
Proactive Information Retrieval

Procheta Sen
B.Tech., M.Tech.

A dissertation submitted in fulfilment of the requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

School of Computing

Dublin City University

Supervisor: Prof. Gareth J.F. Jones

September 2021

Declaration

I hereby certify that this material, which I now submit for assessment on the pro-
gramme of study leading to the award of Ph.D is entirely my own work, that I have
exercised reasonable care to ensure that the work is original, and does not to the best
of my knowledge breach any law of copyright, and has not been taken from the work
of others save and to the extent that such work has been cited and acknowledged
within the text of my work.

Signed:

(Candidate) ID No.: 16213962

Date:1/06/2021

Acknowledgments

I would like to thank my supervisor Professor Gareth Jones for his guidance through-
out my PhD journey. I am also grateful to Debasis Ganguly who helped me to grow
as a researcher during my PhD. I am also thankful to my external examiner Claudia
Hauff for her insightful suggestions on my thesis.

I would also like to thank Mandar Mitra (ISI Kolkata) for his advice on my
research work. I have learned a lot from all my collaborators specially Manisha
Verma (Yahoo Research, New York), Dwaipayan Roy (IISER Kolkata), Killian Lev-
acher (IBM Research Dublin), Yufang Hou (IBM Research Dublin) and Lea Deleris
(Formerly IBM Research Dublin).

I am indebted to my parents for their love and sacrifice for my academic journey.
Their unconditional support encouraged me to move forward during my PhD jour-
ney. I am also thankful to my friend Susan Robertson. Her love and support helped
me to overcome the difficult times of Covid19 pandemic during my PhD. journey.

Finally I would like to acknowledge the following lines from the poem ‘The Road
Not Taken’ written by the well know literary figure, Robert Frost, whoose poems
always inspired me during the trials and tribulations of my life Journey:

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
. . .

Two roads diverged in a wood, and I-
I took the one less traveled by,

And that has made all the difference.
I am thankful to Science Foundation of Ireland for the research grant (grant

07/CE/I1142, Centre for Next Generation Localisation) to support this research.

3

Contents

Abstract xii

1 Introduction 1

1.1 Focus of this Thesis . 3

1.2 Scope of the Thesis . 5

1.3 Research Questions . 5

1.4 Structure of this Thesis . 7

2 Background to Proactive Information Retrieval 9

2.1 Information Retrieval . 9

2.1.1 Retrieval Models . 10

2.1.2 Relevance Feedback Models 18

2.2 Proactive Information Retrieval . 24

2.2.1 Personal Information Management (PIM) 24

2.2.2 Proactive Suggestion Methods 26

2.2.3 Query Suggestion Methods . 29

2.3 Representation Learning for Text . 31

2.3.1 Language Modeling Techniquess for Word Semantics 31

2.3.2 Word Embedding: A Generic Survey 32

2.3.3 Word2vec Model Overview . 35

2.3.4 Contextual Word Embedding 37

2.4 Summary . 39

i

3 A Framework for Proactive Information Retrieval 40

3.1 Proactive IR Generic Framework . 40

3.1.1 The Generic Workflow of a Proactive IR Model 42

3.1.2 Information Sources for Proactive IR Model 43

3.1.3 User’s Personal History . 43

3.1.4 Similar Activity of Other Users 44

3.2 Anatomy of a Proactive IR Model . 45

3.2.1 Proactive Query Formulation Model 46

3.2.2 Generalization beyond Term Matching 49

3.3 Concluding Remarks . 50

4 Evaluation of Proactive Information Retrieval 51

4.1 Evaluation Metrics in Traditional IR 51

4.1.1 Set-based Evaluation Metrics 52

4.1.2 Rank-based IR Measures Using the Concepts of Precision and

Recall . 54

4.1.3 Evaluation Measure of Non-Binary Relevance Assessments . . 56

4.2 Differences Between Standard IR and Proactive IR Evaluation Criteria 57

4.3 Desirable Characteristics of Proactive IR Evaluation Metric 58

4.4 Proposed Evaluation Metric . 60

4.4.1 Evaluating Proactive Queries 61

4.4.2 Evaluating the Ranked List of Potentially Useful information

Sources . 62

4.4.3 Analysis for Variations in π-Index 65

4.5 Reference Set (Rk) Computation . 66

4.5.1 Reference Set Computation for Single Stage Task 67

4.5.2 Reference Set Computation for Multi-Stage Task 68

4.6 Concluding Remarks . 69

ii

5 Identifying Similar User Activities 70

5.1 Introduction . 70

5.2 Task Extraction and Query Embedding 73

5.2.1 Unsupervised Methods . 73

5.2.2 Supervised Methods . 75

5.3 Embedding Terms from User Activities 76

5.3.1 Problems with Short Documents 76

5.3.2 Word Vector Transformation with Semantic Contexts 77

5.3.3 Constructing the Set of Task-specific Context 79

5.3.4 Edge Weight Computation . 82

5.4 Clustering of Embedded Query Vectors 84

5.4.1 Query Vector Embedding . 84

5.4.2 Clustering of Query Vectors 85

5.5 Experimental Setup . 87

5.5.1 Dataset . 87

5.5.2 Baselines and Experiment Objectives 90

5.5.3 Parameters and Evaluation Metrics 93

5.6 Experimental Results . 95

5.6.1 Within-session task extraction 97

5.6.2 Cross-Session Task Extraction 99

5.7 Concluding Remarks . 101

6 Proactive Suggestion For Single Stage Tasks 102

6.1 Background and Motivation . 103

6.1.1 Simulation Setup Used in IR 104

6.1.2 Associative Document Retrieval 105

6.2 Workflow of Proactive Agent for Single Stage Tasks 106

6.2.1 Interaction Environment . 106

6.2.2 Active Set . 107

iii

6.2.3 User Actions . 108

6.2.4 Proactive Recommendation Agent 109

6.3 Simulation Setup With Document Relevance 110

6.3.1 Simulated Reading Cycles . 112

6.3.2 Simulated Reading and Writing Cycles 115

6.4 Query Formulation for Single Stage Task Setup 117

6.5 Experimental Setup . 119

6.5.1 Experiment Objectives . 119

6.5.2 Dataset . 120

6.5.3 Evaluation Setup . 122

6.5.4 Investigation of different Term Selection Approaches 124

6.5.5 Query Formulation Components Analysis 128

6.5.6 Implementation Details . 130

6.6 Results of Simulated Proactive IR . 131

6.6.1 QFM Performance Compared to Baselines 132

6.6.2 Ablation Results on Simulated Read and Read-Write Activities134

6.6.3 Parameter Sensitivity Analysis 140

6.7 Conclusions . 143

7 Proactive Suggestions For Multi-Stage Tasks 146

7.1 Proactive Suggestion in Search Sessions 148

7.1.1 Overall Architecture . 150

7.2 Proactive Query Formulation . 151

7.2.1 Graph Representation learning 152

7.3 Experimental Setup . 155

7.3.1 Dataset . 156

7.3.2 Evaluation Outline . 159

7.3.3 Approaches Investigated . 160

7.3.4 Parameter Setting . 167

iv

7.4 Results and Discussion . 169

7.4.1 Comparisons Between the Investigated Approaches 170

7.4.2 Further Analysis . 173

7.5 Concluding Remarks . 178

8 Conclusions 179

8.1 Research Questions Revisited . 179

8.1.1 Proactive IR Framework . 179

8.1.2 Evaluating Proactive IR . 180

8.1.3 Grouping Similar activities of Users 180

8.1.4 Proactive Support for Single Stage Tasks 180

8.1.5 Proactive support in Multi-stage Task Scenario 181

8.2 Future Work . 181

8.2.1 Chapter 3 . 182

8.2.2 Chapter 4 . 182

8.2.3 Chapter 5 . 182

8.2.4 Chapter 6 . 183

8.2.5 Chapter 7 . 183

8.3 Closing Remarks . 184

Appendices 185

A Publications 186

A.1 My Publications . 186

B Further Analysis of Proactive IR Evaluation Metric 188

B.1 Introduction . 188

B.1.1 Sample Proactive Search Systems (PSS) 188

B.1.2 Relevance Model based PSS (RM-PSS) 188

B.1.3 Query Prediction based PSS (QP-PSS) 189

B.1.4 Experiment Settings and Results 189

v

C Evaluation of Proposed Word Embedding in Standard Task 193

C.1 Experimental Setup . 193

C.1.1 Dataset . 193

C.1.2 Baselines . 194

C.2 Implementation Details . 194

C.3 Evaluation Tasks and Datasets . 196

C.3.1 Word Similarity. 196

C.3.2 Word Analogy. 197

C.3.3 Concept Categorization Task. 197

C.3.4 Evaluation Metrics and Pipeline. 198

C.4 Results . 199

C.5 Conclusions . 201

vi

List of Figures

1.1 Schematic overview of a proactive search system. 5

2.1 Schematic diagram of an IR System 10

2.2 Example of the use of sliding window in computation of word embed-

ding using word2vec . 36

2.3 Neural Architecture for Skipgram Word2Vec 37

3.1 Sample Activity Log of a User . 41

3.2 Generic Framework for proactive IR. 42

3.3 Generative model for proactive Query Formulation. 47

5.1 Graph Constructed From a Pair of Consecutive Queries. 80

5.2 Sample queries from search sessions from the AOL query log. 87

5.3 Sample task labels from the AOL query log. 88

5.4 Sensitivity of context size with negative sampling for our proposed

temporal-lexical word embedding. 89

5.5 Sensitivity of task clustering with variations in α (top) and η (bottom). 96

6.1 Work Flow of Proactive IR model in a Real User Setup. 110

6.2 Work Flow of Proactive IR Model in Our Proposed Simulated User

Setup. 116

6.3 Sample topic and manually judged relevant sentences for the corre-

sponding topic 305 in TREC Novelty Track Dataset. 122

6.4 Variations in P@5 for different values of k and b in RLM 128

vii

6.5 Effect of varying the number of query terms in P@5 at step 1 in

simulated read activities. 129

6.6 Effect of varying the word embedding dimension in QFM and KDERLM

for simulated read activities in step 1. 130

6.7 Effect of varying the number of expansion terms in P@5 at step 1 in

simulated read activities. 131

6.8 P@5 at different steps of proactive suggestions in ‘R’ and ‘R/W’ ac-

tivities . 133

6.9 MRR at different steps of proactive suggestions in ‘R’ and ‘R/W’

activities . 134

6.10 Cumulative Recall at different steps of proactive suggestions in ‘R’

and ‘R/W’ activities . 135

6.11 Variations in the values of MRR, P@5 and Cumulative Recall with

time progression (i.e. increase in steps) in simulated setup. 136

6.12 Variations in MRR, in Different Steps for QFM, QFM+Okapi, QFM+RLM

and QFM+KDERLM . 139

6.13 Variations in P@5 in Different Steps for QFM, QFM+Okapi, QFM+RLM

and QFM+KDERLM . 139

6.14 Variations in Cumulative Recall in Different Steps for QFM, QFM+Okapi,

QFM+RLM and QFM+KDERLM 140

6.15 Effect of varying the k in P@5(Top Diagram) and MRR (Bottom

Diagram) values for simulated write cycles in Step 1. 141

6.16 Effect of varying the k in P@5(Top Diagram) and MRR (Bottom

Diagram) values for simulated read write cycles in Step 1 142

6.17 Effect of applying true relevance feedback and true relevance feedback

along with pseudo relevance feedback in the 2nd pass of simulated read

activity for QFM . 143

6.18 Effect of varying the mixing parameter α on P@5 in simulated read

activities at step 1. 143

viii

6.19 Effect of varying the mixing parameter α on MRR in simulated read

activities at step 1. 144

6.20 Effect of varying the mixing parameter α on cumulative recall in

simulated read activities at step 1. 144

7.1 Sample queries from AOL query log. 150

7.2 Schematic Diagram of a specific proactive search system (PSS). . . . 150

7.3 A sample sub-graph constructed from the AOL queries of Figure 7.1 . 154

7.4 Sensitivity of proactive IR effectiveness with variations in the number

queries considered to consider set Ht. 170

7.5 Sensitivity of proactive IR effectiveness with variations in π, i.e., rel-

ative proactivity duration. 173

7.6 Sensitivity of proactive IR effectiveness with variations in β, i.e., im-

portance of user’s own past queries compared to similar queries from

other users. 174

7.7 Sensitivity of proactive IR effectiveness with variations in the number

of terms in proactive query. 175

7.8 AP, ρ and MRR values of GRLW for different ranges of similarities

between consecutive queries. 176

B.1 Comparison of PREVAL-RR values of RM-PSS (x-axis) and QP-PSS-

W (y-axis), π-index values being shown alongside the axes. 191

ix

List of Tables

3.1 Notations For Describing Proactive IR Model 45

4.1 Notation for proactive evaluation metric. 62

5.1 Dataset statistics of task annotated queries from the AOL query log. 91

5.2 Comparison between the best results obtained after parameter tun-

ing on different unsupervised approaches of within session task ex-

traction. ∗†‡ indicates statistical significance (paired t-test with 95%

confidence) with respect to QCWCC using Wikipedia, ‘Qry-vec tem-

poral context’ and ‘Qry-vec tempo-lexical context’ respectively. . . . 97

5.3 Comparison between different approaches for cross-session task ex-

traction . 97

5.4 Nearest Neighbors for the word ‘jfk’ 99

6.1 Types and examples of user actions that change the active set of an

environment. 109

6.2 Details of the TREC-2002 Novelty Track dataset used in our experi-

ments on proactive IR. 120

6.3 Comparison of our proposed query formulation approach (i.e. QFM)

with existing term selection approaches for simulated read and read-

write activities. 132

6.4 Results of proactive IR effectiveness with simulated read activities of

user agents. 137

x

6.5 Results of proactive IR effectiveness with simulated read/write activ-

ities of user agents. 138

7.1 Training and Test splits of the AOL Query log 159

7.2 Summary of the approaches investigated. 167

7.3 Comparisons between the query prediction and document retrieval

effectiveness obtained with different query prediction and proactive

document retrieval methods. 169

7.4 Investigating BERT-based passage reranking on retrieval effectiveness

obtained with our proposed approaches. 177

B.1 PREVAL metrics computed over the evaluation set. 190

C.1 Dataset characteristics of DBPedia-2014. 194

C.2 Word analogy datasets overview. 197

C.3 Word similarity prediction results. 201

C.4 Word analogy results. 201

C.5 Concept categorization results. 202

xi

Proactive Information Retrieval

Procheta Sen

Abstract

Users interact with digital systems with some task in his mind. An example of a task

could be writing a research paper on a topic. Tasks can be single or multi-staged.

In the process of accomplishing their task objectives, a user often needs to interact

with an information retrieval (IR) system to address one or more information needs

which arise while working on their task, e.g. for writing their research paper on a

chosen topic, the user needs to look for existing research works related to the topic.

Traditional IR systems do not take into account a user’s task intent while showing

search results to the user for a specific query submitted by the user. In our work

we propose next generation IR systems (i.e. proactive IR systems) which seek to

anticipate the user’s underlying task from his interaction with a digital system to

automatically identify their information needs and to suggest potentially relevant

information sources to help the user to accomplish his task.

xii

Chapter 1

Introduction

Users typically interact with a digital system with the goal of accomplishing a task.

‘Task’ can be defined as the overall information goal of the user. A task can either be

single-stage or multi-stage depending on the number of steps required to accomplish

it. An example of a single-stage task might be fixing the compilation error of a

computer program, whereas an example of a multi-stage task could be planning

for a vacation, which often involves a number of single-stage tasks such as booking

flights, searching for places to visit, booking accommodation. In the process of

accomplishing task objectives, a user often needs to interact with an information

retrieval (IR) system to address one or more information needs which could arise

while working on their task, e.g. for planning a vacation, a user may need to look

for places to visit during their vacation, or searching for accommodation. Similarly,

for a single-stage task, such as fixing a compilation error, a user may need to search

for the possible causes of the error in an online forum.

Generally speaking, in a traditional IR or search system setup, a user is required

to explicitly specify his information need in the form of a search query. Based on

the query, an IR system typically returns a ranked list of documents which best

match the query according to the algorithms used in the search system. The user

then scrolls through the ranked list seeking content which satisfies their information

need.

1

The retrieval results shown by a traditional IR system depend on the query for-

mulation expertise of the user. A non-expert user may not get potential relevant

information sources for his query because of poor query formulation strategy (White

and Morris, 2007). Existing literature has explained approaches such as query ex-

pansion (Qiu and Frei, 1993) and search result re-ranking (Lavrenko and Croft, 2001)

to enhance the query representation of the user. The assumption in search result

re-ranking is that the top k documents retrieved for an initial query are relevant to

that query, or more strictly the user’s information need. The performance of both

query expansion and search result re-ranking depends on the quality of the initial

query.

Another disadvantage of traditional IR systems is that they do not take the user’s

task intent into account while determining search results to show to the user. The

user’s task plays an important role in determining their information need (Feild and

Allan, 2013). For example if a user searches for ‘python’ while writing code, then

it is more likely that he is searching for items relating to the python programming

language rather than the ‘snake python’.

A user’s writing code task will provide clues about their actual query intent in

this scenario. In the web search literature, there is work (Feild and Allan, 2013;

Ben Carterette et al., 2014; Van Gysel et al., 2016) which exploits the previous

few queries typed by a user within a search session to enhance their current query.

Since the focus of the work in (Feild and Allan, 2013; Ben Carterette et al., 2014;

Van Gysel et al., 2016) is on improving the quality of the ranked list of retrieved

documents, in terms of relevance to the current information need, there is no scope

for estimating the overall information goal or task of the user. Knowing something

of the overall information goal of the user may help in predicting what the user may

need or find useful in their future activities.

Another thread of work (Yang et al., 2016; Shokouhi and Guo, 2015) has focused

on providing search results in zero query scenarios. In this line of work, informa-

tion snippets or cards are suggested to users based on their current context, e.g.,

2

activity, location. In one scenario the user’s overall topic of interest was displayed

using information cards. These information snippets were found to be useful in this

scenario. However, they could not support the user in accomplishing their current

information goal.

To alleviate the limitations discussed above, this PhD focuses on next generation

proactive IR (PIR). The concept of PIR was first described in (Rhodes and Maes,

2000). This study proposed just in time information retrieval agents which provide

proactive suggestions to the user based only on his current context or activities. In

our research scope a PIR model seeks to integrate search as an assistive component

within a user’s task (both single and multi-staged), monitoring the user’s activi-

ties, and seeking to anticipate and address information needs in an automatic or

semi-automatic way. An ideal PIR system would anticipate a user’s task intent and

suggest potentially useful information related to his task (e.g. anticipate information

related to travel planning or related programming resources) without the user being

required to explicitly search for such information. In our research scope, under-

standing the user’s task intent refers to discovering the semantic concepts or topics

that emerge by analyzing the user’s recent and current desktop activities. Proactive

systems can either support users when they trigger a search process, where they re-

alize that they have an information need, or entirely autonomously initiate a search

and supply the user with potentially useful retrieved information that the user was

unaware of or did not think to look for.

1.1 Focus of this Thesis

In our investigation, the notion of proactive support for single-stage tasks corre-

sponds to that of anticipating a user’s information needs and automatically gener-

ating queries from the user’s recent desktop activities, such as informative content

extracted from recently accessed files, etc. (in our example the source code file

being compiled), and then executing these queries (e.g. terms extracted from the

3

erroneous regions of the source code) on a standard search system to retrieve rele-

vant information (e.g. Stackoverflow1 pages relevant to fixing the error). Note that

the difference between this proactive approach and a standard search system is that

the user does not need to explicitly enter a search query (i.e. in our example, the

user may not need to copy-paste parts of the source code with terms that may help

in retrieving relevant resources for the fix).

For multi-stage tasks, we seek to suggest useful information for a number of

single stage tasks that are expected to be performed in conjunction with the current

activity. A concrete example of this is a case when a user plans for a vacation

and searches for flights booking along with booking accommodation, and looking

for places to visit. Information about what other users have searched for when

exploring the same topic as the current user could also support search for this user.

Let us now have a closer look at the pieces of information that may be useful

in developing proactive methodologies for both single-stage and multi-stage tasks.

The information sources that could potentially be useful can broadly be categorized

into two different types:

1. Information from the current user. This refers to the desktop activities of

the current user. To be more precise, logs of the user’s desktop activities, e.g.

content he has been reading, queries entered, content he has been writing, may

be indicators of potential information needs relating to their current activities.

2. Previous activity patterns related to similar tasks from other users. The sec-

ond source of potentially useful information is activities of other users per-

formed in past to accomplish similar objectives to those of the current user

(Hassan Awadallah et al., 2014). This information source may be useful to

provide proactive suggestions to the current user.

1https://stackoverflow.com/

4

Group Similar
Activities

Activity
Log

User Interaction
Log

Proactive Model

Activity
tracker

Other
Users

Activity Patterns
Related to User’s
Current Activity

Proactive
Suggestions

Figure 1.1: Schematic overview of a proactive search system.

1.2 Scope of the Thesis

In this section, we discuss how we plan to build our proactive model by exploiting the

two different information sources described in Section 1.1. Figure 1.1 illustrates a

schematic overview of a proactive IR model. It is clearly visible from Figure 1.1 that

the proactive IR model potentially exploits two different information sources, the

user’s current and recent activities, and similar activity patterns of other users and

automatically formulates a user’s information need into a query on his behalf. The

query anticipated by the proactive model is used to provide the user with a ranked

list of suggestions. For a single stage task, the objective of proactive suggestion is to

support a user with the topic in which he is currently engaged, and for multi stage

tasks the objective is to provide support by fetching information related to different

sub-tasks that may arise in the current multi-stage task of the user.

1.3 Research Questions

In this section, we develop the research questions which we will seek to address

in our investigation of proactive IR models in this thesis. Evaluation is an essen-

5

tial component of research investigating new IR methods. An effective evaluation

methodology will help us to investigate and build better proactive models. When

using standard IR evaluation metrics (e.g. average precision, NDCG), we have a

set of clearly defined user queries for which we evaluate the IR model based on its

performance for these queries. However, in proactive IR, we may not have a query

expressed by the user. In PIR, we try to anticipate the information need of a user in

order to support them in their overall task. In this setting, all the user activities will

be related to a similar information goal, and the PIR process may involve multiple

queries related to the same user task. As a result of this, we cannot directly use

standard IR evaluation metrics to evaluate a proactive IR model. Hence our first

research question is as follows.

• RQ1: How can we evaluate the effectiveness of proactive IR models?

The rest of our research questions relate to the definition and exploration of

the potential for development of effective proactive IR models. The first step of

a proactive IR model is to estimate the current task which the user is seeking to

accomplish. To do this, a first step involves identifying the activities (i.e. a user’s

interaction with a computing device like desktop or laptop) which relate to the user’s

current task. Hence we need to group the user’s personal desktop activities, that

are related to the same task. For example, activities such as writing a file document

while reading another document may relate to the same task. We might also seek to

identify activities of other users that are semantically related to the current user’s

recent and current activities. Relevant pieces of information extracted from these

similar activity patterns of other users might be leveraged as information of use to

the current user. Consequently, we state our second research question as follows:

• RQ2: Can we automatically group different desktop activities (e.g. file

reading, file writing, user typed query etc.) that relate to the same underlying

task or information goal?

Following identification of activities related to the user’s overall task a PIR model

6

needs to proactively formulate a query to provide proactive suggestions to the user.

Hence our third research question is:

• RQ3: Can we formulate the current information need of a user as a query

using information extracted from their recent desktop activities, and use this

to retrieve content relevant to the user, without them explicitly entering a

query to an IR system?

We already described in Section 1.1 that other users’ past activities which are

similar to the current user’s present activities, can also be used to provide proactive

suggestions to the current user. Hence in our fourth research question, we inves-

tigate potential exploitation of the activities of other users in improving proactive

suggestions for the current user. Our fourth research question is thus:

• RQ4: Can we provide useful information (e.g. documents, text snippets) to

the current user by leveraging past activities of other users that are similar to

the current user’s activities?

1.4 Structure of this Thesis

The structure of this thesis is as follows:

• Chapter 2: Here we first revisit existing state-of-the-art literature on infor-

mation retrieval. Then we describe existing work on proactive information

retrieval. Since we apply word embedding in different approaches across all

the chapters, we also revisit existing word embedding literature in this chapter.

• Chapter 3: There is no standard proactive IR framework in existing IR

literature. In this chapter we describe the proactive IR framework used for our

experiments. We introduce the assumptions in our proposed framework. Given

the proactive IR framework we propose a generic proactive query formulation

model.

7

• Chapter 4: In this Chapter, we addressed RQ1 which is ‘How can we eval-

uate a proactive IR model?’ We proposed a generic evaluation metric for the

evaluation of proactive IR. Then we described how it can be applied in the two

different scenario discussed in Chapter 1 : i) single stage task scenario and ii)

multi-stage task scenario.

• Chapter 5: In this chapter we address RQ2 which is how can we bring user

activities related to same information goal together. We propose a graph-based

embedding framework to bring similar user activities together in this chapter.

• Chapter 6: In this chapter we addressed RQ3 which is how can we proactively

support a user given his activity context. More precisely, we examine the

effectiveness of our proactive query formulation model proposed in Chapter 3

in a simulated single stage task scenario. In single stage framework, a user is

involved in a single information need.

• Chapter 7: In this chapter we address RQ4, which is how we can provide

proactive suggestion using similar activities from other users. For multi-stage

tasks, our assumption is that a user has multiple information needs in the

task. More specifically, we investigate the effectiveness of our proactive query

formulation model proposed in Chapter 3 in a web search setup.

• Chapter 8: Chapter 8 is the conclusion chapter. In this chapter we described

the summary of each of the previous chapters (i.e. 4, 5, 6, 7). Then we describe

the possible future directions from the work described in each chapter .

8

Chapter 2

Background to Proactive

Information Retrieval

This chapter reviews the background of existing work relevant to the investigations

described in this thesis. In Section 2.1, we give an overview of the state-of-the-

art in information retrieval (IR) models. In Section 2.2, we motivate the use of

proactive IR and subsequently describe existing work on proactive IR. In Section

2.3, we introduce the concept of embedding to provide semantic representation of

words or sentences, which is used extensively in Chapters 4, 5 and 6 to compute

semantic similarity between words in the methods examined in those chapters.

2.1 Information Retrieval

The subject of (IR) is concerned with the science behind the process of identifying

potentially useful information sources to address the information need of a human

user. In traditional IR setups, a user expresses their information need in the form

of a search query. IR models seek to use this query to identify information sources

potentially able to satisfy the user’s information need. Information sources can cover

a wide range of modalities (e.g., text, images etc.), types (e.g. news articles, patents,

research articles etc.), scope and coverage (e.g., long documents, short passages,

9

Userr Retrieval Model

Collection Index

Ranked list
of

documents

Query

Ranked list
of

documents

Figure 2.1: Schematic diagram of an IR System

single sentences etc.). The retrieval unit of an IR system depends on the type of

information source used. Thus, a collection of information sources can be indexed

at the level of documents, passages or sentences. Figure 2.1 depicts a schematic

diagram of a typical IR system. Figure 2.1 illustrates how a retrieval model is used

to compute the similarity between a query and a document in the collection index

which is used as an estimate of the relevance of each document for a query. In the

following subsection we introduce the principles adopted in standard IR models and

their use in popular IR models which have been empirically demonstrated to be the

most effective and hence the most commonly used ones.

2.1.1 Retrieval Models

The existing IR models described in the literature use different components (e.g.

query term matching, document length, query term importance) to estimate the

similarity between a query and a document. We introduce these models and their

components in the following subsections.

10

Boolean Retrieval Model

The oldest and the simplest retrieval model used in IR is the Boolean model (Man-

ning et al., 2008). The query in a Boolean retrieval model is represented as a

sequence of terms separated by Boolean operators, such as AND, OR and NOT.

The retrieved documents, in this case, are those which satisfy the Boolean predi-

cate function expressed by the query. For example, if the query is ‘relativity’ AND

‘theory’, the Boolean retrieval model retrieves documents containing both the terms

‘relativity’ and ‘theory’.

A major limitation of the Boolean model is that it is not possible to obtain a

ranking of the retrieval results. For example, if two documents satisfy the Boolean

predicate of a query, the model does not specify which document to report first.

This in turn does not conform to the user expectation of finding the document most

likely to be relevant at the first rank, followed by those which are progressively less

likely to be relevant. A second major disadvantage is that it may not be possible to

reliably express the information need itself in a more complex than a simple Boolean

predicate function. For example, a document containing the term ‘relativity’ may

still be relevant to the query ‘relativity theory’ even if it does not contain the term

‘theory’.

Vector Space Model (VSM)

The first generally adopted IR model was the vector space model (Salton et al.,

1975). In VSM the each query q and document d is represented as a vector. If the

vocabulary size is n then the dimension of both query and document vectors is also

n. In the VSM, the similarity between a query and a document is computed as the

cosine similarity between between the vector representations of the query and the

document. The assumption in the VSM is that if a document is potentially relevant

to a query, then the query and the document vectors will be closer in vector space

(i.e. the angle between the query and document vector will be small). The similarity

function for VSM is shown in Equation 2.1.

11

sim(d, q) =
n∑
i=1

diqi (2.1)

Term Weighting. The components of both query and document vectors are

weighted in the VSM. The process of weighting components is known as term weight-

ing. The term weighting mechanism in VSM depends on the following three factors.

1. Term Frequency: This is the number of times a particular term is present

in a document or query. If a particular term is frequent in a document, it is

reasonable to assume that the document is in fact one of those potentially rel-

evant documents for the information need for the query containing this term.

For example ‘proactive’ is a frequent term in this thesis. So for a query such as

‘proactive information retrieval’ this thesis could be a potentially relevant doc-

ument candidate. If more weight is given to the word ‘proactive’, then for all

queries comprising the term ’proactive’ among others, this thesis will be ranked

higher. However, the absolute count of term frequency is not found to be the

most effective way of using the feature in retrieval (Singhal, 1997). For example,

let there be two documents D1 and D2. For the query be ‘web search paradigm’,

let us assume that document D1 has only one word (i.e. ‘web’) that overlaps

with the query. The term frequency of ‘web’ in D1 is 30. On the other hand,

suppose D2 has two words (i.e. ‘web’ and ‘search’) overlapping with the query.

To illustrate this point in our example, let the term frequencies of ‘web’ and

‘search’ in D2 are 5 and 10 respectively. In this scenario, it is more likely that

D2 is more relevant to the query compared to D1, because the word ‘web’ in D1

may also refer to ‘web design’ rather than ‘web search’. However using only the

absolute term frequency count will rank D1 higher compared to D2. So the term

frequency function should give more importance to documents having a higher

number of overlapping query terms. This is known as coordination ranking in the

IR literature (Hiemstra, 2000).

The following are some commonly used term frequency functions from IR litera-

12

ture:

• the augmented tf : 1
2

+ tf
2 max(tf)

, which normalizes the term frequency values

within a range of [1
2
, 1] (Salton and Buckley, 1988).

• the logarithmic tf : 1 + log(tf), which is designed primarily to down-weight

the contributions of terms with very high frequencies in a document.

It is easy to see that both the logarithmic and the augmented tf ensure that

D2 is ranked higher than D1. The score assigned to D1 by the logarithmic

tf is 1 + log(20) = 1 + 2.99 = 3.99, whereas the score assigned to D2 is 1 +

log(3) + 1 + log(5) = 2 + 1.09 + 1.60 = 4.69, which is higher than that of

D1. The augmented tf in turn scores D1 as 0.5 + 20/(2 × 20) = 1, and D2 as

0.5 + 3/(2× 5) + 0.5 + 5/(2× 5) = 1 + 0.3 + 0.5 = 1.8, which is higher than that

of D1.

2. Inverse Document Frequency (IDF): This estimates the importance of a

term with respect to a collection (Salton and Buckley, 1988). If a term is one of

the most frequent words in a document, that does not necessarily mean that the

term is significant with respect to a collection of documents. Generally, common

words (e.g. ‘the’, ‘and’) are removed from a collection since these words do not

contain any topic-specific information in them. These are commonly called stop-

words in the IR literature. However, a simple dictionary based filtering approach

for removing stopwords may not be scalable and realized in practice, Firstly, be-

cause it depends on the availability of such a resource and how comprehensive it

is, and secondly, for a purely collection frequency based hard filtering approach

it may in fact be difficult to select an optimal threshold. To estimate the im-

portance of those words in a document the concept of idf (inverse document

frequency) was proposed. idf is inversely proportional to the number of docu-

ments in which a term is present. If a term is rare in a collection (i.e. it only

appears in a proportionally low number of documents), then the presence of that

term is important for a document. So, the idf value of a term depends on the

13

collection not on the particular document where it occurs. For example, suppose

we are searching for a thesis on proactive information retrieval among all thesises

on information retrieval. In this example scenario, the term ‘proactive’ is likely

to have a higher idf value compared to the other two terms, since each thesis

in our collection is likely to contain the terms ‘information’ and ‘retrieval’ in its

title. On the other hand, there would only be a small number of dissertations

containing the word ’proactive’, which would comprise the most likely candidate

relevant documents pertaining to our query. The most commonly used formula

for idf is idf(t) = log(N
df(t)

), where N is the total number of documents in the

collection and df(t) is the number of documents in which t occurs (Sparck Jones,

1973).

3. Document Length: Generally speaking, the term frequency of a term is likely

to be higher in longer documents compared to shorter ones. This does not nec-

essarily mean that longer documents are more likely to be relevant for a query

compared to a shorter one. Moreover, long documents are likely to have a greater

number of query term overlaps compared to shorter documents. Hence length

normalization was proposed to help mitigate the effect of document length on

query-document matching scores.

There are different approaches for length normalization. One of them is cosine

normalization where a document vector is normalized to unit vector by dividing

each vector component with the total magnitude of the vector. This cosine nor-

malization method applied on tf-idf vector produced by VSM approach did not

perform well in early TREC collections (Singhal, 1997). This was later improved

by applying pivot length normalization. In pivot length normalization, docu-

ments having length shorten than a threshold (i.e. lt) is boosted and similarly

documents having length greater than a threshold (i.e. lt) are down weighted.

The threshold length (i.e. lt) is obtained by training on a set of queries and

relevance judgements (Singhal, 1997).

14

Both the term frequency (tf) and the inverse document frequency (idf) are im-

portant in creating effective term weights for retrieval, it is a standard practice in the

VSM to combine these components simply by multiplying them together to capture

both their effects. This combination is commmonly known as tf-idf weighting.

The major criticism against the VSM is that the model itself is not derived from

a theoretically sound basis for determining the term weighting components, such

as which tf function to use, whether to use cosine normalization or the pivoted

length normalization etc. Neither does the VSM model theoretically justify the

multiplicative combination of tf-idf weighting. The VSM has subsequently been

followed by the development of more theoretically motivated IR models which we

review next.

Probabilistic Model

The first major alternative is the probabilistic model (Robertson, 1977). This seek to

estimate the probability of a document being relevant to given a query (i.e. P (d =

R|q)). The documents in a ranked retrieval list are ordered based on decreasing

P (d = R|q).

One version of the probabilistic model uses binary independence model (BIM).

In BIM, the assumption is that terms are pairwise independent. The limitation of

BIM approach is that it depends only on the presence of a term in a document and

does not take into account factors like document length and term frequency.

The limitations of the basic BIM were addressed in the BM25 weighting model

was proposed (Robertson et al., 1994; Sparck-Jones et al., 2000). Equation 2.2 shows

the scoring formula for BM25 for a document d and a query q.

sim(d, q) =
∑
t∈q

log
N

df(t)
× (k1 + 1)tf(t, d)

k1(1− b+ b Ld

Lavg
) + tf(t, d)

(2.2)

In Equation 2.2, tf(t, d) denotes the term frequency of a term t in a document d,

Lavg is the average length of a document in the collection, Ld is the length of a

15

document d and df(t) is the document frequency for a term t. The effect of the

tuning parameters k1 and b are described below.

• k1 controls the contribution of term frequency in similarity computation. At

k1 = 0, similarity depends only on the idf value. The higher the value of k1,

the higher is the impact of term frequency on the overall BM25 weight.

• b (0 ≤ b ≤ 1) controls the effect of length normalization. b = 1 indicates full

length normalization and b = 0 indicates no length normalization.

The values of k and b are set empirically in a training phase.

Language Modeling (LM)

A later retrieval model is the language modelling (LM) (Ponte and Croft, 1998;

Hiemstra, 2000). The LM approach computes the probability of generating a query

given a document. The assumption in LM is that each query term is sampled

from a document or from the collection. Sampling a query term from a document

is analogous to the use of term frequency of a query term as the estimation of

importance of the document with respect to the query term. Similarly sampling

a query term from a collection is analogous to the use of idf as the estimation of

importance of the document with respect to the query term.

