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Abstract 

A process was developed to disperse ɓ-SiC nanoparticles (NPs), with a high propensity to 

agglomerate, within a matrix of A356 aluminum alloy. A suitable dispersion of 1 wt% SiC NPs 

in the A356 matrix was obtained through a hybrid process including a solid-state modification 

on the surface of the NPs, a two-step stirring process in the semi-solid and then the liquid-state, 

and a final hot-rolling process for fragmentation of the brittle eutectic silicon phase and 

porosity elimination. Titanium and nickel where used as the nanoparticle SiC surface 

modifiers. Both modifiers were found to improve the mechanical properties of the resulting 

material, however, the highest improvement was found from the nickel surface modification. 

For the nickel modification, compared to the non-reinforced rolled alloy, more than a 77%, 

85%, and 70% increase in ultimate tensile strength (UTS), yield strength (YS), and strain % at 

the break, respectively were found with respect to the unreinforced rolled A356. For the rolled 

nanocomposite containing 1 wt % SiCnp and nickel modification, an average YS, UTS, and 

strain % at the break of 277 MPa, 380 MPa, and 16.4% were obtained, respectively, which are 

unique and considerable property improvements for A356 alloy 
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1. Introduction  

The unabated thirst for fuel-saving and cost-efficient materials in automotive, defense, and 

aerospace industries has generated a focus on metal matrix nanocomposites (MMNCs). The 

primary goal of MMNC research is to employ nanoparticle (NP) reinforcements to produce 

high strength/low-density materials with a higher ductility than can be achieved by using 

micron-size reinforcements. In this case, a suitable dispersion of NPs can be used as a barrier 

for the movement of dislocations and avoid their pile up on grain boundaries [1]. However, the 

characteristic nature of the high surface-to-volume ratio and van der Waals forces between the 

NPs tend to keep them in the agglomerated state. Several different approaches have been 

examined (e.g. sonication, particle heat treatment, and various mixing methods) to break the 

bonds and thereby deagglomerate the clusters [2,3]. 

 

Two major routes for MMNCs processing have been developed, solid-state processing (e.g. 

powder metallurgy) and liquid-state solidification processing [4]. In the powder metallurgy 

route, high shear stress generated by high-energy ball milling is used to shear nanoparticle 

clusters. However, this technique contains various drawbacks. The cost of metal powder 

production is high, and this method has limited capability for shaping products in geometrically 

complex forms. Furthermore, this method needs additional processes to manufacture the final 

parts, such as HIP'ing, machining, or another surface finishing [5,6]. The casting method 

(liquid-state solidification processing) can be conducted in liquid, semi-solid, or in a two-step 

process, which has been used to overcome the noted drawbacks of the powder metallurgy route. 

This method is suitable to produce components with complex shapes in any sizes. Also, it is a 

low cost, convenient, and accessible technique. The Casting of an MMNC where Orowan 

strengthening is dominant requires dispersion of NPs in the liquid melt followed by the 

engulfment of the particles within the solidifying grains which is one of the most challenging 

methods for achieving a uniform NP dispersion. It is known that a uniform distribution of NPs 

inside the grains is difficult to achieve in practice to pin the dislocations. Whether particles are 

pushed or engulfed during solidification depends on the velocity of the particles relative to the 

solidification front (SF) during grain growth. If the SF velocity is higher than the critical 

velocity, the particles will be engulfed by the moving SF. Assuming the velocity of the SF is 

held constant, NPs in low concentrations can thereby be engulfed [1]. Therefore, to design the 

microstructure of MMNCs, the interaction of NPs with an advancing solid-liquid interface and 

methods for their injection to the melt need to be studied [7]. 

