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Abstract Purpose: Software Product Lines Engineering is the area of software
engineering that aims to systematise the modelling, creation and improvement of
groups of interconnected software systems by formally expressing possible alterna-
tive products in the form of Feature Models. Deriving a software product/system
from a feature model is called Feature Configuration. Engineers select the subset
of features (software components) from a feature model that suits their needs,
while respecting the underlying relationships/constraints of the system–which is
challenging on its own. Since there exist several (and often antagonistic) perspec-
tives on which the quality of software could be assessed, the problem is even more
challenging as it becomes a multi-objective optimisation problem. Current multi-
objective feature selection in software product line approaches (e.g., SATIBEA)
combine the scalability of a genetic algorithm (IBEA) with a solution reparation
approach based on a SAT solver or one of its derivatives.

Methods: In this paper, we propose MILPIBEA, a novel hybrid algorithm which
combines IBEA with the accuracy of a mixed-integer linear programming (MILP)
reparation.

Results: We show that the MILP reparation modifies fewer features from the
original infeasible solutions than the SAT reparation and in a shorter time. We also
demonstrate that MILPIBEA outperforms SATIBEA on average on various multi-
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objective performance metrics, especially on the largest feature models. The other
major challenge in software engineering in general and in software product lines, in
particular, is evolution. While the change in software components is common in the
software engineering industry, the particular case of multi-objective optimisation
of evolving software product lines is not well-tackled yet. We show that MILPIBEA
is not only able to better take advantage of the evolution than SATIBEA, but it is
also the one that continues to improve the quality of the solutions when SATIBEA
stagnates.

Conclusion: Overall, IBEA performs better when combined with MILP instead
of SAT reparation when optimising the multi-objective feature selection in large
and evolving software product lines.

Keywords Software Product Line, Feature Selection, Multi-Objective Optimisa-
tion, Evolutionary Algorithm, Reparation, Mixed-Integer Linear Programming.

1 Introduction

Software Engineering brings multiple domains together to help with the process of
modelling, building, monitoring, testing and debugging software systems [1] and
Software Product Lines (SPL) is one of them. SPL deals with related software
systems as sets rather than considering each of them separately [2]. This strat-
egy simplifies software reuse [3], permits better reliability, and drives important
cost reductions [4], thus allowing SPL to attract more interest from the software
engineering industry in recent years.

Software Product Lines with their respective products and characteristics are
prevailingly represented using Feature Models (FMs). In an FM, every feature
represents a component of a software product that might be interesting to some
company or customer. Every FM depicts a list of all possible feature configurations,
thus the FM describes the set of all possible software products. In real-life software
product lines, FMs can expand in size (number of features and their relationships)
to become very large (e.g., in our paper, we deal with an FM which has ∼7k
features and ∼350k constraints).

To configure/create a specific product out of the product line, we need to op-
erate a feature selection. Given that an SPL depicts multiple software products,
we need to optimise the feature selection to find the best possible product. In other
words, we need to select the features that could be combined to make the ‘best’
software product [5]. Given that there are different perspectives on what consti-
tutes a good software product, different objectives have to be considered at the
same time (e.g., technical feasibility, reliability, feature cost). Therefore, searching
for the ‘best’ feature selection is often represented as a multi-objective optimisation

problem [6].

One of the best performing algorithms to address the multi-objective feature

selection in SPL is SATIBEA [6]: a hybrid algorithm that combines an Indicator-
Based Evolutionary Algorithm (IBEA) and a SAT solver as a solution reparation
procedure in its mutation operator. IBEA faces a difficult challenge: the search
space is so large and constrained that mutation and crossover operators gener-
ate a large number of infeasible solutions. SATIBEA uses a SAT solver to fix
infeasible solutions and obtains a number of viable solutions at each generation of



Reparation in IBEA for Multi-objective Feature Selection in Large SPLs 3

the genetic algorithm. While SATIBEA achieves large performance improvements,
we have shown in our previous work that SATIBEA’s improvement is slow and
plateaus/stagnates after some duration [7]. SATIBEA’s process has two major is-
sues: (i) we have shown in an empirical study that SATIBEA is time-consuming
and that the vast majority of its execution time is spent on fixing faulty solu-
tions; and (ii) SATIBEA also defies the inheritance property from parents to their
offsprings as it substantially modifies the faulty solutions.

In this paper, we extend our previous work [7] as we thoroughly investigate our
proposed MILPIBEA approach; a hybrid algorithm that uses a genetic algorithm
(IBEA) in conjunction with a mixed-integer linear programming (MILP) solver
(IBM ILOG CPLEX) to repair infeasible solutions. We show in our evaluation
that the MILP reparation is not only faster but also modifies fewer features in the
original infeasible solutions than the SAT reparation. In other words, MILPIBEA’s
reparation is both more efficient and more effective at ensuring that the repaired
solutions are closer to the ones generated by IBEA’s operators. Furthermore, we
have shown that when combining MILP with the IBEA algorithm, MILPIBEA
outperforms SATIBEA on large SPLs, while achieving this performance in only a
fraction of the time taken by SATIBEA.

In our paper, we also investigate a problem that is related to the multi-
objective feature selection (i.e., multi-objective feature selection with evolving
FMs). This problem is not studied to its full extent in the literature. Software
products/libraries are subject to continuous evolution due to a perpetual shift in
customer preferences in terms of software requirements. Software evolution ma-
terialises as variations between different FM versions. For instance, we have pre-
viously analysed a large FM representing the Linux kernel and showed that it
evolves unceasingly [8]. Particularly, we have found differences which can go up to
7% between successive releases of the Linux kernel (every few months).