In the LM approach, documents are sorted based on the decreasing values of

posterior probabilities of generating a document d given a query q, i.e. P (d|q). The

derivation for P (d|q) is given in equation 2.3. Since the denominator of Equation

2.3 is constant, P (d|q) can be treated as simply proportional to P (q|d) ∗ P (d).

P (d|q) =
P (q|d)P (d)∑

d′∈C P (q|d′)P (d′)
(2.3)

P (q|D) can be computed using Equation 2.4.

P (q|d) =
∏
t∈q

λPMLE(t|d) + (1− λ)Pcoll(t) (2.4)

16

In Equation 2.4, PMLE is the maximum likelihood estimate of generating a query

term t from a document d. Calculation of PMLE is shown in Equation 2.5.

PMLE(t|d) =
tf(t, d)

Ld
(2.5)

.

In Equation 2.4, Pcoll(t) is the probability of generating the term t from the

collection. Calculation of Pcoll(t) is shown in Equation 2.6. In Equation 2.6, df(t)

is the number of documents in which the term t occurs.

Pcoll(t) =
df(t)∑n
t′=1 df(t′)

(2.6)

In some cases, collection frequency (i.e. cf(t)) is used to compute Pcoll(t).

collection frequency is the number of times a term t occurs in the collection, which

is actually similar to document frequency. The variable cf(t) is normalized by the

total number of terms in the collection.

As described earlier, the working principle of the LM approach depends on two

events: sampling a term from a document and sampling a term from a collection.

In Equation 2.4, λ and 1 − λ are the probabilities of the two events. λ is similar

to k1 in BM25, since it balances between the two events. If a query term t is not

present in a document d, then P (t|d) is not zero because λ adds the contribution of

P (t|C) in P (t|d). For this reason, λ is commonly known as a smoothing parameter.

In Equation 2.3, P (d) can take account of the document length factor, since P (d)

can be a function of the document length of d, denoted by Ld (Hiemstra, 2000).

The work in (Hiemstra and Kraaij, 2005) showed that an LM approach with

non-uniform document length priors can outperform the BM25 retrieval model by

8.19% on the TREC-7 dataset.

The issue in the language model proposed in (Hiemstra and Kraaij, 2005) is that

there may be vocabulary mismatch between queries and documents. In this scenario

exploitation of the semantic relations between words can be an effective means to

17

improve the language model. In this regard we can broadly categorize two differ-

ent threads of work. One is related to Latent Dirichlet Allocation (LDA) based

document language models proposed in (Wei and Croft, 2006). In this work the

assumption is that a document collection contains multiple topics. Each document

is represented as a distribution of different topics. Similarly each word is also rep-

resented by a distribution of topics. The presence of topics in the representation of

words and documents helped to capture semantic relation between words to improve

retrieval effectiveness.

A different thread of work for capturing word semantics used translation lan-

guage models (Karimzadehgan and Zhai, 2012, 2010). In translation based language

models, for each word the translation probabilities into the query words are esti-

mated. The work in (Karimzadehgan and Zhai, 2012, 2010) used document level

word-cooccurrences to estimate the translation probabilities. Retrievals based on

translation language models (Karimzadehgan and Zhai, 2012) outperformed basic

language model (Hiemstra and Kraaij, 2005) across several TREC collections.

We now turn our attention to relevance feedback models.

2.1.2 Relevance Feedback Models

Relevance feedback models (RF) seek to improve the effectiveness of retrieval mod-

els. In RF, initial search queries are modified or query terms can be re-weighted. An

IR system uses the feedback documents to refine the search with adjusted param-

eters aiming to eventually return a modified ranked list containing more relevant

documents at better ranks. Relevance feedback can be applied in two ways:

• Query term reweighting: This involves reweighting the terms of the query. The

objective of term reweighting is to increase the weight of terms that are likely

to be relevant and to down-weight those which are likely to be non-relevant to

the query.

• Query expansion (QE): In this case additional terms, i.e. terms which do not

18

already appear in the current query, are added from the feedback documents.

Typically, QE is accompanied by the reweighting of the query terms.

RF can be based on true relevant documents or pseudo relevant documents.

Generally speaking, users are not keen to provide feedback to a search system.

However, obtaining RF information from real users is also not possible in completely

automatic IR since only the searcher can determine true relevance. Consequently,

methods of implicitly obtaining feedback are common in practice. Implicit feedback

can either be obtained through user interaction events such as clicks and subsequent

document visiting times, or by simply assuming that a certain number of top ranked

documents from an initial retrieval step are relevant. This latter technique is known

as pseudo relevance feedback (PRF), which is a simple and often effective technique

to improve on the initial retrieval output in the absence of explicit user feedback.

Classical Relevance Feedback Methods

Rocchio Relevance Feedback. A classic example of term reweighting for PRF

is privided by the Rocchio RF method (Rocchio, 1971) developed in relation to the

VSM. Recall that in the VSM, both the query and the documents in the collection are

represented as vectors. The relevant or pseudo-relevant document set available for

RF is thus a set of vectors. The objective of the Rocchio method is to shift the query

vector towards the centroid of these relevant vectors and away from the centroid of

the non-relevant ones. This shifting of the query vector is realized by reweighting its

components. The query modification algorithm as proposed by Rocchio is shown in

Equation 2.7. The parameters α, β and γ are the scalar constants attached to the

original query vector q, the set of judged relevant documents in the feedback step

(R), and the complementary set of non-relevant documents (NR) respectively. The

values of α, β, and γ are set empirically for the current retrieval task.

q′ = αq +
β

|R|
∑
d∈R

d− γ

|NR|
∑
d∈NR

d (2.7)

19

Apart from re-weighting query terms using Equation 2.7, Rocchio’s method gives

us a mechanism for query expansion. Any word appearing in the set of relevance

feedback documents (i.e. R) are potential candidates for expansion terms. The

weight of the expansion term can be estimated using Equation 2.7. Once we have

weights for each potential expansion term then we choose top k terms to expand the

original query.

Relevance Feedback with the Roberstion/Sparck Jones Relevance Weight.

For the probabilistic model, the most commonly used method to reweight query

terms is based on the Robertson/Sparck Jones relevance weight (RW) (Robertson

et al., 1994), shown in Equation 2.8.

RW (t) = log
(r + 0.5)/(R− r + 0.5)

(n− r + 0 : 5)/(N − n−R + r + 0.5)
(2.8)

In Equation 2.8, r is the number of known relevant documents in which the

term t occurs, N is the total number of documents in the collection, n is the total

number of documents in which term t occurs, and R is the number of known relevant

documents. The objective of the RW score is to put more emphasis on terms with

high idf values which occur frequently in the (pseudo-)relevant documents.

Similar to (Rocchio, 1971), probabilistic model also provides means for query

expansion. Potential expansion terms again come from the relevance feedback doc-

uments. Potential expansion terms are ranked using the Robertson Offer Weight

(Robertson, 1990) shown in Equation 2.9. In Equation 2.9, r is the number of rele-

vant documents where a term t occurs and RW (t) is the Robertson weight obtained

using Equation 2.8. OW (t) in Equation 2.9 is termed the offer weight. The top k

terms computed using OW (t) are added to the original query.

OW (t) = r ∗RW (t) (2.9)

20

Relevance Language Model

The relevance model (RLM) is based on the assumption that the relevant documents

corresponding to a query are sampled from a latent relevance model R. The RLM

seeks to estimate R. Since it is not possible to know the relevant documents for

a query beforehand, the top retrieved documents for a query Q are assumed to be

relevant for that query. The probability of sampling a term t from R is denoted

by P (t|R). Since Q is the only evidence about the relevance model, P (t|R) is

approximated using P (t|Q). Let Q be comprised of words q1, q2, . . ., qk. We show

the definition of P (t|Q) in Equation 2.10.

P (t|Q) =
P (t, q1, q2, . . . , qk)

P (q1, q2, . . . , qk)
(2.10)

P (t, q1, q2, . . . , qk) can be estimated using two different approaches: IID sampling

and conditional sampling. Each of these is described below.

IID Sampling. Here the assumption is that q1, q2, . . . , qk and w are sampled

identically and independently from a unigram distribution MR. Let us assume that

M represents the finite set of unigrams in the universe. The sampling process chooses

a MR from M and then tries to estimate the probability P (t, q1, q2, . . . , qk|Mr). This

continues for K + 1 terms. This process is shown in Equation 2.11.

P (t, q1, q2, . . . qk|MR) = P (t|MR)
k∏
i=1

P (qi|MR) (2.11)

Eventually P (w, q1, q2, . . . , qk) is computed using Equation 2.12.

P (t, q1, q2, . . . qk|M) =
∑

MR∈M

P (t, q1, q2, . . . qk|MR) (2.12)

Conditional Sampling. In this sampling strategy, each query word is sampled

independently, but the term w is dependant on each query term. More formally, we

21

estimate P (w, q1, q2, . . . , qk) as shown in Equation 2.13.

P (t, q1, q2, . . . , qk) = P (t)
k∑
i=1

P (qi|t) (2.13)

To compute P (qi|t), we estimate both the probability of observing a unigram distri-

bution MR given the word t, and the probability of observing a query word qi given

MR. Equation 2.14 describes the mathematical formulation of P (qi|w).

P (qi|t) =
k∑
i=1

P (MR|t)P (qi|MR) (2.14)

The two variants of RLM in Equations 2.11 and 2.13 are referred to as ‘RM1’ and

‘RM2’, respectively. The RLM, as proposed in, does not consider the original query

terms for estimating the density function. The work in proposed two new variants

‘RM3’ and ‘RM4’ for existing relevance language model. The process of computing

P (t|Q), for RM3 and RM4 is shown in Equations 2.15 and 2.16 respectively.

P (t|Q) = (1− λ)PMLE(t|Q) + PRM1P (t|Q) (2.15)

P (t|Q) = (1− λ)PMLE(t|Q) + PRM2P (t|Q) (2.16)

As shown in Equations 2.15 and 2.16, the query model P (w|Q) is computed using

both maximum likelihood PMLE(t|Q) estimation (MLE) and one variant of RLM.

Since RM3 has been shown to empirically outperform RM4 (and also RM1 and

RM2, i.e., the respective models without the query mixture components), we use

the RM3 version of RLM as the baseline for our experiments, and simply refer to it

as RLM throughout the rest of the thesis.

Kernel Density Based Relevance Language Model (KDERLM)

The RLM focuses only on word-cooccurrence to estimate the relevance of a word.

The KDERLM was proposed to incorporate word embedding based semantic sim-

22

ilarity into relevance language model. Kernel Density Estimation (KDE) is a non-

parametric method to estimate the probability density function of a random variable.

Formally, let {x1, x2, . . . xn} be independent and identically distributed (i.i.d.) sam-

ples drawn from a distribution. The shape of the density function, f , from which

these points are sampled can be estimated is described in Equation 2.17. In Equa-

tion 2.17, xi is a given data point (commonly known as the pivot point), f̂α(x) is the

estimated value of the true density function f(x), αi is the relative importance of the

ith data point with the constraint that
∑

i=1 αi = 1, and K(.) is a kernel function

scaled by a bandwidth parameter h.

f̂α(x) =
1

nh

n∑
i=1

αiK(
x− xi
h

) (2.17)

By definition, a kernel function is a monotonically increasing function of the distance

between two points (vectors). A common choice of kernel function is a Gaussian

function.

(Roy et al., 2016) observed that since the relevance model (Lavrenko and Croft,

2001) estimates a distribution of (real-valued) weights over terms, the concept of

KDE can be applied to define this distribution in a generalized way (the model

being called Kernel density based RLM or KDERLM for short). The basic idea to

define the relevance model distribution this way is to treat the query terms as a

set of pivot terms (analogous to the xi’s of Equation 2.17). Rather than treating

terms as independent, the distance between the vector representations (obtained by

applying a word embedding method such as word2vec (Mikolov et al., 2013a)) of

a pivot (query) term with that of a term occurring in the top-ranked documents

is then used to define the kernel function. This results in the influence of a query

term to propagate to other terms that have similar (close) vector representations

in the embedded space. Formally, assuming that the query terms Q = q1, . . . , qn

are embedded as vectors, the probability density function estimated with KDE is

23

described in Equation 2.18.

f(t) =
1

nh

n∑
i=1

P (t|M)P (qi|M)K
(t− qi

h

)
(2.18)

In Equation 2.18, the the kernel function K is a function of the distance between

the word vectors of a term w (within a top-ranked document) and a query term qi.

Moreover, P (t|M)P (qi|M) acts as the weight associated with this kernel function

(thus incorporating the local RLM effect in addition to the global term semantics

one from the embedded space). In other words, the closer the word w is to a query

term qi in conjunction with a high RLM term weight, the higher becomes the value

of the KDERLM weight f(t).

2.2 Proactive Information Retrieval

In existing state-of-the-art IR models, a user has to enter a query to locate poten-

tially relevant information sources. One of the major factors for an IR model to

perform well is the expertise of the user in query formulation. In general a query

which is too long, or a query with less important words in it, does not perform well in

an IR model. To reduce a user’s effort of typing queries, and to minimize the effect

of user’s expertise in query formulation, existing literature has proposed different

ways to make an IR model proactive. Existing work can be categorized into two

different threads: methods to find semantic associations among different desktop

items to enhance desktop search; alternative proactive suggestion algorithms. Each

of these is described below.

2.2.1 Personal Information Management (PIM)

In PIM the focus is on organising the diverse information sources of an individual

user (e.g. files, emails, bookmarks) to support the user in their work. In this thread

of work methods for creating semantic representations of desktop items have been

24

examined in a number of studies including (Chen et al., 2009; Kim et al., 2010;

Bernstein et al., 2007; Cai et al., 2005).

The study in (Cai et al., 2005) proposed an interface architecture named ‘SE-

MEX’ which represented each of the items accessed by the user in desktop as objects

and captured the relation between different objects based on their domain and the

user’s interaction pattern. They showed that the ‘SEMEX’ architecture could help

a user in browsing his desktop data in a more effective way. The work in (Bernstein

et al., 2007) conducted a user study to investigate how short and self-contained

notes known as information scraps could help to capture a user’s thought process at

different stages of his interaction with a computational device. The work in (Chen

et al., 2009) proposed an associative memory based system named ‘iMecho’ which

sought to enhance a traditional desktop search system. iMecho finds semantic con-

nections among desktop resources exploiting a user’s activity pattern. The semantic

links help to anticipate the context of a user’s mind while using a desktop search

system. Moreover, it also improved the ranking of retrieved items for personalized

desktop search by taking into account both relevance and importance of a desktop

item to the user. In addition, iMecho provides a faceted search feature and associa-

tion graph navigation to help users refine and associate search results generated by

full-text keyword search. The iMecho prototype showed that an association-based

search system is better than traditional keyword search for desktops, since it is closer

to the way that human associative memory works.

The work in (Kim et al., 2010) proposed a methodology to create a semantic

representation of personal information for a user. A typical collection of personal

information contains many documents and mentions many concepts (e.g., person

names, events, etc.). Kim et al. (2010) used click feedback to create semantic as-

sociations between items and concepts and showed that semantic representation is

useful for a known item search task in a desktop setting. They also showed that the

system can learn to predict such associations with a small amount of click data.

The study in (Hu and Janowicz, 2012) first attempted to integrate information

25

relating to a user’s physical activities (e.g. paper writing, conference arrangements)

with information associated with their digital footprint (e.g. accessing adobe reader,

conference related papers, latex) to improve their search experience when using their

desktop environment. In this work an activity ontology for a user’s conference plan-

ning task was developed. The activity categories related to the conference planning

task were ‘paper writing’, ‘conference arrangements’ and ‘conference participation’.

This work showed that combining physical activity information with digital foot-

prints improved the desktop search system. The enhanced desktop search system

provided results for complex search queries such as ‘which papers from the ACM

GIS proceedings have I opened during the conference?’

A major difference between our work and existing PIM related work is that

whereas in this previous work researchers focused on improving the search results

for a user query, in our PIR work the focus is on predicting what a user may need

in the future. This is related to the scenario where a user has not actively entered

a query and the objective is to find what information sources may be useful to the

user at that point, or to the situation where a user has entered a query and the

objective is to predict what further information needs might arise in his mind.

2.2.2 Proactive Suggestion Methods

The first and the oldest work on proactive suggestions was proposed in (Rhodes,

2000). This work introduced the term ‘remembrance agent’ (RA) to describe their

prototype proactive suggestion system which was deployed in a UNIX text editor

named EMACS. The RA was used to provide suggestions to the user based on

what they were reading or writing. Similarly, the study in (Rhodes and Maes,

2000) proposed just-in-time proactive retrieval agents which also provided proactive

suggestions based on context information of the user’s current desktop activities on

the web or using a text editor. Over the years the context used to provide proactive

suggestions has become more extensive (Vuong et al., 2017).

The work in Dumais et al. (2004) proposed a prototype system capable of gen-

26

erating document suggestions for a user based on their recent desktop activities.

A query is formulated using the last words typed by a user and the query is then

used to identify potentially interesting documents for the user. They conducted a

user-centric evaluation based on the number of clicks by the user on document notifi-

cations within a controlled setting of email composition to measure the effectiveness

of the proactive suggestion system.

Another system ‘Stuff I’ve Seen’ (SIS (Dumais et al., 2016) seeks to improve the

desktop search experience of a user. Stuff I’ve Seen facilitates information reuse

in desktop systems. It constructs a unified index of information that a person has

accessed previously, e.g. emails, web pages, documents, appointments, etc., and

then carries out desktop search by leveraging the user’s current activity context to

formulate and expand queries.

A similar thread of work identifies documents related to a task from a user’s

past activities by taking into account different factors, such as access frequency of

documents, difference between the most recent access time of a document and the

present timestamp (Tran et al., 2016). A drawback of the study reported in (Tran

et al., 2016) is that it is limited by the need for the presence of user-assigned tags

of desktop items to estimate semantic relations between them.

The ‘accessrank’ algorithm proposed in (Fitchett and Cockburn, 2012) predicts

which item a user is likely to access next in a desktop environment by making use of

the access frequency of the items. A drawback of the proposed algorithm is that it

mostly works well in scenarios where a user frequently revisits a previously accessed

item.

Recently the work in (Shokouhi and Guo, 2015) proposed a method for re-ranking

proactive cards relating to a user based on different factors, including queries typed

by the user in past, the user’s location, and the time of the day. Information

cards in this scenario are information snippets related to topics in the user’s current

interaction context on a mobile device. In their study the authors automatically

annotated each document accessed by the user with a category described in the

27

Open Directory Project 1. Given the annotations, the proposed model suggested

a list of information cards to the user based on the topic in which the user was

interested at that moment. In a similar thread of work, (Yang et al., 2016) used

features such as entity tagging and user demographic information to re-rank the

information cards. The work in (Song and Guo, 2016) investigated different types

of day-to-day task (e.g. weather check, stock market prediction check) that a user

generally repeats, to improve proactive recommendation of information cards. The

difference between our work and (Shokouhi and Guo, 2015; Yang et al., 2009; Song

and Guo, 2016) is that rather than finding a user’s general topic of interest at a

point in time from their interaction log, we focus on identifying the broader level

task which the user seeks to accomplish at a particular point in time.

Surveillance of digital activities (e.g. emails, messaging, searching in web etc.)

of a user was shown to be useful for proactive suggestions (Vuong et al., 2017). A

relatively simple simulated user read activity involving selection of top tf-idf terms

from a document was proposed in (Koskela et al., 2018). An apparent weakness

of this simple approach is that, a set of top tf-idf terms are most likely to be non-

contiguous and hence are likely not to reflect a realistic user behaviour of reading a

document. The study reported in (Koskela et al., 2018) also described a controlled

user study of essay writing on a specific set of topics with real users, and showed

that a proactive retrieval system, which allows a user to read suggested documents

or save them for later revisits, can help a user to accomplish his task more efficiently.

Application of topic models on user accessed documents has been demonstrated

to enable the development of more proactive search interfaces to minimize user query

formulation effort (Vuong et al., 2017; Ganguly et al., 2013). The work in (Van Gysel

et al., 2017) proposed a method for proactively suggesting email attachments based

on email content. The study in (Hinbarji et al., 2016) showed that continuously

storing the digital content presented on a screen can act as a memory storage of a

user’s activity patterns. This store can then potentially be useful if a user needs to

1http://www.dmoz.org/

28

look back or recall any particular activity to assist them in completing a task in the

future.

Most of the work on proactive IR introduced above either conducted user studies

(Dumais et al., 2016; Koskela et al., 2018) to explore proactive suggestion algorithms

or used annotated a dataset (Tran et al., 2016) for proactive suggestion. In con-

trast, our objective uses a reproducible framework where we can compare different

approaches, which do not depend on having manual annotations carried out by the

user himself.

2.2.3 Query Suggestion Methods

This work is generally intended to support a user in formulating or reformulating

his search queries by enabling him to select their next query from a list of potential

candidates. In a web search setup, the search engine generally uses contextual

information from the user’s current or previous search sessions to improve the search

effectiveness. The work in (Smyth et al., 2003) used similar queries of other users

to re-rank search results for the current query of a user. In similar work in (Smyth

et al., 2009) they proposed a novel architecture for a search interface to support a

user in his current search session by leveraging similar task information from other

users. For each user they provided an option to manually annotate the task in

which the user was currently engaged. The task information was stored in search

staks. The system included an option to share the search staks across different users

so that collaborative information could be used to support a current user in his

task. The difference between our proactive suggestion approach and this existing

work in (Smyth et al., 2009) is that rather than using manual task annotation, our

object was to automatically mine user tasks from a search query log. The study in

(Feild and Allan, 2013) analyzed the importance of a user’s previous on-task queries

(related to the current task) compared to off-task (not related to the current task)

for query recommendation. An extended relevance model that can leverage a user’s

previous queries within a session feedback signals for re-ranking the top retrieved

29

documents was proposed in (Levine et al., 2017). Similarly, Zhang et al. (2013) used

edit distances between pairs of adjacent queries during search sessions as a pseudo

feedback signals to improve retrieval effectiveness of the most recent query.

In addition to using the context information from recent queries, other ap-

proaches investigated improving retrieval effectiveness by leveraging information

from a user’s long-term search history (query logs), e.g., (Tan et al., 2006) esti-

mates a query-focused user profile from a user’s past interactions (queries, clicked

documents) that are similar to his current query, which is then used to re-rank the

documents for the current query.

On a similar note, the studies in (Kong et al., 2015; Sordoni et al., 2015) use

a combination of information from current session and historical interactions to

recommend a list of suggested queries, whereas (Boldi et al., 2008) constructs a

‘query-flow’ graph from a query log to predict a candidate list of next queries.

A task graph was employed in (Hassan Awadallah et al., 2014) to suggest a a

query on a sub-task different from the current one he is focusing on. (Muntean et al.,

2013) applied ‘learning to rank’ to predict the final query in a search session aiming

to automatically stop query suggestions to increase user satisfaction. The study in

(Li et al., 2012) seeks to introduce diversity into query suggestions by making use of

the historical information of the user interactions (queries and clicked documents).

A visualization tool that shows connections between the documents retrieved for

a user’s current query and the ones that were retrieved for his previously submitted

queries during the different stages of a task was shown to improve exploratory search

experience in (Qvarfordt et al., 2013).

The difference between the query suggestion or query prediction methods de-

scribed above and our PIR approach is that our objective is to support a user in his

overall task (which may have one or more sub-tasks in it) rather than focusing only

on the next information need of the user (Zhang et al., 2013; Levine et al., 2017;

Sordoni et al., 2015).

30

2.3 Representation Learning for Text

In Chapter 1 we introduced research question RQ2 which relates to anticipating a

user’s information need by first identifying activities related to their information

goal. Generally speaking, we need to identify the semantic relations between a pairs

of activities. In order to find related activities, in this study we focus on activities

expressed only in text. In this section we first discuss language modeling techniques

which attempt to capture the word semantics at the surface level of word character

units, and after this we introduce some recent work which seeks to model semantic

relations between text units via word embedding methods.

2.3.1 Language Modeling Techniquess for Word Semantics

One of the earliest proposed ways of capturing word semantics was the use of sta-

tistical language models. In this models, probabilistic methods are used to estimate

the likelihood of a word given a context of other words. One of the earliest uses of

statistical language models was in the field of automatic speech recognition (Bahl

et al., 1983), to aid in correctly recognizing words and phrases in sound signals

that have been subjected to noise and/or faulty channels. While a full probabilistic

model containing the likelihood of every word, given all possible word contexts that

may arise in a language is clearly intractable, it has been empirically observed that

satisfactory results are obtained using a context size as small as 3 words (Goodman,

2001). A simple mathematical formulation of such an n-gram model with context

window size equal to W follows:

P (wW1) =
W∏
t=1

p(wt|wt−1
1) (2.19)

In Equation 2.19, wt is the tth word and wWi refers to the sequence of words from

wi to wT , (i.e. (wi, wi+1, wi+2 . . . wW)). P (wt|wt−1
1) refers to the fraction of times wt

appears after the sequence wt−1
1 . Actual prediction of the next word given a context

31

is done via maximum likelihood estimation (MLE), over all words in the vocabulary.

(Yoshua Bengio and Jauvin, 2003) reported some problems with the approach

proposed in (Bahl et al., 1983). For the approaches proposed in (Bahl et al., 1983),

high dimensionality is involved in calculating discrete joint distributions of words

with vocabulary sizes of the order of 100, 000 words. It also has generalisation

problem to model word sequences not present in the training set. Early attempts

at mitigating these issues, particularly those related to generalization to unseen

phrases, include the use of smoothing, e.g. pretending every new sequence has

count one, rather than zero in the training set (this is referred to as add-one or

Laplace smoothing). There is still a problem to apply statistical language modeling

on dataset having large vocabulary.

To alleviate this issue, neural networks (Yoshua Bengio and Jauvin, 2003; Bengio

and Senécal, 2003) and log-linear models (Mnih and Hinton, 2007; Mikolov et al.,

2013a) were introduced to train language models (giving rise to so called neural

language models). Neural language models (NLM) have fixed dimensional dense

representation for words and thus the dimension of embedding does not depend on

the size of vocabulary. As a result of this, NLMs address the problem of modelling

large vocabularies. The method of obtaining word representations in terms of fixed

length vectors is known as word embedding. Since in our research scope, we use word

embedding to capture the semantics of user activities, in the following section we

review key existing literature on NLMs which are used for word embedding.

2.3.2 Word Embedding: A Generic Survey

Word embedding is the process of obtaining a vector representation of a word. The

word vector is supposed to capture the semantic meaning of the word. For example

if we have the word vectors for three words namely ‘dog’, ‘cat’ and ‘tree’, then the

similarity between the word vectors for ‘dog’ and ‘cat’ should be more compared to

that of ‘dog’ and ‘tree’ or ‘cat’ and ‘tree’. This section introduces various approaches

to training word embeddings, detailing how they work and where they differ from

32

each other. Word embeddings are commonly ((Baroni et al., 2014; Socher et al.,

2011; Li et al., 2015)) categorized into two types, depending upon the strategies

used to induce them. Methods which leverage local data (e.g. a word’s context)

are called prediction based models, and are generally reminiscent of neural language

models. On the other hand, methods that use global information, generally corpus-

wide statistics such as word counts and frequencies are called count based models.

Since our work involves constructing word vectors based on its context, we describe

the prediction based models in detail in the following subsection.

Prediction Based Models

The history of the development of prediction based models for embeddings is deeply

linked with that of neural language models (NNLMs), because that is how they were

initially produced (Yoshua Bengio and Jauvin, 2003). The history of NNLMs, which

started with the first large neural language model (Yoshua Bengio and Jauvin, 2003)

is mostly one of gradual efficiency gains, occasional insights and trade-offs between

complex models and simpler models, which can be trained on more data. Early

results clearly indicated that NNLM are indeed better at modelling language than

their previous n-gram-based counterparts. Moreover, long training times (sometimes

days and weeks) are frequently cited among the major factors have that hindered

the development of such models.

Bengio and Senécal (2003) identified that one of the main sources of computa-

tional cost was the partition function or normalization factor required by softmax

output layers, such as those in NNLMs. Using a concept called importance sampling

(Doucet (2001)), they were able to bypass calculation of the costly normalization

factor, estimating instead gradients in the neural net using an auxiliary distribu-

tion (e.g. old n-gram language models) and sampling random examples from the

vocabulary. They report gains of a factor of 19 in training time, with respect to

the previous model, with similar scores (as measured by perplexity). In (Morin and

Bengio, 2005) proposed yet another approach for speeding up training and testing

33

times, using a Hierarchical Softmax layer. They realized that, if the output words

are arranged in a hierarchical binary tree structure, then the probability distribu-

tion of each word can be calculated using the probability that each node leads to

the word using the correct path from the binary tree. Since the height of a binary

tree over a set V of words is |V |/log(|V |), this could yield exponential speedup. In

practice, gains were less pronounced, but they still managed gains of a factor of 3 for

training times and 100 for testing times, with respect to the model using importance

sampling.

Mnih and Hinton (2007) were probably the first authors to suggest the Log-

bilinear Model7 (LBL) which has been very influential in later works as well. An-

other article by (Mnih and Hinton, 2009) can be seen as an extension of the LBL

(Mnih and Hinton, 2007) model, using a slightly modified version of the hierarchi-

cal softmax scheme proposed by (Morin and Bengio, 2005)), yielding a so called

Hierarchical Log-bilinear Model (HLBL).

While (Morin and Bengio, 2005) used a prebuilt word tree from WordNet, (Mnih

and Hinton, 2009)) learned such a tree specifically for the task at hand. In addition

to other minor optimizations, they report large gains over previous LBL models (200

times faster in run time) and conclude that using purpose-built word trees was key

reason for speed up.

Somewhat parallel to the works just mentioned, (Collobert and Weston, 2008)

approached the problem from a slightly different angle. They were the first to design

a model with the specific intent of learning embeddings only. In previous models,

embeddings were just treated as an interesting by product of the main task (usually

language models). In addition to this, they also introduced two improvements worth

mentioning: they used a word’s full context (before and after) to predict the centre

word. Perhaps most importantly, they introduced a more sophisticated way of

leveraging unlabelled data for producing good embeddings: instead of training a

language model (which is not the eventual task for term semantics), they expanded

the dataset with false or negative examples and simply trained a model that could

34

tell positive (actually occurring) from false examples. Here we should mention two

specific contributions by (Mikolov et al., 2009), which have been used in later models.

In the first work, (Mikolov et al., 2009) a two-step method for bootstraping a NNLM

was suggested, whereby a first model was trained using a single word as context, and

then a second model (with a larger context) was trained, using as initial embeddings

those found by the first step.

It could be said that, in 2013, with (Mikolov et al., 2013a) the NLP community

have again (the main other example being (Collobert and Weston, 2008) had its

attention drawn to word embeddings as a topic worthy of research in and of itself.

These authors analyzed the embeddings obtained with the training of a recurrent

neural network model ((Mikolov et al., 2010)) with an eye to finding possible syn-

tactic regularities possibly encoded in the vectors. Since we use Word2vec (Mikolov

et al., 2013a) extensively in our work for proactive suggestions, in the following

section we will describe in detail the word2vec model proposed in (Mikolov et al.,

2013a).

2.3.3 Word2vec Model Overview

Word2vec (Mikolov et al., 2013a) is a weakly supervised technique to obtain word

vectors. Here we slide a window through unlabeled text. The objective of Word2vec

is to make the current word similar to the all words appearing within its context

window, and to make the current word dissimilar to randomly sampled words outside

its context. Figure 2.2 shows an overview of principles of the word2vec model.

For each word, it considers a context window of size four, two on each side. For

example, for the word ‘fox’ it tries to make it similar to jump, over, quick and

brown. The context window for word2vec does not cross the document boundaries.

The objective function for word2vec is described in Equation 2.20. The objective

35

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

Source Text Training Samples

the, quick
the, brown

quick, the
quick, brown
quick, fox

brown, the
brown, quick
brown, fox
Brown, jumps

fox, quick
fox, brown
fox, jumps
fox, over

Figure 2.2: Example of the use of sliding window in computation of word embedding
using word2vec

function for Word2Vec is maximized using stochastic gradient descent.

J(W) =
∑

wt,ct∈D+

∑
c∈ct

P (D = 1|wt, c)−
∑

wt,c
′
t∈D−

∑
c∈c′t

P (D = 1|wt, c) (2.20)

Neural Architecture

In Word2vec, the input to the model is either a word or a word context window of

a fixed size. Each input word is represented as a one-hot vector. The dimension of

the vector is equal to the number of unique words present in the vocabulary. For

example, for the word ‘brown’, there is “1” in the position corresponding to the

word ‘brown’, and ‘0’s in all of the other positions. Similarly, the context vector is

also represented as the concatenation of the one hot vectors of the corresponding

word vectors. The output of the network can be either a context or a single word.

The word2vec model which takes as input a context vector and predicts the word

is known as CBOW model. Similarly the word2vec model which takes as input a

word and predicts its context is know as Skipgram model. Both model is trained

36

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

Input Projection Output

Figure 2.3: Neural Architecture for Skipgram Word2Vec

on a simple neural network with a single hidden layer to perform a certain task.

Ultimately the neural network for the task on which it was trained is not used.

During training of the networks, it actually learns the weights of the hidden layer.

The weights are the word vectors. There is no activation function on the hidden

layer neurons, but the output neurons use sigmoid.

Figure 2.3 shows the neural network architecture for skipgram in Word2vec. It

is shown in Figure 2.3 that given the word wt, it predicts a context window of size 4

(i.e. W (t−1), w(t−1), w(t+1), w(t+2)). The output vector is actually a probability

distribution through a sigmoid function.

2.3.4 Contextual Word Embedding

As an alternative to the singleton word embedding methods discussed in Section

2.3.2, more recently researchers have proposed contextual word embedding methods.

The main difference between this and the singleton methods is that these involve

estimating vectors for each word within a given context (e.g. a sentence), which

also implies that the vector for a word mostly varies in different contexts, e.g. the

vector for the word ‘school’ in the sentences ‘John’s dad takes him to school’ and

37

‘John’s school is five blocks away from his home’ are different. Such contextually

embedded word vectors are typically useful for downstream tasks (e.g. sentiment

classification and question answering), because use of contexts in such downstream

tasks generally proves to be beneficial, e.g. the sense of the word ‘school’ in the two

example sentences are substantially different.

Generally speaking, contextual word embedding methods employ a recurrent

neural network based architecture (a language model) to predict the current word

given its context. In contrast to Word2vec, where each unique word in the vocab-

ulary has its own set of parameters irrespective of the context in which the word

occurs, in context based embedding method, each occurrence of a word (as a part

of a sentence) has its own set of parameters. ELMO (Peters et al., 2018) employs

two-layer bidirectional language models implemented with stacked layers of char-

acter convolutions based LSTMs. After training the ELMo architecture on a large

corpus of text, the vector representation of each word can be obtained by inputting

the word to this trained model, which is similar in flavour to obtaining the vector

representations of a new image from the output of a network (fully connected layer)

pre-trained on a large collection of images (Krizhevsky et al., 2012).

As another approach to contextual embedding, (Devlin et al., 2019) proposed

a bidirectional transformer (Vaswani et al., 2017) based approach, named BERT.

The working principle of BERT involves training the parameters of a transformer

based network on two pseudo-tasks (weakly supervised), namely: a) Masked LM,

where words within a sentence are masked, and the training involves predicting

these masked words; and b) Next sentence prediction, a binary classification task

which given a pair of sentences predicts if one immediately follows the other or not.

Both the above BERT pseudo-tasks are trained with both positive and randomly

selected negative samples. Similar to ELMO, the vectors for a word are obtained by

feeding in a word to the pre-trained architecture and obtaining the output. We use

Word2vec (Mikolov et al., 2009) and BERT in Chapters 5 and 7 to address semantic

similarity in proactive IR.

38

2.4 Summary

In this chapter, we have reviewed standard IR models including the VSM, BM25,

LM, and relevance language model (RLM). An extension of relevance modeling

technique has been used to address our RQ3 in Chapter 5. We also introduce the

concept of word embedding which has been used extensively in our work in Chapter

5 and 7 to identify user activities that are related to similar information goal.

39

Chapter 3

A Framework for Proactive

Information Retrieval

As introduced in Chapter 1, the objective of a proactive IR model is to help a user

in accomplishing an overall information based goal or task. In this chapter, we

introduce a generic framework for proactive IR, and propose a model for proactive

query formulation.