 

Various measurements have been taken to address the problems associated with NPs 

agglomeration, such as semi-solid stir casting (SS-SC) [[2], [3], [4]], ultrasonic treatment 

[[5], [6], [7], [8], [9], [10], [11], [12], [13]], ball-milling [ [14], [15], [16]] as well as a 

combination of these routes [[17], [18], [19], [20]]. It has been reported that in the SS-SC 

process, shear stress in the two-phase region causes dis-agglomeration. Rohatgi [21] and his 

research team investigated the manufacture of aluminum-based nanocomposites by using a 

reactive wetting method in which magnesium chips were added to react with the alumina layer 

on the surface of aluminum alloy. They reported that magnesium, as it is introduced in the 

molten metal, could eliminate the oxygen and surface alumina by reacting with Al2O3. Indeed, 

Mg improves the wettability by removing surface alumina and decreasing surface tension or 

interfacial energy between particles and melt. They showed that in the case of achieving an 

ideal distribution of nanoparticles without any clustering, the grains remain coarse and Orowan 

is the dominant strengthening mechanism. If agglomeration takes place, the clusters are moved 

by the solidification front and accumulation of clusters leads to the production of smaller 

grains, and the dominant strengthening mechanism, in this case, is Hall-Petch. 

https://doi.org/10.1016/j.msea.2019.138639
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib1
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib2
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib3
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib4
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib5
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib6
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib1
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib7
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib2
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib3
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib4
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib5
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib6
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib7
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib8
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib9
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib10
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib11
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib12
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib13
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib14
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib15
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib16
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib17
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib18
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib19
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib20
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib21


Manuscript version: 6 November 2019 
Elsevier, Materials Science & Engineering 

https://doi.org/10.1016/j.msea.2019.138639 
 

The idea of using a carrier protein, which is a method used in medical science to inject specific 

substances into the blood was suggested by Su et al. [22]. In this study, it was showed that 

aluminum powder is a suitable carrier to introduce nanoparticles into the melt. However, no 

low-magnification microstructure was reported in their study for concluding the method of 

incorporation. In 2014 Rohatgi et al. [23] evaluated strengthening mechanisms with the 

addition of magnesium as the wetting factor to the melt. Nano-alumina powders were added to 

melt in two forms, once covered in foils without compression, and once compacted and pressed 

by foils. However, the agglomeration of NPs was shown in their results. Zhou et al. [24] used 

nickel coatings for nanoparticles before adding them into the melt to improve the wettability. 

However, sub-micron sized clusters were detected inside the grains. Also, it was not reported 

in their study that how they coated nano-sized ceramics with a nickel layer, which individually 

separately is not a trivial task. Two studies were conducted by Rohatgi et al. [1,25] regarding 

the Brownian motion of nanoparticle and the possibility of trapping these particles by the 

solidification front. They showed that the Brownian motion of nanoparticles or low rates of 

nanoparticles could be dominant, and there is a critical amount for nanoparticles to be added 

in composites. They illustrated that by the addition of nanoparticles in small volume fractions, 

they could be trapped and captured by solidification front due to Brownian motion, while larger 

submicron particles are more prone to be moved by solidification front and clustering. Zhang 

et al. [20] milled nano silicon carbide powders with Al2014 alloy powders to improve their 

wettability within the liquid alloy. They reported an improvement in strength, while provided 

microstructures which showed agglomeration of NPs in the metal matrix. A distinct study was 

reported [12], in which a liquid MgïZn matrix was reinforced by SiC nanoparticles. They 

dispersed 1%. vol NPs in the liquid matrix by using ultrasonic waves, and a high percentage of 

matrix alloy was vaporized via an assisting vacuum pump. They achieved a unique and ideal 

microstructure. It should be noted that this method is not suitable and applicable to all types of 

light metals, as the matrix should be evaporated to some extent. Vishwanatha et al. [13] tried 

to provide an approach that would eliminate the disadvantages of both contact and non-contact 

ultrasonic methods for the dispersion of nanoparticles. For this purpose, a contact-type 

ultrasonic method was used. Then the liquid mixture was transferred into another chamber with 

a bottom pouring system to enhance the distribution of nanoparticles using a non-contact 

ultrasonic method. They provided the microstructures from three methods of 1. Contact, 2.non-

contact and 3. A combination of contact and non-contact types, which showed the inability of 

contact and non-contact ultrasonic methods for the distribution of nano-ceramic particles in 

their metal matrix. It also was observed that while a better dispersion was obtained with the 

combination method, an appropriate uniform distribution was not achieved in the produced 

nanocomposites. The contamination of the liquid melt because of contact between the probe 

tip and the liquid melt was reported to be a severe problem and for the non-contact ultrasonic 

treatment, the acoustic energy to the liquid melt is transmitted through the mould wall and the 

drawback of this method is that the processing time is typically too short to achieve complete 

deagglomeration. Also, the ultrasonic intensity is very limited on the surface of the melt, and 

it is a time-consuming process to introduce the nanoparticles into the melt using ultrasonic 

vibration. 