When performing optimisation of feature selection in evolving FMs, we propose
to exploit the evolution context to improve the search process. We believe that it is
unreasonable to create entirely random bootstrapping populations for the search
process when there exists a set of well-performing solutions for a relatively close
problem. Furthermore, we believe that it might be valuable to take advantage
of the fact that configurations generated before the FM has evolved are similar
enough and could be repaired.

In this paper, we also show that our approach, MILPIBEA, which was initially
designed to address the problem of multi-objective feature selection in SPLs, is
also better than SATIBEA when the FMs evolve.

This paper makes the following contributions:

– We describe our novel MILP based solution reparation which outperforms
SAT [6] in terms of both execution time and ‘fidelity’ of the reparation to
the original infeasible solutions.

– We thoroughly evaluate SATIBEA and MILPIBEA on non-evolving SPL prob-
lems and show that MILPIBEA is better than SATIBEA on average on various
multi-objective performance metrics, especially for the largest feature models.

– We also evaluate SATIBEA and MILPIBEA on evolving SPL problems and
show that not only MILPIBEA achieves better performance results, but it also
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continues to improve the quality of solutions while SATIBEA stagnates after
a certain duration.

The remainder of this paper is organised as follows: Section 2 describes the
background that helps with the understanding of our study and its related work.
Section 3 details our MILP reparation approach. Section 4 describes the exper-
imental setup for validating our approach. Section 5 compares the performance
of our MILPIBEA approach and SATIBEA on various performance metrics when
dealing with large benchmark feature models, whereas Section 6 compares MILP-
IBEA and SATIBEA when dealing with the evolutions of the largest existing
feature model. Finally, Section 7 concludes the paper.

2 Background and Related Work

In this section, we present the material which forms the background and the related
work of our research in four parts:

– Software Product Line Engineering: representation of software variations in
terms of feature model configurations.

– Multi-Objective Optimisation (MOO): different feature selections lead to differ-
ent software products which can be viewed from different (often antagonistic)
quality perspectives. MOO provides us with a framework to deal with these
types of problems.

– Solution Reparation: a review of existing reparation approaches in real-world
optimisation problems in general and in multi-objective feature selection in
SPL in particular.

– SATIBEA: a state-of-the-art algorithm to optimise the multi-objective feature
selection with both non-evolving [6] and evolving [8] feature models.

2.1 Software Product Line Engineering

It is common that software engineers modify software artefacts to match the re-
quirements of a specific client. Software Product Line Engineering is the domain
that attempts to deal with those adaptations in a more systematic way. For ex-
ample, it is possible to interpret all software artefacts (and their adaptations) as
a set of features. These features can then be selected and put together to form a
particular software product.

Feature Models can be represented as a set of features and connecting relation-
ships (constraints). Figure 1 shows a motivating example of an FM with ten fea-

tures which are connected using multiple relationships. For example, each Screen

must be of one and only one type, i.e., Basic , Colour or High Resolution . When

configuring a software product from the software product line, we need to select
a subset of features S ⊆ F which satisfies constraints of the FM F (i.e., technical
requirements and choices of the stakeholders/customers).

The feature configuration task can be modelled as a satisfiability problem
(SAT) in a conjunctive normal form (CNF). For instance, in Figure 1 the FM would
have the following clauses, among others: (Basic ∨ Colour ∨ High Resolution) ∧
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(¬Basic ∨ ¬Colour)∧(¬Basic ∨ ¬High Resolution)∧(¬Colour ∨ ¬High Resolution),
which describe the choice between the three screen alternatives.

Then, the problem becomes an instantiation of variables (in our case, features
with the values True or False) in a way that ensures the satisfaction of all the
constraints. Let fi be a binary variable for every feature Fi ∈ F , and fi is set to
True if Fi is selected to be part of S and False otherwise.

When deriving a software product from a feature model, software engineers
and designers attempt to discover products optimising different objectives instead
of limiting themselves to discovering a unique product that satisfies the FM.

Fig. 1 Example of a Feature Model

Product lines correspond to investments in the long term [9]. Therefore, it
is crucial to efficiently deal with the evolution of SPLs (and their representative
FMs). For instance, we showed in a previous study of a large-scale FM (i.e., the
Linux Kernel) that every few months a new FM is released with up to 7% modi-
fications among the features (features added or removed) [8].

2.2 Multi-Objective Optimisation

Multi-Objective Optimisation (MOO) involves the simultaneous optimisation of
more than one (often antagonistic) objective function. Since the quality of dif-
ferent software artefacts can be seen from different perspectives (e.g., reliability,
usefulness, cost), feature selection in SPL is better modelled as a multi-objective
optimisation problem [6].

The solutions obtained from a MOO problem correspond to a set of non-
dominated solutions, which could be defined as follows: Let S be the set of all
feasible solutions for a given FM. For all x ∈ S, O = [O1(x), ..., Ok(x)] is the vector
containing the k objective values for the solution x. It is said that a solution x1
dominates another solution x2 (also written as x1 � x2), if and only if ∀i ∈ {1, ..., k},
Oi(x1) ≤ Oi(x2) and ∃i ∈ {1, ..., k} such that Oi(x1) < Oi(x2). We also say that xi
is a non-dominated solution if there is no other solution xj that dominates xi.

