nodes
Data Rate 1Mbps
Delay 2ms
Number of subflows 8
Prioritisation ratio 1/500
Sender app MpTcpBulkSender [26]

Receiver app MpTcpPacketSink [26]

specific subflow due to the size of the available TCP window.

Figure 6 describes how a network feature (in this case,
the RTT) was impacted during the simulations (for RTT, the
smaller the values the better). AVIRA had, on average, smaller
RTT values when compared to the other three algorithms.
Table II shows the average value for each algorithm and its
standard deviation. However, AVIRA has a more impacting
performance when, in some cases, AVIRA delivers RTT that
is 30% lower than the default MPTCP algorithm. This peak
performance is present especially in situations when the overall
RTT shows higher variation due to some network conditions.
Also, AVIRA generates a throughput gain of 3.4%.

TABLE II: AVIRA assessment average values

Default Random Lowest AVIRA
RIT SD | RTT SD | RIT _SD | RTT _ SD
927 836 | 908 91.0 | 915 920 | 893 892

RTT in milliseconds; SD: Standard Deviation.

During the assessment, other measurements were examined
to guarantee that no unintentional side effects were caused
by the various implementations of the testbed. To this end,
some TCP protocol features were monitored to confirm that
the regular operation was not impacted. The traffic presented
in Figure 5 showed no significant deviations. Additionally,
features such as number of retransmissions, duplicate ACK,
lost segments or fast retransmissions offered no significant
degradation [29], varying between 0.07% and 0.09% for
retransmissions and duplicate ACK, respectively.

V. CONCLUSIONS

By evaluating the possible impact of various types of
schedulers on MPTCP performance, our results indicate that
using AVIRA as an optimised scheduler, tailored specifically
for MPTCP prioritised delivery of VR components, can bring
significant contribution for improving VR Quality of Service
(Qo0S). Simulation results show that AVIRA outperformed
the existing algorithms. This indicates that the use of an ML
approach in a "low-level" and real-time implementation (trans-
port layer) is viable especially in situations where the network
features under scrutiny are subject to higher variations. In these
scenarios, AVIRA can be outstandingly efficient.

Future investigations should address an adaptive algorithm
combining ML algorithms and content prioritisation scheme
for VR components and develop a study correlating QOS
improvements (or deterioration) and its impact on Quality of
Experience (QOE).
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