3.1 Proactive IR Generic Framework

A user interacts with a digital application interface with a goal or a task in his

mind. As a part of completing such a task, the user typically performs multiple

activities. As explained in Chapter 1, the objective of a proactive IR model is to

support the user in more efficiently or effectively undertaking their activities to help

them achieve their goal. To do this a proactive IR system is required to track a

user’s activities, and then to automatically formulate queries on their user’s behalf.

Subsequently, these queries can then be used by the proactive IR system to search

available resources to provide potentially useful information that may be helpful to

the user. Figure 3.2 shows the general workflow of how a user’s activity context is

used in proactive IR to provide suggestions to the user. We describe each component

40

Read

Activity Description Timestamp

Click Document Document Title: Just-in-time
information retrieval agents

Activity Type

In this paper, just-in-time information
retrieval agents(JITIR agents) are
introduced. JITIR agents (pronounced
“jitter agents”) are a class of software
agents that proactively present
information based on a person’s
context in an easily accessible and
nonintrusive manner.

Write The concept of proactive IR was first
proposed in the work of Rhodes and
Maes in 2000.

Search Proactive Search Research Paper

02/02/2021 14:40 pm.

02/02/2021 14:41 pm.

02/02/2021 14:43 pm.

02/02/2021 14:44 pm.

Figure 3.1: Sample Activity Log of a User

of Figure 3.2 in detail in this section. First we turn our attention to describe the

notion of a user activity in more detail.

In this research study, we focus on the type of user tasks which can be ac-

complished by a set of user interactions with a computing device (e.g. laptop or

desktop). Hence we focus only on the desktop activities of a user. Examples of such

user activities include reading a document in offline mode from a desktop folder or

an online web document in the cloud, writing a document, clicking a document, or

typing queries in a search interface. Figure 3.1 shows an example of a user’s desktop

activity log. The task of the user in Figure 3.1 is to write a report on PIR. The user

initially clicked a document and then started reading the document. After reading

a few lines from the document, the user started writing the report on the topic of

PIR. While writing the user also used a search interface to search a query related

to PIR. We represent each activity in terms of a bag of words, as shown in the ‘Ac-

tivity Description’ column of Figure 3.1. While logging a user’s desktop activities

we create a new log each time a user switches application (e.g. from word editor

to browser) or stops interacting with the system (i.e. the computing device goes in

idle mode) or a maximum word limit is exceeded (e.g. the number of words used to

41

User
Computing Device

(e.g. laptop, desktop)
Interactions

Activity ContextProactive Query
Formulation Model

Proactive
Query

Index

Proactive
Suggestions

Similar Activities of
Other Users

Figure 3.2: Generic Framework for proactive IR.

describe the activity exceeds a certain threshold).

3.1.1 The Generic Workflow of a Proactive IR Model

Given the activity context of a user, a proactive IR model should seek to antic-

ipate the user’s potential information needs and formulate queries on the user’s

behalf. Using a proactively formulated query, a proactive IR model uses a search

system to retrieve a ranked list of potentially useful information resources from an

index. Within our research scope, the index can be a collection of web pages (e.g.

Clueweb12B1) or a collection of offline information dataset (e.g. TREC dataset).

Since the index is comprised of a collection of documents, the possible forms for

proactive suggestions retrieved from an index are documents, text snippets or doc-

ument titles. The top k retrieved information items can be shown to the user as

proactive suggestions.

Tracking a user’s activities and proactive suggestions is a continuous process. So

it is necessary to determine the situations that should trigger proactive IR sugges-

tions. This can most simply be taken to be after a fixed time interval, or after a

fixed number of activities executed, or after switching a desktop application.

If we provide proactive suggestions after a fixed interval of time, then it may hap-

pen that the user’s information state may or may not have progressed significantly

1http://boston.lti.cs.cmu.edu/clueweb12/

42

enough during that time interval. As an extreme case, if the user was completely

idle during the time interval, then the proactive IR model will not have any new

activity context which will lead to it providing proactive suggestions identical to the

previous one.

Consequently, in our research scope, we propose to trigger proactive suggestions

after a fixed number of activities or after switching a desktop application. If two

consecutive sets of proactive suggestions are similar, then most of the latter sugges-

tions are unlikely to be useful for a user. As a result of this, while during retrieving

proactive suggestions at a particular timestamp, we drop any information resources

that a user was already notified of previously.

After describing the workflow of a proactive IR model in Section 3.1.1, we now

turn our attention to the potential sources of information that can be used in proac-

tive query formulation which is an essential component in a proactive IR model.

3.1.2 Information Sources for Proactive IR Model

The potential information sources for proactive IR can be broadly categorized into

two types:

1. The user’s own personal interaction history.

2. The interaction history of other users performing similar tasks or with similar

interests to the current user

Each of the above mentioned types of source is described in the following subsections.

3.1.3 User’s Personal History

A user’s personal history corresponds to the set of their activities that have been

tracked by a proactive IR model up to the point of proactive suggestion. A user’s

personal history can be grouped into different sessions, where a session is defined

as a sequence of consecutive activities where the time difference between a pair

43

consecutive activities is not higher than a particular threshold of time (e.g. 30

minutes). Essentially a user’s personal history is comprised of a set of sessions from

the user’s past activity logs.

The importance of a user activity in anticipating a user’s information need is

inversely proportional to how far that user activity is from the most recent user

activity (Kong et al., 2015). So we can broadly categorize a user’s personal history

into two sections:

• a) User’s personal history from the current session.

• b) User’s personal history from any session other than the current session.

The first category of activities indicates the user’s current activity context, and the

second category of activities indicates their previous contexts. Users have a multi-

tasking nature, so from their past activities we need to try to identify those that are

related to the user’s current activity.

3.1.4 Similar Activity of Other Users

Other users’ activities related to the current user’s current activities can also be

a potential information source for proactive IR. There are a number of common

tasks (e.g. planning for a vacation to a particular place, registering for a particular

conference, etc.) which multiple users can be expected to perform. For common

tasks, similar activities of other users can be used to potentially suggest useful

information to the current user. For example a user is planning to attend the

SIGIR 2022 conference. The different related activities for the task of arranging to

attend the conference might include SIGIR 2022 registration, invesigation of places

to visit at the conference site, booking flights and accommodation. If we observe

that a user is currently performing registration for the SIGIR 2022 conference (e.g.

doing online registration, saving registration reciept in local desktop folder), then we

can mine similar SIGIR planning related activities from other users’ past activities

to help the current user in completing his task. Examples of other users’ past

44

ai ith Activity
H Activity History of All Users
q̂t Proactive Query at tim t
L(q̂t) Ranked list of information Sources for qt
Ct Recent activity context of a user at time t
Hu Activity History of a User
Ho Activity History of other Users
φ Function for Computing ranked list of proactive suggestions

Table 3.1: Notations For Describing Proactive IR Model

activities in this scenario might include SIGIR registration, checking accepted paper

list, bookmarking interesting talks, tutorials in SIGIR 2022, finding places to visit

near SIGIR location.

Based on the identified information sources, we now describe our proactive IR

model.

3.2 Anatomy of a Proactive IR Model

We start this section by first introducing the notations used to describe our proactive

IR model. Table 3.1, shows the variables used in the definition of our proactive IR

model. Each user activity ai has a bag of words representation. The activity history

H is comprised of the user’s own activity history (i.e. Hu) and similar activity

history to other users (Ho). Hence we can say that H is union of both Hu and Ho.

In Table 3.1, the proactive ranked list of information sources Lqt is obtained

by choosing the top k documents from a ranked list of documents retrieved using

proactive query qt and an IR model (e.g. BM25 (Robertson and Zaragoza, 2009),

LM (Ponte and Croft, 1998), RLM (Lavrenko and Croft, 2001)).

Given the sequence of activities, the first step of a proactive IR model is to

formulate a query. To formulate a query proactively we first need to understand the

importance of different words with respect to possible information goals for a user

at a particular timestamp. In practice, we propose to realise this by estimating a

distribution P (w|θ), where θ is a relevance set at a particular time instant, addressing

45

the possible topics, along which the information seeking goal of the user may evolve.

We construct a weighted query qt by choosing the top n terms from P (w|θR). As

explained in Section 3.1.2, θR is generated from both: a) the set of recent activities

Ct, b) activity history of Users H.

We describe how P (w|θR) is computed form Ct and H in more detail in the next

Section.

3.2.1 Proactive Query Formulation Model

As discussed in Section 3.2, we need to find a weighted distribution of words (i.e.

P (w|θR)) to formulate a proactive query. To compute P (w|θR) we first need to esti-

mate the relevance distribution θR. Recall from Chapter 2 that the RLM (Lavrenko

and Croft, 2001) uses a relevance set similar to what we need here to compute the co-

occurence probability of words with a user typed query to estimate the importance

of a word in expressing a user’s information need. The relevance language model

(RLM) proposed in (Lavrenko and Croft, 2001) uses the top retrieved documents for

a query to estimate the relevance set. We propose a modified version of (Lavrenko

and Croft, 2001) to generate θR, where the different information sources used to

generate θR are a user’s recent activity context Ct, and similar previous activities of

other users (i.e. H(at)). Our proposed relevance model is shown in Figure 3.3.

The rationale for making the construction of the induced subset (H(at)) depends

only on the current activity, is that subsequent information needs are most likely to

depend only from the current one (Feild and Allan, 2013). Formally speaking,

θR|at ∼ Bt = Ct ∪H(at), (3.1)

where Bt is used to denote the background information of the context from the

current session and the past activities from the past activity log. In the following

subsection we describe how we find similar activities from the past activity log (H).

46

H(at)

H

a

L(at)
a1, a2,…. at

Observed

Ct

𝜃𝑅

Figure 3.3: Generative model for proactive Query Formulation.

Selecting Candidate Activities from History

While interacting with a digital interface a user is often engaged in multi-tasking

(Lucchese et al., 2013). So it is not the case that a sequence of user activities

will always be related to the same information goal. We select activities related

to a user’s most recent activity from H. Assuming that there exists some notion

of a similarity function between a pair of activities, σ(ai, aj), we select the set of

candidate activities as the k top-most similar activities to the current activity at,

i.e.,

H(at) = ∪{a ∈ H : ∀r ∈ H −H(at)σ(at, q) > σ(at, r)}, |H(at)| = k, (3.2)

where k is a parameter determining how many related activities from the set H we

should consider. Estimating H(at), we will now discuss the computation of P (w|θr)

which is the core component of our proposed relevance model.

Estimating the Relevance Model

Recall from Chapter 2 that the work in (Levine et al., 2017) proposed a time-

decaying session-relevance model, where the weight of a previous query in estimating

47

relevance set was inversely proportional to its timestamp difference with the current

query. Similar to (Levine et al., 2017) we also assume that it is more likely that

an activity executed earlier will have less importance in estimating a user’s current

information need. Given the observed current activity at, we use the formula shown

in Equation 3.3 to compute P (w|θR, at).

P (w|θR, at) =
∏
t∈at

∑
a∈Bt

P (t|a)P (w|a)e−δ(at,a)2 . (3.3)

Intuitively speaking, the probability of a term contributing to the topic of a poten-

tial proactive query in Equation 3.3 is high if it frequently co-occurs with a term

appearing in the most recent activity, at.

In Equation 3.3, δ(at, a) denotes the timestamp difference between an activity

ai in the current session, Ct, and the current activity, at. If we only use the co-

occurrence probability of a word (w) within an activity (ai) to estimate P (w|ai),

then for all the scenarios where a word w does not appear in ai at all, the value

of P (w|ai) will be equal to zero. So we use the standard notion of the Jelinek-

Mercer (Jelinek and Mercer, 1980) method to smooth the probability of a word

being sampled from an activity ai as shown in Equation 3.4.

P (w|ai) = λ
f(w, ai)

|aI |
+ (1− λ)

c(w)

S
(3.4)

In Equation 3.4, f is the frequency of a term w in activity ai, c(w) is the collection

frequency of w, and S =
∑

w∈Ct∪H(at)
c(w) is the collection size. Next, we define the

temporal difference factor between activities as shown in Equation 3.5.

δ(at, a) =


c a ∈ H(at), c ≥ (t− t′)

t− t′ ∃t′ : a = at′ ∈ C(t).

(3.5)

The temporal difference (i.e. δ(at, a)) is used to model the anticipated importance of

an activity in affecting future information needs within a session. The more recent

48

an activity is within a session, the more likely it is that it will have more importance

in predicting a user’s future information need (Kong et al., 2015). Note that the

function in Equation 3.5 ignores the temporal factor if the activity ai is a part of

the candidate set of activities extracted from the set H (previous queries from a log)

because the timestamps of these activities should not have any direct effect on the

likelihood of formulation of a statement of information need.

3.2.2 Generalization beyond Term Matching

In our query formulation model, we formulate a proactive query based on a user’s

activity context. It may happen that there is no word overlap between a previous

activity and the most recent activity of the user. This does not necessarily mean

that the previous activity is not related to the user’s current task. However, the

query formulation model shown in Equation 3.3 can not capture the task semantics

between a pair of activities beyond term matching. As a result of this, the proac-

tive suggestions retrieved using the proactive query, constructed using Equation 3.3,

may not be effective for supporting the current task of the user. To address this

limitation, we incorporate the notion of embedding based similarities in Equation

3.3, similar to the proposition of (Roy et al., 2016), which also incorporated embed-

ding based similarity in the relevance language model (Lavrenko and Croft, 2001)

to improve the effectiveness of an IR model.

Embedding based similarity goes beyond term matching, and hence can compute

semantical similarity between a pair of activities even if they have little or no word

overlap. More precisely, we replace the notion of the probability of sampling a word

w from an activity a, as the likelihood of sampling w from a weighted by the cosine

similarity between the embedded vector representations of w and a, as shown in

Equation 3.6.

Pe(w|a) = P (w|a)
w · a
|w||a|

, (3.6)

In Equation 3.6, P (w|a) is defined as per Equation 3.4, w represents the vector of

49

a word w and q represents that of a query a.

With these modified sampling probabilities, Pe(w|a)’s, that take into account

the semantic similarities between a word w and a query a, we modify Equation 3.3

to the form shown in Equation 3.7.

P (w|θR, at) =
∏
t∈at

∑
a∈Bt

P (t|a)P (w|a) e−δ(at,a)2 at · a
|a||at|

. (3.7)

Intuitively speaking, Equation 3.7 considers two types of similarities, namely, simi-

larity between a pair of queries and those between an individual term and a query.

Assuming that task-specific semantics are captured with the help of a representation

learning model (to be discussed in Chapter 5), terms that favorably contribute to

the topic of a potential next query are those that:

• i) Occur in a query that is semantically similar to the most recent activity, at.

• ii) Frequently co-occur with terms appearing in at.

• iii) are semantically similar to the terms of at.

3.3 Concluding Remarks

This chapter described a generic framework for proactive IR in Section 3.1. We also

proposed a query formulation model for proactive IR in this chapter. The proactive

query formulation framework proposed here will be used in two different application

scenarios (i.e. single Stage and multi Stage) in Chapter 6 and Chapter 7 respectively.

In the next chapter we develop an evaluation framework for proactive IR.

50

Chapter 4

Evaluation of Proactive

Information Retrieval

In this chapter, we address our first research question ‘How can we quantitatively

evaluate the effectiveness of proactive IR models?’ Existing work in proactive IR

has collected user feedback to evaluate a proactive IR model. However, the aim

in our research is to create and use a reproducible evaluation framework. Here we

first outline the standard evaluation metrics for IR and describe the challenges in

applying these to proactive IR. We then describe how we propose to extend the use

of these metrics for evaluation of our investigation of proactive IR.

4.1 Evaluation Metrics in Traditional IR

The objective of a traditional IR model is to satisfy a user’s information need.

Generally speaking, a user is usually considered to be satisfied if he observes relevant

documents corresponding to his information need towards the top ranks of a list of

documents retrieved in response to their query submitted to an IR system. Another

criteria for user satisfaction is the number of relevant documents shown to the user.

To evaluate the quality of a ranked list one should compute the ranks or positions

of the relevant documents within the retrieved list. In order to do so automatically

51

it has to be known (ideally speaking, subjectively) which documents are relevant

to a given query. However, a subjective knowledge of relevance requires explicitly

asking the user to provide feedback (e.g. click a check-box) on whether a document

is relevant or not. Collecting personalized (subjective) relevance judgments makes

it difficult to establish benchmarks for comparing across different retrieval models

from an objective standpoint.

To facilitate laboratory-based IR evaluation from an objective standpoint, ex-

isting IR research employs a pooling mechanism (Voorhees, 2003), which involves

executing a number of different retrieval approaches, combining the top-k results

(formally known as depth-k pooling) and conducting manual assessments (of objec-

tive relevance) on the contexts of the pool.

This set of manually judged documents for each query constitutes a groundtruth

or reference set of objectively relevant documents (Voorhees, 2003) that are judged

(assessed by humans) to be relevant for that query. The judged documents can be

associated with a binary or a graded level of relevance (Järvelin, 2010; Robertson

et al., 2010), each with its own set of prescribed methodologies for evaluation.

Before reviewing the rank-based IR metrics (with binary or graded judgments),

we first examine the concepts of precision and recall in IR evaluation in the next

section.

4.1.1 Set-based Evaluation Metrics

The information need of a user can typically be satisfied in two different ways, each

with its own advantages and disadvantages, both of which an IR evaluation metric

should consider. We present the two different situations with the following two

illustrative examples.

1. An IR system presents a small number of relevant documents (out of the total

number of relevant documents available in the collection, e.g. only 4 out of

32) to the user towards the very top of the search result list. For example, the

52

first page of a paginated result list (comprising, say, 8 documents) the user

could be presented with 4 relevant documents (Kelly and Azzopardi, 2015a).

However, no further relevant documents are retrieved in the remaining of the

search engine result pages (SERPs).

2. An IR system is able to retrieve a large number of relevant documents, e.g.

say 25 out of 32. However, these documents are retrieved from the fifth SERP

onwards.

The first situation is an example of a precision oriented system (or a high pre-

cision only system), whereas the latter exemplifies a recall oriented one. Precision-

oriented systems are useful in situations when a user is typically satisfied with a

small number of relevant documents and is not prepared (or does not need) to read

the other relevant documents, e.g. only one or two news articles on a recent topic

would be adequate for a user. However, in other situations, such as patent prior art

search or legal search (Ganguly et al., 2011b), it is crucial to locate as many relevant

items available as possible.

We now define the concepts of precision and recall formally. Both of these are

set-based measures extensively used to evaluate the quality of predicted outputs of

IR systems against a groundtruth set of relevant items.

Precision: It is defined as the number of correct predictions or true positives out of

a total number of predicted positives. To compute precision in the context of IR, one

needs to cut-off the ranked list of retrieved documents at a particular position (say

k) and view it as a set (rather than an ordered list). Precision is then given by the

number of relevant documents within this set, Lk = {D1, . . . , Dk}, of k documents

(analogous to the number of predicted positives). This metric is formally known as

the precision at top-k and is denoted symbolically as P@k.

P@k =

∑k
i=1 I[R(Di) = 1]

k
, (4.1)

where R(Di) denotes the binary relevance (1/0) of the ith document of the set of

53

top-k documents, and I[X] denotes the indicator variable which is 1 if the property

X is true.

Recall: Recall is defined as the number of correct predictions or true positives out

of the total number of true positives. On a similar note, the general definition of

recall also requires a cut-off of the ranked list of retrieved documents at a particular

position (say k), and then to compute the number of relevant documents within this

set of k documents (analogous to the number of predicted positives) and (different to

precision) normalize it with the total number of relevant documents in the collection.

This metric is formally known as the recall at top-k and is denoted symbolically as

R@k. The formula for R@k is shown in Equation 4.2.

R@k =

∑k
i=1 I[R(Di) = 1]

R
, (4.2)

where R denotes the total number of relevant documents in the collection (for the

current query), R(Di) denotes the binary relevance (1/0) of the ith document of the

set of top-k documents, and I[X] denotes the indicator variable which is 1 if the

property X is true.

4.1.2 Rank-based IR Measures Using the Concepts of Pre-

cision and Recall

Cutting off the ranked list at an arbitrary position poses a number of problems.

First the ideal cut-off point is not clear. Second, a set-based measure ignores the

ranks of the retrieved items.

Example 4.1.1. Relevance of documents retrieved by two example systems.

System A: {1, 1, 0, 0, 0}, P@5(A) = 2/5

System B: {0, 0, 0, 1, 1}, P@5(B) = 2/5

In Example 4.1.1 the P@5 values of both systems A and B are 2/5, which is

unfair because from a user satisfaction point of view, system A is more preferable

54

than B because A saves the user effort in reading to scroll down the ranked list to

locate the relevant documents (retrieved by B at positions 4 and 5).

These issues of arbitrary rank cutoffs and the rank agnostic nature of set-based

metrics, are alleviated by the metric - Average Precision (AP) which is defined as

follows.

Average Precision (AP): AP is the aggregated precision values normalized by

the total number of relevant documents for a query, where instead of using arbitrary

rank-cutoff points, the precision values are computed using recall points (a position

where a relevant document is retrieved).

An example of recall points for the system A in Example 4.1.1 are the positions

1 and 2 (because these are the ranks at which relevant documents were retrieved

by A). To take into account recall alongside the aggregated precision measures, the

metric is normalized by the total number of relevant documents in the collection.

Formally speaking, average precision is defined as shown in Equation 4.3.

AP =
1

R

∑
i:R(Di)=1

P@i =
1

R

∑
i:R(Di)=1

∑i
j=1 I[R(Dj = 1)]

i
(4.3)

Assuming that there are 5 relevant documents in total for the situation shown

shown in Example 4.1.1, the AP value of system A is computed as

AP(A) =
1

5
(
1

1
+

2

2
) =

2

5
,

whereas that of B is given by

AP(B) =
1

5
(
1

4
+

2

5
) =

13

100
,

which, as it ideally should be, is less than that of A’s.

AP values, aggregated over a number of benchmark queries, is referred to as

mean AP (commonly known as MAP). This metric is the most well-known metric

in the evaluation of the effectiveness of a set of benchmark queries. It has been used

55

in a large number of research papers and evaluation forums to compare the relative

performance of different retrieval systems. The computation of MAP for a set of

queries Q is given in Equation 4.4.

MAP =
1

|Q|
∑
q∈Q

AP(q) (4.4)

4.1.3 Evaluation Measure of Non-Binary Relevance Assess-

ments

Metrics such as precision and recall are conceptually well-defined only for binary

relevance (i.e. whether a prediction is correct or not). However, the notion of

relevance, for practical purposes, can be non-binary, e.g. some documents provide

more useful information to a user on a particular topic than another document, in

which case the former is an instance of relevant document whereas the latter is an

instance of a partially relevant one.

A commonly used metric for evaluation using graded relevance is NDCG (Nor-

malized Discounted Cumulative Gain) (Järvelin and Kekäläinen, 2002). The un-

derlying principle of NDCG is to compute how similar a retrieved list is to the

ideal retrieved list for a given query. Obviously, the ideal retrieved list is one which

presents the documents in decreasing order of relevance. For instance, in Example

4.1.1, the ideal list is {2, 1, 1, 1, 1} (assuming one among the relevant documents is

fully relevant, the others being partially relevant).

To compute NDCG up to rank p (i.e. NDCGp), one first computes discounted

cumulative gain up to rank p (i.e. DCGp) and ideal discounted cumulative gain

up to rank p (i.e. IDCGp). DCGp is computed using the formula
∑

i=1p
reli

log(i+1)
,

where reli determines the graded relevance for ith retrieved document. IDCGp is

computed using the formula
∑|RELp|

i=1
2reli−1

log(i+1)
, where RELp is the ordered set of top p

documents based on the relevance score. NDCGp is the ratio of DCGp and IDCGp

as described in Equation 4.5.

56

NDCGp =
DCGp

IDCGp

(4.5)

4.2 Differences Between Standard IR and Proac-

tive IR Evaluation Criteria

In contrast to standard IR, a proactive IR model tries to anticipate a user’s informa-

tion needs from his current and recent activities (i.e. formulates queries on the user’s

behalf), rather than addressing the user’s information need as actively expressed in

a query. A proactive query is used to provide a user with potentially relevant doc-

uments that may help him in completing his current task activities, which may be

single staged or multi-staged as described in Chapter 1. The objective in proactive

IR is to help in the overall task of the user, where a task may involve one or more

related queries, whereas in standard IR, we focus on satisfying a user’s information

need on an individual query basis.

Since the objective of a PIR model is to support the user in his overall task, the

effectiveness of a PIR model should be measured over all the proactive suggestions

made during the completion of a task by a user rather than for individual queries.

It can though be difficult to automatically identify task boundaries For example,

these can span more than one session and consecutive sessions may not always be

related to the same information goal. However, existing work shows that it is likely

that a user will be engaged in a single task within an individual session (Wang et al.,

2013; Tran et al., 2016). A session typically consists of a sequence of activities where

the time gap between a pair of consecutive activities is not more than a particular

threshold of time (e.g. 26 minutes (Lucchese et al., 2013)). Existing IR metrics such

as session-NDCG (Kanoulas et al., 2011) measure the effectiveness of an IR model in

a multi-query session. However, they use a single ranked list for a session, where the

list is constructed by concatenating the top k documents corresponding to each query

in the session. However in PIR, the objective is to always provide new documents

57

in each of the proactive suggestions within a session. Hence the evaluation metric

for PIR should be averaged over all the suggestions within a session rather than

considering them as a single list.

In the following section we describe the desirable characteristics of an evaluation

metric for proactive IR.

4.3 Desirable Characteristics of Proactive IR Eval-

uation Metric

Before describing the desirable characteristics for our proposed mechanism, we re-

capitulate our assumptions of the general workflow of a proactive IR model, (c.f.

Section 3.1) as defined in the scope of our study. Firstly, the workflow involves an

intermediate step of query construction (or query formulation), within a given activ-

ity context. System estimated queries are then used to retrieve a list of documents

to be presented as proactive suggestions to the user.

In our research, a proactive IR model provides proactive suggestions after a fixed

number of user activities, as described in Section 3.1. While providing proactive

suggestions a user may or may not have an explicit information need. If the user

has an explicit information need at the point of a proactive suggestion, then we can

compare the query formulated by a human user to express this information need at

that point with the proactive query created by the PIR model.

The effectiveness of a user formulated query depends on the search expertise of

the user and also the complexity of the overall task in which the user is engaged.

It may no be the case that a user created query is the ideal representation of their

information need. However, in our evaluation framework, we do not consider a user’s

search expertise or the complexity of the task as a parameter. We thus consider the

user formulated query to be the reference point that the query estimation process

should ideally replicate.

The evaluation framework also assumes that at each point of proactive suggestion

58

there will be a reference set. The reference set at the ith proactive suggestion (i.e.

Ri) is the collection of documents that may be useful for the user in completing his

overall task. As described in Section 4.2, a difference from standard IR is that we

assume that the relevance of a document in the reference set pertains to the entire

session (or task) rather than to a single query. In Section 4.5, we describe in detail

how we compute the reference set for proactive IR evaluation.

After describing the key elements of the workflow of a proactive IR system, we

now take a closer look into the desirable characteristics of a proactive IR evaluation

mechanism from a general stand point.

C1: Similarities between the actual query and the predicted query by a

PIR model: An ideal PIR model should be able to predict the explicit information

need that may arise in a user’s mind while engaged in a task. As described earlier,

in this section we consider a user entered query as the reference point for a user’s

information need representation. Hence the similarity between the predicted query

and the user entered query should be one of the characteristics of our proposed

evaluation metric.

C2: Similarities between predicted and reference set of documents:

The output of a proactive IR model is a ranked list of suggested documents. The

second desirable characteristic of a evaluation mechanism for proactive IR is that

it should focus on measuring the effectiveness of the output of the model (i.e. the

ranked list of document suggestions). As described in Section 4.3, the reference set

contains the groundtruth documents at the point of each proactive suggestion. Thus,

the evaluation metric should compare between the predicted list of recommended

documents (i.e. the output of the proactive IR model) and the reference set of

documents, to measure the effectiveness of the proactive IR model.

C3: Average of evaluation metric across proactive suggestions: The

third characteristic of an evaluation metric for proactive IR is that rewards obtained

for the predicted list should be accumulated for each proactive suggestion within a

session that follows from the point within the session at which the model becomes

59

proactive. This characteristic ensures that a proactive model is evaluated across

a whole session in which the user was involved in a task. The performance of a

proactive IR model on a single task can not determine its effectiveness alone. Hence

we should average the performance of a proactive IR model across multiple tasks to

estimate the overall performance, rather than across multiple individual queries, as

in the case of standard IR.

C4: Rewards should preferentially be weighted on context length of

activities: The evaluation metric should be able to favour systems that start recom-

mending early (i.e. capable of addressing the cold-start problem). This aggressive

behaviour of starting early is desirable from a user point of view because it helps to

reduce the potential user effort of actually constructing queries during the session.

Moreover the earlier useful information is proactively provided, the easier the task

will be for the user or less effort will be required from them.

On the other hand, a more conservative approach of waiting longer before com-

mencing recommendation in order to accumulate adequate session context (so as to

help to obtain higher quality recommendations) means that a user has to undertake

more activities (e.g. more user constructed queries, more documents read by the

user, etc.). This in turn means that the very objective of reducing user effort would

be compromised since they will have completed much of the overall task before any

information is provided to them proactively. So the rewards at a particular point in

proactive suggestion should be inversely proportional to the length of the context of

previous user activities.

4.4 Proposed Evaluation Metric

Based on the characteristics discussed above we propose two broad categories of

evaluation metric: one for evaluating the quality of proactive queries, and the other

for evaluating proactive suggestions within task sessions. The reason for choosing

two different categories of metric is as follows. Firstly, there may be scenarios

60

where only one of the groundtruth information categories is available (e.g. query

or reference set). For example, we may be aware of the query that a user entered

given an activity context, but we may not know the set of relevant documents which

may be of use to the user at that time. Secondly, it may not always be the case

that better queries provide better proactive suggestions. There may be situations

where the proactive queries predicted by two different PIR models are not similar,

but using which the ranked list of suggestions provided to the user are similar. One

reason for this may be the absence of documents related to one of the proactive

queries in the index. Since a user can only see the proactive suggestions, we should

not focus only on evaluating the proactive queries. Similarly if we only focus on the

evaluation of proactive suggestions, there may be scenarios where the anticipated

information need is similar to a user’s actual information need, but the proactive

suggestions provided to the user are not useful due to the retrieval model or index

from which the suggestions are retrieved. As a result of this we propose to evaluate

a PIR model based on both proactive queries and proactive suggestions.

The details of our proposed evaluation metrics follow below.

4.4.1 Evaluating Proactive Queries

In Section 3.2.2, we described how we estimate the likelihood of a term for query

formulation given a user’s activity context. To compute a query, we first sort all

the terms in decreasing order of estimated likelihoods computed using Equation

3.7. Following this, we choose the top k terms starting from the each position in

the sorted list to generate a list of queries. The first query generated is the most

likely query given a user’s activity context. The further we go down the generated

query list, the lower the number of overlapping words between the query and the

top ranked generated query.

To satisfy the characteristics discussed in characteristic Section 4.3, we use mean

reciprocal rank (MRR) to find the rank of the user created reference query in the

generated query list. Since the queries generated in the list have word overlap, the

61

higher the value of MRR, the higher is the likelihood of word overlap between the

user created query and the query estimated by the proactive IR model.

4.4.2 Evaluating the Ranked List of Potentially Useful in-

formation Sources

We first describe the notations used for the proposed evaluation metric and then we

move towards describing the proposed evaluation metric.

Notation

We use the notation shown in Table 4.1 to describe the evaluation metric for the

ranked list of potentially useful information sources. We denote the evaluation met-

ric as P (π,M, n), which is parameterized by the π-index (i.e. the point from which

an IR model becomes proactive during a task session), the number of recommended

documents shown as proactive suggestions to the user M and the total number of

proactive suggestions within a session n.

#Number of proactive recommendation in a session n
#Number of activities in a session N
Proactivity starting point (π-index) π
#Documents recommended by a Proactive Model M
Reward function for a single proactive recommendation r(k,M)
Groundtruth of documents at kth activity Rk

Table 4.1: Notation for proactive evaluation metric.

Recall from Section 4.3 that along with measuring the quality of proactively

formulated queries, we also need to evaluate the predicted ranked lists of suggestions

to measure the effectiveness of the proactive IR model. Here we focus on how

similar the predicted list of documents is to a groundtruth list of documents (i.e.

the reference set explained in Section 4.3). We call this measure a reward function

(i.e. r(k,M)) since it computes how much reward should be given to a proactive IR

model based on the quality of the proactive suggestion list. In the r(k,M) function,

k denotes the kth proactive suggestion within a session.

62

Another parameter in the reward function is the number of top ranked docu-

ments, M , returned by the proactive IR model based on which the similarity be-

tween the predicted and the groundtruth list is computed. A user may not wish to

scroll through a long suggestion list. Hence we compute our metric on the basis of

the top M documents (e.g. M can be 3, 5 or 10) from the retrieved list obtained

from the query estimated by the IR proactive model. The values of individual re-

ward functions for each proactive query are presented in a general form in Equation

4.6, where φ denotes a function to measure the similarity between the predicted list

and the reference set Rk at the kth proactive suggestion.

r(k,M) = φ(L(ak+1), Rk). (4.6)

This definition of the reward function is consistent with characteristic C2 defined

in Section 4.3. The reward functions are accumulated over a session as shown in

Equation 4.7.

P (π,M, n) =
1

n

π+n∑
k=π

r(k,M)

k
. (4.7)

As per characteristic C3 defined in Section 4.3, the total reward function in

Equation 4.7 is averaged over the total number of proactive suggestions within a

session (i.e. n). As per the characteristic C4, rewards should preferentially be

weighted on the context length of activities. Hence the metric in Equation 4.7

discounts rewards at a point within a session by a factor of 1
k
, where k is the length

of the context from the beginning to that point. If a system starts predicting early,

the value of 1
k

will be low and it will favour the system. But as described in C4,

if the suggestions are of low quality then the value of r(k,M) will be low and the

overall performance of the system will not be good.

Variations of Reward Function. The general evaluation metric P (π,M, n)

defined above can be computed with multiple reward functions. Some suitable

reward functions are as follows.

1. MRR: The mean reciprocal rank of the first relevant document in a ranked

63

list. MRR is a useful metric here since it shows how effectively we can provide

potentially relevant information to a user through proactive suggestion. The

higher the MRR value, the less effort is required by the user to find a relevant

document in the suggested list.

2. P@k: Since we will show only the top k documents retrieved using the proac-

tive query, the precision value up to rank k indicates how many potentially

relevant documents we could show to the user.

3. Ranked Correlation Coefficient: If we have a relevance order in the ref-

erence list, we can also use a ranked correlation coefficient(e.g. Kendall’s tau

(Kendall, 1938) to compute the similarity between the ranked list of proactive

suggestions and the reference list. This metric will show how much the ranking

of the documents in proactive suggestion correlates with reference list.

Cumulative Recall:. Along with P (π,M, n), we also use another recall based

metric to measure the effectiveness of a proactive IR model. This measures the

proportion of the total number of unique relevant documents corresponding to a

user’s task that are retrieved across all proactive suggestions during a session. Rather

than penalizing the reward function at each suggestion, here we simply add the

reward function across each session. We show the mathematical formulation of our

Cumulative Recall metric in Equation 4.8, where Ri is the number of new relevant

documents appearing at the ith proactive suggestion and N is the total number of

actual relevant documents corresponding to the task. Cumulative Recall measures

how useful a proactive model is with respect to locating information of potential

value to the user in carrying out their task.

CumulativeRecall =
1

|N |

n∑
i=1

(Ri) (4.8)

64

4.4.3 Analysis for Variations in π-Index

One of the important features of a proactive IR model is the point from which

it starts to make proactive suggestions (i.e. π). In this section, we analytically

show that it is possible for our proposed metric P (π,M, n) (Equation 4.7) to score a

system B higher than A, even if A starts recommending earlier than B. This analysis

ensures fairness between two proactive IR models with different π-index values. For

simplicity, we base our analysis on the MRR-based reward function. Let two systems

be A(πA,M, n) and B(πB,M, n), where πA < πB. Let the reward function of system

A for activity ak be mA
k and that of B for the same activity be mB

k . If system B

outperforms A, then

PB(πB,M, n) > PA(πA,M, n),

which on substitution from Equation 4.7 gives Equation 4.9.

n∑
k=πB

rB(k,M)

k
>

n∑
k=πA

rA(k,M)

k
≥ 0. (4.9)

As described in Section 4.4.2, r(k,M) can have different types of variants. Without

loss of generality, we choose MRR from among the different variants introduced in

Section 4.4.2. After substituting MRR values, Equation 4.9 is transformed into the

form shown in Equation 4.10.

n∑
k=πB

1

k
(

1

mB
k

− 1

mA
k

) >

πB−1∑
k=πA

1

kmA
k

≥ 0. (4.10)

In Equation 4.9, mi denotes the rank of the first relevant document in the ith ranked

list. Now, with reference to Equation 4.10, we consider two scenarios where the

desirable ranking order between two systems A and B are different.