 

To the best knowledge of authors, a uniform distribution of nanoparticles has not been 

accomplished in AlïSi alloys by the mentioned methods, and the reinforcements still have a 

relatively poor wettability and a high tendency to cluster propagated by the present Van-der-

Waals forces. 
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A356 is a hypoeutectic AlïSi alloy, consisting of plate-like eutectic silicon and Ŭ-aluminium 

primary phase dendrites. To improve the mechanical properties of these alloys, efforts have 

been made to develop aluminium matrix composites (AMCs) reinforced by ceramic particles. 

In Table 1, a summary of related reports for A356-based composites is tabulated. It can be 

observed that various methods and reinforcement have been applied to reinforce A356 alloy, 

and in most of them, a composite elongation below 10% was obtained. The most critical issue 

for these types of AlïSi alloys is the brittle plate-like eutectic silicon that causes failure during 

tensile loading even if an ideal dispersion of nanoparticles can be obtained. In fact, for the 

reinforcing of such alloys by NPs, eutectic silicon fragmentation into fine particles (or 

modification of eutectic silicon phase) is required in parallel to NPs addition. 
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In this study, A356 based nanocomposites were prepared by solid-state modification of NPs 

using nickel and titanium as modifiers of the NPs, then stir casting process in two steps, 

followed by hot rolling (HR) to study the dispersion of ɓ-SiC NPs within the matrix and 

associated physical effects. 

2. Experimental procedures 

2.1. Preparation of reinforcing phase 

The reinforcement for the fabrication of the A356-based MMNCs was 1 wt% SiC NPs with an 

average particle size of 50 nm obtained from US-Research NanoMaterial Co. The benefit of 

the selection of SiC NPs is their higher thermal conductivity and modulus compared to 

Al 2O3 NPs, for example. Besides, the relative density of SiC is closer to that of aluminium 

compared with alumina. Nickel and titanium (Shanghai Dinghan Chemical Co., Ltd. China) as 

the modifier agents were used to improve the dispersion of nanoparticles in the A356 matrix. 

The reason for using them as the modifier for the deagglomeration of nanoparticles was 

reported elsewhere [26]. For this purpose, a Fritsch Pulverisette P5 planetary ball mill was used 

under high purity (99.99%) argon gas. Details of the ball-milling process are given in Table 2. 

In the semi-solid metal, a high viscosity fluid can mechanically trap composite powders, 

including NPs in which case mechanical mixing can improve the mixing of composite powders 

in the composite. It should be mentioned that the mechanical shearing used for solidification 

processing in traditional metal matrix composites (with microparticles) does not work for 

submicron and nanosized particles, as the shearing force generated by the mechanical stirring 

decays rapidly and become too weak to separate the nanoparticles. This is a primary reason 

why the solid-state modification of NPs before powder-injection to the melt was examined in 

this study. 

2.2. Preparation of the bulk composite 

Bulk MMNCs were manufactured using an injection of the prepared composite powders into 

molten A356 aluminum alloy under high purity (99.999%) argon gas atmosphere. A356 alloy 

contains around 7 wt% silicon that suppresses the potential chemical reaction between liquid 

aluminum and the SiC NPs, and it prevents the formation of Al4C3 (brittle compound) at the 

particle-matrix interface below 700 ÁC. After the entire alloy in the crucible was melted, it was 

cooled to 600 ÁC, corresponding to a 0.3 solid fraction, based on analysis with Thermo-calc 

software [52]. At 600 ÁC, severe oxidation and burning of NPs can be avoided. Then, 1 wt % 

Mg chips as a wetting agent, prepared by machining, were added and stirring of the semi-solid 

alloy (using a ceramic coated stainless-steel impeller) at 400 rpm was initiated, while pre- 