The set of all non-dominated solutions form what is called a Pareto front: in
this set, it is impossible to find any solution better in all objectives than any of
the other solutions in the set. For instance, the Pareto front given in Figure 2
contains the solutions x1, x2, x4, x6, and x7 because they are not dominated by
any other solution. On the other hand, the solutions x3 and x5 are dominated



6 Saber et al.

by the solution x6, whereas the solutions x8, x9, and x10 are dominated by the
solution x2. Therefore, they are left out of the Pareto front.

Fig. 2 Example of a Pareto front with two minimisation objectives.

2.3 Solution Reparation

Real-life engineering/optimisation problems such as feature selection in SPL usu-
ally represent large sets of constraints, which makes the task of finding a feasible
solution a challenge on its own for evolutionary algorithms. To cope with that,
several works have proposed different solution reparation techniques to handle
constraints in evolutionary algorithms [10].

Real-life engineering/optimisation problems often have their best solutions ly-
ing close to the constraint boundaries and are therefore hard to reach/find when
only relying on feasible solutions during the search process [11]. Some works in-
vestigated the use of infeasible solutions in evolutionary algorithms as a mean to
improve the performance of their algorithms [12], while at the same time putting
adaptive schemes to penalise them [13].

In the context of feature selection in software product lines, Sayyad et al. [14]
were the first to propose defining the number of violated constraints as a min-
imisation objective and showed it to be an effective way to improving the search
process. The definition of Sayyad et al. [14] has since been embraced by the SPL
community with several works using it as their benchmark model (e.g., [6, 7, 15]).
This is also the definition considered in this work.

2.4 Solution Reparation for Feature Selection in SPL

Most recent approaches to feature selection in software product lines combine exact
approaches as a means to find/generate feasible solutions. Xue and Li [16] model
the problem as a multi-objective linear program with binary variables and propose
multi-objective integer programming approaches to solve the problem. However,
their approach was only capable of handling small-scale feature models.
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SATIBEA [6] built upon the work of Sayyad et al. on the multi-objective feature
selection in SPL and introduced a SAT solver as a mean to repair solutions. Their
approach brought an important improvement to the search process. Some works
also replaced the SAT solver with some of its variations (e.g., [15]).

SATIBEA [6] is an extension of the Indicator-Based Evolutionary Algorithm
(IBEA) which guides the search by a quality indicator given by the user. Prior to
SATIBEA, several techniques have been tried to solve the multi-objective feature
selection in SPL. As most of the random techniques and genetic algorithms tend
to generate invalid solutions (given the large and constrained search space), any
random, mutation or crossover operation is tricky. Therefore, setting the number
of violated constraints as a minimisation objective has been proposed by Sayyad
et al. [17] and has since been widely used in the literature [6, 8, 15].

SATIBEA has been introduced to help IBEA find valid products using a SAT
solver. SATIBEA changes the mutation process of IBEA: when a solution is mu-
tated, three different mutations can be applied:

1. The standard bit-flip mutation proposed by IBEA.
2. Replacing the solution by another one generated by the SAT solver that does

not violate any constraints.
3. Transforming the solution into a valid one using the SAT solver (i.e., solution

reparation).

Using this novel mutation approach, SATIBEA finds better solutions than IBEA:
it finds valid optimised products but also gives better values in quality metrics.

In a previous publication [7], we have proposed modelling the solution repara-
tion in the context of evolving SPLs as a MILP problem and used a MILP solver
to optimise it. In this work, we are extending this work by applying the reparation
process to the general case of multi-objective feature selection in SPLs (with and
without evolution). In this paper, we show that our novel technique addresses some
of SATIBEA’s limitations (i.e., slow and stagnating performance improvements)
through the reparation of solutions with the least amount of changes.

3 Proposed Approach: MILPIBEA

In this section, we present two ways of repairing non-feasible solutions: SAT and
MILP. Non-feasible solutions appear very often during the execution of the genetic
algorithm on our problem. Indeed, due to the size of the search space and the
number of constraints that can be violated, both mutation and crossover (the
basic operators in IBEA) generate quite a large ratio of infeasible solutions.
The first approach we present is the SAT reparation proposed in the definition of
SATIBEA [6]. The second approach we present is our own improved reparation
using the MILP model and resolution.

3.1 Solution Reparation in SATIBEA

SATIBEA’s reparation method occurs in the mutation phase of the genetic algo-
rithm. IBEA takes a solution that violates one or several constraints out of the
population and corrects it using a SAT solver. This leads the solution to become
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valid (no longer violating constraints). Figure 3 shows an example of SATIBEA’s
reparation technique on a toy FM which contains 5 features (f1 through f5) and
3 constraints (c1 through c3). The constraints are shown on the left-hand side of
Figure 3, with c2 marked as violated.

1) First, a solution with assignment {1 1 1 0 0} is selected for repair due to the
violation of the constraint c2 (which causes the solution to be invalid). This is
shown in row 1 in the table on the right-hand side of Figure 3.

2a) Second, SATIBEA unsets (this is represented by ‘ ’ in the example) all the bits
that belong to a violated constraint. Here, constraint c2 is violated, so f4 and
f5 are unset. This is shown in row 2a of the table.

2b) Third, SATIBEA unsets all the bits that are evaluated as False in every con-
straint. Each of these can either be a feature without a negation sign in the
constraint (i.e., f) that is set to False or a feature with a negation (i.e., f) that
is set to True. All of these are unset. In our example, f2 is assigned to True
and is evaluated at False in the constraint c1 (f2). Therefore, SATIBEA unsets
f2. This is shown in row 2b of the table.