Case-1. This corresponds to the scenario where System A performs better than

B from the point B starts prediction, so ideally the ranking order between the two

systems should be A > B.

65

To see if this could happen, we substitute mA
k ≤ mB

k , ∀k = πB, . . . , n and obtain

0 ≤
πB−1∑
k=πA

1

kmA
k

≤ 0,

which shows that PB(πB,M, n) > PA(πA,M, n) is a contradiction. In other words,

the metric indeed scores system A better. This is desirable because B’s predictions

were late and not better than A’s.

Case-2. This case corresponds to the situation when System A performed well

before B’s recommendations after which B performed well and A poorly. The ideal

rank in this case is A < B. To see what could happen in this scenario, let mA
k =

1∀k = πA, . . . , πB − 1 (A’s recommendation was initially better than B’s), mA
k = ε

∀k = πB, . . . , n (A fails to recommend well after B starts), and mB
k = 1 ∀k =

πB, . . . , n (B recommends better than A throughout). Substituting these values in

Equation 4.10, and using the identity log(n) ≈
∑n

i=1
1
i

we get the condition described

in Equation 4.11.

n∑
k=πB

1

k
(1− ε) > log(πB − 1)⇒ (1− ε) log(

n

πB
) > log(πB − 1)

⇒ ε < log(
n

πB(πB − 1)
)

(4.11)

Equation 4.11 suggests an upper bound on A’s effectiveness to satisfy the condition

that B is scored better than A in terms of P (π, k,M). Equation 4.11 ensures that

the metric is fair because it can score B better than A, if B (from its inception

point which is later than A’s) performs significantly better than A, otherwise A is

favoured by P (π, k,M).

4.5 Reference Set (Rk) Computation

As shown in Equation 4.7, to compute the reward function one would need a ref-

erence set of documents Rk at each timestamp within a session. We described in

66

Chapter 1 that we propose proactive IR models for both single stage and multi-stage

task scenarios. Since these scenarios are different, the process of computing RK is

also different for these scenarios. We now describe each of these scenarios and the

corresponding Rk formulation.

4.5.1 Reference Set Computation for Single Stage Task

When performing a single stage task, a user will relate to a single informational

activity. We try to formulate one or more queries from a user’s recent and past

desktop activities related to the user’s current task, and use these proactive queries

to retrieve corresponding ranked lists of documents for the user.

As time progresses, we aim to enhance proactive queries with more contextual

clues from the user’s activities as a session progresses, and to provide new relevant

documents corresponding to anticipated information needs of the user based on

formulated queries and search operations.

We broadly categorize a user’s desktop activities into read and write activities.

There is no publicly available dataset of desktop activities where a real user is

involved in a task which has a single information need associated with it. Hence

for our examination of single stage proactive IR in Chapter 6, we use a simulation

setup to generate a dataset of user reading and writing activities. The simulation

is based on the scenario where a user is writing an article on a given topic or a user

is interested in a particular topic and is reading documents related to that topic.

We use the TREC Novelty track dataset for the simulation. The TREC Novelty

track (Harman, 2002) is a collection of task topics where for each topic we have user

judged relevant documents, and also details of manually labelled relevant sentences

within each relevant document.

The simulation process starts with a user having a prior knowledge about a

topic. Different users can have different levels of initial knowledge. In the current

session, the user is engaged in desktop activities relating to a topic. The proactive IR

model suggests documents to the user after a fixed numbers of activities. Recall from

67

Section 4.3, that the reference set is the set of ground truth documents against which

we can measure the effectiveness of proactive suggestions for this session. So for the

simulation setup for single stage tasks, the reference set (i.e. R) consists of all the

documents judged relevant corresponding to the task in which a user is engaged in

the current session. The objective of a proactive IR model is to provide new relevant

information sources with every suggestion. Hence after the ith proactive suggestion,

we remove the set of relevant documents retrieved upto the ith suggestion from the

set R. The updated R set acts as the reference set for the (i + 1)th suggestion (i.e.

Ri+1).

4.5.2 Reference Set Computation for Multi-Stage Task

For a multi-stage task, there are multiple sub-tasks within a task. The objective

of a proactive IR system in this setting is to provide the user with relevant docu-

ments related to each sub-task as the user progresses through the task. The idea of

proactive suggestion comes from exploiting similar multi-stage tasks of other users

and also from the user’s own activities when executing similar sub-tasks in the past

to support the task of current user. Again, there is no existing real life dataset

corresponding to the information needs of multi-stage tasks of different users. Ide-

ally we should install desktop activity tracking application on thousands of personal

desktops, and collect the desktop activity logs of the users of these machines for a

period of months and store this data using privacy preserving protocol (Tripathy

and Pradhan, 2012; Pise and Uke, 2016). Developing an effective tracking applica-

tion and deploying it on thousands of desktops would take considerable resource and

an enormous amount of infrastructural support. Hence it was not feasible to create

such a collection within this project. We do though have access to publicly available

standard search query logs. Hence in our investigation of multi-stage proactive IR

in Chapter 7, we limit our investigation of multi-staged tasks to multi-stage search

tasks. One example of such a task is planning for a vacation. Since we consider

search tasks for multi-stage information needs, the user activities we consider are

68

only queries typed by a user and the corresponding click logs. Since we do not have

relevance judgements for queries in a query log, we assume that the top k retrieved

documents corresponding to a user typed query qi as relevant documents for the

query, and we use these sets of documents as the reference set for each query. For

an overall search task within a search session, the reference set is the union of all

the top k retrieved documents for all the queries within that search session.

Since for a multi-stage task, we have a ranked list of documents retrieved for

each query, we use another variation of the reward function along with the ones

described in Section 4.4.2. We use Spearman correlation to compute the correlation

between the predicted ranked list of documents and the ground truth ranked list of

documents. Spearman correlation satisfies the characteristic C2 described in Section

4.3 and measures how similar the predicted ranked list of suggestions are with respect

to reference set of documents.

4.6 Concluding Remarks

In this chapter we addressed our first research question which is about effective

evaluation of PIR models. We first introduced the challenges of PIR evaluation by

contrasting this with standard IR evaluation and its metrics. Then we proposed

an evaluation framework to measure the effectiveness of proactive IR models. In

Section 4.4.3 we showed how in different scenarios our proposed evaluation metric

can effectively evaluate PIR models. The proposed evaluation metric is used in

Chapter 6 and Chapter 7 to measure the effectiveness of proactive IR models in

single stage and multi-sage task scenarios.

69

Chapter 5

Identifying Similar User Activities

In Chapter 3, we described a generic framework for proactive IR. Recall from Section

3.2.1 in Chapter 3, that to formulate a proactive query we need to find activities hav-

ing similar overall information goals as the user’s current activity. In this chapter,

we focus on methods for finding user activities related to similar overall informa-

tion goals. More specifically, we examine our second research question which can

broadly be stated as ‘Can we group activities related to a similar task (i.e. overall

information goal) together?’. Generally speaking, a user’s task can be related to

single or multiple sub-tasks (i.e. information goals), each of which can have nested

information needs within it (Hassan Awadallah et al., 2014). An example of a task

is planning to participate in a conference. Different sub-tasks within this task are

selecting a flight, finding a hotel, making arrangements for local transport, finding

the conference venue, finding good places to eat around the venue, finding local

sight-seeing options after the conference, etc.

5.1 Introduction

Before delving into the details of grouping activities related to a task, we first in-

troduce the concept of a ‘session’. We define a session as a set of activities where

the time gap between a pair of consecutive activities is not more than a particular

70

threshold of time (e.g. 26 minutes (Lucchese et al., 2013)). Previous studies (Luc-

chese et al., 2013) have shown that users have a multi-tasking nature, so activities

related to the same task may or may not be within the same session. Thus for

the task of planning for a conference visit, sub-tasks such as selecting a flight and

making arrangements for a hotel may occur in different sessions. We refer to the

problem of automatically identifying the activities related to the same task as the

cross-session task extraction problem, since the same task related activities can span

across multiple sessions. Cross-session task extraction is a challenging problem, as

can be seen from the following analysis. Firstly, note that it is likely that a session

for a flight booking and one for local sightseeing around a conference venue may

be far apart in time, as a result of which simple approaches of grouping activities

based on the time of the search activities, e.g. (Lucchese et al., 2013), are not likely

to yield satisfactory outcomes. Secondly, the term overlap between the activities

of these two sessions is also likely to be low since they correspond to two different

sub-tasks of the same task. This indicates that using lexical similarity for clustering

cross-session activities into a single group is unlikely to be effective (e.g. (Lucchese

et al., 2013; Wang et al., 2013)).

As an illustrative example of term mismatch, consider the two queries ‘Eric

Harris’, ‘Reb Vodka’ which are part of a user search activity from the AOL query

log 1(i.e. part of user search activity). Although these two queries do not share any

common terms, they refer to the task of finding information on the Columbine high

school massacre, the first query referring to the name of the first murderer, while

the second one refers to their nickname.

To alleviate the identified problems in attempting to group activities by their

timestamps or lexical similarities, we propose to embed activities in a task-based

semantic space in a manner that will give similar activities in this space a high like-

lihood of pertaining to the same underlying task. Word embedding algorithms, such

as ‘word2vec’ (Mikolov et al., 2013a), make use of lexical context in learning seman-

1https://archive.org/download/AOL_search_data_leak_2006

71

tic representations of words. Moreover standard word embedding approaches do not

take into account task aware context of words. So we propose to transform these

representations into a task-oriented semantic space with the objective of making two

words that are likely to be a part of the same task closer to each other.

To learn the transformation function, we make use of average session dura-

tion and lexical similarities between within-session activities similar to the work in

(Faruqui et al., 2015) which used a semantic relational graph obtained from Word-

Net2 to enhance existing word embedding. Another important contribution of our

proposed method is that we are able to empirically demonstrate that our method

is more effective in extracting cross-session tasks without the application of any ex-

ternal information for estimating task relatedness, as was done in (Lucchese et al.,

2013; Mehrotra and Yilmaz, 2017a).

Since there is no publicly available log of desktop activities of different users

where user tasks have been annotated across different sessions, we use queries from

an existing search query log for our investigation of cross session task extraction,

using search is an example of a user activity. Essentially we extract search tasks

from multiple search sessions. As discussed in Section 3.1 in Chapter 3, each type

of activity in our research has a bag of words representation. Hence our proposed

approach is sufficiently general that it can be applied to group any kind of user

desktop activity log into user tasks.

The rest of the chapter is organized as follows. In Section 5.2 we overview pre-

vious work on task extraction and query embedding. In Section 5.3, we introduce

our semantic context driven transformation-based word vector embedding algorithm

to enhance cross-session query similarity matching. Section 5.4 then describes how

the transformed query vectors are clustered into search tasks. Section 5.5 describes

an experimental setup to investigate cross-session similarity matching using our

approach. Section 5.6 presents the results of our experiments and Section 5.7 con-

cludes explaining how we apply our findings in the context of proactive information

2https://wordnet.princeton.edu/

72

retrieval.

5.2 Task Extraction and Query Embedding

In this section, we review existing work in task extraction and embedding approaches

and contrast this with our proposed method. There is no work on general task

extraction from user activities. Most of the existing work focuses on extraction of

search tasks from query logs (Lucchese et al., 2013; Mehrotra and Yilmaz, 2017b;

White and Morris, 2007; Hassan Awadallah et al., 2014). For this reason, our review

of existing work concentrates only on extraction of search tasks. We first consider

existing work on unsupervised task extraction and then work on supervised task

extraction.

5.2.1 Unsupervised Methods

A method for extracting tasks from search sessions is proposed in (Lucchese et al.,

2013). A key question explored in this work is the time gap between related queries

associated with a single task or search session. To determine this optimum time gap

between query pairs beyond which a query pair does not belong to a single session,

they analyzed the time gap between consecutive query pairs from an existing search

query log. It was found that 84% of the consecutive query pairs occur within 26

minutes. So they determined if the time gap between a query pair is less than 26

minutes, they are taken to belong to the same session. Following this work, we

also use a threshold of 26 minutes in our work on search task extraction. This study

also investigated a number of clustering techniques to group together related queries

from each session into tasks. A wide range of features were investigated to define

the similarity between a pair of queries, e.g. edit distance, cosine-similarity and

Jaccard coefficient of character level trigrams. As described in the introduction to

this Chapter, that word level similarity features may not capture the semantic sim-

ilarity between a pair of queries. Hence in contrast to (Lucchese et al., 2013; Wang

73

et al., 2013), we investigate the use of embedded query vectors to compute similar-

ity, rather than depending on character and word level lexical similarity features,

e.g. edit distance, term overlap, trigram character overlap etc. Another difference

between our method and the work presented in (Lucchese et al., 2013) is that in-

stead of restricting clustering to each session, we cluster the entire dataset globally.

Associated with removing this constraint, we evaluate the effectiveness of clustering

the entire dataset rather than on aggregating clustering effectiveness separately for

each session as in (Lucchese et al., 2013).

A search task can have one or more sub-tasks. Extraction of hierarchies of

sub-tasks within a task was investigated in (Mehrotra et al., 2016). They used a

dataset in which queries related to different tasks had been annotated. Given a

set of a task related queries, they first estimated the importance of a query term

corresponding to the task. A Chinese Restaurant Process (CRP) based posterior

inference process was then used to extract sub-tasks from the set of task related

queries. In an extension of this work (Mehrotra and Yilmaz, 2017a), the authors

proposed a Bayesian non-parametric approach for extracting sub-tasks from a given

task.

The main difference between our approach and that reported in (Mehrotra et al.,

2016; Mehrotra and Yilmaz, 2017a) is that our focus is on finding cross-session tasks

from a query log, rather than finding sub-tasks from a given task. Further, we also

show that instead of using similarities between embedded query vectors as one of

the features to estimate the relatedness between two queries, like Mehrotra and

Yilmaz (2017a), we show our proposed task semantics driven embedding technique

for transforming a query in close proximity to its task-related counterpart, to be

more effective.

The work in (Verma and Yilmaz, 2014) used the hypothesis that if the same

entity is present in a pair of queries, then it is likely that the queries will be related

to the same task. Thus an entity extraction method was applied on all the queries

to estimate similarities between queries for the purpose of task extraction. A major

74

disadvantage of this approach is that it relies on the fact that there will be entities

present in queries, when in practice there can be queries where no entities are present.

In contrast to this, our method does not rely on the entities and an entity extractor

to match cross-session tasks.

5.2.2 Supervised Methods

A supervised approach for automatically segmenting queries into tasks is proposed

in (Jones and Klinkner, 2008). In this work train logistic regression models are

trained to determine whether two queries belong to the same task. The study in

(Wang et al., 2013) demonstrated that the disadvantage of using a classifier based

approach (e.g. (Jones and Klinkner, 2008)) for extracting tasks is that with the

binary predictions of the classifier, it is difficult to model transitive task dependence

between the queries, e.g. if query pairs (q1, q2) and (q2, q3) are predicted to be part

of the same task, the classifier may not predict that q1 and q3 are also a part of the

same task. The limitations of (Jones and Klinkner, 2008) are alleviated in the work

reported in (Wang et al., 2013), which employs a structural SVM framework for

estimating the weights of different lexical features to measure the similarity between

two queries. They showed that a structural SVM is able to capture the transitive

relation between a pair of queries which a logistic regression based classifier can not

capture.

The difference between the studies reported in (Jones and Klinkner, 2008; Wang

et al., 2013) and our work is that we propose a completely unsupervised approach

for clustering queries. This means that our method does not rely on the availability

of training data, the construction of which requires considerable manual effort.

Based on the previous work discussed above, we now present our proposed ap-

proach for extracting tasks from activities.

75

5.3 Embedding Terms from User Activities

Recall from Chapter 2 that we introduced the concept of word embedding to obtain a

semantic representation of a word. The word2vec approach (Mikolov et al., 2013a)

aims to create similar vector representations of words that have similar context,

and are thus assumed to be significantly semantically related. In this section, we

explain why the standard word2vec method may not be suitable for embedding user

activities in an abstract space of task semantics for the purpose of using these vectors

to extract cross-session tasks. To address this problem, we propose a method of word

embedding that is able to capture larger semantic contexts for better estimation of

the word vectors.

5.3.1 Problems with Short Documents

As discussed in Section 3.1 in Chapter 2 within our research, each user activity is

represented by a bag of words and each activity has a maximum word limit (e.g.

10 or 15). The maximum word limit is generally quite low compared to that of

a document where the word2vec algorithm can be trained in such a way that it

can capture the word semantics present in the document. Hence in our research,

activities can be considered as being equivalent to short documents. The word2vec

algorithm respects document boundaries by not extending the context vector across

them. In the context of our empirical study, we aim to learn word vector embedding

from an activity log, where each document in the ‘word2vec’ terminology refers to

a single activity. The problem in learning embedding from short documents is lack

of context. We first describe briefly the working principle of word embedding to

demonstrate its problem with short documents in more detail. Let w ∈ Rd denote

the vector representation of a word w ∈ V , V and d being the vocabulary and the

dimension of the embedded vectors, respectively. Let W be a d× V matrix, where

each d dimensional column vector represents a word vector. Let D be an indicator

random variable denoting semantic relatedness of a word with its context. Given a

76

pair of words, (w, c), the probability that the word c is observed in the context of

word w is given by σ(exp(−(w ·c))). Word embedding for a given corpus is obtained

by sliding a window along with its context through each word position in the corpus

maximizing the objective function, shown in Equation 5.1.

J(θ) =
∑

wt,ct∈D+

∑
c∈ct

log(P (D = 1|wt, ct))−
∑

wt,c′t∈D−

∑
c∈c′t

log(P (D = 1|wt, c
′
t)) (5.1)

In Equation 5.1, wt is the word in the tth position in a training document corpus, ct

is the set of observed context words of word wt within a word window, c′t is the set

of randomly sampled words from outside the context of wt. D
+ denotes the set of

all observed word-context pairs (wt, ct), while D− consists of pairs (wt, c
′
t).

In the case of short documents, which we take to mean that they are comprised of

only a few words (e.g. 4 or 5), the average number of context vectors is much lower

than the number of contexts available for the standard word embedding scenario of

full length documents, e.g. news articles or web pages. Consequently, this may result

in ineffective estimation of the word-context semantic relations for the activities. As

described in Section 3.1 of Chapter 3, the user activities used in our research scope

are also expressed using a small number of words (i.e. essentially they have the

characteristics of short documents). Hence embedding user activities faces problems

similar to those associated with embedding short documents.

5.3.2 Word Vector Transformation with Semantic Contexts

To alleviate the problems of short text contexts when embedding queries, we propose

to learn a transformation matrix to transform a set of word vectors to, generally

speaking, another abstract space. The aim is to transform a word vector w so that

it is close to a set of other words that respect the characteristics of this abstract

space. In the context of our problem, the abstract space refers to an embedding

space of task-relatedness with characteristics that queries which are a part of the

same search task should be embedded close to each other.

77

We adopt a general terminology of referring to the desired similarity as semantic

similarity, which in the context of our problem refers to task-relatedness and should

not to be confused with linguistic semantics. Formally, the set of words similar to

the word w is represented by the set Φ(w) shown in Equation 5.2,

Φ(w) = {v : (w, v) ∈ S}, (5.2)

where S denotes the semantic relation between a pair of words. In particular, the

set Φ(w) depends on the definition of the semantic relation S between two words,

which we will describe in Section 5.3.3.

Assuming the existence of a pre-defined semantic relation S between word pairs,

we define the loss function for a word vector w as shown in Equation 5.3.

l(w; θ) =
∑

v:v∈Φ(w)

∑
u:u6∈Φ(w)

max
(
0,m− ((θw)Tv − (θw)Tu)

)
(5.3)

Equation 5.3 defines a hinge loss function with margin m (set to 1 in our experiments

as was done for the hinge loss function in (Frome et al., 2013b)). The loss function

is parameterized by the transformation matrix θ ∈ Rd×d, and is learned by iterating

with stochastic gradient descent. The word vectors used in learning the parameter

matrix θ are obtained using the word2vec skip-gram algorithm. After training, each

word vector w is transformed to w′ as shown in Equation 5.4.

w′ = θ ·w (5.4)

Informally speaking, the objective function aims to maximize the similarity be-

tween two word vectors w and v that are members of the same semantic context.

On the other hand, it minimizes the similarity between the word vector w and a

word vector u randomly sampled from outside its context, as defined by the seman-

tic relation S of Equation 5.2. In principle, the objective function of Equation 5.3

is similar to the word2vec objective function of Equation 5.1, the difference being

78

in the definition of the context vector. While the word2vec algorithm relies on an

adjacent sequence of words to define a context, in our proposed approach, we rely

on a pre-defined set of binary relations between words.

Another analogy of Equation 5.3 can be drawn with the multi-modal embedding

loss function proposed in (Frome et al., 2013a), where the words from the caption

of an image constitute the notion of the ‘semantic context’ of the image vector used

to transform it. For our problem, we make use of this context to associate the

task-specific relationship between query words. In the following section, we describe

exactly how we construct task specific context (i.e. S) in our research scope.

5.3.3 Constructing the Set of Task-specific Context

Given a standard word vector representation algorithm, e.g. skip-gram (Mikolov

et al., 2013a), we slide a window along a text corpus to get the corresponding

word embedding. Hence a word is similar to words that appear around its context

window. However, such a simple word window-based context may not correctly take

into account the task-specific associations between words since activities related to

the same task may not always be consecutive. A graph is a hierarchical structure

where we can define any type of relation between a pair of nodes by connecting

them with an edge. Existing work (Chein and Mugnier, 2008; Boldi et al., 2008),

has used graph-based structures to capture any kind of hierarchical or non-linear

relations between entities. We use the neighbours of a graph node to enhance the

context of a word in a short document.

With this motivation, we propose a graph-based representation learning frame-

work that, generally speaking, can capture the task based semantics between a pair

of words. Figure 5.1 shows an example of a small graph constructed from a pair of

consecutive queries appearing in a search session. In a general skipgram architecture

the word ‘assassination’ has only the word ‘jfk’ as its context word. Figure 5.1 shows

that with the graph structure the word ‘assassination’ can have ‘jfk’, ‘kennedy’ and

‘john’ as its context words. We now describe in detail our graph based context

79

John F kennedy
Jfk assassination

kennedy

john

jfk

assassination

Query Log

Graph Constructed
from Query Log

Figure 5.1: Graph Constructed From a Pair of Consecutive Queries.

construction process in detail.

Graph Construction

We propose to define a graph G = (V , E), where each node corresponds to a word

from the vocabulary of the given collection as shown in Equation 5.5.

V = {xw : w ∈ V }. (5.5)

In general, an edge (xu, xv) ∈ E represents a relation between two words u and v of

weight w(xu, xv) ∈ R. In our research scope, we join a pair of words by an edge if

they appear within a single search session (Sess) as shown in Equation 5.6.

E = {(xw, xu) : w, u ∈ Sess}. (5.6)

Since there is a one-one mapping between the set of nodes V and the set of words

V , we sample a set of nodes from the neighbours of V to obtain the context S for

each word. The output of the sampling is the set of nodes which can be used as the

context S. Intuitively speaking, the set of words obtained from the sampling process

shows words semantically related to the starting word node. Once S set is computed

for each word, we can get the embedding for each word using Equation 5.3. In the

following section we perform the sampling process based on the constructed graph.

80

S set construction

To construct the set S for each node in the graph, we first compute the κ-adjacency

neighbourhood for each node in the graph as described in Equation 5.7.

Nκ(xw) = {xu ∈ V : h(xw, xu) ≤ κ}, (5.7)

In Equation 5.7, h(u, v) denotes the hop-count or adjacency number between nodes

u and v. The hop-count between a pair of nodes is the minimum number of nodes

which must be traversed to reach from one node to another node. In the general

formulation, the set Nκ(xw), is comprised of the set of nodes reachable from paths

of length at most k, starting at xw. This set can act as positive examples (i.e.

φw in Equation 5.3) to learn the embedding of node xw. This is because these

positive examples seek to make the vector representation of xw, similar to the vector

representations of nodes in Nκ(xw).

Instead of defining the set S as the entire set of the κ-neighbourhood Nκ(xw) of a

node xw, we take a subset of l samples drawn from the neighbourhood based on the

edge weights. If we consider all the nodes within κ-neighbourhood, this can introduce

noise in the embedding process since it will give equal priority to all the neighbouring

nodes. We set the likelihood of sampling a node xu from the neighbourhood set

proportional to the weight of the edge (xw, xu), i.e., ω(xw, xu). This way of defining

S allows the algorithm to make use of the edge weights in learning the word node

representations, i.e. assigning more importance to associations with higher weights

in seeking to embed the current word-node close to them.

Our idea, in general, is to use stratified sampling, where each stratum corre-

sponds to a neighbourhood of particular length. The priors assigned to the strata

in increasing sequence of adjacency length form a decreasing sequence, which means

that the most emphasis is put on direct co-occurrence evidence (i.e. the 1-adjacent

neighbourhood), rather than on the 2-adjacent nodes and so on. Stratified sam-

pling requires the strata to be mutually disjoint of each other. This means that

81

the κ-neighbourhood of Equation 5.7 needs to be redefined to ensure that any node

belongs to exactly one of the partitions (defined by its hop-count). To state this

formally, we define the set of nodes of (not up to) hop-count j, as shown in Equation

5.8.

Hj(xw) = ∪{xu : h(xw, xu) = j} (5.8)

The κ-neighbourhood is then defined as described in Equation 5.9. Intuitively speak-

ing if a node appears in both the ith hop count and the jth hop count, then we keep

only the occurrence from ith count where i ≤ j.

Nκ(xw) = ∪κj=1(Hj(xw)− ∪j−1
j′=1Hj′(xw)). (5.9)

A subset of size l, comprised of stratified samples from Nκ(xw), is then sampled with

decreasing priors β1, . . . , βκ, i.e., βj < βj−1∀j = 2, . . . , κ and
∑κ

j=1 βj = 1.

Putting things together, the probability of sampling a node from the set Nκ(xw),

defined as per Equation 5.9 is then given by Equation 5.10.

P (xu|Nκ(xw))=βjP (xu|Hj(xw))=βj
ω(xw, xu)

ω(xw, .)
, (5.10)

In Equation 5.10, ω(xw, xu) are edge weights and ω(xw, .) denotes the sum of edges

emanating from node xw. We now turn our attention to the computation of edge

weights (i.e. ω(xw, xu)).

5.3.4 Edge Weight Computation

We broadly categorize edge weight computation in two different approaches.

Temporal Weight Computation

In the context of query logs, temporal similarity is likely to play an important role

in topically grouping queries. This is because queries in the same search session are

usually related to the same topic, as observed in previous studies (Lucchese et al.,

82

2013; Wang et al., 2013). For example, it can be observed from the AOL query

log that the words ‘reb’ and ‘vodka’ belong to the same search session as the words

‘eric’ and ‘harris’ (see the example in the Inroduction section to the Chapter). In

this case, the semantic relationship S, as described in Section 5.3.2, considers terms

u (e.g. ‘vodka’) and v (e.g. ‘harris’) from the same query session to be semantically

related.

To define the semantic relation S, we take into account a temporal context

specified by a time window of 26 minutes as described in (Lucchese et al., 2013).

Specifically, if two queries belong to the same search session, as defined by a fixed

length time window, then each constituent word pair within them is considered to

be a member of the set S.

The intention of the edge weights is to capture the co-occurrence likelihood

between two objects (words/queries) within the same session. Hence the weight

of a word-word or activity-activity edge is set to the average of the co-occurrence

likelihoods across all sessions, as shown in Equation 5.11.

ω(u, v) =
1

|S|
∑
s∈S

f(u, v|s)
f(u|s)f(v|s)

(5.11)

where s denotes a session, f(u, v|s) denotes the number of times objects (word/query)

u and v co-occur within a session s. The higher the value of w(u, v) in Equation 5.11,

the higher is the probability of co-occurrence of a pair words or activities within a

session.

Temporal-lexical Weight Computation

In real-life settings, even within a session of a specified time length, users often multi-

task their activities (possibly by using multiple browser tabs or windows) (Lucchese

et al., 2013; Wang et al., 2013; Mehrotra and Yilmaz, 2017a). Hence not all the

queries appearing within a search session may be related to same task. To address

this issue, we further modify the edge weights based on both temporal and lexical

83

similarity between a pair of nodes in the graph. The modified weight formula is

shown in Equation 5.12. In Equation 5.12, c(u, v) measures the lexical similarity

between a pair of nodes. If the node is a word-word pair, then c(u, v) computes the

probability of co-occurring both u and v in an activity. If the node is an activity-

activity pair, then c(u, v) computes the ratio of the number of word overlaps between

the activity pairs to the total number of words present in the activity pair. Thus if

an activity ai has 5 words in it and an activity aj has 10 words in it, and the number

of word overlaps between ai and aj is 4, then c(u, v) will be equal to 4
11

.

ω(u, v) =
1

|S|
∑
s∈S

f(u, v|s)
f(u|s)f(v|s)

∗ c(u, v) (5.12)

5.4 Clustering of Embedded Query Vectors

In this section, we describe our unsupervised approach to identifying cross-session

tasks by clustering query vectors, where the constituent query word vectors are

obtained using the word embedding approaches described in Section 5.3.

5.4.1 Query Vector Embedding

We hypothesize that the modified word vector embedding approach of Section 5.3.2

will be more effective than existing session extraction approaches (i.e. (Lucchese

et al., 2013)) in capturing the session specific semantics of query terms since it takes

into account the temporal context of query session information from query logs.

Once we obtain word vectors using a standard embedding approach or our proposed

transformed embedding approach, we adopt a standard word vector combination

method to embed query vectors.

Because of the compositionality property of word vectors (Mikolov et al., 2013a),

the simple method of averaging over the constituent word vectors has been reported

to work well for various tasks such as term re-weighting and query reformulation

(Zheng and Callan, 2015; Grbovic et al., 2015), and we thus adopt this approach

84

here.

5.4.2 Clustering of Query Vectors

Unlike previous approaches of grouping together queries according to the time gap

between query pairs, and then clustering the queries within each group separately

(Lucchese et al., 2013; Wang et al., 2013), we take a more general approach of

clustering the overall set of query vectors both within and across sessions.

Since the number of query clusters cannot be known a priori, the number of

clusters is estimated by adopting a clustering approach that does not require the

number of clusters to be specified. We adopt the best performing clustering method

identified in (Lucchese et al., 2013), referred to as QCWCC . The study in (Lucchese

et al., 2013) used a bag of words representations for queries to cluster them into

tasks. For our word embedding based approaches we use query vectors obtained

from word embedding approaches to cluster them into tasks. The clustering method

uses a graph-based algorithm that extracts the weighted connected components of

a graph after constructing a complete graph and then pruning off the edges that are

below a predefined threshold, η.

In QCWCC , the weights between the graph edges are defined by a linear combi-

nation of two types of similarities: i) content-based (Simc), and ii) retrieval based

(Simr), as shown in Equation 5.13, in which the overall similarity is controlled by

a linear combination parameter α.

Sim(qi, qj) = αSimc(qi, qj) + (1− α)Simr(qi, qj) (5.13)

• Content-based similarity (Simc): Measured with the help of character trigrams

and normalized Levenshtein similarity between query pairs.

• Retrieval-based similarity (Simr): Each query is contextualized with a Wikipedia

collection. More specifically, the top 20 documents from Wikipedia are re-

trieved. To compute the retrieval based similarity, the Jaccard score is com-

85

puted between the top 20 ranked lists for a pair of queries. The higher the

Jaccard score, the more likely it is that the query pair will be similar.

The edge weights of our graph-based clustering refer to the cosine-similarity val-

ues computed between the embedded query vectors and the cosine similarity values

between the vectors obtained from the top 10 documents retrieved from Clueweb12B,

a publicly available web collection,3 rather than Wikipedia as was used in (Lucchese

et al., 2013).

Our reasons for using Clueweb12B are as follows. Firstly, our study is carried out

using queries from a Web search log and hence it is reasonable to expect that a web

collection will provide better estimates of semantic similarities between the queries

than Wikipedia. Secondly, we observed that the search queries in our dataset are

focused (i.e. not on a general or broad topic).

In general Wikipedia is useful if the topics are broad in nature (i.e. have multiple

sub-topics in them). Hence the number of matching Wikipedia articles would be

expected to be low for our queries due to vocabulary mismatch. On the other

hand, the web collection, being very large and diverse, is expected to retrieve more

matching articles for these types of queries.

The objective of clustering is to group queries belonging to the same search task

together. Clustering is typically evaluated with the effectiveness of the pair-wise

decisions of assigning data points to the same or different cluster labels. In our

case, the number of true positives is given by the number of query pairs in the

groundtruth (i.e. The task annotated dataset), that are judged to belong to the

same task, and are also predicted by the clustering algorithm to be a part of the

same task. Similarly, we compute the false positives as the number of query pairs

which were predicted by the algorithm as a part of the same task, but according

to the groundtruth they do not belong to the same task. The true negatives are

computed as the number of query pairs which are not part of of the same task

according to groundtruth and they are also predicted by the algorithm as not being

3http://boston.lti.cs.cmu.edu/clueweb12/

86

User Id Query Time Stamp

Robert Francis Kennedy636926

3458083
President john f kennedy
assasination crime scene

1604008

3271790

John f kennedy

Kennedy brothers

2006-03-18 08:02:58

2006-03-17 21:19:29

2006-03-18 08:02:58

2006-03-18 08:03:09

Figure 5.2: Sample queries from search sessions from the AOL query log.

part of the same task.

5.5 Experimental Setup

In this section, we describe our experimental study of cross-session extraction of

search tasks. We begin with an overview of our datasets, then introduce the exper-

imental baselines used and the objectives of our experiments, finally we set out the

parameter settings used in our experiments.

5.5.1 Dataset

Similar to previously reported studies (Lucchese et al., 2013; Mehrotra and Yilmaz,

2017a; Mehrotra et al., 2016; Verma and Yilmaz, 2014), we use the AOL query log

for our experiments. AOL is a publicly available anonymized search query log. It

has information about the user typed queries, user ids and corresponding query time

stamps. Figure 5.2 shows an example snippet form the AOL query log. The AOL

search log data was collected from 1st March 2006 for three months and contains

around 21 million search queries. While the dataset can be considered to be old,

recent studies inclduing (Wang et al., 2013) show that web search models show

similar trends in both recent commercial search engine query logs and AOL. Hence

it is reasonable to say that users’ web search patterns have not changed much since

87

Query Task Label

willaim kennedy smith 1

michael lemoyne kennedy 1

robert francis kennedy 1

martha moxley 2

murder in Greenwich 2

Figure 5.3: Sample task labels from the AOL query log.

the collection of this dataset, and thus it is reasonable to use it in our investigations

which form part of this research.

For our graph-based embedding framework, we first construct a graph from the

whole AOL query log. Since there are 21 million queries in the AOL log, the con-

structed graph has a large number of nodes. Hence we employ a frequency threshold

to only create nodes for words with collection frequency higher than this threshold

across the 21 million queries to reduce the size of graph, to make the computation

faster. We examined with threshold values from 1 to 5 in the interval of 1, and

found that the graph constructed from the threshold value 5 had reasonable size,

where graph construction and embedding can be completed in a feasible time. The

resultant graph had 1 million nodes and 92, 447 edges. If the graph size had been

larger, then the only difference would be the presence of some rarely occurring words

in the query log in the embedding space.

To construct S set (described in Section 5.3.3) from the AOL graph, we sampled

l nodes from the 2 hop neighbours of a particular node. We also need ns the

number of negative samples per S set for the word2vec transformation function

described in Equation 5.3. Figure 5.4 shows the effect of varying the sample size

on the effectiveness of word embedding in task extraction. From figure 5.4, it can

be observed that the optimum FScore (described in Section 5.5.3) is observed when

l = 5 and negative sample (i.e. ns) size is 10.

88

0.50

0.51

0.52

0.53

0.54

0.55

0.56

2 3 4 5 6 7 8 9 10 11

F
S
co

re

Context Size

ns=5

+
+ +

+

+
ns=10

×

×

×

×

×
ns=15

∗

∗
∗

∗

∗

Figure 5.4: Sensitivity of context size with negative sampling for our proposed
temporal-lexical word embedding.