 

heated powders (pre-heating was done at 350 ÁC for 120 min in argon atmosphere to remove 

the moisture and impurities) along with Mg chips were added to the uniformly formed vortex 

over a period of approximately 6 min to increase the incorporation rate of SiC NPs within the 

liquid aluminum alloy. Stirring was stopped after 6 min of stirring in semi-solid condition, and 

the melt temperature was increased to 680 ÁC with a heating rate of 25 ÁC/min. It was observed 

previously [26,59] that the semi-solid condition is not enough for the required interaction of Ti 

and Ni with the melt such that a suitable releasing of the NPs did not occur. Therefore, the melt 

was stirred at 680 ÁC for an extra 2 min after 6 min stirring at the semi-solid state for a higher 
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release of the NPs. After the completion of the stir casting process, the bottom valve was 

opened, and the melt was guided to a mould at room temperature. The samples produced by 

two-step stir casting were then prepared for the HR process. Fig. 1 shows the schematic of the 

manufacturing process of bulk MMNCs, which was in this study. 

 

Fig. 1. Schematic of the manufacturing process implemented for this study. 

2.3. Material characterization 

Microstructure characterizations were performed using a field emission scanning electron 

microscope (FE-SEM, Mira 3, Tescan), operating at 10 kV and additionally equipped with an 

energy-dispersive X-ray spectrometer (EDS). For SEM study, the samples were ground, 

polished, and etched with Keller's reagent (190 ml water, 5 ml HNO3, 3mlHCl, and 2 ml HF). 

Fractography was studied using a scanning electron microscope (SEM, Vega, Tescan, Electron 

Optic Services). 

 

The phase composition, NP dispersion, and their interaction with dislocations were studied 

with a transmission electron microscope (TEM, JEM-2100, Jeol), operating at 200 kV. Samples 

for TEM analyses were prepared by site-specific Ga+ focused ion beam milling process (FIB, 

450S, FEI). 

 

The tensile tests were performed at room temperature using a uniaxial tensile universal testing 

machine (Model 5982, Instron) of 100 kN operating capacity at a constant rate of crosshead 

displacement, with an initial strain rate of 2 Ĭ 10ī3 sī1. For this purpose, plate tensile 

specimens with an 8.6mm gauge length were prepared by the ASTM E8M standard and three 
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repetitions. The YS (yield strength), UTS (ultimate tensile strength), and ductility (percent 

elongation to break) were measured. 

 

3. Results and discussion 

As described, solid-state modification of NPs using Ti and Ni metallic powders that effectively 

caused NPs breaking up due to repeated collisions between balls and powders and then semi-

solid stirring at low temperature has some advantages as a suitable combined method for NPs 

dispersion within the melt. Fig. 2, Fig. 3 show the microstructure of nanocomposites 

containing Ti and Ni as the modifier agents, respectively, indicating that following liquid-state 

stirring after semi-solid stirring is a suitable complementary process that can complete gradual 

releasing of NPs. The formation of isolated, binary, and ternary SiC NPs after modification and 

their mechanical bonding with Ti and Ni without any reaction occurrence [26,59] could provide 

adequate wettability with the molten aluminium, and ensures their proper distribution by 

gradual releasing in the melt. Suitable dispersion of NPs within the grains with no observed 

segregation on grain boundaries can be observed (Fig. 2, Fig. 3a, b) for the two samples; 

additionally, no Ni segregation on the grain boundaries (Fig. 3c) was detected. Detection of 

many binary and ternary (or more) NPs in as-cast microstructure after their solid-state 

modification indicated that even intensive mechanical collisions of heavy balls cannot 

completely deagglomerate them, while it seems that using of a suitable metallic modifier 

followed by semi-solid and then liquid-state stirring can be an appropriate method for MMNCs 

manufacturing with uniform reinforcement distribution. 

 

Fig. 2. SEMīSE micrograph of surface morphology of as cast samples for (a, b) Ti-1 

wt. % SiCnp. 
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Fig. 3. SEMīSE micrograph of surface morphology of as cast samples for (a, b) Ni-1 

wt. % SiCnp, (c) SEMīSE micrograph of surface morphology of as cast Ni-1 wt. % 

SiCnp, and corresponding EDS elemental mapping for Al, Ni and Si elements. 