3) Eventually, the resulting partial assignment is given to the SAT solver to com-
plete the unset values while satisfying the constraints of the FM. SATIBEA’s
reparation always obtains a valid solution if it exists. In our case, SATIBEA
results in a new solution (i.e., {1 0 1 1 0}). This is shown in row 3 of the table
in Figure 3. Note that this procedure cannot guarantee to always return a valid
solution as the problem may be unsatisfiable.

Fig. 3 Reparation of a solution in SATIBEA. The original solution, violating constraint c2, is
shown on row 1 of the right-hand side table and the different steps of SATIBEA’s reparation
are shown on rows 2a, 2b and 3 of the same table.

Although this reparation technique is fast and improves the classical IBEA
algorithm, the number of flipped bits is large. This often creates new solutions that
are far from the original ones (before the reparation). The issue is that modifying
solutions obtained through mutation in IBEA too much is against the idea behind
genetic algorithms (i.e., inheriting and preserving good characters between parents
and their offsprings). For instance, from the solution {1 1 1 0 0} (row 1 of Figure 3)
that violates the constraints, it would be better to obtain solution {1 1 1 1 0} that
does not violate the constraints (instead of {1 0 1 1 0}). The next subsection
describes our MILP-based reparation technique that overcomes this problem.

3.2 MILP Model for Solution Reparation

Our new method repairs solutions and avoids the problem described in the previous
section (i.e., a large number of flipped bits between the original infeasible solutions
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and the repaired ones). This method repairs the faulty solutions and minimises
the number of flipped bits.

Applied to the example in Figure 3, only features f4 and f5 are unset. CPLEX, a
well-known mixed-integer linear programming solver, solves the problem of finding
a valid solution by assigning values to f4 and f5 while at the same time, minimising
the total bit flips on the rest of the features (i.e., f1, f2 and f3). One possible output
is {1 1 1 1 0} which does not modify any fixed bit, unlike SATIBEA’s one (i.e., {1
0 1 1 0} which has one modification on the feature f2).

Using our method, CPLEX is guaranteed to find a valid solution. Moreover, it
returns a solution that is as close as possible to the original one. In our method,
we use the model defined by Equations 1a, 1b, and 1c.

Minimise
∑
x∈T

(1− x) +
∑
x∈F

x (1a)

Subject to
∑
x∈Pi

x+
∑
x∈Ni

(1− x) ≥ 1, ∀i ∈ {1, .. n} (1b)

x ∈ {0, 1}, ∀x ∈ X (1c)

With n number of clauses, X set of features, T ⊂ X set a features fixed at True,
F ⊂ X set of features fixed at False, Pi ⊂ X set of features without negation in
clause i, and Ni ⊂ X set of features with negation in clause i.

In the MILP model above, we aim to minimise the number of flipped features
in the original solution: if the feature was originally at True (i.e., ‘1’), then we
count it as a modification if and only if it changes to False (i.e., ‘0’). Similarly,
when the feature was originally at False and is changed to True, we also count
it as a modification. Similarly to the SAT reparation, each clause is represented
by a linear constraint. Every feature without negation is considered as ‘1’ when
selected, and every feature that is negated is considered as ‘1’ when unselected.
The sum of every feature within a clause has to be larger or equal to 1 to validate
it.

4 Experimental Set-up

This section presents the different elements that we have used in our implemen-
tation: the dataset, the objectives we use for our multi-objective optimisation
problem, the metrics we use to evaluate our approaches, the parameters we use
for the genetic algorithm (i.e., IBEA) and the hardware configuration.

4.1 Dataset

For our experiments, we use the largest open-source FM we could find [15] (i.e.,
the Linux Kernel). The FM of the Linux Kernel is publicly available in the Linux
Variability Analysis Tools (LVAT) repository and it contains 6,888 features and
343,944 constraints in its version 2.6.28.6.

FMs in the LVAT repository are not in the form of a SAT problem and they
are not directly usable in our approach. These FMs are in Kconfig model extracts
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(.exconfig) and need to be converted into SAT models [18] using VM2BOOL1. This
conversion enables SATIBEA to process the FM and search for the non-dominated
products in the many-objective search space.

Note that in addition to variables representing the features, VM2BOOL intro-
duces new variables into the problem. Doing so enables VM2BOOL to (i) convert
the most complex constraints in the FM and (ii) avoid the explosion in the size of
the propositions.

Besides the Linux Kernel, we use an additional four major FMs that are widely
used in the literature [15] and that cover large real-world FMs:

– Fiasco: a micro-kernel that can be used to construct flexible systems (e.g.,
Unix operating systems). Fiasco is suitable to both big/complex systems and
for small/embedded applications.

– FreeBSD: a free and open-source Linux-like operating system used to power
present-day servers, desktops, and embedded applications for its advanced net-
working, security, and storage features.

– µClinux (pronounced you-see-Linux): a variation of the Linux kernel targeted
towards micro-controllers without memory management units.

– eCos (Embedded Configurable Operating System): a free and open-source real-
time customisable operating system designed for embedded systems and appli-
cations that require a unique multi-thread process.

Table 1 shows the version and the size of each of the FMs that we consider
in our experiments in non-evolving feature models (i.e., in Section 5. The table
also reports the number of features and the size of the SAT problem (in terms of
number of variables and number of clauses). Similarly to the SATIBEA paper [6],
we set the execution time on the Linux Kernel to 1,200s. For the other datasets,
we use smaller execution times based on the convergence time of SATIBEA [8].