To test our embedding approach, we use a subset of 1, 424 queries from the AOL

query log for the evaluation of task extraction effectiveness, as used in (Lucchese

et al., 2013; Mehrotra and Yilmaz, 2017b). The study in (Lucchese et al., 2013)

manually annotated these 1, 424 queries from 307 sessions from the AOL query log

with task labels. An examples of a few task labels are shown in Figure 5.3. Since

the purpose of this earlier study in (Lucchese et al., 2013) was only to extract tasks

from a single session, in the annotation scheme used in these studies, two queries

only qualify as part of the same task if they appear within the same session.

In contrast, since we investigate cross-session task extraction, we re-annotated

the task labelled dataset of (Lucchese et al., 2013). In particular, our annotation

scheme is solely based on the underlying search intent of the query, not on the

session in which it appears. While re-annotating this dataset, our annotators were

instructed not to change the task labels within each session, since within a session

similar search intent queries already had the same labels as those in the dataset

constructed in (Lucchese et al., 2013). Instead, the annotators were asked to re-

label task identifiers spanning across different query sessions. For example, in the

original annotation ‘robert f kennedy jr’ and ‘robert francis kennedy’ are considered

89

to belong to two different tasks since these queries were executed in during different

sessions. However, our annotation scheme considers them to be a part of the same

task since they have the same search intention.

Two persons were employed to carry out our re-annotation of these queries. Ini-

tially, both of them separately labelled the same 1424 queries with task labels. Then

they were asked to come to a consensus when there was a disagreement regarding

the task label corresponding to a query. The annotators were instructed to use a

commercial search engine (e.g. Google), if required, to determine if two queries from

different search sessions could potentially relate to the same underlying task. Table

5.1 provides an overview of our annotated task labels; this shows that there are a

considerable number of search tasks that spanned across session boundaries. It can

be seen from Table 5.1 that after post-processing the single session task labels, the

total number of distinct tasks is reduced. This is indicative of the fact that the

modified dataset is able to consider queries from different search sessions as parts of

the same search task (there are 36, 768 query pairs which belong to the same task

and span across different sessions as shown in Table 5.1). There are 12, 124 query

pairs in total which belong to the same task and occur within the same session. The

post-processed dataset with cross-session task labels that we use for our experiments

is publicly available4.

5.5.2 Baselines and Experiment Objectives

Since our proposed task extraction method is unsupervised, for a fair comparison

we only employ unsupervised approaches as baselines. More specifically, we did not

consider the approaches reported in (Jones and Klinkner, 2008; Wang et al., 2013) as

our baselines since these are supervised approaches. In Section 5.3.4, we described

two different edge weight computation methods for our graph based word embed-

ding approach. They are temporal weight computation and temporal-lexical weight

computation. Based on these two approaches we get two different embeddings. We

4https://github.com/procheta/AOLTaskExtraction/blob/master/Task.csv

90

Task label granularity

Item Within-Session Cross-Session

#Queries 1,424 1,424
#Tasks annotated 554 224
#Sessions 307 307
#Sessions with
cross-session tasks 0 239
#Query pairs across sessions
judged in the same task 0 36,768
#Query pairs within sessions
judged in the same task 12,124 12,124

Table 5.1: Dataset statistics of task annotated queries from the AOL query log.
Within-Session refers to annotation done by (Lucchese et al., 2013) and Cross-
Session refers to our re-annotations as described in Section 6.5.2.

called them as temporal embedding and tempo-lexical embedding. To demonstrate

the potential benefits of our proposed tempo and tempo-lexical word embedding

based approaches for the query terms, we employed the following baselines.

1. QCWCC: As our first baseline, we re-implemented QCWCC , the best perform-

ing approach in (Lucchese et al., 2013) (briefly described in Section 5.4.2). The

study in (Lucchese et al., 2013) investigated a wide range of features, cluster-

ing methods and parameter settings. We adopt the same linear combination

of similarities in our study as shown in Equation 5.13. (Lucchese et al., 2013)

only to extracted search tasks within a search session.

Since our focus is on cross-session task extraction, our re-implementation of

this work involves a slight change to the original method, instead of using a

Wikipedia document collection, we use ClueWeb12B. (Lucchese et al., 2013)

used the top 10 documents retrieved from Wikipedia for each query to compute

similarity between two queries. They used a commercial search engine to

return the Wikipedia articles corresponding to each query.

To make a reproducible experiment, we use the LM-JM (Language Model

with Jelineck-Mercer smoothing) with the smoothing parameter set to 0.6, as

suggested in (Lavrenko and Croft, 2001), to retrieve the top 10 documents

91

from Cluebwe12B for each query. Initially, we carried out experiments with

the top 5 to 20 documents in the interval of 5. For each configuration we

grouped task related queries and observed the Fscore value. We found that

the optimum Fscore value was using the 10 documents, so we report results

using top 10 documents in Table 5.3.

2. Qry vec skip-gram: In this approach, query vectors are obtained by sum-

ming over the constituent word vectors obtained using the standard skip-gram

model on the AOL query log dataset (Mikolov et al., 2013a).We did our ex-

periments with 100 and 200, 300 and 400 dimensional vectors, but observed

the optimum Fscore value with 300 dimensions. Hence we report the results

in Table 5.3 only with 300 dimensions.

For training the skip-gram model on the AOL corpus, we used a window size

of 5 and negative sample size of 10. For window size and negative sample

size we varied the parameters, and found 5 and 10 to be optimal. The cosine

similarity between a pair of query embedding is used to group the queries into

tasks.

3. Qry vec (Pre-trained Google news vectors) In this approach, rather

than using skip-gram word vectors trained on the AOL query log, we use pre-

trained skip-gram vectors trained on the Google News corpus 5. As described

in Section 5.3.1, word vectors trained on query logs have the problem of short

contexts since queries in general comprise of two or three words. Thus we

examine a baseline using pretrained embedding to observe how a method per-

forms which uses embeddings trained on a large general corpus where there is

no issue of insufficient context vectors.

Proposed Approaches

Here we discuss about our proposed approaches that we used to compare with our

baselines.

5https://github.com/mmihaltz/word2vec-GoogleNews-vectors

92

Qry vec (All-in-one Session) Recall from Section 5.3.2 that we hypothesize that

additional context is likely to be useful to learn the vector representations of con-

stituent words of short documents (in this case queries). We introduce a method

that we name Qry vec (All-in-one Session), to investigate the use of additional con-

text of any length in improving existing embeddings. To provide additional context,

we ignore query or session boundaries. So for each word in the query log there is no

issue of insufficient context (i.e. The context for a word can cross the boundary of

a query or a session).

In addition to all the baselines outlined above, we report the results of our

proposed graph-based transformed embedding approaches in Table 5.3. Recall from

Section 5.3.2 that we use a sampling process on the 2-hop neighbours of each node

of the weighted graph to construct additional context for each word, where the

additional context is eventually used to transform the word embedding. We report

two methods in Table 5.3 based on the two different edge weight computation process

described in Section 5.3.2. The methods are Qry vec temporal context (i.e.

based on the Equation 5.11) and Qry vec tempo-lexical context (i.e. based on

Equation 7.2).

The objective of the experiments is to examine how our proposed query term

embedding approach performs against the baselines in finding search tasks across ses-

sions, to determine whether within-session adjacency information (i.e. as described

in edge-weights in Section 5.3.4) can be useful to learn task specific semantics.

5.5.3 Parameters and Evaluation Metrics

Here we examine parameters used in our experimental setup and the evaluation met-

rics used to measure the effectiveness of our proposed cross-session task extraction

approach.

93

Parameters

For all the task extraction approaches (i.e. QCWCC and all the embedding based

approaches), once we have a query representation (e.g. bag of words or embedding

vector representation) we cluster them using the graph-based clustering approach

described in Section 5.4.2.

1. α: Recall from Equation 5.13 in Section 5.4.2 that there is a parameter α,

that controls the contribution of content-based similarity and retrieval-based

similarity for computing the similarity between a pair of queries. In all our

methods (i.e. baselines and proposed approaches), we tune α from 0 to 1 in

steps of 0.1.

2. η: The second parameter common to all the methods is the threshold η. As

described in Section 5.4.2, η is used in clustering to prune off edges from the

weighted similarity graph between query pairs. For a clustering method, we

choose the η value for which the method gets the best F-score value. This is

described in the following subsection on Evaluation Metrics.

Evaluation Metrics

Here we introduce the evaluation metrics used to measure the effectiveness of task

extraction in our investigation. Since we use clustering to extract search tasks from

a sequence of queries, we use standard clustering evaluation metrics to evaluate

the effectiveness of the task extraction. Based on the count of true positives, false

positives, true negatives and false negatives, we compute the standard metrics of

precision, recall, and F-score (similar to (Lucchese et al., 2013)).

Additionally, to measure how many of the total number of queries that are part

of the same search tasks discovered by a particular approach, we compute the cross-

session recall (denoted as ‘CS-Recall’). This metric is computed as the ratio of the

number of correctly identified cross-session similar-task query pairs against the total

number of cross-session similar task query pairs (36, 768 as reported in Table 5.1).

94

The formula for cross-session recall is described in Equation 5.14. Let CS-TPQP

denote the actual number of cross-session query pairs that belong to same search

task. Let CS-QP denotes the number of cross-session query pairs that were correctly

predicted to be a part of the same search task by the clustering algorithm.

CS−Recall =
CS−QP

CS−TPQP
(5.14)

In order to extend evaluation of our proposed approach to within-session task

extraction, for comparison with existing studies, we compute the clustering metrics

for each individual session, and then compute the weighted average of these values

over each session, as reported in (Lucchese et al., 2013; Mehrotra and Yilmaz, 2017a).

Although these earlier studies refer to this weighted measure as F-score, we refer to

this version of F-score as ‘Session-F-score’.

5.6 Experimental Results

In this section, we report the results of our investigations of our proposed embedding-

based cross-session search task extraction in comparison to our identified baselines.

We first investigate the effectiveness of our proposed approach on cross-session search

task extraction, and then report and compare results with existing approaches for

within-session task extraction. First, we show the effect of varying the parameters

α and η separately in Figure 5.5.

We varied α and η for the methods QCWCC , ‘Qry-vec skipgram’, ‘Qry-vec tem-

poral’ and ‘Qry-vec tempo-lexical’ in the test set of 1, 424 queries. From the three

standard embedding based approaches in Table 5.3 (i.e. ‘Qry-vec skipgram’, ‘Qry-

vec-all-session-in-one’, ‘Qry-vec-pretrained’), we choose the best one in Figure 5.5

to examine variations in α and η, so we do not consider ‘Qry-vec-pretrained’ and

‘Qry-vec-all-session-in-one’ in the plot. The optimum values of η for each method in

the bottom graph of Figure 5.5 correspond with those reported in Table 5.3. Simi-

larly, for the plot at the top of Figure 5.5, the optimum α values correspond to those

95

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

F-sc

α

QC-WCC

+

+ +
+ + + + +

+ +

+

+
Qryvec skip-gram

×

× × × × × × × × ×
×

×
Qryvec temporal

∗

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
Qryvec tempo-lexical

2

2 2 2
2 2

2
2

2 2 2

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

F-sc

η

QC-WCC

+

+ +

+

+

+ + + +
+

+

+
Qryvec skip-gram

×

× × × ×

×

×
×

×

×

×

×
Qryvec temporal

∗

∗ ∗ ∗ ∗
∗

∗
∗ ∗

∗

∗

∗
Qryvec tempo-lexical

2

2 2
2

2

2

2

2

2
2

2

2

Figure 5.5: Sensitivity of task clustering with variations in α (top) and η (bottom).

reported in Table 5.3. Since the training set had no task labels it was not possible

to tune the parameters α and η in the training set. It can be observed in Figure

5.5 that for most of the values of α and η the proposed approach performs better

compared to the other baselines.

A value of α = 1 considers only the content based similarity (see Equation 5.13).

It can be observed from Figure 5.5 (top) that at α = 1, the F-score values for all the

query embedding based approaches are higher than the baseline method of QCWCC .

This indicates that the query embedding based approaches perform well without

relying on similarity-based retrieval using an external collection (i.e. Clueweb12B).

96

Task extraction method α η Precision Recall F-score

QCWCC using Wikipedia 0.8 0.4 0.825∗ 0.802 ∗ 0.812 ∗

QCWCC using ClueWeb12B 0.8 0.4 0.831 0.815 0.834
(Mehrotra and Yilmaz, 2017b) - - 0.849 0.835 0.845

Qry vec skip-gram 0.7 0.8 0.834 0.832 0.839
Qry-vec (Pretrained wordvec) 0.6 0.5 0.832 0.818 0.837
Qry-vec temporal context 1 0.7 0.851∗† 0.831 ∗† 0.847 ∗†

Qry-vec tempo-lexical context 0.6 0.7 0.845 ∗† 0.838∗† 0.840 ∗†

Table 5.2: Comparison between the best results obtained after parameter tuning
on different unsupervised approaches of within session task extraction. ∗†‡ indicates
statistical significance (paired t-test with 95% confidence) with respect to QCWCC

using Wikipedia, ‘Qry-vec temporal context’ and ‘Qry-vec tempo-lexical context’
respectively.

Parameters Metrics

Method Name α η F-score Prec Recall CS-Recall

Baseline

QCWCC using ClueWeb12B 0.8 0.4 0.471 0.387 0.603 0.1930
Qry vec skip-gram 0.7 0.8 0.524∗ 0.465∗ 0.602 0.7161∗

Qry vec (All-in-one Session) 0.7 0.5 0.499 0.430 0.595 0.6400
Qry vec (Pre-trained wordvec)0.6 0.5 0.473 0.410 0.558 0.6400

Proposed Qry vec temporal context 1.0 0.7 0.536∗† 0.461∗ 0.643∗† 0.7393∗†

Approach Qry vec tempo-lexical context 0.6 0.7 0.538∗† 0.441∗ 0.691∗†‡ 0.7395∗†‡

Table 5.3: Comparison between the best results obtained after parameter tuning on
different unsupervised approaches of cross session task extraction. For all methods,
1−α represents the weight of the semantic similarity estimated from ClueWeb12B.
∗†‡ indicates statistical significance (paired t-test with 95% confidence) with respect
to Lucchese et al. (2013), ‘Qry vec skip-gram’ and ‘Qry vec with temporal context’
respectively.

In general, it can be observed that over a wide range of α and η settings, the F-score

values of the embedding based methods outperform the QCWCC method.

5.6.1 Within-session task extraction

Our first experiments evaluate our embedding methods against state-of-the-art base-

lines. The session duration span of 26 minutes, similar to (Lucchese et al., 2013), is

used to define query clustering to each individual sessions to clustering. Similar to

(Lucchese et al., 2013; Mehrotra and Yilmaz, 2017a), we employ the session aver-

aged clustering metrics to measure the effectiveness of the approaches (see Section

97

5.5.3). We use the within-session ground-truth of (Lucchese et al., 2013) to evaluate

task extraction effectiveness.

Table 5.2 reports the results for our within-session task clustering approaches.

The following observations can be made with regard to Table 5.2.

• Firstly, we can see that the use of ClueWeb12B for contextualizing queries

(i.e. first row of Table 5.2) contributed to an improvement in task extraction

effectiveness compared to the original approach of (Lucchese et al., 2013) (i.e.

second row of Table 5.2) which uses Wikipedia. So we can say that our re-

implementation of (Lucchese et al., 2013) using ClueWeb12B is comparable or

better than that of the original.

• Secondly, an important observation is that the use of word embedding along

with contextual information from ClueWeb12B (i.e. third to sixth row) outper-

forms the approach of trigram and Levenshtein based similarity computation

of (Lucchese et al., 2013).

• Thirdly, it can be observed that F-Score improves with the application of

transformation based word vector embedding of the query terms compared to

‘Qry-vec skipgram’. In Table 5.4, we show the nearest neighbours for the word

‘jfk’ before and after transformation. In the left column of Table 5.4 we can

observe that the neighbour queries belong to only the ‘jfk airport’ travel related

area. In the right column, of Table 5.4, we can observe that the neighbour

queries belong to the topic of assassination of president john f kennedy and

jfk airport. So we can say that right column in Table 5.4 (i.e. using our

proposed embedding technique) captures the different tasks related to the

word ‘jfk’ compared to the left column (i.e. standard skipgram). This can be

the potential reason for which our proposed embedding approach performed

better compared to ‘Qry-vec-skipgram’.

• Forthly, our proposed word embedding approach (i.e. ‘Qry-vec temporal con-

text’) also outperformed existing task extraction method within a single session

98

Nearest Neighbors

Word Before Transformation After Transformation

jfk airport jfk airport
jfk kennedy airport john f kennedy

USA jfk assassination
travel president

Table 5.4: Nearest Neighbors for the word ‘jfk’

(Mehrotra and Yilmaz, 2017b).

The temporal context proves to be more effective than the tempo-lexical one

in terms of Session-F-score. One reason for this is that in most of the sessions

a user was involved in a single task within a session. Temporal context utilizes

this fact, whereas tempo-lexical context cannot capture the overall context

because it considers only lexically similar queries within a session as context.

5.6.2 Cross-Session Task Extraction

Table 5.3 shows the results of graph-based clustering (as described in Section 5.4.2)

applied on all our baselines and our proposed approach with optimal α and η settings

(as described in Section 5.5.3). It can be seen that the first baseline approach

QCWCC performs poorly in terms of FScore, Precision and CS-Recall compared to

all other approaches. QCWCC is the only method reported in Table 5.3, which uses

only text based similarity (e.g. trigram and Levenshtein similarities) to compute

the simlarity between a pair of queries.

All other methods except QCWCC rely on word embedding to compute similarity

between a pair of queries. So we can say that embedding based similarity captures

the task based semantic similarity between a pair of queries better than use of

text-based similarity features.

It can also be observed from Table 5.3 that ‘Qry vec (All-in-one Session Context)’

yields worse results in terms of F-score, Precision, Recall and CS-Recall than the

Qry vec skip-gram approach. ‘Qry vec (All-in-one Session Context)’ does not use

99

any session or query boundary to obtain embedding of query terms, whereas ‘Qry

vec skip-gram’ treats each query as a separate document and the context window

of a word never slides across the query. Hence we can say that a focused context

performs better for embedding the query terms for task extraction compared to

using a large context without any query boundary.

Results with word vectors pre-trained on a large news corpora (i.e. the approach

‘Qry vec (Pre-trained word vector)’, 4th row in Table 5.3)’, show that additional

out-of-domain and generic context is not helpful for improving the quality of the

embedded query term vectors compared to ‘Qry vec skip-gram’ and ‘Qry vec (All-

in-one-Session)’.

Transformation of the word vectors leveraging the semantic contexts (i.e. fifth

and sixth rows of the Table 5.3) outperforms the baseline approaches in terms of all

the metrics (i.e. F-score, Precision, Recall, CS-Recall). Recall from Equation 5.13

in Section 5.4.2, that we use top 10 Wikipedia articles retrieved corresponding to a

query to contextualize a query.

The most important observation in Table 5.3 is that the use of temporal con-

text in learning word vectors results in best performance for α = 1, i.e. when no

retrieval-based similarity is used (see Equation 5.13). This suggests that optimally

trained word vectors can produce effective task clusters without the use of external

collections in contextualizing the queries. A potential reason for this observation

is that rather than an external collection, task related words are more likely to be

present in the extra context (i.e. S in Equation 5.4) that we are providing for each

word to transform the word embedding.

The use of tempo-lexical contexts, i.e. when the semantic context used to learn

the transformation matrix for the word vectors is restricted to similar queries within

search sessions, the clustering effectiveness improves further in terms of all the met-

rics. In particular, Table 5.3 shows that both tempo and tempo-lexical transfor-

mations are able to improve Recall significantly, suggesting that the transformation

helps to group more truly task-related queries into the same cluster.

100

5.7 Concluding Remarks

In this chapter, we addressed our second research question relating to the identifi-

cation of similar user activities related to common information goals. We proposed

a transformation based word embedding approach that takes into account the tem-

poral and tempo-lexical contexts of activities to learn task-specific semantics. Our

experiments on the AOL query log indicate that our proposed temporal and tempo-

lexical embedding method outperforms the baseline word2vec embedding and other

approaches. The experimental results confirm that we can use our proposed graph-

based embedding method to address RQ2 which is to group user activities that are

related to similar information goals or tasks. Further analysis of our proposed graph

based embedding technique on standard embedding evaluation tasks are shown in

Appendix C.

Once we can identify activities similar to a user’s current activity using our pro-

posed embedding approach, we can use these similar activities to formulate proactive

queries using the proactive query formulation method framework described in Chap-

ter 3. We examine the use of embedding approaches for proactive query formulation

in Chapter 6 and 7 for single-stage and multi-stage task scenario respectively. Since

Chapter 6 focuses on a simulated task scenario where there user activities only relate

to the user’s current task, standard embedding are expected to work well, and there

is no need to group similar activities from a sequence of activities. In Chapter 7, we

specifically use the embedding approach proposed in this chapter to group queries

in our investigation of a multi-stage task scenario.

101

Chapter 6

Proactive Suggestion For Single

Stage Tasks

In this chapter, we address RQ3 (introduced in Chapter 1), which concerns examin-

ing proactive formulation of queries for single stage task scenarios. In our research

scope, a single stage task refers to those tasks where we have information about only

a user’s previous and recent desktop activities, and the task is related to a single

information need. For instance, an example of such, a single stage task could, be

a user writing a research paper on a topic, such as Retrieval Models in IR. While

writing a particular section of this paper, the objective of a proactive IR model in

this setting would be to provide the user with relevant articles or papers that they

might find useful while writing their research paper.

There is no publicly available dataset of desktop activities suitable for exploring

this research question. To address our research question we need a dataset containing

information about what the user was reading or writing or clicking. There is also

no available single software applications which can do all these different activities

(i.e. reading, writing, or accessing a document or application) mentioned earlier.

Existing work related to personal information management (Bernstein et al., 2007;

Cai et al., 2005; Hu and Janowicz, 2012) which describes how information sources

can be organized and activities presented in a user’s desktop can be used to enhance

102

their desktop search experience. However in this thread of work the information

sources present in the desktop need to be explicitly tagged or linked to enhance

the user’s experience. Work in (Bernstein et al., 2007) asked the user to explicitly

note down their activities. However, explicitly tagging or linking may interrupt a

user’s workflow. We wanted to investigate a scenario where the user’s workflow were

not interrupted for collecting data. Hence we introduce a simulation framework for

this task scenario which enables us to compare alternative potential approaches to

proactive search for which results are reproducible. We first describe the background

and motivation for our simulation framework, and then describe our experimental

setup and our investigation of proactive IR using this framework.

6.1 Background and Motivation

In this chapter, we examine the anticipation of a user’s information needs (i.e. for-

mulating queries on the user’s behalf) from his activities, and providing them with

potentially relevant information sources. In this investigation we observe the effect

of user knowledge on the query formulation process. We use a simulation setup to

estimate the effectiveness of the query formulation process.

Existing literature on this topic can broadly be categorized into two different

areas:

1. Simulation frameworks for standard IR

2. Associated document retrieval where queries are generated from large docu-

ments.

The setup for associated document retrieval is similar to our simulation framework

where we use texts extracted from a user’s activities to formulate queries to identify

potentially useful documents. Here we review existing literature on each of the above

mentioned areas (i.e. simulation and associated document retrieval) separately.

103

6.1.1 Simulation Setup Used in IR

Somewhat similar to our work, simulated users and search agents were investi-

gated by Maxwell and Azzopardi (2016a,b). However, these studies mainly focus on

keyword-based automatic query formulations from simulated clicks on documents,

and do not address the research questions that we investigate, i.e. those involving

user knowledge (initial cognitive state). Initially they used a maximum likelihood

estimate to choose a pair of words from all the words appearing in a Title and

a Description field of a TREC Topic. As user actions progressed, they used words

appearing in clicked documents to identify terms to include in a query. Moreover un-

like (Maxwell and Azzopardi, 2016a,b), our proposed simulated interaction method

distinguishes between different types of user activities (e.g. reading and writing).

A relatively simple simulated user read activity model was proposed in (Koskela

et al., 2018). They chose the terms with the highest tf-idf weights from a document

to simulate the key focus of the content that a user is currently reading. However,

in a realistic situation it is more likely that a user will read a sequence of words

or sentence at a stretch, hence the words read will be contiguous and semantically

related. The terms having highest tf-idf values are selected from a whole document.

These terms may not be contiguous. Since a user generally reads a sequence of

words at a stretch, extracting the most important terms in terms of tf-idf values is

not likely to reflect a focused topic encountered by a user while reading a document.

This study also reported a controlled user study of essay writing on a specific set of

topics with real users which demonstrated that a proactive retrieval system allowing

a user to read suggested documents or to save them for later revisits, can help the

user to accomplish a task more efficiently. Unlike (Koskela et al., 2018), we generate

simulated reading content by selecting sentences from a document which are more

focused on a topic than choosing a small number of non-contagious terms from the

whole document.

104

6.1.2 Associative Document Retrieval

A particular example of associative document search (Takaki et al., 2004; Chen

et al., 2010) is patent search. Previous studies of automated query formulation in

patent search have shown the following to be useful: i) assigning different relative

importance to different sections of a patent document (Xue and Croft, 2009), ii)

subtopic analysis for segmenting a patent document into smaller blocks (Takaki

et al., 2004), and iii) a feedback algorithm for reducing the number of terms in

queries (Ganguly et al., 2011a).

Existing research in query formulation for other types of documents (e.g. news

and web) has investigated: i) an encoder-decoder based neural approach to generate

query terms (Han et al., 2019), ii) use of user profiles to formulate personalized

queries (Somlo and Howe, 2003), iii) extracting entities and noun phrases for query

generation from user selected text (Lee and Croft, 2012), iv) use of different fields

of a structured document to formulate queries (Crouch et al., 1990).

Previous research (Lee and Croft, 2012; Crouch et al., 1990) on associated docu-

ment retrieval suggests that queries formulated from given long pieces of text help to

retrieve potentially relevant documents related to the topic of the text. The objec-

tive in our single stage simulation setup is to retrieve potentially relevant documents

corresponding to a task topic given a user’s activity context. As a result of this in

our simulation setup, instead of content generated live by the user, we make use of

segments of text extracted from the documents in a static collection as simulated

content. Similar to associated document retrieval, the simulated content can also be

used to proactively formulate queries on behalf of a user to support them in their

current task. A major difference between our work and existing research on associa-

tive document search is that existing work has no notion of temporal context in the

query generation process, which is an important piece of information in our case.

Moreover, the query formulation process in our case involves extracting information

from multiple documents rather than focusing on a single piece of text.

105

6.2 Workflow of Proactive Agent for Single Stage

Tasks

For a single stage task, we simulate a proactive agent which runs continuously as

a service in the background of a computing environment (e.g., a desktop or a mo-

bile device), automatically formulating queries based on a user’s activities and then

retrieving lists of potentially relevant documents without the user being involved

in this process. The user may then be notified through system notifications of any

newly discovered potentially relevant documents which are different from what the

user has already seen. As discussed in Section 3.1 of Chapter 3, we provide notifi-

cations after a fixed number of activity intervals. Continuous proactive suggestion

notifications may be distracting. However, in this study, we do not focus on when we

should provide proactive suggestions. Rather we investigate whether it is possible

to automatically find relevant information sources that may be useful to a user in

completing their task.

This workflow setup thus allows provision for the user to click on these suggested

documents, and to access knowledge contained in them, which may assist them in

accomplishing their task. The click information from these suggested documents

can then be further used as feedback information to reformulate queries to seek

further relevant information, akin to the concept of click-based relevance feedback

in standard active IR. We now describe the general workflow of the interaction

between our proactive search agent and a user of a computational system in detail.

6.2.1 Interaction Environment

Prior to describing the user actions within a proactive environment, we define the

notation for the environment itself and its primary constituents. A hypothetical

proactive environment, E, refers to an interactive computing environment (e.g. a

desktop operating system) comprised of input and output processes, such as the

file system for reading and writing locally resident files, a browser for reading and

106

writing remotely residing content (e.g. in the cloud), editor programs for creating

new content, etc.

The key constituents of this environment that are useful to a proactive agent

comprise a set of active entities (e.g. recently accessed files within E), which we call

the Active Set of the environment, as described below.

1. Reading state (R): the set of local files within the file system of E that have

been recently accessed (e.g. files that are currently open or have been opened

recently), or the set of remote resources (e.g. on the web or in the user’s private

cloud) that have been accessed recently(e.g. web pages that are open in their

browser).

2. Writing state (W): the set of newly-created user content e.g. the content typed

by the user in an editor.

As per our research scope, we restrict our attention to a single modality of textual

information only, e.g., R refers to text extracted from documents (which, generally

speaking, could themselves be multi-modal or of a different modality to text). We

use the notation Ri as a user’s reading state at time stamp i. Ri consists of a set of

files/documents that the user has read/accessed upto timestamp i and the output

of an eye tracker while reading these documents.

6.2.2 Active Set

In our simulation setup, the Active Set at any instant refers to the set of documents

and text snippets that has been accessed by the user up to that time. The Active

Set acts as a potential source of information which our proactive agent can exploit

to estimate the user’s current information interests associated with their current

activities. It is useful to think of the Active Set of an environment as a function of

an instant in the user’s interaction timeline. Moreover, the definition of an Active

Set requires specifying an inclusion criteria, which could either be based on: i) a

simple approach, such as time-thresholding (e.g. excluding files that have not been

107

accessed for too long out of the active set), or ii) a more involved approach, such

as employing an eye tracking device (Buscher et al., 2008) to include only those sub

documents in the Active Set which the user has actually read in the recent past.

The Active Set at each instant in a user’s timeline of activities (interactions) is

well-defined, which we denote as the 2-tuple At = (Rt,Wt), where t denotes a time

instance, and Rt and Wt denote a set of recent documents that the user has recently

read and written respectively (as per the inclusion criteria) in the Active Set at time

t. Active Set at the start of the interaction (i.e. A0), consists the set of activities

executed by the user in past.

6.2.3 User Actions

In our simulation setup, user actions refer to user activities like reading or writing.

An Active Set, as described in Section 6.2.2, is constructed from the observed user

actions. The content accessed by a user is the result of a user action (i.e. read or

write), and is used to support the proactive agent in estimating the user’s recent

activity context.

A user U who starts interacting with a proactive environment, E at a (relative)

time t = 0 progressively makes changes in their Active Set depending on the actions

from which they arise. While reading affects the R component of an active set

tuple, writing modifies the W component. Table 6.1 lists the types of user actions

and describes how these actions modify the Active Set within an environment at a

time t.

While some of the user actions in Table 6.1 contribute to adding new member

objects to the Active Set (e.g. opening a file or writing text), some remove elements

from the set (e.g. closing a file, shifting focus to a different window, etc.).

108

Table 6.1: Types and examples of user actions that change the active set of an
environment.

Action Active Set change Example

Open a file f Rt+1 ← Rt ∪ f Open a PDF file in Acrobat
Read file f Rt+1 ← Rt ∪ f Click or Alt+Tab to focus on an Ac-

robat window
Read a part f ′ of f Rt+1 ← Rt ∪ f ′ Content f ′ is the output of an eye-

tracking device
Open a web page p Rt+1 ← Rt ∪ p Click on a hyperlink from a browser
Write text d Wt+1 ← Wt ∪ d Composing a mail or typing a query

in a search-box
Close a file f Rt+1 ← Rt − f Mouse-click or Alt+F4
Attention away from f ′ Rt+1 ← Rt − f ′ Detected by shift in eye gaze

6.2.4 Proactive Recommendation Agent

With the definition of the interactive environment and its instantaneous user action

states (comprised of the Active Sets) in place, we now discuss the working method-

ology of a proactive recommendation agent that seeks to find relevant information

for a user based on his recent activities.

Assuming that a user has conducted a series of recent activities (such as the ones

outlined in Table 6.1) to accomplish a task within the environment, a proactive

recommendation agent can potentially leverage information obtained from recent

Active Sets (which it keeps track of) to estimate the user’s recent topics of interest.

In principle, a proactive agent can make use of a bag-of-words representation

obtained from each individual component of a number of most recent Active Sets to

formulate a query implicitly in the background without the user being aware of the

process (Dumais et al., 2004, 2016). This query can then be used to retrieve a list

of documents from either the public web or the local file system. For the former, a

possible implementation may invoke a search API service with the formulated query

passed as an argument for retrieving information, whereas for the latter, one could

use one or more local indexes (comprised of textual content extracted from files) to

retrieve related files.

Figure 6.1 shows the workflow of a proactive IR model in a real user setup. As

109

User

I
N
T
E
R
F
A
C
E

Computing Device

Read Tracker Write
Tracker

Index

Notifier

Active Set

Query Formulator
(Term Selector)

Ranked List of
Suggestions

Figure 6.1: Work Flow of Proactive IR model in a Real User Setup.

shown in Figure 6.1, the Active Set is always updated with a user’s recent read or

write activities. The proactive agent formulates a query from the updated Active

Set (i.e. Query Formulator component in Figure 6.1). The query is then used to

retrieve a ranked list of suggestions which is shown to the user through a notifier.

Now we will turn our attention to how we can simulate an Active Set for single stage

task scenario described in this section.

6.3 Simulation Setup With Document Relevance

In this section we describe the components of simulation setup, beginning with a

model of user knowledge of the topic of proactive search, then introducing models of

user reading and writing activities. In our simulation setup, we use a parameter K to

instantiate a user. K denotes the knowledge of the user. In terms of the Active Set

of a proactive environment definition (see Section 6.2), the initial Active Set depends

on the initial knowledge of the user and its subsequent progress over time. Different

users will have different levels of initial knowledge. For example, if the initial active

set of a user U1(K1) is A1
0 = (R1

0,W
1
0 = φ) and that of U2(K2) is A2

0 = (R2
0,W

2
0 = φ),

then |R1
0| > |R2

0| if K1 > K2, or in other words, the first user has acquired a greater

110

amount of knowledge since he has accessed a greater number of documents (local and

remote) than the second. The initial Active Set is important since it will affect the

query formulation process. The more content that is present in the initial Active

Set, the more information a proactive agent has available to estimate the user’s

current potential information needs and an opportunity to provide informational

support. The user may not have an information need in the sense of needing to

look for information, e.g. via an active search, but may benefit from the provision

of information relevant to their current activity.

As a laboratory based version of the environment of Section 6.2, a user (param-

eterized by their knowledge) in the simulated environment conducts two different

types of actions, that of reading and writing towards achieving a goal. In contrast

to the wide range of different types of goals in a real environment (e.g. writing a

piece of code to solve a computational problem or writing a research paper, etc.),

the goal of a user in reading state in this simulated environment is to learn more

information about a particular topic of interest. Similarly the goal of a user while

writing in the simulation setup is to express their knowledge on a particular topic

in writing. To achieve these goals, a simulated user starts with a small set of rel-

evant documents on a topic, reads these documents to build an abstract cognitive

state inside his head. The user then either reads more documents or writes pieces

of text in an editor based on his knowledge of the subject. For this user model the

only information accessible to a proactive search agent in this environment is the

user-written content (Wt) and the documents that the user has opened for access in

the recent past (Rt).

As described in Section 6.2, a proactive agent always keeps track of a user’s

activities and shows proactive suggestions after fixed time intervals. Since it is

a continuous process, we split the simulated environment into different cycles to

estimate the effectiveness of a proactive IR model at different instances. Each cycle

corresponds to a particular interval of user actions where it starts with user activities

and ends with a proactive suggestion list shown to the user. The simulation setup

111

used in our research scope was motivated by the work in (Koskela et al., 2018).

This study simulated a user’s writing activity using an article on a topic. The

results obtained from the simulation model correlated with a user study where a

user was asked to write an article on a topic. Similar to (Koskela et al., 2018), we

also simulate a user’s reading and writing activity using a set of documents related

to a topic. Next we describe the simulated read and write cycles in detail.

6.3.1 Simulated Reading Cycles

For reading cycles, we focus on reading activities only. In the simulation setup,

the user is initialized with a subset of documents (i.e. R0) that they have accessed

previously. A user will only interact with documents for a certain amount of time if

he finds the document useful for an information need. Hence in our simulated envi-

ronment, constructing R0 (i.e. the initial reading set) corresponds to automatically

extracting a random subsample from this set of relevant documents for a particular

topic. The reason for using random subsampling is that we did not want to cre-

ate bias in the initial selection of documents on a particular topic. Mathematicaly

R0 ⊂ R where R is the set of relevant documents corresponding to the topic in

which the simulated user is currently interested in.