 

Fig. 4 shows a schematic of processes that occurred for the samples during stirring and 

solidification. It has been observed that the final microstructure of the developed A356 alloy 

consists of lamellar and flake-like Si plates embedded in the Ŭ-Al matrix without any tendency 
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for segregation along the grain boundaries. Also, it can be observed that the interaction of Ti 

and Ni with aluminium melt (exothermic reaction) caused gradual releasing of NPs, resulting 

in their final engulfment and dispersion inside the grains. 

 

 

Fig. 4. Schematic of the microstructures obtained after solidification in this study. 

Since Brownian motion can be considered as a mechanism that retards the movement of NPs, 

it seems that it will enhance the capture of NPs by the solidification front and improve their 

dispersion, therefore improving the chances of achieving Orowan strengthening. According to 

the Orowan mechanism, dislocation bowing is necessary for dislocations to bypass NPs. This 

motion of fine NPs can produce a considerable random movement that interrupts the settling 

behaviour of a particle and it has been reported that this motion will be considerable by 

decreasing the average size of NPs below 100 nm [25]. 

 

After casting, the HR process was applied to remove porosity, and related microstructure is 

shown in Fig. 2, Fig. 3a. Also, this process was applied to change the morphology and shape 

of flake-like eutectic silicon and make fine fragmented silicon particles. Fig. 5, Fig. 6 show 

SEM micrographs after the HR process, where we can observe how fine Si particles between 

1 and 4 ɛm were obtained after the HR process. Also, a more suitable dispersion of fine and 

coarse NPs with a lower interparticle distance was obtained for the sample in which Ni was 
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used as the modifier. To the best knowledge of authors, this suitable dispersion of NPs shown 

in Fig. 6a is among the best ones in aluminium matrix nanocomposites. It should be noted that 

the inter-particle distance of an ideal MMNCs reinforced by 1 wt % NPs should be considerably 

lower than as obtained in this study, indicating that the manufacturing of perfect distribution 

of nanoparticles in the MMNCs is complicated. 

 

 

Fig. 5. SEMīSE micrograph of rolled Ti-1 Wt. % SiCnp, showing (a) remains of larger 

Si particles, and (b) fine and coarse NPs dispersion in matrix. 

 

 

Fig. 6. SEMīSE micrograph of rolled Ni-1 wt. % SiCnp (a) low, (b) high magnification. 

Fig. 7 shows electron-transparent FIB-produced lamella, containing Si fragments and almost 

an ideal dispersion of SiC NPs, without any agglomerates. 
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Fig. 7. Bright-field (BF) TEM micrographs of Ni-1 wt. % SiCnp microstructure, 

showing (a) overview TEM image of Si fragments in matrix, (b) dispersion of NPs 

around fragmented silicon particles, and (c) distribution and overall NPs dispersion in 

matrix. 

 

The interaction between dislocations, controlling the mechanical properties of the investigated 

material, and the finely dispersed nanoparticles, are presented in Fig. 8, showing results 

obtained in three different areas. Several important conclusions can be drawn from these 

nanostructures: first, dislocation interact with NPs, and bowing mechanism occurred for fine 

SiC NPs, while no interaction of dislocations with coarse NPs was observed; Second, in some 

parts dislocation loops were observed; Third, the interaction of fine NPs with dislocation in 

this area was considerable. From Fig. 7 we can conclude that this investigated area is close to 

grain boundary as much silicon fragmentation was present. In this aspect, the NPs and 

dislocation interaction, combined with the bowing of dislocations, suggests that the presence 

of fine NPs can reduce and affect dislocation pile-up at grain boundaries. It should be 

mentioned that a negligible grain refinement was observed after casting of nanocomposites 

(see Supplementary Figs. S1, S2, and S3) and based on this interaction that was shown in Fig. 

8, it can be deduced that the Orowan mechanism could be the main strengthening mechanism 

for the produced samples. 
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Fig. 8. BF-TEM micrograph of Ni-1 Wt. % SiCnp 2s sample showing interaction of 

dislocations with fine SiC NPs at various areas. 