Table 1 Versions and characteristics of the feature models used in our experiments in non-
evolving Feature models (i.e., in section 5. The characteristics include the number of features
and size of the SAT problem in terms of number of variables and number of clauses. This table
also reports the execution time budget that is permitted on every feature model.

Feature Model Version #Features #Variables #Clauses Time (s)
Linux kernel 2.6.28.6 5,701 6,888 343,944 1,200

Fiasco 2011081207 300 1,638 5,228 200
FreeBSD 8.0.0 1,396 1,396 62,183 200
µClinux 3.0 616 1,850 2,468 100

eCos 20100825 1,244 1,244 3,146 100

4.2 Optimisation Objectives

In our work, we consider five optimisation objectives that are widely used in the
literature [6, 7, 15]:

1. Correctness: we minimise the number of violated constraints, as proposed by
Sayyad et al. [17].

1 https://bitbucket.org/tberger/vm2bool

https://bitbucket.org/tberger/vm2bool
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2. Richness of features: we maximise the number of selected features to have prod-
ucts with more functionality.

3. Features used before: we minimise the number of selected features that were not
used before as they might have unknown issues or use technologies that are
uncommon to most software engineers.

4. Known defects: we minimise the number of known defects in selected features
(randomly generated integer value for each feature between 0 and 10).

5. Cost : we minimise the cost of the selected features (randomly generated real
value for each feature between 5.0 and 15.0).

While we are using the five aforementioned objectives, these objectives could
easily be substituted or augmented with other ones, e.g., consumption of resources
or various costs. All the approaches used in this work (evolutionary algorithm,
SAT reparation, and MILP reparation) are agnostic of the type and number of
objectives.

4.3 Many-Objective Performance Metrics

To assess the performance of our algorithms we use four many-objective perfor-
mance metrics: two quality metrics (Hypervolume and Inverted Generation Dis-
tance) and two diversity metrics (Spread and Pareto Front Size).

4.3.1 Hypervolume (HV)

The idea behind the hypervolume is that it computes the volume (measured in
the k dimensions of the problem’s search space) that is dominated by the Pareto
front. The hypervolume is the area between the non-dominated solutions and the
reference point. The reference point represents the worst possible value for each
objective. The obtained measure represents the region covered by our approximate
Pareto front: the higher the better.

More formally, hypervolume is defined as follows: Let A be the set of solu-
tions/points in the Pareto front, and r[r1, ..., rk] is a reference point far from it.
Then, hypervolume of A is defined by:

HV (A, r) = λ(
⋃
s∈A

[O1(s), r1]× ...× [Ok(s), rk]) (2)

where: λ is the Lebesgue measure, k is the number of objectives and [O1(s), r1]×
...× [Ok(s), rk] is the k-dimensional hyper-cuboid comprised of all solutions/points
that are weakly dominated by s but that are not weakly dominated by the reference
point.

4.3.2 Inverted Generation Distance (IGD)

This metric evaluates the average of distances d(s,A) between every solution s in
the reference front R and its closest solution in the Pareto front A. This metric is
the reverse of the Generational Distance. The lower the IGD the better the Pareto
front. Inverted Generation Distance of A and R is defined as:

IGD(A,R) =

∑
s∈R d(s,A)

|R| (3)
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4.3.3 Spread (S)

This metric computes the solutions’ distribution to evaluate their extent spread
in the Pareto front. The higher the spread the better the Pareto front (i.e., the
more diverse the Pareto front). For a set of solutions A, consider da as the distance
between every solution sa ∈ A and its closest neighbour sb ∈ A, and si ∈ A and
sj ∈ A are the two furthest solutions in A. Spread of A is defined as:

S(A) =
di + dj +

∑
a∈{1..|A|−1}(da − davg)

di + dj + davg · (|A| − 1)
(4)

with davg =
∑

a∈{1..|A|} di

|A|

4.3.4 Pareto Front Size (PFS)

This metric is the simplest to evaluate among the others as it counts the number
of non-dominated solutions in the population at every generation. The higher the
PFS the better.

4.4 System and Algorithms Set-up

We use the source code provided by SATIBEA’s authors and make MILPIBEA
publicly available at https://github.com/takfarinassaber/MILPIBEA. The tests
are performed on a machine with 64GB of RAM and 12 core Intel(R) Xeon(R)
2.20GHz CPU. We use the following parameters for our genetic algorithm:

– Population size: 300 solutions.
– Offspring population size: 300 solutions.
– Crossover rate: 0.8. Represents the probability of two solutions in the popula-

tion to perform a crossover (an exchange of their selected features).
– Mutation rate: 0.001. Represents the probability for each bit (True if a feature

is selected, 0 otherwise) of a solution to be flipped.
– Solver mutation rate: 0.02. Represents the probability of using the solver to

repair a solution during the mutation process.

Note that while some of the above parameters might not be optimal (partic-
ularly the number of mutations which can grow too large with the number of
features), we keep the values of these parameters the same as those defined by [6].

We also use one heuristic in our algorithm: we do not do any bit flip for
mandatory or dead features as this always leads to invalid products. We use the
engine of the MILP solver IBM ILOG CPLEX. We use the hypervolume metric
proposed by Fonseca et al. [19] as the indicator in the indicator-based evolutionary
algorithm. We ran all our algorithm and determined the average over 10 runs (for
each randomly generated instance).