The cardinality of this set R0 depends on a user’s knowledge. If a user is more

knowledgable, it is more likely that he would have accessed a greater number of

relevant documents corresponding to a topic. Hence mathematically we can write

|R0| = K|R| where K is the parameter denoting a user’s knowledge in our simulation

setup. The initial Active Set A0 is initialized with R0 for simulated reading cycles,

mathematically A0 = (R0,W0 = φ). One assumption for constructing R0 is that,

we have access to manually judged relevant documents for a topic considered in the

simulation setup.

The behaviour of a user U(K) is then simulated as follows. As a next step, we

assume that the user reads through parts of these documents (i.e. R0) which make

it possible for a proactive search agent to get access to the recently read content (a

112

real-life implementation might make use of an eye tracking device (e.g. Puolamäki

et al. (2005)). A relevant document for a topic contains a mixture of sentences

where some sentences are directly related to the overall topic of the document, and

some are not directly related to the overall topic of the document. As a matter of

fact, the content read by different users is likely to be a mixture of relevant and

non-relevant sentences from these documents in different proportions, i.e. the eye-

tracked contents of different users are likely to be constituted of different numbers

of relevant and non-relevant sentences.

To model the output of an eye tracking device while a user is reading a document,

in our simulated environment we select a random subsample (without replacement)

of relevant sentences and mix it with a random subsample (without replacement)

of non-relevant ones as shown in Equation 6.1. For the simulated reading activity

generation process described in Equation 6.1, our assumption is that we have the

relevance and non-relevance labels of sentences for each relevant document corre-

sponding to a topic. In the absence of relevance and non-relevance labels we can

randomly select a set of sentences from a document.

R1 =
⋃
∀d∈R0

{(xr, xn) ∈ (r(d), n(d)) :
|xr|
|xn|

= α}, (6.1)

A proactive agent is not aware of the fact that the simulated content has a

mixture of relevant and non-relevant sentences and treats all the sentences in the

simulated content with equal priority. In Equation 6.1, R1 represents the read state

of the modified Active Set (after the simulated read activity) at the next relative time

instant, d represents a document from R0, and xr and xn represent a relevant or non-

relevant sentence respectively from the set of relevant and non-relevant sentences of

d, denoted respectively by r(d) and n(d). The parameter α, named as signal to noise

ratio controls the ratio of mixing relevant sentences with non-relevant sentences in

a simulated read content.

The proactive agent then uses R1 (the Active Set constructed after R0) to for-

113

mulate a query and retrieve a ranked list of documents potentially relevant to the

current topic of interest to the user(the topic for which the documents in R0 are

relevant). The top M retrieved documents are shown as a notification list to the

user.

The next step of user simulated interaction involves simulating the user selecting

documents from this notification list, similar to a real user who would identify

relevant documents from their titles or snippets. The relevant documents newly

retrieved by the proactive system are added to the Active Set of documents for the

next iterative step as shown in Equation 6.2.

R2 = R1 ∪ {di : di ∈ R}Mi=1, (6.2)

In Equation 6.2, M is the number of documents shown in a notification window, and

R is the set of relevant documents for the particular topic. As already explained in

Section 6.2.1, our assumption in the simulation setup is that we have access to all

the relevant documents corresponding to a topic.

The simulated user then continues with the read operation with the new Active

Set of documents, and the proactive agent also continues to leverage information

from the user’s reading cognitive state and notifying the user with more documents,

i.e., the user and the proactive search agent repeatedly cycle through the steps

outlined in Equations 6.1 and 6.2.

Recall from Chapter 3 that in our proactive suggestion framework, proactive

search is performed after a fixed number activities. Consequently in our simulation

setup, we also trigger proactive suggestion when we have identified a certain number

(e.g. 2 or 3) of simulated content items (i.e. read content in this scenario). After the

first proactive suggestion, whenever a proactive agent comes up with a new ranked

list of documents for proactive suggestion, we preprocess this list by removing any

document (i.e. relevant or non-relevant) that has already been shown to user in

any of the previous proactive suggestions. The proactive suggestions stop when the

114

proactive model cannot provide any more new relevant documents corresponding to

the user’s current task topic after a search operation for a revised query.

We use random subsampling so that there is no bias (e.g. choosing those relevant

documents which are more effective for query formulation compared to others) in

choosing documents for a user’s initial state. To make our experiments less biased

towards a specific subsample, we execute the simulated steps of interactions on a

number of different subsamples (specifically 5), and then report the average results

over these runs of the simulated user sessions.

6.3.2 Simulated Reading and Writing Cycles

In contrast to the read-only operation which assumes that a proactive agent is aware

of the initial Active Set of documents that a user has accessed recently (e.g. opened

for reading), we consider a more general case in which we assume that the user’s

knowledge does not explicitly map to a set of relevant documents. In practice, this

situation occurs when a user has prior knowledge on a topic, and does not explicitly

open a set of files for reading within the operating environment. This is because

either he does not need to refer to these documents (his existing knowledge being

adequate for his content creation task), or he does not remember if he has saved

relevant documents for the writing task and if he does, where to find them. The

assumption in this simulation setup is that from the moment the proactive agent

starts tracking user activities, the simulated user was involved in writing.

The task of the proactive agent is more challenging in such a situation because

unlike the discussion in Section 6.3.1, it has no idea about the documents that the

user has read which could be used to formulate a query and retrieve information

that the user will find useful. In such a situation, the only content available to a

proactive agent is the content generated by the user as a step towards his goal (e.g.

writing a research report on a topic on which the user has prior knowledge).

Since natural language generation is a challenging problem in itself, the process

of new content generation as a part of the user writing event is difficult to simulate.

115

User

Relevance
Feedback

Active Set

Term Selection

Proactive Suggestions

Update Active Set

Index

Activity
Type

Expansion
Applied

Yes

No

Estimated Term
Distribution (e.g.
RLM, KDERLM)

Ranked
List of
Docs

R-Ri

Read

W
rite

Notify
User

Expanded Query

Updation
ProcessRi

R

R’i

Simulated Read content

Simulated Written content

Non-Rel
Sentences

Rel
Sentences

Rel
Sentences

Non-Rel
Sentences

Update

R’i⊂ Ri

Set of relevant docs

Set of
docs

user seen

Update/
Notify

Figure 6.2: Work Flow of Proactive IR Model in Our Proposed Simulated User
Setup.

A user written text is generally in the form of a sequence of sentences. Not all the

sentences written by a user may be directly related to the overall topic on which

the user is writing. Hence as a solution, we adopt a writing simulation process

which extracts pieces of text from a mixture of relevant and non-relevant sentences

of a subset of relevant documents, similar to the reading simulation step (Equation

6.1). This represents a relatively simple behaviour of a user replicating parts of his

acquired knowledge as newly created content. The difference between this and the

initial state of the read event cycle is that the proactive agent can only make use

of the extracted elements of content placed into the new text for query formulation,

and not the entire set of relevant documents R0 from which the content is created

(i.e. the content of which is known only to the user).

The proactive agent then notifies the user with a ranked list of relevant docu-

ments, the content of which the user may find useful. The simulation then proceeds

with the assumption that the user includes the relevant documents from the re-

trieved list into his cognitive state, and continues to extract a mixture of relevant

116

and non-relevant sentences from these additional documents by the process of sim-

ulated reading and writing. In our simulation setup, the reading and writing cycle

continues until most of the relevant documents corresponding to a topic have been

shown as proactive suggestion to the user.

Figure 6.2 shows the workflow of a proactive IR model in our proposed simulation

setup. Comparing Figure 6.2 with Figure 6.1, We can see how we simulate the read

and written contents of a user, which in a real user setting would be done by tracking

the read or write activities of the user by comparing Figure 6.1 with Figure 6.2. It

is shown in Figure 6.2, that a simulation user can have two either read or write

activities. Figure 6.2 also shows, how the Active Set is initialized differently with

read and write activities. For a simulated reading cycle the Active Set has access

to both the documents that the user is reading and the simulated output of an eye

tracking device. For simulated writing the user has access to only the texts written

by the simulated user. Figure 6.2 also illustrates our two options of either showing

the ranked list of documents retrieved using the original query or expanding the

original query and then using the corresponding ranked list as proactive suggestions

to the user. We next describe the query formulation process in our simulation setup

in detail.

6.4 Query Formulation for Single Stage Task Setup

In this section, we describe how our proactive search agent leverages information

from the Active Set of its environment to formulate a query and retrieve documents

for a user. In Section 6.2.2, we described how the Active Sets evolve in response to

these different user activities in the read-only and read-write cases. Theoretically a

proactive search agent is only aware of the information that is made available to it by

the user interactions, i.e., our proactive agent can get information only through user

actions of: a) opening a document, b) reading parts of it, c) clicks on notifications

of retrieved documents, or d) new content creation.

117

We use the query formulation framework described in Chapter 3. Recall from

Equation 3.3 in Chapter 3, we need two components to formulate a proactive query:

one is the user’s most recent activity (i.e. activity at time t denoted as at described in

Chapter 3), and the background set Bt. In Chapter 3, we showed that Bt comprises

of a user’s recent activity context (i.e. Ct) and similar activities of the user himself

and other users from their past activities (i.e. Ht). In the context of a simulation

setup for single stage task, Ct consists of a series of simulated activities a1, . . . , at−1

obtained from the active set at time t − 1 (i.e. At−1) and Ht consists of only the

past activities of the user. Recall from Section 6.2.2, that the past activities of the

simulated user is represented by the initial Active Set (i.e. A0).

We do not have information about activities of other users in this individual

task scenario. Hence Ht has only the past activities of user himself. All of the

interactions of the user in our simulation environment are based on a single topic

rather than on multiple topics. Hence we do not need to find past activities related

to a user’s current activity (i.e. H(at) as described in Chapter 3). Here all the

simulated activities are related to a user’s current overall task goal. As a result of

this, H(at) is exactly equal to Ht in our simulation setup. Mathematically Bt in the

simulation setup is equivalent to the active set at time t (i.e. At). At is shown in

Equation 6.3.

At =
t⋃
i=0

{ai} (6.3)

From Chapter 3, we again describe the query formulation model as shown in Equa-

tion 6.4.

P (w|θR, at) =
∏
t∈at

∑
a∈At

P (t|a)P (w|a)e−δ(at,a)2 ata

|a||at|
. (6.4)

In Equation 6.4, e−δ(at,a)2 uses the time difference between an activity a and the

most recent activity at. In our simulation setup we do not have any explicit times-

tamp associated with each simulated activity. However, we have the information

about the sequence of activities. So if an activity was simulated at ith sequence

(i.e. ai) and another activity was simulated at jth sequence (i.e. aj) then the time

118

difference between ai and aj is computed as (i− j).

6.5 Experimental Setup

In this section, we describe the experimental setup and objectives for our simulation

experiments. Recall from Section 6.2 that the objective in this chapter is to simulate

a user’s interaction with applications in a desktop environment, and examine the use

of a proactive agent to provide support to the user in this simulated environment.

In this section, we first describe the specific research questions that we investigate

through our experiments, and then we discuss how we use an existing IR dataset

(with topics and relevance assessments) to simulate the environment of a user’s

interactions.

6.5.1 Experiment Objectives

Envisioning the proactive recommendation agent described in Section 6.3 leads to

a number of important points to consider. Firstly, how effectively can we exploit

the Active set to provide proactive suggestions to the user. Secondly, since different

users can have different levels of knowledge on the same topic. The same document

may not be useful to all the users for a particular topic. As a result of this the

effectiveness of proactive suggestions can vary with a user’s knowledge. Thirdly, we

focus on two different types of simulated user activities (i.e. read and read/write)

described in Section 6.3.1 and 6.3.2. The initial Active Set of a simulated user in

the read and read/write scenarios is not the same. Hence the effectiveness of a

proactive suggestion will vary based on the simulated user activities. Based on the

above discussions we focus on following three aspects of our research questions in

our empirical investigations as follows.

RQ3-a: How effectively can we support a user in a simulation setup using proactive

query formulation method described in Chapter 3?

119

Stats Value

#Total docs (Disks 4,5 - CR) 528,155
#Topics 50
#Avg relevant docs per topic 36.36
#Avg relevant sentences per doc 4.92
#Avg sentences per doc 42.66

Table 6.2: Details of the TREC-2002 Novelty Track dataset used in our experiments
on proactive IR.

RQ3-b: How does the simulated knowledge of individual users affect the effectiveness

of a proactive agent?

RQ3-c: How do the effectiveness of proactive suggestions compare across two different

types of user activities, namely reading and writing?

The overall objective of the above three research questions (i.e. RQ3-a, RQ3-

b, RQ3-c) is to examine whether we can formulate queries from a user’s recent

desktop activities and use these queries to provide useful information to the

user as described in the research questions in Chapter 1.

6.5.2 Dataset

Since our experiments require a set of both manually assessed relevant documents

and sentences for a particular topic, we use the TREC Novelty Track dataset for our

investigation (Harman, 2002). The TREC Novelty track involved finding a set of

relevant and novel sentences for a user information need. Details of the dataset are

outlined in Table 6.2. The document collection used for this task is the TREC ad-hoc

task document collection (disks 4 and 5 without Congressional Records similar to

(Roy et al., 2016)). A sentence is judged to be relevant by an assessor if the sentence,

in a stand-alone manner, served to address the topic of the information need. A

sentence was judged novel if it conveys a new piece of information in a specified

order of document presentation. The order of document presentation is fixed for

each given topic in the dataset. This modeled the order in which documents would

120

be presented to a searcher in the output of an IR system. Figure 6.3 shows a sample

topic and its corresponding manually judged two relevant sentences from Document

‘LA031689-0177’. As shown in Figure 6.3, each topic has desc and narrative fields.

For our investigation, we make use of only the relevance information of the docu-

ments and sentences, since we do not address the novelty aspect in the scope of this

study. Specifically, in our work, each topic corresponds to a different cycle of inter-

actions between a simulated user and the proactive agent. Recall from Section 6.3.1

and Section 6.3.2 that a simulated user starts with an initial knowledge base. The

Active Set is initialized with the documents corresponding to this initial knowledge

base. For our experiments, a proportion of the set of judged relevant documents for

a topic is used as the initial Active Set of an interaction. This fraction is specified by

one of the user model parameters, K. As an example, for a particular instantiation

of a user (say with K = 0.2), 1/5-th of judged relevant documents are sampled to

be used as the initial Active Set R0. The proactive agent uses these to suggest the

rest of the relevant documents to the user to help him in his current task.

To simulate the content read by a user we randomly select a number of sentences

from the document which the user is currently reading. For writing, we assume

that a user has previously read a few documents, and written content based on

the information gathered from those documents. The simulated written content is

generated by randomly sampling sentences from the documents that user has already

read. Since we use random sub-sampling, to avoid bias in experiment results we

repeat the experiment 5 times and report the results in Tables 6.3, 6.4 and 6.5.

In terms of generating simulated read or written content, we use another pa-

rameter α, which we call the signal to noise ratio. This is designed to control the

proportion of relevant and non-relevant sentences in the content that has been read

by the user or has been written by a user. For the research paper writing goal, this

corresponds to what proportions of the user written sentences are related to the core

topic in which the user is interested.

For retrieval purpose, we indexed the TREC disks 4,5 (without the Congressionl

121

〈num〉 Number: 305 〈/num〉
〈title〉 Most Dangerous Vehicles 〈/title〉
〈desc〉Description: Which are the most crashworthy, and least

crashworthy, passenger vehicles?〈/desc〉
〈narr〉 Narrative: A relevant document will contain information on

the crashworthiness of a given vehicle or vehicles that can be used

to draw a comparison with other vehicles.The document will have

to describe/compare vehicles, not drivers.For instance, it should

be expected that vehicles preferred by 16-25 year-olds would be

involved in more crashes, because that age group is involved in more

crashes. I would view number of fatalities per 100 crashes to be

more revealing of a vehicle’s crashworthiness than the number of

crashes per 100,000 miles, for example. 〈/narr〉

Manually judged relevant sentences from document ‘LA031689-0177’ for topic 305.

• Times Staff Writer The federal government’s highway safety

watchdog said Wednesday that the Ford Bronco II appears to be

involved in more fatal roll-over accidents than other vehicles

in its class and that it will seek to determine if the vehicle

itself contributes to the accidents.

• 43 Bronco II single-vehicle roll-overs caused fatalities.

Figure 6.3: Sample topic and manually judged relevant sentences for the correspond-
ing topic 305 in TREC Novelty Track Dataset.

Records) collection in Lucene1 after removing stopwords using the SMART list2

comprising 571 words and applying Porter stemmer. We used the Stanford core-

NLP package 3 to split a document into sentences for the simulation of reading and

writing activities.

6.5.3 Evaluation Setup

We use the evaluation framework described in Section 4.4 of Chapter 4 to evaluate

the effectiveness of our proposed proactive IR model for single stage task scenarios.

We proposed two different types of evaluation metrics in Chapter 4:

• One for evaluating the quality of the proposed proactive query .

1https://lucene.apache.org/
2https://www.lextek.com/manuals/onix/stopwords2.html
3https://stanfordnlp.github.io/CoreNLP/

122

• One for evaluating the overall effectiveness of the proactive IR model.

In the single stage task simulation setup, we do not have an original query typed

by the user. Hence rather than focusing on measuring the quality of the proactive

query (i.e. since we do not have a baseline query for comparison), here we focus only

on evaluating the effectiveness of the proactive suggestions of documents retrieved

using the proactive query.

Recall from Section 4.4.2 in Chapter 4 that to measure the overall effectiveness

of the proposed proactive IR model, we need to compute a reference set at each

instance of proactive suggestions. We also explained in Section 4.5.1 of Chapter

4 that for a single stage task simulation setup, the reference set consists of the

judged relevant documents corresponding to the topic on which the user is currently

interacting with the computing environment.

With every proactive suggestion we update the reference set by removing any

relevant documents that have already been suggested by the proactive IR model.

Equation 6.5 describes the computation of the reference set mathematically. Using

the reference set we compute P@5, P@10, MRR and cumulative recall, as reward

functions, described in Equation 4.6 in Chapter 4, to measure the overall effective-

ness of the proactive IR model.

More specifically, for the simulation setup we report the reward functions (i.e.

P@5, P@10, MRR, Cumulative Recall) in two different ways:

• One is the weighted average over n number of proactive suggestions (as de-

scribed in Equation 4.7 in Chapter 4) starting from the proactivity starting

point (i.e. π). Since in our simulation setup we start suggesting documents

from the beginning of the current task, the π value is always 1 in this setup. We

weight the reward metrics at a particular proactive suggestion point, based on

the number of simulated activities completed before the proactive suggestion

at that point. We denote the weighted average of the reward functions cor-

responding to P@5, P@10 and MRR as PE− P@5, PE− P@10, PE−MRR

123

respectively in this chapter. Only cumulative recall is reported as the total

recall value at the end of nth proactive suggestion.

• For further analysis, we also report the reward functions (i.e. P@5, P@10,

MRR, cumulative recall) computed at each proactive suggestion pass sepa-

rately.

Since each reference set is not an ordered set (i.e. the reference is a collection of

documents, there is no relevance order among the documents of the set) in a single

stage task setup, we cannot compute a correlation coefficient between the predicted

ranked list of suggestions and an ideal ranked list obtained from reference set in this

scenario.

Rt = R−
t−1⋃
j=0

{rj}, (6.5)

6.5.4 Investigation of different Term Selection Approaches

In our simulation setup, our objective is to formulate a proactive query given an

activity context which has a bag of words representation. Existing term selection

approaches (e.g. Okapi (Robertson, 1990), RLM (Lavrenko and Croft, 2001) and

KDERLM (Roy et al., 2016)) can be used in this scenario in two different ways:

• i) to Formulate a proactive query.

• ii) to expand an already formulated proactive query.

Proactive Query Formulation using Existing Term Selection Approaches

We first compare the effectiveness of our proposed query formulation approach (i.e.

QFM) with existing term selection approaches. The term selection approaches that

we use as our baselines are: Okapi-BM25 (Robertson, 1990), RLM (Lavrenko and

Croft, 2001) and KDERLM (Roy et al., 2016). The objective of using these baselines

is to observe how our proposed query formulation approach (i.e. QFM) performs

124

with respect to established term selection approaches in our simulation setup. All

the baselines and our proposed approach (i.e. QFM) estimate the importance of

a term given a user’s simulated activity context (i.e. simulated read or read/write

content). The top n1 terms are used to formulate the proactive query. The results

of this comparison are shown in Table 6.3.

Query Expansion Using Existing Term Selection Approaches

Here we focus on expanding already formulated proactive queries using the term se-

lection approaches mentioned above. The term selection approaches, namely Okapi,

RLM and KDERLM, estimate the importance of an expansion term from feedback

documents. Then top k1 terms are chosen to expand the original query.

In the standard relevance feedback literature, the top m retrieved documents

corresponding to a query are used as a pseudo relevance feedback signal to expand

the query. For our query expansion experiments reported in Tables 6.4 and 6.5, we

use top m retrieved documents of the proactive query, formulated in first pass, for

pseudo relevance feedback similar to the existing IR literature.

For the subsequent passes, we focus on true relevance feedback, rather than

pseudo relevance feedback. Thus, we utilize simulated user clicked documents, rather

than top m retrieved documents as feedback which are then used to expand the

query. The reason for considering simulated clicked documents as feedback signal is

that existing literature (Li et al., 2017; Yu et al., 2014) shows that clicked documents

are likely to be indicative of the documents that user may find useful. For our

simulation setup, this is implemented by including only the truly relevant documents

from the retrieved list similar to (Chappell and Geva, 2010; Brondwine et al., 2016)

for Okapi, RLM and KDERLM.

Our objective is to observe whether query expansion using relevance feedback can

improve our proposed query formulation approach or not. The results of applying

query expansion terms in a proactive query formulation approach are reported in

Tables 6.4 and 6.5. We now turn our attention to outline the details of each of the

125

term selection approaches examined below.

Okapi-BM25

Okapi-BM25 (Robertson, 1990) is a standard IR approach to identify important

terms from a set of documents predicted to be associated with document relevance.

In our simulation setup, we have user generated read and write content and the

documents that user has accessed as a source of relevant information corresponding

to an information need. The formula for estimating the weight of each term using

Okapi BM25 is shown in Equation 6.6. In Equation 6.6 w(t) is the weight for a term

t, N is the total number of documents in the collection, R is the number of relevant

documents considered and r is the number of relevant documents where a term t

occurs and n is the number of documents where the term t occurs. Once we obtain

w(t) values, then we compute r ∗ w(t) to estimate the final weights as suggested in

(Robertson, 1990).

w(t) =
(r + 0.5)/(R− r + 0.5)

(n− r + 0.5)/(n−N −R + r + 0.5)
(6.6)

RLM

Recall from Section 2.1.2 in Chapter 2 that RLM is a state-of-the-art approach to IR

which uses feedback documents to estimate the importance of a word based on the

relevance of that term to the corresponding information need. Similar to the Okapi-

BM25 baseline, RLM (Lavrenko and Croft, 2001) can also be applied on relevant

documents to estimate the significance of the words with respect to relevance. The

formula for computing the weight of a word in RLM is described in Equation 6.7.

In Equation 6.7, a1, a2, . . . ak are the set of simulated read or write activities of the

user.

P (w, a1, a2, . . . , ak) = P (w)
k∑
i=1

P (ai|w) (6.7)

126

KDERLM

Recall from Section 2.1.2 in chapter 2 that the method proposed in (Roy et al., 2016)

is also one of the most recent approaches where embedding is used along with RLM

method to estimate the relevance of a word with the corresponding information

need. The advantage of KDERLM over RLM is that because of the use of word

embedding KDERLM addresses semantic similarity between terms along with word

co-occurrence to choose the top terms. The formula for estimating the weight of a

term in KDERLM is described in Equation 6.8. In Equation 6.8, M is the collection

of simulated activities (i.e. a1, a2, . . . , ak) in a user’s recent past.

P (w|R) = P (w|M)
k∏
i=1

P (ai|M) (6.8)

For all the methods including the baseline approaches and the proposed query

formulation approach we use BM25 as our retrieval model. The reason to use BM25

is because it has been demonstrated to work well on the IR ad-hoc tasks on standard

benchmark datasets (Robertson et al., 1994; Robertson, 1990). The parameters k

and b for BM25 need to be selected. Figure 6.4 shows the variation of P@5 values

with different values k and b for all the methods. While varying k in Figure 6.4 (i.e.

left diagram in Figure 6.4), we kept the value of b as 1. For varying b we kept the

value of k as 1. Since for all the methods optimum P@5 values were observed for

k = 1 and b = 1.5, for all our methods we used these values of k and b. We also use

similar configurations of k and b in Tables 6.4 and 6.5.

We also varied the number of terms considered for query formulation. Figure

6.5 shows the variation of P@5 values for different values of number of query terms.

The optimum value of P@5 is observed when number of query terms is 5. Hence

the number of query terms for all the results reported in Table 6.3 are 5.

For KDERLM and QFM, we use the skip-gram model (Mikolov et al., 2013a)

trained on TREC 6,7 and 8 to obtain the word vectors. To choose the optimum value

for word embedding dimension we show the variations in P@5 values with change in

127

0.20

0.25

0.30

0.35

0.40

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
@

5

k

b=0.2

+ +
+

+ +

+
b=0.4

×
×

×

×

×

×
b=0.6

∗ ∗
∗

∗

∗

∗
b=0.8

2 2
2

2

2

2

Figure 6.4: Each line in the plot corresponds to a particular value of b in BM25
parameters. We show the variation in P@5 values with the variation of BM25
parameters k for Step 1 in RLM. Due to the use of the random construction of the
initial knowledge of the user, the results shown in the plot reflect the average value
over 5 different runs.

the dimension of word vectors from 100 to 300 in the interval of 100 in Figure 6.6.

The P@5 values reported in Figure 6.6 are for step 1 in simulated read activities.

It can be observed from Figure 6.6 that the optimum value of P@5 is obtained at

dimension 200 for both QFM and KDERLM. As a result of this the results reported

in Table 6.3 use word vectors of length 200 for both QFM and KDERLM.

Since we consider this as a high Precision IR task where the user will only typ-

ically wish to consult a small number of documents of top ranked retrieved docu-

ments, we choose p@5 for optimizing our parameters among all the different metrics

(e.g. MRR, cumulative recall) reported in Tables 6.3, 6.4 and 6.5.

6.5.5 Query Formulation Components Analysis

Here we focus on investigating the effectiveness of the different components of our

query formulation approach (i.e. QFM) described in Equation 6.4 and the variants

of QFM with different query expansion techniques (i.e. Okapi, RLM, KDERLM)

through an ablation study. The equation in 6.4 has three components.

128

0.20

0.25

0.30

0.35

0.40

0.45

0.50

2 3 4 5 6 7 8 9 10

P
@

5

#Query Terms

Okapi

+
+

+ +

+
RLM

× × × ×

×
KDERLM

∗ ∗ ∗ ∗

∗
QFM

2
2

2
2

2

Figure 6.5: Effect of varying the number of query terms in P@5 at step 1 in simulated
read activities. The methods considered are Okapi, BM25, RLM, KDERLM and
QFM. This plot shows that for all approaches optimum P@5 is observed when the
number of query terms were 5.

• The first component computes the co-occurrence of words present in Bt (i.e.

the relevance set is constructed from a user’s most recent and past activities)

with at (i.e. user activity at time t). In our ablation study, we use the notation

‘CO’ to describe this co-occurrence component in the rest of the chapter.

• The second component is a time decaying factor (i.e. e−δ
(at,a)2). In our ablation

study, we use the notation ‘TD’ for this time decaying component in the rest

of the chapter.

• The third component is the semantic similarity factor (i.e. ata
|a||at|). In our

ablation study, we use the notation ‘Sim’ for this component in the rest of this

chapter.

Now we turn our attention to the specific implementation details of our experi-

ments.

129

0.26

0.28

0.30

0.32

0.34

0.36

100 200 300

P
@

5

Embedding Dimension

KDERLM

+
+

+

+
QFM

×
×

×
×

Figure 6.6: Effect of varying the word embedding dimension in QFM and KDERLM
for simulated read activities in step 1.

6.5.6 Implementation Details

For our simulation experiment, we consider three cycles (i.e. three different proactive

suggestion passes described in Section 6.3) of proactive suggestions for each topic in

the TREC Novelty Track dataset, as described in Section 6.5.2. We formulate a new

proactive query at each proactive suggestion pass. At each pass, we preprocess the

proactive suggestion list by removing any relevant or non-relevant documents that

have already been shown to the simulated user in a previous proactive suggestion

list (i.e. top 10 documents in a ranked list of retrieved documents).

For the relevance feedback experiments (i.e. QFM+Okapi, QFM+RLM, and

QFM+KDERLM), we need to choose the number of expansion terms to the orig-

inal query. Figure 6.7 shows the variation in P@5 values with change in the

number of expansion terms for methods, namely, QFM+Okapi, QFM+RLM, and

QFM+KDERLM. For all the methods, the optimum value is observed when the

number of expansion terms were 3. As a result of this, for all the query expansion

experiments reported in Tables 6.4 and 6.5 we add 3 expansion terms to the original

query.

Recall from Section 6.3.1 and 6.3.2 that to simulate read and write activities

130

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

1 2 3 4 5

P
@

5

#Expansion terms

R-QFM+Okapi

+

+

+

+

+

+
R-QFM+RLM

×
×

×

×
×

×
R-QFM+KDERLM

∗
∗

∗

∗

∗

∗

Figure 6.7: Effect of varying the number of expansion terms in P@5 at step 1 in
simulated read activities. The methods considered are QFM+Okapi, QFM+RLM,
QFM+KDERLM.

we sub-sample a mixture of relevant and non-relevant sentences from the Active

Set. The total number of sentences considered in generating a simulated read/write

activity is set to 5 for all our experiments.

In our experiments, we retrieve the top 10 documents (in accordance with exist-

ing work which reported that 10 is the optimal size for a search result page (Kelly

and Azzopardi, 2015b)). Passing notifications to real-life users with more than 10

documents may cause long interruptions in the user’s current reading or writing ac-

tivities. Thus, we assume users will not be willing to inspect more than 10 suggested

documents.

6.6 Results of Simulated Proactive IR

In this section, we present the results of our investigation of proactive query sug-

gestion models in our simulation setup. We first describe the effectiveness of our

proposed query formulation technique (i.e. QFM) compared to existing term selec-

tion approaches. Then we examine use of query expansion techniques applied on

QFM and the ablation of different components in QFM and its query expansion

131

Evaluation Metric

Simulation Type Model K α PE-MRR PE-P@5 PE-P@10 Cum-Recall

Read Okapi 0.4 0.5 0.209 0.110 0.105 0.341
Read RLM 0.4 0.5 0.228 0.121 0.110 0.372
Read KDERLM 0.4 0.5 0.241 0.133 0.121 0.396
Read QFM 0.4 0.5 0.255† 0.152† 0.132† 0.472†

Read-Write Okapi 0.4 0.5 0.203 0.106 0.101 0.361
Read-Write RLM 0.4 0.5 0.218 0.123 0.189 0.391
Read-Write KDERLM 0.4 0.5 0.239 0.133 0.205 0.398
Read-Write QFM 0.4 0.5 0.274† 0.144† 0.125† 0.403†

Table 6.3: Comparison of our proposed query formulation approach (i.e. QFM)
with existing term selection approaches for simulated read and read-write activities.
For all the query formulation approaches BM25 is used as a retrieval model and the
number of query terms is 5. The ‘†’ symbol indicates statistical significance (paired
t-test with 95% confidence) of QFM in comparison to the best baseline approach
(i.e. KDERLM), e.g. the value PE−MRR = 0.255 in QFM (read) is significantly
better than PE−MRR = 0.241 in KDERLM (read).

versions.

6.6.1 QFM Performance Compared to Baselines

For all the methods in Table 6.3, simulated users were initialized with same knowl-

edge (i.e. the initial number of relevant documents accessed by the user were same

across all the methods) and no query expansion was applied on all the methods

reported in Table 6.3. The metrics reported in Table 6.3 are the weighted (i.e.

weighted in terms of the number of simulated activities required to provide the

proactive suggestion) average over three proactive suggestions in simulated setup.

Table 6.3 shows that our proposed query formulation approach (i.e. QFM) outper-

forms existing state of the art term selection approaches in standard IR (i.e. Okapi,

RLM, KDERLM) for both read and read-write activities (i.e. First and second half

of the Table 6.3) in terms of all the evaluation metrics.

Figures 6.8, 6.9 and 6.10 show the variation of MRR and P@5 and Cumula-

tive Recall across the three different proactive suggestion points in the baseline

approaches and QFM. It is clearly visible from Figure 6.10 that the P@5, MRR and

cumulative recall values of QFM are grater than or equal to each of the baselines at

132

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3

P
@

5

Steps

R-Okapi

+

+
+

+
R-RLM

×

×
×

×
R-KDERLM

∗

∗ ∗

∗
R-QFM

2
2

2
R/W-Okapi�

�
�

�
R/W-RLM

◦

◦ ◦

◦
R/W-KDERLM

•

• •

•
R/W-QFM

4

4 4

4

Figure 6.8: P@5 at different steps of proactive suggestion in our simulation setup.
‘R’ denotes the read activity and ‘R/W’ denotes the read-write activity in this
Figure.

each proactive suggestion points.

It is also observed from Figures 6.8, 6.9 and 6.10 that for all the methods the

value of MRR and P@5 decrease with the progression in steps and cumulative recall

is increasing as expected. The decrease in P@5 or MRR values are less from step 1

to step 2 compared to step 2 to step 3 (i.e the slope of the straight line computed

between consecutive steps). One potential reason can be that with the progress in

time it becomes difficult to bring new relevant documents corresponding to the same

information need.

We wanted to investigate for how many passes we should provide proactive sug-

gestion to the simulated user. Hence we varied the number of passes and observed

the values of MRR, P@5 and cumulative recall with the progression of steps for

simulated read activity in QFM in Figure 6.11. It can be observed from Figure 6.11

that with the increase in step, the values of P@5 and MRR are decreasing to 0 and

the value of cumulative recall is saturating. In the fifth step the values of P@5 and

MRR are almost zero and the value of cumulative recall is almost same as step 4.

The values of P@5 and MRR at step 4 are in the order of 10−2. From this observa-

tion, we can say that it becomes difficult to bring new relevant documents beyond

step 3. Similar trend is observed for all other baseline approaches and for simulated

133

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1 2 3

M
R

R

Steps

R-Okapi

+

+

+

+
R-RLM×

×

×

×
R-KDERLM

∗

∗

∗

∗
R-QFM

2

2

2

2
R/W-Okapi

�

�

�

�
R/W-RLM

◦

◦

◦

◦
R/W-KDERLM

•

•

•

•
R/W-QFM

4
4

4

4

Figure 6.9: MRR at different steps of proactive suggestion in our simulation setup.
‘R’ denotes the read activity and ‘R/W’ denotes the read-write activity in this
Figure.

write activities. As a result of this, the total number of proactive suggestion passes

for which we reported the results in all of our experiments in Table 6.3, 6.4 and 6.5

is 3.

6.6.2 Ablation Results on Simulated Read and Read-Write

Activities

Tables 6.4 presents the ablation study results of proactive search effectiveness(averaged

over 50 topics present in TREC Novelty track) obtained with simulated read-only

interactions (i.e. where the simulated user only reads a portion of relevant docu-

ments) for users with a fixed initial knowledge. Specifically, we take K = 0.4 portion

of relevant documents as a starting point of reading simulation. All the results re-

ported in Table 6.4 are averaged over 5 different simulation runs. Each method in

the ablation study, namely QFM, QFM+Okapi, QFM+RLM and QFM+KDERLM,

has either one, two or no components absent. Based on the presence and absence of

a component in a method it is denoted by 3and 7 respectively in Tables 6.4 and 6.5.

For example in a method described as (CO(3) TD(7) SIM(7)), the component CO

is present and the components TD and SIM are absent. We report all possible com-

binations (i.e. 7 different types) for each category of method in our experiments. We

134

0.25

0.30

0.35

0.40

0.45

1 2 3

C
u

m
u

la
ti

ve
R

ec
al

l

Steps

R-Okapi

+

+ +
+

R-RLM

×

×
×

×
R-KDERLM

∗

∗
∗

∗
R-QFM

2

2
2

2
R/W-Okapi

�

�

�

�
R/W-RLM◦

◦

◦

◦
R/W-KDERLM

•

•

•

•
R/W-QFM

4 4

4

4

Figure 6.10: Cumulative Recall at different steps of proactive suggestion in our
simulation setup. ‘R’ denotes the read activity and ‘R/W’ denotes the read-write
activity in this Figure.

do not consider the method where none of the components are present (i.e. 7 7 7)

since without any of the components it is not possible to formulate a query using

our proposed query formulation method (i.e. QFM).