 

Based on the study by Xu et al. [60], more NP capture during solidification can occur when a 

core-shell nanoparticle, including a metallic core and ceramic shell face (SF). Following this 

report, some of the researchers in previous studies [59,61,62] tried to show the effect of metallic 

carriers (modifiers) on the Hamaker constant of ceramic NPs during solidification in 

aluminium matrix nanocomposites. Fig. 9 presents a TEM micrograph of an individual SiC NP 

embedded in an aluminium matrix as well as results of corresponding EDS analysis, excluding 

Ni presence around NP, suggesting core-shell structure after ball-milling might disappear 

during stirring and solidification due to a high interaction tendency of nickel and exothermic 

reaction with aluminium A356 melt at 680 ÁC [59]. Therefore, it seems that pure NPs facing 

the SF and Brownian motion might be the important reason for the capturing of NPs. 

 

 

Fig. 9. a) TEM micrograph of a fine NP within aluminium matrix for Ni-1 Wt. % 

SiCnp 2s sample, identified as ɓ-SiC, and (b) corresponding EDS spectra. 

https://doi.org/10.1016/j.msea.2019.138639
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib60
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib59
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib61
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib62
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#fig9
https://www.sciencedirect.com/science/article/pii/S092150931931425X?casa_token=WsHF_vz4uykAAAAA:YVDSgDnSrac9ptFXVhzm6wO-F9b02EksPsN7MXY6kcRL7f-NXwYHVaRlLCz1NCOAaFe1Hoq8oQ#bib59


Manuscript version: 6 November 2019 
Elsevier, Materials Science & Engineering 

https://doi.org/10.1016/j.msea.2019.138639 
 

As mentioned for Table 1, many researchers tried to improve the mechanical properties 

(strength-ductility trade-off) of A356 aluminium alloy. For this purpose, it was found that the 

morphology of eutectic silicon is the main prerequisite for strength-ductility trade-off. A 

comparison between microstructures of MMNCs after HR and before HR (compare Fig. 5, Fig. 

6a with Fig. 2, Fig. 3a) show that the HR process as a severe plastic deformation technique 

completely fragmented the eutectic silicon phase into fine silicon particles and disperse them 

in the matrix. After this modification, the nano-scale reinforcing of the matrix based on the 

Orowan mechanism can be the second step for improving the mechanical properties. For this 

purpose, detachment of NPs from their initial condition and dispersing them in a matrix of Ni 

and Ti in solid-state was performed in this study. The gradual releasing of the NP from the Ni 

and Ti modifiers during stirring was discussed, and considerable interaction of fine NPs with 

dislocations was observed. Table 3, as well as Fig. 10, Fig. 11 summarize the tensile behavior 

of the reinforced and unreinforced samples and update of strength-ductility trade-off dilemma 

for A356 aluminum alloy. Unreinforced alloy after HR has a considerable combination of 

ductility and strength compared to many reported values in Table 1 due to fragmentation of 

eutectic silicon. After composite manufacturing, three changes occurred for A356 alloy. First, 

the addition of 1 wt % Mg as the wetting agent. Second, addition of 3 wt % Ni and Ti 

(separately), and third, suitable dispersion of SiC NPs inside the grains. Based on the literature 

[63,64], the addition of Mg, Ti, and Ni is not negligible on the strength of A356 alloy, especially 

after the T6 process. However, more than 77% and 70% increase in MMNCs for the UTS and 

elongation to failure, respectively, by using Ni as the modifier of NPs is emanated from well 

dispersion of NPs and their interaction with dislocations for avoiding dislocation pile-up, 

supporting Orowan strengthening mechanism. From Fig. 2, Fig. 5b, it can be deduced that the 

number of binary, ternary, and clusters of NPs in Ti-rich nanocomposite is higher than that of 

the other nanocomposite. It was reported in the literature [65] that at a temperature above 

650 ÁC Ti, due to its tendency for oxidation, has a lower interaction with aluminum melt 

compared to Ni. Therefore, better performance of Ni as the modifier would be expected in the 

second step of stirring at liquid-state. It should be noted that some sparks were observed for 

Ni-rich samples during stirring at the second step of stirring at 680 ÁC. It is believed that more 

interaction of modifiers with the melt will lead to more heat release. Therefore, a higher amount 

of NPs releasing can occur, affecting the performance of the modifier. It was obtained that the 

Ti-rich sample had a considerable improvement in mechanical properties compared with the 

unreinforced sample, while its UTS and elongation to failure were lower than the Ni-rich 

samples. 
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Fig. 10. Stress-strain curve of prepared samples after the HR process. 