5 Performance of MILPIBEA vs. SATIBEA

In this section, we report on how MILPIBEA and SATIBEA perform on the multi-
objective features selection problem. We perform our comparison in three steps:

https://github.com/takfarinassaber/MILPIBEA
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(i) we compare the efficiency and effectiveness of both MILP and SAT solvers to
repair infeasible solutions, (ii) we compare the evolution of SATIBEA and MILP-
IBEA performances with respect to hypervolume, and (iii) compare the overall
performance achieved by SATIBEA and MILPIBEA with respect to the consid-
ered multi-objective performance metrics.

5.1 Comparison of the Reparation Process

To validate our approach, we would like first to evaluate the way the MILP repa-
ration approach compares against the SAT one.

Consequently, we take 300 solutions that are randomly generated by IBEA as
its initial population for each FM and repair them with either SAT (in SATIBEA)
or MILP (in MILPIBEA). Then, we measure the average execution time to repair
each solution (in milliseconds), the average number of unset variables in the model
used by the reparation technique (#unset variables), and the average number of
modified features from the original solution to the repaired one (#mod). Results
are reported in Table 2 (averaged over the number of solutions).

Table 2 Comparison of SATIBEA and MILP reparations. Lower values of both time and
number of modifications (#mod) the better. Best values for each feature model are in bold.

Feature Model
SAT Reparation MILP Reparation

Time
(ms)

#unset
variables

#mod
Time
(ms)

#unset
variables

#mod

Linux Kernel 5,934 5,725 3,384 4,486 2,872 2,139
Fiasco 76 959 334 59 511 283

FreeBSD 1,248 866 655 520 386 316
µClinux 35 621 303 10 200 100

eCos 47 1079 598 19 455 282

We can see that the MILP reparation is faster on average than the SAT repa-
ration in all FMs. This is likely due to the small size of problems solved by the
MILP reparation method (#unset variables are lower in MILP reparation than
in SAT reparation). However, it is worth noting that since we are using external
solvers (i.e., CPLEX and SAT4J), their usage might pose a threat to the validity
of time measurements–especially since MILP problems are often harder to solve
than SAT problems.

The most important and robust result in Table 2 is the number of feature
modifications. We notice that the number of modified features per solution using
the MILP reparation is lower than when using SATIBEA’s reparation. As our
MILP reparation method performs fewer modifications on the infeasible solutions
to turn them into valid ones, it could be more interesting to use it in a genetic
algorithm instead of SAT: indeed, fewer modifications imply a better conservation
of the accumulated knowledge during the generations.
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5.2 Evolution of Hypervolume Performance

After we have shown that MILP reparation is faster and generates feasible solutions
that are closer to the original infeasible ones, we would like to evaluate the impact
of using MILP instead of SAT within IBEA.

Figure 4 shows the average evolution of hypervolume achieved by MILPIBEA
and SATIBEA over time on all the considered feature models.

We see from Figure 4 that MILPIBEA achieves the best hypervolume than
SATIBEA in 3 out of 5 FMs. MILPIBEA and SATIBEA achieve similar results on
the two other FMs. The three FMs on which MILPIBEA achieves the best results
are notably the largest among them (i.e., Linux Kernel, Fiasco, and FreeBSD).

We also see from Figure 4 that MILPIBEA achieves most of its hypervolume
improvement during the first quarter of the execution time. After making this
large improvement, the hypervolume seems to reach a plateau. SATIBEA, on the
other hand, improves its hypervolume at a slower pace on large FMs and only
has a fast hypervolume improvement (at a similar rate as MILPIBEA) on the
smaller FMs (i.e., µClinux and eCos). Eventually, the hypervolume obtained by
SATIBEA also plateaus at either a lower than or equal value as MILPIBEA. Since
both approaches plateau after some generations, it would be worth investigating
the introduction of a local search as a mean to re-energise the search process
(e.g., [20, 21]).

5.3 Performance over Different Metrics

After analysing the evolution of the hypervolume obtained by MILPIBEA and
SATIBEA, we would like to evaluate the overall performance achieved by each of
these algorithms with respect to the different multi-objective performance metrics.

Table 3 shows the average performances with respect to hypervolume, IGD,
PFS, and spread achieved by both MILPIBEA and SATIBEA at the end of their
execution time on the 5 different FMs.

Table 3 Average performance achieved by SATIBEA and MILPIBEA within the allowed
execution time on each dataset.

Feature Model Algorithm HV (10−1) IGD (10−4) PFS
Spread
(10−1)

Linux Kernel
SATIBEA 2.37 5.38 291 12.4

MILPIBEA 2.57 2.44 300 6.71

Fiasco
SATIBEA 2.17 31.2 99.5 9.67

MILPIBEA 2.51 3.72 300 6.19

FreeBSD
SATIBEA 2.43 5.54 220 13.1

MILPIBEA 2.65 2.64 300 7.26

µClinux
SATIBEA 2.40 29.5 398 7.55

MILPIBEA 2.39 3.80 291 8.37

eCos
SATIBEA 2.42 18.8 126 12.7

MILPIBEA 2.50 3.93 300 7.24

Table 3 shows that MILPIBEA achieves the best results in terms of hypervol-
ume in 4 out of 5 FMs on average. It also shows that MILPIBEA achieves the best
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Linux Kernel Fiasco

FreeBSD µClinux

eCos

Fig. 4 Average hypervolume evolution over time with MILPIBEA and SATIBEA on various
FM models. The higher the better for the hypervolume.
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results in IGD (in 5 out of 5 FMs on average) and in PFS (in 4 out of 5 FMs on av-
erage). This is an indication that MILPIBEA not only finds good solutions, but it
also finds many of them. Similarly to what has been seen in Figure 4, MILPIBEA
achieves better results on the larger FMs (i.e., Linux Kernel, Fisco and FreeBSD)
and similar results as SATIBEA on the two smaller FMs (i.e., µClinux and eCos).