The observations from Table 6.4 are as follows.

1. The ablation study in terms of the three components (i.e. CO, TD and SIM)

shows that for all the different types of methods with and without query expansion

(i.e. QFM, QFM+Okapi, QFM+RLM, QFM+KDERLM), including all the three

components performs the best in terms of all the evaluation metrics.

2. Among the first three rows for all the ablation study categories (i.e. QFM,

QFM+Okapi, QFM+RLM and QFM+KDERLM) in Table 6.4, the first row

performs the best in terms of all the evaluation metrics. Hence we can say

that among all the three components (i.e. CO, TD and SIM) ,CO is the most

important component in our proposed query formulation approach since

3. The combination of our proposed approach and query expansion using KDERLM

(i.e. 28th rows in Table 6.4 mostly outperforms BM25 and RLM in terms of all

the evaluation metrics (i.e. P@5, P@10, MRR, Cumulative Recall).

135

Figure 6.11: Variations in the values of MRR, P@5 and Cumulative Recall with
time progression (i.e. increase in steps) in simulated setup.

136

Table 6.4: Results of proactive IR effectiveness with simulated read activities of user
agents.

Evaluation Metrics

Model CO TD SIM Expansion k α PE-MRR PE-P@5 PE-P@10 Cum-Recall

3 7 7 No 0.4 0.5 0.237 0.127 0.099 0.385
7 3 7 No 0.4 0.5 0.192 0.101 0.095 0.370
7 7 3 No 0.4 0.5 0.195 0.116 0.089 0.381

QFM 7 3 3 No 0.4 0.5 0.220 0.134 0.095 0.390
3 7 3 No 0.4 0.5 0.246 0.145 0.106 0.423
3 3 7 No 0.4 0.5 0.251 0.147 0.115 0.465
3 3 3 No 0.4 0.5 0.255 0.152 0.132 0.472

3 7 7 Okapi 0.4 0.5 0.241 0.136 0.100 0.390
7 3 7 Okapi 0.4 0.5 0.231 0.117 0.125 0.345

QFM 7 7 3 Okapi 0.4 0.5 0.234 0.116 0.129 0.330
+ 7 3 3 Okapi 0.4 0.5 0.240 0.129 0.155 0.412
Okapi 3 7 3 Okapi 0.4 0.5 0.249 0.137 0.106 0.422

3 3 7 Okapi 0.4 0.5 0.257 0.143 0.150 0.475
3 3 3 Okapi 0.4 0.5 0.267 0.153 0.165 0.489

3 7 7 RLM 0.4 0.5 0.246 0.145 0.126 0.451
7 3 7 RLM 0.4 0.5 0.239 0.137 0.118 0.432

QFM 7 7 3 RLM 0.4 0.5 0.243 0.134 0.115 0.441
+ 7 3 3 RLM 0.4 0.5 0.246 0.143 0.120 0.448
RLM 3 7 3 RLM 0.4 0.5 0.251 0.146 0.131 0.469

3 3 7 RLM 0.4 0.5 0.264 0.149 0.162 0.531
3 3 3 RLM 0.4 0.5 0.280 0.157 0.172 0.544

3 7 7 KDERLM 0.4 0.5 0.252 0.142 0.158 0.459
7 3 7 KDERLM 0.4 0.5 0.243 0.132 0.126 0.432

QFM 7 7 3 KDERLM 0.4 0.5 0.238 0.126 0.150 0.441
+ 7 3 3 KDERLM 0.4 0.5 0.245 0.141 0.148 0.443
KDERLM 3 7 3 KDERLM 0.4 0.5 0.252 0.147 0.160 0.471

3 3 7 KDERLM 0.4 0.5 0.270 0.150 0.168 0.544
3 3 3 KDERLM 0.4 0.5 0.279 0.159 0.176 0.573

Table 6.5 presents the weighted average of the proactive evaluation metrics (i.e.

PE-MRR, PE-P@5, PE-P@10 and Cumulative Recall) over three steps for simulated

read-write interactions for users (i.e. where the simulated user perform both read

and write activities) for QFM, QFM+Okapi, QFM+RLM and QFM+KDERLM.

The observations in Table 6.5 are similar to those of Table 6.4.

However, in relation to our research question RQ3-C (i.e. How proactive sug-

gestion effectiveness varies across two simulated read and read-write activities?), it

can be said that in terms of all the evaluation metrics, the values of P@5, MRR and

cumulative recall of write initiated interactions are lower than that of read initiated

interactions in Table 6.4. One possible reason for this may be that for read-write

137

Table 6.5: Results of proactive IR effectiveness with simulated read/write activities
of user agents.

Evaluation Metrics

Method CO TD SIM Expansion k α PE-MRR PE-P@5 PE-P@10 Cum-Recall

3 7 7 No 0.4 0.6 0.218 0.119 0.101 0.338
7 3 7 No 0.4 0.6 0.202 0.109 0.082 0.321
7 7 3 No 0.4 0.6 0.186 0.099 0.091 0.315

QFM 7 3 3 No 0.4 0.6 0.209 0.106 0.088 0.331
3 7 3 No 0.4 0.6 0.209 0.121 0.111 0.356
3 3 7 No 0.4 0.6 0.253 0.126 0.116 0.387
3 3 3 No 0.4 0.6 0.274 0.144 0.125 0.403

3 7 7 Okapi 0.4 0.6 0.220 0.120 0.118 0.356
7 3 7 Okapi 0.4 0.6 0.207 0.109 0.105 0.341

QFM 7 7 3 Okapi 0.4 0.6 0.200 0.109 0.098 0.326
+ 7 3 3 Okapi 0.4 0.6 0.211 0.112 0.108 0.349
Okapi 3 7 3 Okapi 0.4 0.6 0.218 0.132 0.147 0.361

3 3 7 Okapi 0.4 0.6 0.239 0.140 0.152 0.416
3 3 3 Okapi 0.4 0.6 0.255 0.148 0.162 0.431

3 7 7 RLM 0.4 0.6 0.239 0.121 0.138 0.377
7 3 7 RLM 0.4 0.6 0.230 0.101 0.130 0.358

QFM 7 7 3 RLM 0.4 0.6 0.221 0.095 0.127 0.342
+ 7 3 3 RLM 0.4 0.6 0.228 0.097 0.132 0.349
RLM 3 7 3 RLM 0.4 0.6 0.245 0.108 0.139 0.367

3 3 7 RLM 0.4 0.6 0.266 0.134 0.169 0.429
3 3 3 RLM 0.4 0.6 0.283 0.150 0.185 0.436

3 7 7 KDERLM 0.4 0.6 0.250 0.120 0.138 0.436
7 3 7 KDERLM 0.4 0.6 0.240 0.107 0.130 0.418

QFM 7 7 3 KDERLM 0.4 0.6 0.224 0.099 0.125 0.498
+ 7 3 3 KDERLM 0.4 0.6 0.232 0.111 0.134 0.429
KDERLM 3 7 3 KDERLM 0.4 0.6 0.249 0.138 0.147 0.461

3 3 7 KDERLM 0.4 0.6 0.279 0.146 0.150 0.492
3 3 3 KDERLM 0.4 0.6 0.285 0.152 0.166 0.516

activities, the initial information available to the proactive search agent is less com-

pared to read only activities. For read-write activities the Active Set for step 1 is

limited by the knowledge of the new content written by the users. In this case, the

system has no way of knowing the content of the documents on which the written

content was based on (i.e. Bt in Equation 6.4 has only the simulated written content

it does not have the original document). Whereas for simulated read activities, the

proactive search agent has information about the content read by the user along

with the whole document that the user was reading (i.e. Bt in Equation 6.4 has

both the simulated read content and the content read by the user).

Figure 6.12, 6.13 and 6.14 show the value of reward functions (i.e. MRR, P@5,

138

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1 2 3

C
u
m

u
la

ti
ve

R
ec

al
l

Steps

R-QFM

+

+
+

+
R-QFM+Okapi

×

×
×

×
R-QFM+RLM∗

∗

∗

∗
R-QFM+KDERLM

2

2

2

2
R/W-QFM

� �

�

�
R/W-QFM+Okapi

◦
◦

◦

◦
R/W-QFM+RLM

•
•

•

•
R/W-QFM+KDERLM

4

4

4

4

Figure 6.12: Variations in MRR in Different Steps for QFM and the different
variations of QFM using query expansion techniques (i.e. QFM, QFM+Okapi,
QFM+RLM and QFM+KDERLM).

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1 2 3

M
R

R

Steps

R-QFM

+

+

+
R-QFM+Okapi×

×

×

×
R-QFM+RLM

∗

∗

∗

∗
R-QFM+KDERLM

2

2

2

2
R/W-QFM�

�

�

�
R/W-QFM+Okapi

◦

◦

◦

◦
R/W-QFM+RLM

•

•

•

•
R/W-QFM+KDERLM

4

4 4

4

Figure 6.13: Variations in P@5 in Different Steps for QFM and the different
variations of QFM using query expansion techniques (i.e. QFM, QFM+Okapi,
QFM+RLM and QFM+KDERLM).

Cumulative Recall) at different proactive suggestion points for QFM, QFM+Okapi,

QFM+RLM, and QFM+KDERLM for both simulated read and write activities. It

can be observed from Figure 6.14 that for the subsequent iterative steps after the

first (i.e. second and third iterations) cumulative recall tends to saturate (i.e top

left of Figure 6.14) and P@5 values (i.e. bottom of Figure 6.14) tend to decrease,

which suggests that it is difficult to retrieve previously unseen relevant documents

for successive steps. This situation is particularly true for simulated user behaviour

because the simulation environment can only make use of a mixture of relevant and

non-relevant sentences from either the seed set of relevant documents or the relevant

documents retrieved during successive stages.

139

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3

P
@

5

Steps

R-QFM
+

+
+

+
R-QFM+Okapi

× ×

×
R-QFM+RLM

∗
∗

∗
R-QFM+KDERLM

2
2

2
R/w-QFM

�

�
�

�
R/W-QFM+Okapi

◦

◦
◦

◦
R/W-QFM+RLM

•

•
•

•
R/W-QFM+KDERLM

4

4
4

4

Figure 6.14: Variations Cumulative Recall in Different Steps for QFM and the differ-
ent variations of QFM using query expansion techniques (i.e. QFM, QFM+Okapi,
QFM+RLM and QFM+KDERLM).

In Figure 6.17, for step 2 we add two different versions of results for P@5: The

first one corresponds to the scenario where we use the simulated clicked documents

by the users as feedback signal (i.e. true relevance feedback) for query expansion

using Okapi, RLM or KDERLM, we name this step2a. The second one corresponds

to that scenario where we apply feedback for query expansion two times, we name

this step2b. The reason for demonstrating both step2a and step 2b is to observe

whether pseudo relevance feedback applied after a true relevance feedback works

better for proactive suggestion or not. It can be observed that the results in the

step 2b column are lower than the step 2a column in most cases. So we did not

compute the other evaluation metrics (i.e. P@10, MRR and Cumulative Recall) for

the step 2b scenario in Figure 6.14. For all the other evaluation metrics (i.e. P@10,

MRR, Cumulative Recall) step 2 corresponds to the scenario of step2a in P@5.

6.6.3 Parameter Sensitivity Analysis

In relation to RQ3-b, Figure 6.15 shows the variations of P@5 and MRR values with

respect to change in a user’s knowledge for our proposed query formulation approach

(i.e. QFM) and QFM with other query expansion approaches (i.e. QFM+Okapi,

QFM+RLM and QFM+KDERLM) in simulated read activities. Similar analysis is

shown in Figure 6.16 for simulated read-write activities. To have a fair compari-

140

Figure 6.15: Effect of varying the k in P@5(Top Diagram) and MRR (Bottom
Diagram) values for simulated write cycles in Step 1.

son between different knowledge configurations (i.e. the initial number of relevant

documents that is used to start simulation for read and read-write activities), we

keep the target set of relevant documents that a proactive retrieval model tries to

retrieve fixed across different knowledge configurations. It can be observed that

more knowledge of a topic (higher value of K) does not necessarily help in proactive

retrieval. One potential reason can be that starting with a higher number of rele-

vant documents may bias the retrieval, which will try to bring relevant documents

similar to the one that user have already seen. But our goal in the simulation setup

is to retrieve new relevant documents on the same information need. This is also

shown by the lower values of MRR achieved with higher values of k, e.g. the best

MRR with RLM for k = 0.2 is 0.611, whereas the best MRR with k = 0.6 is 0.574.

This implies that a proactive search agent is likely to be more effective in finding

unknown relevant documents if a user starts an exploration task with a relatively

141

MRR Values For Simulated Read-Write Cycles

Figure 6.16: Effect of varying the k in P@5(Top Diagram) and MRR (Bottom
Diagram) values for simulated read write cycles in Step 1

small amount of knowledge.

Effect of α on Proactive Suggestion Effectiveness

We now take a closer look into the effect of varying the parameter α for simulated

write activities. As described in Section 6.3.2, while generating simulated read/write

content for a user we use a parameter named α, which determines the proportion of

relevant sentences in a content read/written by a simulated user. The parameter α

is varied from 0 to 1 in the interval of 0.1. Figure 6.18, 6.19 and 6.20 shows the effect

of varying α in terms of P@5, MRR and cumulative recall for different query for-

mulation approaches (i.e. QFM, QFM+Okapi, QFM+RLM and QFM+KDERLM).

The best results are obtained at α = 0.6 for all the three metrics mentioned in a

simulated write activity. For simulated read activities the optimum results for all

142

0.1

0.105

0.11

0.115

0.12

0.125

QFM+Okapi QFM+RLM QFM+KDERLM

Step 2a Step 2b

Figure 6.17: Effect of applying true relevance feedback (i.e. step 2a) and true
relevance feedback along with pseudo relevance feedback (i.e. step 2b) in the second
pass of simulated read activity for QFM

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.2 0.4 0.6 0.8 1

P
@

5

α

Okapi

+
+

+

+ +
+

+

+

+

+ +

+
RLM

×
×

×
× × × ×

×
×

×

×

×
KDERLM

∗ ∗

∗ ∗ ∗
∗ ∗

∗
∗

∗
∗

∗
QFM

2
2

2

2
2

2
2

2
2

2

2

2

Figure 6.18: Effect of varying the mixing parameter α (i.e. used to create simulated
read and write content) on P@5 in simulated read activities at step 1.

the evaluation metrics (i.e. p@5, MRR, Cumulative Recall) are observed for a value

of 0.5.

6.7 Conclusions

In this Chapter, we addressed our third research question RQ3 (i.e. how can we

formulate proactive query in single stage task scenario?). We used the query for-

mulation framework introduced in Chapter 3 in a single stage task setup in this

chapter.

143

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0 0.2 0.4 0.6 0.8 1

M
R

R

α

Okapi

+
+

+ +
+ + +

+

+
+

+

+
RLM

× ×
×

× × × × × ×

×
×

×
KDERLM

∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗

∗
QFM

2
2

2 2
2

2
2

2
2

2
2

2

Figure 6.19: Effect of varying the mixing parameter α (i.e. used to create simulated
read and write content) on MRR in simulated read activities at step 1.

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

ve
R

ec
al

l

α

Okapi

+
+

+ + +
+

+ +

+

+ +

+
RLM

× × × × × × ×

×
×

×
×

×
KDERLM

∗ ∗
∗ ∗ ∗ ∗ ∗

∗

∗
∗ ∗

∗
QFM

2
2

2
2

2
2

2

2
2

2 2

2

Figure 6.20: Effect of varying the mixing parameter α (i.e. used to create simulated
read and write content) on cumulative recall in simulated read activities at step 1.

Here we first proposed a laboratory-based reproducible framework for investigat-

ing how proactive search agents can interact with a real user (which in this study is

simulated). The proactive search agents are designed to track of a user’s recent ac-

tivities (e.g. read and write) to formulate queries (without user involvement in this

process) and to notify users of potentially relevant new documents (ones which the

user has not seen before), which they may find useful in carrying out their current

task.

In Section 6.5.1 we described the three parts of our RQ3 in the context of simu-

lation setup. In terms of RQ3-a we can conclude from Table 6.3 that compared to

144

existing unsupervised term selection approaches our proposed method (i.e. QFM)

performs better in terms of providing proactive suggestions to the user. In terms of

RQ3-b we can conclude from Figures 6.16 and 6.15 that it is not always the case that

an increase in knowledge improves proactive suggestion. Beyond a certain threshold

if a user has more knowledge then it becomes difficult for a PIR model to provide

new relevant documents to the user. In terms of RQ3-c we can conclude from Table

6.3 that given the same configuration our proposed query formulation model is more

effective in a read-write scenario compared to a read only scenario.

The observations of our simulated setup may help a practitioner to make design

choices in development of an effective proactive IR systems in a setups involving

real users, e.g., a) a retrieval model should consider historical interactions of the

recent past, in addition to the present context; b) past information should be con-

sidered with a decaying factor, etc. We next investigate how same query formulation

framework performs for multi stage task setting in Chapter 7.

145

Chapter 7

Proactive Suggestions For

Multi-Stage Tasks

In this chapter we address our fourth research question RQ4 ‘Can we proactively

support a user by leveraging similar activities of other users?’. Here we focus on

user tasks where we can leverage similar activities of other users to proactively

support the current user. Broadly speaking these are generally tasks where other

users have engaged in similar tasks to the one being carried out by the current

user. One example of this kind of task might be planning for a vacation to a

popular destination. In this case, the different sub-tasks related to the task are

booking flights, booking accommodation, knowing about popular places to visit at

the destination, etc. A proactive system with access to this information could seek

to identify related tasks which have been carried out by other users, and to make

use of information extracted from them to support the activities of the current user.

There is no existing publicly available dataset containing a collection of diverse

logged activities from multiple users. However, there are publicly available search

query logs which contain information about the search activities (i.e. user typed

queries, clicked documents) of different users. So we focus here only on the scenario

where users are engaged in search tasks to address our fourth research question.

While a user is engaged in a search task within a search session, our objective is

146

to provide proactive suggestions to the user by not only leveraging the user’s past

queries (i.e. analogous to past user activities), but also making use of similar search

queries typed by other users in the past (i.e. analogous to similar activities being

carried out by other users). We described in Chapter 1 that the objective of a PIR

model is to support the user in his over all task. To accomplish this objective in our

search session setup we anticipate the different information needs that are related

to a user’s current task given their current query and provide them with documents

related to those information needs to help him complete his task. In a thread of work

related to query result diversification (Vieira et al., 2011; Santos et al., 2010), given

a user query the objective is to provide diverse documents related to the information

need presented in the query. A major difference between our work and this work on

query result diversification is that rather than focusing only on the current query

context (i.e. query reformulation sequence present in current session), we consider

both a user’s long and short term search context to anticipate their overall search

task and provide documents related to the possible sub-tasks for the current task of

the user.

One limitation of considering only search tasks is that they are controlled in

nature (i.e. the user explicitly expresses their information need in terms of search

queries). The activities in a search task are only keyword based queries and clicked

documents. In the case of general user tasks, activities can be of many different types

(e.g. reading, writing documents) and a user may not always have an information

need while carrying out an activity. However, if using similar queries from other

users can help a user’s current search task, then we believe that similar activities

of other users can also be used to help in accomplishing a user’s current task more

generally.

In this chapter we first describe how proactive suggestion works during a search

session using the framework described in Chapter 3, and then describe our experi-

mental setup used to explore the effectiveness of our proposed proactive suggestion

approach using the evaluation framework described in Chapter 4.

147

7.1 Proactive Suggestion in Search Sessions

In this section, we first describe how a user interacts during search tasks and then

discuss methods in existing literature that have been proposed to support a user with

information sources during search sessions. Our goal is both to review existing work

and show how our proposed proactive suggestion method differs from this existing

research in supporting users during search tasks.

While interacting with a search system, an appropriate representation of an

underlying information need of a user depends not only on the search expertise of

the individual user but also on the complexity of the search task, e.g. in a search task

with amorphous goals, an information seeker’s knowledge about the overall topic of

the task can evolve over time as they interact with retrieved content, making query

formulation difficult during different time instants (e.g. first query, middle of search

session, end of search session) of the search session (Liu et al., 2016). A traditional

IR system necessarily waits for a user to enter a query before computing a ranked

list of documents which seek to satisfy their information need, such a system is most

likely to satisfy the user’s evolving information needs if the query created at each

stage of the information seeking process is relatively well-formed.

To assist inexperienced users or users who are unfamiliar with a topic, standard

techniques to make IR systems more proactive include methods such as query com-

pletion and query suggestion, Query completion involves suggestions for completing

the remaining part of a partially typed query, e.g. (Mitra et al., 2014). If the

original query is ‘web de’, then possible suggestions for query completion might be

‘web design’, and ‘web development’. Query suggestion involves suggesting a list of

queries that might better describe the information need and could help to retrieve

more relevant documents. These may be related either to the current information

need based on previous entered queries similar to the one currently being entered

(Feild and Allan, 2013; Li et al., 2012) (task-agnostic), or to different directions in

which the current information need could evolve (Hassan Awadallah et al., 2014;

148

Muntean et al., 2013) (task-aware).

Both query completion and query suggestion output a ranked list of candidate

queries to the user, who can then select a reformulated query from this list, which

thus means that these approaches are not completely proactive. Contrastingly, the

output of our proposed proactive suggestion approach is a system-anticipated ranked

list of documents, created entirely automatically which the user may find helpful

during the rest of his search session. Such an approach is more proactive than query

completion or suggestion, because it does not require the user to take any action

interrupting his work.

To retrieve an anticipatory list of documents that might be helpful to the user

during the rest of his search session, we use similar queries from other users, taken

from a past search log. The objective of this anticipatory list of documents is to

show information related to possible information needs associated with sub-tasks

of a user’s current search activities. Figure 7.1 shows a concrete example of how

other users’ similar interactions can be used for proactive suggestion. Figure 7.1

is a small excerpt from the AOL search query log introduced in Section 5.5 of

Chapter 5. In this example it can be seen that both users u1 and u2 have similar

information needs. So when user u2 has typed his first query, we could reasonably

use the similar query entered by user u1 to predict that user u2 may be interested

in knowing about ‘robert franci kennedy’ after ‘john f kennedy family’. Generally

speaking, in a traditional search system users like u1 and u2 need to manually type

initial queries on specific sub-topics (e.g., ‘jfk’, ‘robert f kennedy’), read a number of

top ranked retrieved documents to eventually reformulate this query to move on to a

different sub-topic (e.g., Kennedy family) during their search session. Our proposed

proactive suggestion approach seeks to assist a searcher by retrieving documents

related to ‘robert francis kennedy’ or ‘jfk assassination’, i.e. by proactively predicting

potential subsequent information needs based on the search activities of previous

related searches [when a user has only typed a query about ‘jfk’]. The proactive

suggestions are thus likely to reduce the number of user queries within the search

149

Similar
Information

needs of
different

users

Sessions (AOL User ids) Queries

U1 (636926) jfk
robert f kennedy

U2 (3458083) john f kennedy family
robert francis kennedy

U3 (1604008) jfk assassination

U4 (3271790) president john f kennedy assasination crime scene

Figure 7.1: Sample queries from AOL query log.

Tradi&onal IR

Proac&ve IR

q1

L(q1)

q2

L(q2)

qπ-1

L(qπ-1)

L(qπ)

qπ

L(qπ) L(q̂π+1) L(qπ+1) L(q̂π+2) L(qπ+n) L(q̂π+n+1)

qπ+1 L(qπ+1) qπ+2 L(qπ+2) qπ+n L(qπ+n)

Users
(Sessions)

Terms

W
ei

gh
ts Terms

W
ei

gh
ts

Terms

W
ei

gh
ts

Past Search
Log DataTerms

W
ei

gh
ts

Terms

W
ei

gh
ts

Terms

W
ei

gh
ts

Fine-grained
sub-tasks

qπ+1 qπ+nqπ

Evalua&on

Trained Proac&ve IR Model

L(qπ+2) L(q̂π+3)

qπ+2

q1, q2… qπ-1

Time

Time

Time

Point of
proac&vity

Figure 7.2: Schematic Diagram of a specific proactive search system (PSS).

system (Muntean et al., 2013), and thus the amount of work they need to do.

In the following section, we describe the components and functionality of the

architecture of our proposed proactive suggestion model in detail.

7.1.1 Overall Architecture

We use the generic framework proposed in Chapter 3 to develop a proactive IR model

for search tasks. Figure 7.2 shows the schematic diagram of our proactive suggestion

of documents framework in the context of search tasks. We call this framework a

proactive search system (PSS). As described in Chapter 3, a PSS essentially needs

to use a context of queries previously entered by a user, before it can start retrieving

documents without queries being explicitly submitted to the system by the current

150

user (Tan et al., 2006). Consequently, until the point in time at which a PSS has

accumulated sufficient context, it behaves like a traditional search system (as seen

in the left part of Figure 7.2), i.e., it retrieves a list of document L(qt) in response

to a manually submitted user query qt, where t denotes a point in time.

Generally speaking, at some point in time (say at t = π) within a user search

session (marked as ‘point of proactivity’ in Figure 7.2), a PSS can switch to proac-

tive mode. The lower part of Figure 7.2 towards the right of the branch in time

t = π shows that in proactive mode, in addition to retrieving a ranked list of doc-

uments for the current query submitted by the user, qπ, the system also retrieves

a list of documents L(q̂π+1). The objective of the PSS is to seek a list, L(q̂π+1),

containing documents which the user may find of interest to accomplish his overall

task objective.

We emphasize that it is not the focus of this chapter to investigate if this is the

best way to provide proactive suggestions to a user, which is a separate research

question to investigate and would rather involve real user studies. Rather the ob-

jective of this chapter is to develop a model that could effectively retrieve such a

list, which can be used to support a user.

7.2 Proactive Query Formulation

As shown in Figure 7.2 in Section 7.1.1, we use three different information sources

to proactively formulate a query. They are:

• a user’s recent session context (i.e. Ct the set of queries from q1 to qt)

• similar queries form a user’s past search sessions (i.e. Hut)

• similar queries from other users’ past search sessions (i.e. Hout)

We denote the union of the sets Hut and Hout as Ht. In our query formulation model

we give equal importance to all the similar queries coming from the past search log

(i.e. the user’s own past search sessions and other user’s past search sessions). In

151

Section 7.4.2 of this chapter we demonstrate the effect of varying the importance of

the user’s own search history to other user’s search histories.

We use the query formulation model proposed in Section 3.2.1 in Chapter 3 to

formulate a proactive query in our search session setup. More specifically, we use

Equation 3.7 from Chapter 3 to estimate the weights of different words given the

context of a sequence of queries executed by the user. Bt in Equation 3.7 has two

components. One is a user’s recent activities (i.e. Ct) and the other one is similar

activities from the the past (i.e. Ht). For convenience we again restate the query

formulation method in Equation 7.1.

P (w|θR, at) =
∏
t∈at

∑
a∈Bt

Pe(t|a)Pe(w|a) e−δ(at,a)2 at · a
|a||at|

. (7.1)

The activities (i.e. a′is) shown in Equation 7.1 are queries in a search session

scenario since we consider only search tasks. Recall from Section 3.2.2 in Chapter 3

that we find similar activities related to a user’s current activity using an embedding

framework. In the last part of the Equation 7.1 we also use embedding based

similarity (i.e. at.a
|a||at|) to estimate the likelihood of a word for formulating a proactive

query (i.e. p(w|θR, at)). We use the graph-based embedding approach proposed in

Chapter 5 to obtain the embeddings for both words and queries. In the following

section we describe in detail how we obtain the embeddings of both queries and

words simultaneously using the graph based approach proposed in Chapter 5.

7.2.1 Graph Representation learning

As discussed in Chapter 5, that a graph based embedding approach can help to

capture the task semantics better compared to existing approaches. Hence we first

construct a graph using queries and words present in the past query log. The nodes

of the graph are words and queries present in the log. There are three different kinds

of edges in the graph, each of these is described below.

• Word-Word: An edge (v(w), v(w′)) exists between a pair of words w and w′

152

if they both occur at least once within a search session. If a word pair occurs

frequently in multiple sessions across the overall query log, then it is likely that

the words in the pair are likely to be associated with the same task topic since

all the queries appearing within a single session are generally related to the same

task in most of the cases.

• Query-Query: Queries appearing within a single search session are likely to be

related to a similar topic. Hence we add an edge (v(q), v(q′)) between a pair of

queries q and q′ if they appear at least once within a search session.

• Query-Word: An edge (v(q), v(w)) exists between a word and a query (and

vice-versa) if the word is a part of that query. The reason for using this type of

edge is that a word within a query is related to the overall search intent expressed

using the query.

Defining Edge Weights

The weights of the edges are computed using Equation 5.11 described in Chapter

5. This computes the co-occurence between a pair of nodes (i.e. word pair, query

pair, word-query pair) within a session. For word-word and query-query edges, the

weight is given by computing an average of the co-occurrence likelihoods across all

sessions. For edges between a query and a word (and vice-versa), we accumulate the

occurrence likelihoods as shown in Equation 7.2. In Equation 7.2, f(w, q) denotes

the number of times the word w is present in the query q and |q| denotes the length

of the query q. Essentially f(w, q) measures the likelihood of word w appearing

in query q. The higher the value of ω(q, w), the greater the semantic connection

between the word and the query.

ω(q, w) =
1

|S|
∑
s∈S

f(w, q)

|q|
(7.2)

To illustrate the query flow graph with an example, consider the graph (compris-

ing words and queries as nodes) shown in Figure 7.3, constructed using our method

153

jfk

Robert f
kennedy

kennedy

Robert

john

Jfk
assasination

 assasination

president john f kennedy
assasination crime scene

president

crime

john f
kennedy

family

family

Robert
francis

kennedy

Francis

scene

Word Node
Query Node
Word-word Edge
Word-Query Edge
Query-Query Edge
Queries grouped by Sessions

Figure 7.3: A sample sub-graph constructed from the AOL queries of Figure 7.1
(edge weights not shown for clarity of image).

described in this section. Representation learning of the nodes with our embedding

approach proposed in Chapter 5 on this graph is likely to result in similar vectors for

the words ‘jfk’ and ‘robert’. This is because there exists a 2-hop path from the query

node ‘jfk’to the word node ‘robert’ (‘jfk’→ ‘robert f kennedy’→ ‘robert’), meaning

that the word ‘robert’ is expected to be sampled as a context word for the query

(word) ‘jfk’ during node2vec training. This is a desirable representation because the

current information need of a user seeking information on ‘jfk’ may evolve to that

of exploring more on John F. Kennedy’s family. Another example is that the words

‘jfk’ and ‘john’ are likely to be embedded close to each other because of the path

‘jfk’→‘assassination’→‘john’.

154

Sequences vs. Sets

Existing work on query prediction (Sordoni et al., 2015; Chen et al., 2011) uses se-

quence to sequence modeling to learn query and session representations. But rather

than using a sequence-to-sequence model we focus on a graph-based embedding ap-

proach for next query prediction. It is worth noting that the main difference in

the working principle of a graph-based representation learning of queries and words,

with that of a sequence-to-sequence modeling based query suggestion, is that while

the latter models the next query as a function of the previously occurring queries

within a session, the former is devoid of this assumption. Using a graph-based ap-

proach is more suitable for modeling queries seeking to complete a task, because the

sub-tasks within a session are mostly independent and could be carried out without

any strict reference ordering. A user may proceed to complete his overall task in

a different sequence of sub-tasks as compared to his predecessors (i.e. other users

who performed similar tasks in the past). A sequence-to-sequence model takes q1 to

qt−1 as input to predict the next query qt. Our model is trained with all the queries

appearing in the training set of AOL query log data. A sequence-to-sequence model

based query suggestion, because of its hard constraints on the strict order observed

in the training set (log history), may not generalize adequately. For our proposed

approach we first split the whole query log dataset into training and test sets. We

use the training data to learn our proposed graph based embedding model. We

predict proactive suggestions for a user in the search sessions in the test set. For a

given query in the test set, we bring related queries from the training set to provide

proactive suggestions of documents to the user.

7.3 Experimental Setup

In this section we describe details of our experimental study on proactive search for

a multi-stage search task. We begin with an overview of our datasets, the objectives

of our experiments, and also describe the application of our Proactive IR evaluation

155

framework to this task.

7.3.1 Dataset

Here we describe how we use an existing search query log data for our experiments

for proactive suggestion.

Documents and Queries

For this study we again make use of the publicly available AOL query log. In

our experiments, we retrieve proactive suggestions from the Clueweb12B Document

collection 1. Clueweb12B contains a total of nearly 52M documents. From this

collection, we index only those documents that yield a spam filtering percentile score

higher than 70% (Zamani and Croft, 2017) using the spam filtering method proposed

in (Cormack et al., 2011). This results in a total of over 13.7M indexed documents

from the filtered collection. The combination of the AOL query log and Clueweb12B

was previously used in experiments reported in (Zamani and Croft, 2017; Dehghani

et al., 2017). In spite of being independent data sources, since the AOL log comprises

queries directed to the AOL web search engine, and Clueweb12B is a large general

collection of web pages, it is expected that there should be considerable topical

overlap between the former and the latter.

Defining Sessions

Recall from Section 7.2.1 that our proactive search method relies on the notion of

a session to compute co-occurrences of query-pairs or word pairs. We segment the

total collection of queries in the AOL log into non-overlapping groups of queries (each

group constituting an individual session). We use the same method used in Chapter

5 to split the AOL query log into sessions. A session delimiter was placed whenever

the timestamp difference between two consecutive queries exceeded a threshold value

(which was set to 26 minutes, as prescribed in (Lucchese et al., 2013)).

1https://lemurproject.org/clueweb12/

156

Training and Test Sets

The proactive IR model described in Section 7.2 makes use of query logs as a source

of potential similar queries entered by other users to proactively support the current

user (see Figure 7.2). We split the set of AOL query logs into two parts. One is used

for training purposes and the other one is used for testing. Specifically, we define

the first 95% (i.e first 20 million queries from AOL log) of the AOL queries as the

training set. The queries in the training set are used to from a graph as described

in Section 7.2.1, which is used to find queries similar to those of the current user.

The queries in the test set are used to evaluate the effectiveness of our proposed

proactive query formulation approach, described in Section 7.2.

Recall from Section 7.2 that we need a set of search sessions for our proposed

proactive document suggestion model to work. The test split of the AOL query

log contains the remaining 1 million queries. To construct the test set from these

remaining queries, we first segment these queries into sessions based on the criteria

defined in Section 7.3.1. Then from the set of all sessions in the test split, we first

select a random subset of 300, 000 sessions. Existing literature (Hassan Awadallah

et al., 2014) showed that if sessions are longer in length than a session containing

two or three queries (e.g. 5 or more), then it is more likely that the user can be

engaged in a multi-stage search session. Hence to ensure that the sessions in the test

set are representative of multi-stage search sessions (i.e. where the overall search

task has multiple sub-tasks in it), we only include those sessions comprising the

top 5 percentile (in terms of the session length, or in other words, the number of

queries in a session). By top 5 percentile we refer to the fact that we first sort all

the sessions in terms of their length in descending order, and if x is the maximum

session length, then we consider only the sessions having length at least x∗ .05. This

filtering process keeps only those search sessions which are comparatively longer

in length. This resulted in a total of 280, 567 sessions in the test set. Table 7.1

shows details of the training and the test splits. The number of unique users in the

training and test set are 646, 009 and 55, 000 respectively. The average length of

157

queries appearing in the training and test set are 5.25 and 5.32 respectively.

Preprocessing

As a preprocessing step, we first remove stop words from the query log using the

SMART stopword list smart (2019). We also remove identical pairs of consecutive

queries from the AOL log, since duplicate queries will not provide any extra informa-

tion. We did not remove identical or similar queries from different sessions. For our

graph-based representation learning framework, we first construct a graph from the

training set. Since there are 20 million queries in the training set, the constructed

graph has a large number of nodes. Hence we employ a frequency threshold to only

create nodes for words/queries with collection frequency higher than this threshold

across 20 million queries to reduce the size of graph, which will make the compu-

tation faster. We examined threshold values from 1 to 5 in the interval of 1. We

found that the graph constructed from the threshold value 5 had reasonable size,

where graph construction and embedding can be completed in a feasible time. The

resulting graph had 1 million nodes and 92,447 edges. Without any filtering the size

of the original graph had 1.3 million nodes and 1 million edges.