 

 

Fig. 11. Comparisons between the present tensile properties of A356 aluminium alloys 

fabricated using alloying, grain refining, composites, ECAP process [66], rolling 

process [46,66] and special casting process [29,43,66]. 

 

Very recently, researchers [66,67] reported strength-ductility trade-off for A356 aluminum 

alloy. Some impressive results were obtained in their study. Zhang et al. [65] used a 

complicated multi-step process, including four passes of equal channel angular pressing 

(ECAP) process with intermediate heat-treatment for the first step. Then after the T6 process, 

80% cryo-rolling process was applied, and more than 480 MPa for UTS and 8.1% elongation 

to failure were obtained. Dang et al. [66] applied rapid solidification (96K/s) followed by post-

heat treatment process and subsequent solid-solution treatment and quenching and finally, 

artificial aging for obtaining nano-sized eutectic silicon particles. More than 350 MPa for UTS 

and 21% elongation to failure were obtained after these steps, indicating the importance of Si 
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particle size and dispersion in the matrix. The interaction of dislocations with nano-sized 

silicon particles was shown in their study. However, Table 3 and Fig. 10 show that without any 

heat-treatment process, a considerable combination of UTS and elongation to failure was 

obtained in our study, indicating that if SiC NPs with a much higher Young modulus than Si is 

suitably dispersed in the matrix, then without any heat-treatment process, a trade-off of strength 

and ductility can be obtained. This is caused by the ceramic NPs acting as the barrier of 

dislocation movement. In fact, by simultaneous improvement of strength (by avoiding easy 

glide of dislocations), and ductility (by avoiding dislocation pile-up and stress accumulation at 

grain boundaries) the traditional concept of strength improvement that normally will lead to a 

reduction in elongation to failure will be overcome. 

SEM micrographs of the fracture surface of the nanocomposite samples are presented in Fig. 

12. More equiaxed dimples with a higher density were obtained for Ni-rich samples compared 

with Ti-rich nanocomposite. Moreover, smaller and shallower dimples were revealed for Ti-

rich nanocomposite. Silicon and NP cluster debonding and fracture resulted in lower matrix 

deformation and formation of more small and shallow dimples. 

 

 

Fig. 12. The SEMīSE micrographs of the fracture surface of (a) Ti-1 Wt. % SiCnp, (b) 

Ni-1 Wt. % SiCnp samples. 
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In the future, we will optimize the ball-milling process for modification of NPs to reduce the 

number of binary and ternary NP clusters. Using a lower average size for NPs could likely lead 

to even higher interaction with dislocations, improving the mechanical properties even further. 

4. Conclusions 

In this study, solid-state modification of as-received NPs was implemented utilizing ball-

milling with Ni and Ti as surface modifiers. The composite powders with a matrix of Ni and 

Ti (separately) were added to the semi-solid melt of A356 aluminium alloy. The stirring of the 

slurry was conducted in the semi-solid melt, followed by a stop for heating the slurry, and then 

in liquid-state stirring was continued. Finally, nanocomposite sheets were obtained by HR 

process. From the obtained results, the following conclusions can be drawn: 

1. A suitable dispersion of fine and coarse NPs inside the grains was obtained after 

solidification and HR, especially for Ni-rich samples. 

2. This suitable dispersion caused a considerable interaction of fine NPs with 

dislocations, and dislocation bowing was detected and shown. 

3. With improved microstructure, a suitable combination of strength and ductility 

(380 MPa for UTS and 16.4% elongation to failure) was obtained for the Ni-

rich samples compared to previous reports. 

4. No Ni was detected around an individual fine SiC NP showing that Ni modifier 

interacted with melt during stirring, and they were not effective on the 

solidification process of NPs. 
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