Spread is the only performance metric on which MILPIBEA does not perform
as well. SATIBEA achieves the best spread on 4 out 5 FMs on average. However,
while spread is an important metric, it should not be considered alone, as solutions
can be well spread over the obtained Pareto front and also be of poor quality.

In an attempt to better understand the reasons why MILPIBEA is not per-
forming on spread as well as on other performance metrics, we show in Figure 5
the average evolution of spread achieved by MILPIBEA and SATIBEA over time
on all the considered feature models.

We see from Figure 5 that the spread in both SATIBEA and MILPIBEA
increases drastically at the initial generations to reach its highest levels which
indicates that both algorithms perform a large exploration at the beginning of their
evolutionary process. Looking at the evolution of HV (Figure 4), it is also clear that
this increase in spread comes with large improvements in HV. However, we notice
that the smaller spread reached by MILPIBEA in its first generations enables it
to achieve higher a hypervolume than SATIBEA (despite a higher spread).

After peaking, spread often stabilises in the case of MILPIBEA around the
same levels and only drops slightly (when it does). This drop in spread comes
with small HV improvements which indicates that MILPIBEA finds more non-
dominated solutions close to those it already found and that its distant solutions
as still part of its non-dominated solution set. However, in the case of SATIBEA,
spread behaves in different ways: it stabilises (i.e., Fiasco, FreeBSD, and eCos),
drops (i.e., µClinux), or drops then stabilises (i.e., Linux kernel). When considering
the evolution of both spread and HV achieved by SATIBEA at the same time, there
is no clear correlation. spread can drop while only achieving a small improvement
in HV (e.g., in µClinux). Spread can also stagnate while achieving significant HV
improvements (e.g., in Linux Kernel).

Overall, both evolutionary approaches (SATIBEA and MILPIBEA) tend to
increase spread to a certain level, then maintain it (except on µClinux). However,
MILPIBEA tends to focus more on achieving a large hypervolume rather than a
large spread during its initial steps. While this seems to be a good behaviour in
our usecase, it might cause a diversity problem in other cases.

6 Performance on Evolved Feature Models

We now compare MILPIBEA and SATIBEA in the case of the multi-objective
feature selection problem in evolving FMs. As described in Section 2, the notion
of evolution is represented by features/constraints modifications in the FM. In our
case, we considered the Linux kernel version 2.6.28.6 as the original FM, and we
generated 10 modified versions. Because of evolution, the original FM has been
optimised, and its solutions are given as initial populations to SATIBEA and
MILPIBEA: the purpose is to improve the quality of results on modified FMs as
fast as possible.
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Linux Kernel Fiasco

FreeBSD µClinux

eCos

Fig. 5 Average spread evolution over time with MILPIBEA and SATIBEA on various FM
models. The higher the better for the spread.



18 Saber et al.

6.1 Evolved Dataset

We have previously studied the demographics (features/constraints) and evolution
patterns of 21 successive versions of the Linux kernel [8,22]. We have observed that
on average there was only 4.6% difference in terms of features between a version
and its successor (out of those changes, 21.22% were removed features and 78.78%
were added features). We have also evaluated the size of the clauses/constraints in
the problem, as we need to know how the constraints we add in the problem should
look and found that a large proportion of the FMs’ constraints have 6 features
(39%), 5 features (16%), 18 features (14%) or 19 features (14%). Besides, we have
designed a generator of synthetic FM evolutions based on the real evolution of the
Linux kernel – hence a realistic benchmark but with more variability than in a
real one, allowing us also to get several synthetic datasets corresponding to these
characteristics.

Our FM generator uses two parameters representing the percentage of fea-
ture modifications (added/removed) and the percentage of constraint modifica-
tions (added/removed) from the original FM (Linux kernel version 2.6.28.6). The
higher those percentages are, the more different the new FM is from its original.
The FM generator uses the proportions observed in the 20 FMs to generate new
features/remove old ones, and to generate new constraints of a particular length.
We use the following values to generate evolved FMs2: from 5% of modified fea-
tures and 1% of modified constraints (FM 5 1) to 20% of modified features and
10% of modified constraints (FM 20 10).

6.2 Performance Without Seeding from Original Feature Model

We now report on how MILPIBEA and SATIBEA perform on the multi-objective
features selection problem – in particular with respect to the achieved hypervolume
and the required time to reach that performance. We initially discuss the case
where we do not take advantage of the evolved feature models and provide the
different algorithms with entirely random initial populations.

Figure 4 shows the evolution using SATIBEA or MILPIBEA in terms of hyper-
volume when applied on our 10 evolved feature models: each of them is a modifica-
tion of the 2.6.28 version of Linux kernel represented by a pair (x y) where x is the
percentage of features modified and y is the percentage of constraints modified.
Hypervolume is computed based only on the solutions of the current population.
We are not seeding the initial population: the problem studied in these results is
the multi-objective feature selection problem without taking advantage of the evo-
lution of FMs. The initial population is generated randomly for both algorithms.

Our results indicate that MILPIBEA outperforms SATIBEA in terms of hy-
pervolume on all instances on average. Figure 6 also indicates that MILPIBEA
is more efficient on the most constrained problems (i.e., with constraint modifi-
cations ≥ 5%). MILPIBEA reaches a good hypervolume performance only after
100s, then its performance increases slowly. On the other hand, we can see that
SATIBEA’s hypervolume increases at a slower pace than MILPIBEA’s; then its
hypervolume stays stable (within a small interval).

2 The dataset is available at https://github.com/aventresque/EvolvingFMs
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Figure 6 – Continued on next page
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Figure 6 – Continued from previous page

20 1 20 3

20 5 20 10
Figure 6: Comparison of MILPIBEA and SATIBEA on various
evolved Linux Kernel FMs without seeding. The higher the better
for the hypervolume.

6.3 Performance With Seeding from Original Feature Model

Figure 7 shows the hypervolume of the populations at every new generation for
both SATIBEA and MILPIBEA when given (seeded with) the solutions of the
original FM as initial populations. We see that both algorithms start from a rel-
atively good hypervolume, which shows the quality of the initial population and
the interest for taking advantage of the evolution.

We also see that MILPIBEA successfully improves the hypervolume, whereas
SATIBEA struggles when seeded. This is mainly because MILPIBEA has a repa-
ration method that allows it to take advantage of the initial population’s good
characteristics by not changing a lot of features in solutions that are obtained
from the crossover. However, SATIBEA requires to modify several features, mak-
ing the solutions obtained from the reparation procedure almost random.

Moreover, we can observe that unlike in SATIBEA, MILPIBEA’s hypervolume
continues improving slowly even after the limit (i.e., 1,200s). A larger allowed time
would lead to better solutions. MILPIBEA stagnates only after 2,400s beyond
which we might consider adding some local search phase [21,23,24].
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When comparing MILPIBEA without seeds and MILPIBEA with seeds: after
the first generation, MILPIBEA with seeds is 10.5% better in hypervolume than
without seeds. It also reaches 97.28% of MILPIBEA’s final hypervolume (computed
in 1,200s) after only one generation (42.29s on average). This shows us that a good
initial population improves the time needed to reach good solutions.

1 1 5 1

5 3 10 1

10 3 10 5

Figure 7 – Continued on next page
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Figure 7 – Continued from previous page

20 1 20 3

20 5 20 10
Figure 7: Comparison of the hypervolume achieved by MILPIBEA
and SATIBEA on various evolved Linux Kernel FMs by starting with
solutions from the original FM as initial populations. The higher the
hypervolume the better.

7 Conclusion and Future Work

Real-life optimisation problems such as multi-objective feature selection in SPL
include several constraints, thus rendering the task of finding a feasible solution a
challenge on its own.

Some works in the literature have designed exact approaches to generate fea-
sible solutions or repair infeasible ones in the context of multi-objective feature
selection in SPL. However, while they have achieved better performances, their
improvements stagnate over time.

In this paper, we build upon our previous work on evolving FMs where we
proposed a method based on a combination of a genetic algorithm (IBEA) with a
reparation using a MILP solver (i.e., CPLEX). We use our novel MILP reparation
approach on the general multi-objective feature selection in SPL and show its
efficiency with respect to a SAT reparation in both regular and evolving SPL
scenarios. Our evaluation showed the importance of using a MILP solver to reduce
the number of modifications when repairing a solution. Moreover, our evaluation
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also showed that our approach achieves better and faster results than SATIBEA
on the multi-objective features selection in large scale SPLs. It also showed that
our approach outperforms SATIBEA in the context of evolving SPL.

Our future work will be to investigate the impact of performing solution repa-
ration (i) at different stages of the evolutionary process, (ii) with varying frequen-
cies, and (iii) at diverse optimality ratios. The goal would be to have a guideline
for using reparation techniques in evolutionary algorithms and ultimately create
automatic/adaptive parametrisation of the reparation method in evolutionary al-
gorithms. Our future work will also evaluate the utility of introducing a local
search when the genetic algorithm stagnates as a mean to re-energise the search
process to find better solutions.
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19. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm
for the hypervolume indicator. In: CEC. (2006) 1157–1163

20. Saber, T., Thorburn, J., Murphy, L., Ventresque, A.: VM reassignment in hybrid clouds for
large decentralised companies: A multi-objective challenge. Future Generation Computer
Systems 79 (2018) 751–764

21. Saber, T., Gandibleux, X., O’Neill, M., Murphy, L., Ventresque, A.: A comparative study
of multi-objective machine reassignment algorithms for data centres. Journal of Heuristics
(2019) 1–32

22. Brevet, D., Saber, T., Botterweck, G., Ventresque, A.: Preliminary study of multi-objective
features selection for evolving software product lines. Symposium on search based software
engineering (2016)



Reparation in IBEA for Multi-objective Feature Selection in Large SPLs 25

23. Shi, K., Yu, H., Fan, G., Guo, J., Chen, L., Yang, X., Sun, H.: Mutation with local
searching and elite inheritance mechanism in multi-objective optimization algorithm: A
case study in software product line. International Journal of Software Engineering and
Knowledge Engineering 29(09) (2019) 1347–1378

24. Saber, T., Delavernhe, F., Papadakis, M., O’Neill, M., Ventresque, A.: A hybrid algorithm
for multi-objective test case selection. In: CEC. (2018) 1–8


	Introduction
	Background and Related Work
	Proposed Approach: MILPIBEA
	Experimental Set-up
	Performance of MILPIBEA vs. SATIBEA
	Performance on Evolved Feature Models
	Conclusion and Future Work