Moreover, we also employ a threshold to remove spurious edges, where edge

weights are below a threshold. If a pair of words or queries co-occur in a very less

number of sessions then the corresponding edge weights are low. As a result of this,

it is very unlikely that they will carry any useful connection information between a

pair of nodes in the graph. Before applying the threshold, we normalized each edge

weight within the range [0, 1] (see Section 7.2.1). We initially varied the threshold

parameter from 0 to 0.3 in the interval of .01 and observed the effectiveness of the

graph based embedding for proactive suggestion in terms of AP (i.e. described in

the evaluation metric in Chapter 3). The optimum value of AP was observed for

the threshold value of .05.

158

Sessions Queries #Users

#Total Avg Len #Total Avg Len

Training 2,312,177 9.05 16,512,216 5.25 646,099
Test 280,567 19.9 1,578,951 5.32 55,000

Table 7.1: Training and Test splits of the AOL Query log

7.3.2 Evaluation Outline

We use the evaluation framework proposed in Chapter 4 to measure the effectiveness

of our PSS. As described in Chapter 4, there are two different categories of evaluation

metrics for proactive IR. The first one is for measuring the quality of the proactive

query, and the second is for measuring the effectiveness of the proactive suggestion

list. In Section 4.4.2, we proposed MRR for evaluating query effectiveness. In the

search session setup, at time t = i, we seek to predict a user’s next information need.

From the AOL query log dataset we already know the user’s actual next query (i.e.

the query formulated at t = i+ 1). So we can evaluate the proactive query against

the user typed query qi+1. We name this evaluation metric QP−MRR in our search

task scenario.

Recall from Chapter 4 that for each proactive suggestion we need a reference

set of retrieved documents for the original query to measure its effectiveness. In

our search session setup this reference set is the top k documents retrieved using

the next query actually typed by the user. Concretely speaking, each anticipatory

(predicted) ranked list, L(q̂π+i), is compared with the reference list L(qπ+i+1) in order

to measure how successfully a proactive IR model can retrieve the set of documents

that would have been retrieved if the user had submitted the query qπ+1 explicitly. If

rt denotes an overlap measure between the predicted list of documents L(q̂t) and the

groundtruth set of documents L(qt) at time t, then an aggregate of these overlaps

from the point of proactivity to the end of the current user session estimates the

overall effectiveness of a PSS throughout its active duration in a user search session.

Once the reference set is fixed, Section 4.4.2 introduced an alternative reward

159

function that can be used to compute the overlap between a reference set and a pre-

dicted suggestion list. We use MRR (i.e. PREVAL-MRR), precision (i.e. PREVAL-

AP) and cumulative recall (i.e. PREVAL-Ap+) as described in Section 4.4.2 to

measure the effectiveness of our proposed proactive IR model.

7.3.3 Approaches Investigated

Here we describe the different approaches that we use as our baselines. A num-

ber of existing approaches have been introduced related to TREC Session Track

(Carterette et al., 2014) where the objective is to provide a user with all the task re-

lated documents based on a given sequence of task related queries executed by a user

within a session. A major difference between our work and the methods proposed in

(Carterette et al., 2014) is that there is no scope for using similar task related queries

of other users in this scenario. Another difference is that in the TREC session track

all the task related queries were already given and the objective is to find docu-

ments related to these queries. However the objective of our proactive search model

is to provide the user with different information needs that could potentially arise

in future given a partial context of queries in a search session. Broadly speaking,

we employ two categories of baselines, one that uses text-only information and the

other that uses representation learning (embedding), each one of them is described

in more detail below. For this task, the objective of using text-only baselines is to

show how conventional text-based methods perform compared to embedding based

approaches, which seek to capture semantic similarity between a pair of queries or

words for proactive suggestion. The reason for using a number of embedding based

baselines is to observe how existing embedding approaches compare to text-based

methods and to compare them to our proposed embedding approach for proactive

query suggestion.

160

Text-only Baselines

In these baselines we use the word overlap to compute the similarity between a pair

of words or queries (i.e. σ in Equation 7.1 in Section 7.2). An objective of using

different types of text-based approaches as baselines is to observe how effective

word-based similarity for proactive suggestions is compared to approaches which

use embedding methods to compute similarity between a pair of queries or terms.

Relevance Model (RLM) (Lavrenko and Croft, 2001). This baseline exam-

ines a text-only based approach by applying the relevance model (i.e. introduced in

Chapter 2). The objective of using this approach as one of our baselines is to ob-

serve how using only a user’s most recent query activity (i.e. qt), we can proactively

suggest queries to the user for his future information needs. Specifically, we apply

the relevance model on the retrieved list of qt to estimate a distribution of words

based on the user’s current information need. Then we choose top 5 words from the

set of words to predict the next query q̂t+1. We use q̂t+1 to retrieve a ranked list of

document suggestions for the user. This baseline neither uses information from the

user’s history (i.e. H) nor a user’s recently typed queries within a session (i.e. Ct).

Session-Based Relevance Model (SRLM). The objective of using this approach

as one of our baselines is to observe how using a user’s most recent query activity

history (i.e. q1, q2, . . . , qt), we can proactively suggest queries to the user for his

future information needs. In this baseline we apply the relevance model (Lavrenko

and Croft, 2001) on the set of queries that the user has typed up to time t to estimate

the importance of a word given a user’s current session context. Based on the weight

estimated by the SRLM, we choose the top k terms to predict qt+1. The SRLM uses

the same working principle as RLM. The formula for weight estimation using the

SRLM is given in Equation 7.3. In Equation 7.3, qt is the last query typed by a user

and qi is any previous query appearing in the current session up to time t − 1. It

does not use the information from a user’s past history (i.e. H).

161

P (w|R) = P (w|qt)
t−1∏
i=1

P (w|qi) (7.3)

Contextual RLM (CRLM). The objective of using this baseline is to observe how

proactive suggestion works when exploiting a user’s recent query history (i.e. Ct)

and similar queries from the past (Ht), while using only text-based similarity. This

baseline is exactly the same as our proposed proactive query formulation approach

described in Equation 7.1. The only difference is the a.at
|a||at| component of Equation

7.1 uses the embedding of activities/queries to compute the similarity between them.

But we use word-based similarity between a pair of queries for query formulation

purposes in CRLM. In particular for our experiments, we use an index constructed

from the AOL queries from the training set and retrieve the top k queries from those

retrieved based on LM-JM similarity between a pair of queries. To select the subset

of candidate queries we set the parameter k = 30.

Query Flow Graph (QFG). In our proposed proactive suggestion framework an

existing query prediction model can be used as an intermediate step, where the

predicted next query can be used to retrieve a ranked list of documents that can

be shown as proactive suggestions to the user. The objective of using this QFG

baseline is to observe how an existing graph based query prediction model performs

for proactive suggestion.

Here we use a query prediction approach named Query Flow Graph (Boldi et al.,

2008; Bonchi et al., 2012) to first predict a candidate set of the N next queries given

a user’s current query qt. The QFG method in (Boldi et al., 2008; Bonchi et al.,

2012) learns a transition model of possible query reformulations within a session.

The graph used for this baseline to predict next queries is constructed from the AOL

query log (as in our proposed approach described in Section 7.2). From each user’s

past query log history we construct a separate query flow graph. Given a user’s

current query we first try to find the corresponding node in the graph. Then we

sort the edges connected to that node, based on the weights. We choose the top N

162

queries. We initially varied N from 2 to 8 in the interval of 3 and obtain the highest

AP value when N was equal to 5. Hence we choose top 5 most likely queries from

the graph. These queries are potential candidates for qt+1. Then we use a LM-JM

(Ponte and Croft, 1998) retrieval model with λ = 0.5, to retrieve a ranked list of the

top 10 documents corresponding to each candidate next query. We then combine the

10 ranked lists into a single list of k predicted documents, L(q̂t+1), by the weighted

CombSum method (Shaw et al., 1994). The weights used in the Combsum approach

is proportional to the edge weights in the constructed query flow graph from AOL.

Recall from Section 7.2, that the edge weights in the query flow graph estimates

cooccurrence probability for a pair of queries within a search a session.

Note that this baseline relies on a user’s most recent query (i.e. qt) and only a

user’s past queries (i.e. Ht comprising of only a user’s past queries). This method

does not use similar queries of other users to proactively support the current user.

Moreover this method also does not involve any embedding approach (e.g. graph

representation learning) to determine the set of predicted next queries. Hence se-

mantic similarity between a pair of words is not taken into account explicitly in this

approach.

Query Flow Graph (QFG+). This method is the same as QFG, except that we

construct a single query flow graph from all the past queries of all the users, rather

than constructing separate query flow graphs for each user like QFG.

Note that this baseline relies on the current session context (i.e. Ct) and the

historical information from a query log (i.e. H comprising of both a user’s past

queries and similar other user queries in past). This method also does not involve

any embedding approach (e.g. graph representation learning) to determine the set

of predicted next queries. Hence semantic similarity between a pair of words is not

taken into account explicitly in this approach.

All the above mentioned baselines are text-only approaches which rely on learning

task-query associations from exact term matches only, and are hence unable to

address word-level semantic associations.

163

Embedding Baselines

Now we discuss embedding based baseline approaches. The objective of using these

baseline approaches is two fold. The first reason is to observe whether applying

semantic similarity (in Equation 7.1) improves the proactive suggestion effectiveness.

The second reason is to observe whether the embedding approach used in our method

captures the semantic similarity better than existing embedding approaches for the

effectiveness of proactive suggestions.

Word-Embedding (WE). The objective of using this baseline is to observe how

an existing standard embedding approach, the skip-gram (Mikolov et al., 2013a)

is effective for proactive suggestion. In this baseline, we use the skip-gram word

embedding model (Mikolov et al., 2013a) on the training split of the AOL query log

(i.e. first 20 million queries) to learn the semantic associations between terms in

queries that are submitted close in time. We use the skip-gram embedding to find

queries related to the curent query qt. Once we have a user’s current query, a user’s

recent session history and related queries from the past, we use our proposed query

formulation model (i.e. described in Equation 7.1) to retrieve the list L(q̂t+1). Since

skip-gram word embedding does not directly learn representations of queries, we

obtain the vector representation of a query by summing the vectors of its constituent

words. The only difference between this approach with our proposed proactive

suggestion model is that instead of using our graph based embedding, here we use

the skip-gram embedding model.

Hierarchical Recurrent Encoder Decoder (HRED). The objective of using

this as one of our baselines is to observe how an existing deep learning based query

prediction model performs in proactive document suggestion. The HRED baseline

method applies a sequence-to-sequence model for query prediction as proposed in

(Sordoni et al., 2015). The encoder side is a hierarchical LSTM to model the se-

quential dependence between the terms within a query and also the queries within

a session. Given the context vector obtained from the encoder of the hierarchical

LSTM, the decoder part predicts the terms for the next query. Once we get the

164

predicted next query (i.e. qt+1), we retrieve documents with the predicted query

using LM-JM similar to the previous baselines.

Sequence-Sequence with Transformers (BERT). BERT (Devlin et al., 2019)

is a recent contextual embedding model which has proven to be effective in a variety

of NLP tasks. The objective of using a BERT based model as one of our baselines

is to compare the effectiveness of state-of-the-art contextual embedding approaches

with our proposed embedding approach. The model makes extensive use of external

information to construct a masked language model from large document collections

with positional information. Specifically, we use the ‘BERT-Base model uncased’

model and fine-tune it on the AOL query log to predict the next query. Specifically,

we used the ‘BERT-base-uncased’2 pre-trained model as a knowledge source to learn

the query generation sequence-sequence model using a standard LSTM architecture,

similar in principle to (Futami et al., 2020; Rothe et al., 2020; Lewis et al., 2019;

Nogueira and Cho, 2020). More precisely, in contrast to the hierarchical encoder-

decoder architecture of HRED, for this baseline we feed in the dense vector (768

dimensional) for each query (in its entirety) obtained from a pre-trained BERT

model (instead of feeding in the vectors for each of its constituent terms). Instead of

HRED, for this method we use a single layer of LSTM cells to learn the sequence of

queries directly. Similar to the HRED baseline, for this method during training, we

feed in a sequence of each query (except the final one) within each session as inputs,

the objective being to predict the final one as a reference output. The decoder part is

similar to HRED comprising a softmax of dimensionality identical to the vocabulary

size; the objective being to predict the likely sequence of words in a future query

following a given partial session context.

Paragraph Vector Embedding (D2V). This baseline is similar to our proposed

query formulation framework described in Section 7.2. The embedding similarity

in Equation 7.1 is obtained from doc2vec (Le and Mikolov, 2014) in place of our

proposed embedding approach. The ‘doc2vec’ method is first trained on AOL (i.e.

2https://huggingface.co/transformers/pretrained_models.html

165

on first 20 million queries of AOL log). Similar to our proposed graph-based em-

bedding approach ‘doc2vec’ embeds both words and queries simultaneously. The

reason for using this method as one of the baselines is to observe how our proposed

query and word embedding approach performs compared to an existing word and

query embedding approach.

Non-negative Matrix Factorization (NMF). In this baseline, we apply the

non-negative matrix factorization (NMF) method (Salakhutdinov and Mnih, 2008)

on the adjacency matrix of the weighted graph obtained with the method described

in Section 7.2.1. With NMF we obtain a joint representation of both queries and

words. Once we get the embedding for words and queries, we apply Equation 7.1

to formulate the proactive query. The reason for using NMF as one of our baselines

is similar to D2V which is to obsrve how our proposed embedding method performs

compared to state-of-the-art word and document embedding approaches.

For embedding approaches such as the WE and D2V approaches, the objective

is to make each word similar to all the words appearing in its context. The size

of context (i.e. W) and the negative sample size (i.e. NS) are common parameters

in WE and D2V and our proposed embedding approach. We choose the optimal

configuration as described in Section 5.5 in Chapter 5. The value for W is set to

5 and the value for NS is set to 10. For all the embedding based approaches, we

initially varied the word vector dimension from 100 to 300 in the interval of 100 and

observed the effectiveness of proactive suggestions in terms of AP in AOL test set

described in Section 7.3.1. We obtained the best AP value for 200 dimensions. So

we fixed the embedding dimension as 200 similar to (Grover and Leskovec, 2016;

Sen et al., 2018b). the optimum values are reported in Table 7.3.

Proposed Approaches

Unlike all the baseline approaches, our proposed proactive suggestion model uses a

graph-based embedding approach which attempts to capture the task-based associ-

ations between words or queries. Hence our proposed approach is likely to be more

166

Method qt L(qt) H Ct RL T WQ JRL

RLM X X X
QFG X X X
QFG+ X X X X
SRLM X X X X
CRLM X X X X X
WE X X X X X
HRED X X X X X X
BERT X X X X X X
D2V X X X X X X X
NMF X X X X X X X
GRL X X X X X X X

Table 7.2: Summary of the approaches investigated. The columns denote sources of
information, e.g. representation learning (RL), temporal information (T), weighted
query (WQ), joint representation (JRL).

effective in formulating proactive queries that can eventually be used to provide

proactive suggestions to the user. We investigate two variants of our proposed ap-

proach of graph representation based proactive IR. In the first variant, named GRLU

(unweighted), we set the edge weights to 1, which means that our node embedding

method only takes into account the reachability information from the connections

between edges of a graph. In the second variant, named GRLW, we set the edge

weights as described in Section 7.2.1.

Table 7.2 shows a summary of the sources of information used in each approach

investigated in our experiments.

7.3.4 Parameter Setting

The training split of the AOL query log data is used to construct the graph (de-

scribed in Section 7.3.1) which is used to obtain the embedding for both words and

queries. The sessions in the test split of the AOL query log are used to evaluate the

effectiveness of a proactive IR approach. For all the approaches, once we obtain q̂t+1,

then we use LM-JM retrieval model to retrieve the top 10 documents as proactive

suggestions (i.e. Lq̂t+1) for the user. We use LM-JM with λ value 0.6. We use the

same λ value for the retrieval using all the other approaches.

167

A common parameter in a test configuration of a proactive systems is the point

at which the system becomes proactive. We refer to this parameter as π, where π is a

number between 0 and 1. Since the number of queries varies across sessions, instead

of using an integer value index we use a fraction value for π, which is interpreted as

the proportion of queries in a test session for which an IR model behaves traditionally

(i.e. for each user query it shows a single ranked list of documents rather than

predicting a ranked list of documents which can be useful for the user in future).

The smaller the value of π, the greater is the number of future queries for which

anticipatory ranked lists are retrieved. For example, a value of π = 0.1 for a session

means that documents are retrieved proactively for 90% of the queries in this session.

To ensure fair comparisons between the approaches investigated, we optimize the

parameter π of each individual method including baselines and proposed approaches

independently. π is varied in the range [0.1, 0.9] to choose the optimal value of AP

for each method. The optimal parameter settings for each method are also shown

alongside each method in Table 7.3. The session length (i.e. the number of queries

in a session) of any session is not known at first in the test set. So we use the

average session length of all the search sessions in the training set multiplied by π

to determine after how many queries in a search session in the test set a system

will be proactive. For all the baseline and proposed approaches discussed in Section

7.3.3, we know that each one of the approaches eventually estimates a distribution

of words given a user’s session context except QFG and QFG+. We choose the top 5

terms to formulate the proactive query from the distribution. This proactive query

is used to retrieve proactive document suggestions. However, recall from Section

7.3.2 that one of our evaluation metrics is QP-MRR, which measures the inverse of

the rank of the user typed next query (i.e. qt+1) from a ranked list of predicted next

queries (i.e. R(q̂t+1)). To formulate the ith proactive query in R(q̂t+1) of size k1,

we take the top 5 terms starting from ith most important word obtained from the

distribution estimated by the corresponding method. In our experimental setup, the

value of k1 was set to 5, similar to (Sordoni et al., 2015). Note that the top most

168

Method Optimal Parameter Settings Metrics (Averaged over remaining 1− π-th fraction of sessions)

π M N k W NS QP-MRR ρ MRR AP AP∗ AP+

Text- RLM 0.7 10 - - - - 0.2015 0.1510 0.1930 0.0931 0.1340 0.0628
based SRLM 0.7 10 - - - - 0.2123 0.1615 0.2120 0.1035 0.1345 0.0895

QFG 0.6 - 10 - - - 0.4233 0.1931 0.2415 0.1231 0.1671 0.0933
QFG+ 0.6 10 10 - - - 0.4510 0.2311 0.2843 0.1561 0.1735 0.1231
CRLM 0.6 - - 30 - - 0.4031 0.2751 0.3821 0.1832 0.2881 0.1996

Embedding & WE 0.6 - - 15 5 5 0.4899 0.2933 0.4550 0.2352 0.3183 0.2182
Seq2Seq HRED 0.6 - - 15 - - 0.5439 0.3011 0.4892 0.2471 0.3209 0.2153
based BERT 0.6 - - 15 - - 0.5561 0.3103 0.4951 0.2486 0.3211 0.2156

D2V 0.6 - - 15 5 5 0.3501 0.2244 0.3981 0.2123 0.2909 0.1991
NMF 0.6 - - 15 5 5 0.3501 0.2459 0.4081 0.2203 0.2785 0.2254

Our GRLU 0.6 - - 15 5 10 0.5532 0.2981 0.5019† 0.2471 0.3180 0.2255
Proposed GRLW 0.6 - - 15 5 10 0.5764 0.3320† 0.4775 0.2518† 0.3285† 0.2228

Table 7.3: Comparisons between the query prediction and document retrieval effec-
tiveness (measured with QP-MRR and the accumulated document retrieval measures
from column ‘ρ’ to column AP+, respectively) obtained with different query predic-
tion and proactive document retrieval methods. The best results for each group of
methods (e.g. ‘text-based’) are bold-faced, and the best across all the groups are
underlined. The ‘†’ symbol indicates statistical significance (paired t-test with 95%
confidence) of our GRL variants in comparison to the best baseline approach, e.g.
the value ρ = 0.3320 (GRL-W) is significantly better than ρ = 0.3103 (BERT).

predicted query is used to retrieve documents for proactive suggestion. The rest of

the queries in R(q̂t+1) are used only to measure the effectiveness of the proposed

query prediction approaches.

7.4 Results and Discussion

In this section, we discuss the results reported in Table 7.3. We first examine the use

of different information sources (i.e. a user’s recent session context, similar queries

of the current user from that user’s past search log, similar queries of the other users

from the past search log) to formulate proactive queries. We also examine the use of

our proposed graph-based embedding approach to proactive document suggestion,

compared to existing embedding approaches. Then we further analyze how different

methods perform with different points of proactivity (i.e. different values of π).

169

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

5 10 15 20 25

AP

#Queries in Ht

QFG

2
2

2
2 2

2
QFG+

×
× ×

×
×

×
CRLM

∗ ∗
∗

∗ ∗

∗
WE

2

2
2

2 2

2
HRED�

�
�

� �

�
BERT

◦ ◦
◦ ◦ ◦

◦
D2V

• • • • •
•

NMF
4 4

4
4 4

4
GRL-U

N
N

N

N N

N
GRL-W

O O O
O

O

O

Figure 7.4: Sensitivity of proactive IR effectiveness with variations in the number
queries considered to consider set Ht.

7.4.1 Comparisons Between the Investigated Approaches

In Table 7.3, we report the results of applying different query formulation methods

including baselines and proposed approaches on the 280,567 test sessions (i.e. men-

tioned in Table 7.1). All the different metrics reported are the average over all the

280,567 test sessions. For each session, the proactivity starts from the point π and

then continues for each of the query entered by the user till the second last query

in the session (i.e. qn−1). The observations from Table 7.3 are as follows.

Discussion on Text-Based Approaches

The top part of Table 7.3 shows the results for text-only approaches. Recall from

Section 7.3.2 that QP-MRR measures the rank of the original qt+1, in the predicted

query list and the other evaluation metrics measure the similarity betwen the ranked

list of documents for qt+1 and the predicted next query q′t+1. The first interesting

thing to observe from Table 7.3 is that for most of the text-based approaches an

increase in QP-MRR value implies an increase in all other evaluation metrics (i.e. ρ,

MRR, AP, AP+, AP ∗). So we can say that the more the predicted proactive queries

are close to the original query, the more effective is the ranked list of document

suggestion (i.e. Lq′t+1
). The relatively poor results of RLM compared to SRLM and

170

CRLM for all of the evaluation metrics confirm the observation (reported in (Levine

et al., 2017)) that the recent session context (i.e. Ct comprising of queries from q1

to qt) contains relevant information for predicting documents relevant to next likely

information needs and that ignoring the context can yield poor proactive retrieval

effectiveness. Similarly, CRLM perfoms better than SRLM, since CRLM uses all

three information sources (i.e. Ct, Hut and Hout), whereas SRLM uses only one

information source (i.e. Ct). QFG also produces better results than RLM because it

uses the history from query logs. It can be seen that CRLM considerably improves

the results in comparison to QFG and other text based approaches, which can be

attributed to the fact that it uses information from both the context Ct and the

history Ht (see Table 7.2), whereas QFG and QFG+ uses only Ht, RLM uses only

qt and CRLM uses only qt and Ct. Hence we can say that using all the different

information sources helps in both predicting proactive queries more accurate and

also in proactive document suggestion. ‘QFG+’ outperforms QFG and RLM for all

metrics except MRR. This shows that using only a user’s similar query from the past

search log is less effective compared to using all the similar queries from different

users in the past search log for proactive document suggestion. This confirms our

hypothesis that using other users’ similar activities helps in proactive suggestion.

Discussion on Embedding Approaches

It can be seen that WE (skip-gram word vectors) mostly yields better results than

D2V and NMF in terms of all the evaluation metrics. The reason for better results

of WE compared to NMF can be explained by the fact that the deep learning based

approach better captures the semantic similarity than a statistical approach in NMF.

D2V embeds both words and queries simultaneously, whereas WE embeds only

words. The query embedding in WE is obtained by summing the corresponding word

vectors. The higher results for WE compared to D2V show that query vectors in WE

capture the semantics better than D2V. BERT, due to its language model based pre-

trained knowledge, turns out to be the best among the embedding baselines. NMF

171

performs slightly better that BERT only in terms of AP+ which measures how useful

the proactive suggestion at time t is at providing new documents for the rest of the

session (i.e. from qt+1, . . . qn). So it can be said that NMF is more useful in providing

new relevant documents for suggestion compared to BERT. One possible reason for

this is that the contextual embedding architecture means that the predictions using

BERT are more biased towards creating queries which retrieve documents that the

user has already seen in a search session.

Comparison Between Text-Based and Embedding based Approaches

Generally speaking, embedding based methods (central and bottom-part of Table

7.3) yield better results than the text-only methods, most likely because these meth-

ods are able to make use of task-semantics driven associations between terms.

Discussion on Proposed Approaches

It turns out that the weighted graph-based representation learning (i.e. GRLW)

outperforms embedding approaches that embed either words alone (WE) or words

with documents (D2V/NMF/BERT) in terms of all the evaluation metrics. This

observation corroborates that a joint learning of the nodes of a graph (represent-

ing the session-driven co-occurrences between words and queries) turns out to be

more effective than directly learning their representations. Apparently, the contexts

obtained from neighbours in a graph in GRLW or GRLU are better able to model

the possible information need transitions. The weighted version of GRL (GRLW)

mostly outperforms the unweighted scenario, which means that the edge weights

yield better representations of the nodes in an embedded space. The unweighted

case, GRLU, is however better able to retrieve novel documents, as measured by the

aggregated rewards with AP+. One possible reason for this is that GRLU assigns

equal probability to every query occurring within a single session to estimate the

next query, so the chances of it appearing in diverse queries in the next query pre-

diction for GRLU is greater than would be the case for GRLW where weights are

172

not uniform.

We performed a paired t-test to compare between the two variants of GRL (i.e.

GRL-U and GRL-W) and the best baseline approach reported in Table 7.3 (i.e.

BERT). The results for all the metrics were significantly better with with 95%

confidence interval.

7.4.2 Further Analysis

Here we describe the effectiveness of proactive suggestion with respect to different

parameters. First we focus on the impact on AP value of variation in the proactive

index (i.e. π) with all the approaches described in Table 7.3.

Effectiveness of Proactive Suggestions with the variation of Proactive

Index (i.e. π)

Since π is a common parameter determining how early in a search session a proac-

tive search system becomes proactive, we further analyze if GRL consistently out-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AP

π

RLM

2
2 2

2 2 2 2 2
2

2
QFG+

2 2

2 2 2 2 2
2 2

2
QFG

� � � � � � � � �

�
WE

◦ ◦ ◦ ◦
◦

◦ ◦
◦ ◦

◦
HERD

4 4 4 4 4 4 4 4 4
4

BERTN N N N N N N
N N

N
NMF

O O O O O O O
O O

O
D2V

H H H H H H H H H
H

CRLM♦
♦ ♦ ♦ ♦ ♦

♦ ♦
♦

♦
GRL-U

�
� � � � � � � �

�
GRL-W

H
H H

H H H H H H

H
SRLM

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦

Figure 7.5: Sensitivity of proactive IR effectiveness with variations in π, i.e., relative
proactivity duration.

performs the baselines over a range of different configurations for π. In Figure 7.5

we show the variations in AP values across different methods with the values of π

173

ranging from 0.1 to 1. From Figure 7.5, we observe that GRLW is able to consis-

tently predict the relevant documents for subsequent information needs, except in a

small number of cases where either WE or GRLU perform marginally better.

Effectiveness of a User’s Own Search History vs. Other Users’ Search

History in Proactive Suggestions

We further analyse how much importance should be given a user’s own past queries

compared to other users’ similar queries. We introduce a hyperparameter β that

controls the importance of a user’s own past queries compared to other users’ similar

queries from past query log. We modify the query formulation Equation 7.1 to

introduce β into it. While estimating p(w/θR), if w ∈ Hut then we multiply β with

it, and if w ∈ Hout , we multiply it with 1 − β, This is shown mathematically in

Equation 7.4.2.

P (w/θR, at) =


∏

t∈at
∑

a∈Bt
Pe(t|a)Pe(w|a) e−δ(at,a)2 at·a

|a||at|β if w ∈ Hut∏
t∈at

∑
a∈Bt

Pe(t|a)Pe(w|a) e−δ(at,a)2 at·a
|a||at|(1− β) if w ∈ Hout

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0 0.2 0.4 0.6 0.8 1

AP

β

GRL-W

+ + + + +
+

+ + + +

+

+
GRL-U

×
× × × × × ×

×
× × ×

×

Figure 7.6: Sensitivity of proactive IR effectiveness with variations in β, i.e., impor-
tance of user’s own past queries compared to similar queries from other users.

The higher the value of β, the higher is the importance of a user’s own query

compared to the other users’ query and vice versa. We varied the value of β ∈ [0, 1]

174

with the intervals of 0.1 for our proposed approach. Figure 7.6 shows the change

in the values of evaluation metric AP with the variation of β. We found the best

results for β = 0.5 (i.e. when equal importance is given to both the sources of

similar queries). One likely reason for this result is while computing the embedding

we focus on capturing task based semantic associations based on the co-occurrences

of words and queries. So while computing similar queries it does not matter whether

it comes from the user or other users.

Effect of Number of Query Terms in Proactive Suggestion Effectiveness

In Figure 7.7 we show the change in proactive suggestion effectiveness in terms of

AP (described in Section 7.3.2) with the number of query terms used for proactive

query formulation. For each of the methods, maximum value of AP is observed

when the number of query terms were 5. All the metrics of all the methods reported

in Table 7.3 are also computed on a proactive query formulated using 5 query terms.

Similarly, in Figure 7.4 we show the proactive suggestion effectiveness in terms of

0.05

0.10

0.15

0.20

0.25

2 3 4 5 6 7 8 9 10

AP

#QueryTerms

QFG

+

+
+

+

+
QFG+

× × × ×

×
RLM

∗
∗ ∗

∗

∗
SRLM

2
2

2
2

2
CRLM

� �
� �

�
WE◦

◦ ◦ ◦ ◦
HRED

• • • •
•

BERT

4 4 4 4

4
D2V

N N N N

N
NMF

O O
O O

O
GRL-U

H H
H H

H
GRL-W

♦ ♦ ♦ ♦

♦

Figure 7.7: Sensitivity of proactive IR effectiveness with variations in the number
of terms in proactive query.

how much history data (i.e. Ht) we should consider for proactive suggestion. The

best results are obtained when the number of queries in Ht were 10. All the metrics

of all the methods reported in Table 7.3 are also computed using 10 queries from

the past.

175

Query prediction is likely to be easier for the scenario where the next query

is similar to the current query (i.e. there is significant word overlap between the

current query and the next query). A proactive suggestion method should work well

in all the cases (i.e. when similarity of the next query with the previous one is either

high or low). We investigate the issue below.

0.20

0.30

0.40

0.50

0-0.3 0.3-0.5 0.5-0.7 0.7-0.9 0.9-1

Ev
al

u
at

io
n

 M
et

ri
c

Range of Similarity Values

AP

ρ

MRR

Figure 7.8: AP, ρ and MRR values of GRLW for different ranges of similarities
between consecutive queries.

Effectiveness of Proactive Suggestions With the Similarity of Previous

Queries

We wanted to examine how effectively our proactive suggestion works when the next

query is not very similar to a user’s current query. To test the effectiveness of the

best performing proactive IR model in our experiments (GRLW) for all cases, we

segmented the test set queries into different ranges of cosine similarities between

consecutive queries, and present the AP, ρ and MRR values for the different similar-

ity ranges in Figure 7.8. For example, the left-most range of Figure 7.8 represents

all instances when the cosine similarity between the (true) next query, qt+1, and

the current query, qt, is between [0, 0.3) and is thus representative of considerable

shifts in information need between the queries. These instances are thus likely to

176

Method Metrics

ρ MRR AP AP∗ AP+

GRL-U 0.2981 0.5019 0.2471 0.3180 0.2255
GRL-U + BERT 0.3012 0.5021† 0.2502 0.3195 0.2261
GRL-W 0.3320 0.4775 0.2518 0.3285 0.2228
GRL-W + BERT 0.3351† 0.4791 0.2601† 0.3291 0.2231

Table 7.4: Investigating BERT-based passage reranking on retrieval effectiveness
obtained with our proposed approaches (the best performing ones in Table 7.3).
Similar to Table 7.3, the metric values are averaged over remaining 1−π-th fraction
of sessions. The notation † indicates significant improvements (paired t-test with
95% confidence) obtained with the reranking step.

be the most difficult cases for a proactive IR model. It can be seen from Figure

7.8 that GRLW works fairly well even for these cases involving significant changes

of information need. As expected, the performance of the proactive IR model is

better (i.e. 0.9-1 and 0.7-0.9 ranges in Figure 7.8) if the information needs are more

directly related, i.e. with overlap between query terms indicating potential query

specifications or generalizations (Carterette et al., 2014).

Effect of BERT-based Re-ranking on Proactive Suggestion Effectiveness

In this section, following the exposition of some of the recent work which has reported

enhanced retrieval effectiveness with the application of BERT-based similarity com-

putation between embedded vectors of documents (passages) and queries (Yilmaz

et al., 2019; Khattab and Zaharia, 2020), we investigate if such a reranking step can

further improve the effectiveness of proactive document retrieval.

The methodology for BERT based reranking is described as follows. After re-

trieving the top 10 documents with our proposed method GRL (CRLM with joint

query-word embedding), we partitioned each document into chunks of passages of

length 512 characters with word wrapping across the chunks. We then computed

the aggregate (specifically, maximum) of the cosine similarities of pre-trained BERT

vectors (768 dimensional) for these passages with respect to the query BERT vector

(also 768 dimensional). These aggregated passage-query similarity scores for each

177

document were then used to rerank the documents. The methodology that we em-

ploy is similar in principle to ColBERT (Khattab and Zaharia, 2020). The only

difference of our approach with ColBERT is that we did not conduct an end-end

training with triples of the form (q, dr, dn) - q a query, dr and dn a relevant and

a non-relevant document, respectively, because of the lack of availability of rele-

vance assessments or clicked document information (recall that we did not use the

information from clicked URLs in our experiments).

Even without the end-end training, we observe from the results presented in

Table 7.4 that BERT vectors were useful to further improve the retrieval effectiveness

in terms of most of the metrics.

7.5 Concluding Remarks

In this chapter we addressed our fourth research question RQ4 ‘Can we provide

proactive suggestion by leveraging similar activities of other users’. We used the

generative proactive formulation framework proposed in Chapter 3 to retrieve docu-

ments proactively during a search session. The results conclude that the collabora-

tive information used form similar activities of other users can be used in generating

effective proactive document suggestions during search sessions.

178

Chapter 8

Conclusions

In this thesis we examined proactive IR in two different settings: a Single Stage

task scenario and a Multi Stage task Scenario. Single stage scenario refers to the

tasks where a user is interested about a single topic. Multi-stage scenario refers to

all those tasks which has many sub-tasks in it. In this chapter, we summarize the

overall and individual contributions of this study and outline potential directions

for future work.

8.1 Research Questions Revisited

In this section, we revisit the research questions, introduced in Chapter 1, and

summarize how each one of them has been addressed in the following chapters.

8.1.1 Proactive IR Framework

There is no standard framework of proactive IR in research literature. In Chapter 3

we introduced a generic framework for proactive IR which is implemented in Chapter

6 and Chapter 7 for single-stage task and multi-stage task scenario respectively.

In our proposed framework, we considered user activities that have word based

representation. Another assumption of our framework is that a proactive IR model

will show proactive suggestions to a user after a fixed number of interval of activities.

179

Once the framework is established we proposed a proactive query formulation model

(i.e. addressing the third research question) integrating the different information

sources available to the proactive IR model.

8.1.2 Evaluating Proactive IR

In Chapter 4, we addressed RQ2 which is ‘how we can evaluate a proactive IR

model’. We proposed an evaluation framework based on the proactive IR setup,

described in Chapter 3, to measure the effectiveness of proactive IR models. This

evaluation framework has been used in Chapter 7 and 6 to measure the effectiveness

of proactive suggestions in single stage and multi stage scenario.

8.1.3 Grouping Similar activities of Users

We address our second research question ‘How can we group user activities related

to similar information goal?’ in Chapter 5. We proposed a graph-based embedding

approach that takes into account the temporal and tempo-lexical contexts of ac-

tivities to learn task-specific semantics between a pair of words or activities. Our

experiments on the AOL query log indicate that the proposed temporal and tempo-

lexical embedding method outperforms a baseline word2vec embedding approach

and other techniques. Once we can identify activities similar to a user’s current

activity using our proposed embedding approach, we can use these similar activ-

ities to formulate proactive queries using the proactive query formulation method

framework described in Chapter 3. We examine the use of embedding approaches

for proactive query formulation in Chapter 7.

8.1.4 Proactive Support for Single Stage Tasks

In Chapter 6 we showed how we can proactively support a user in a single stage

task scenario with our proposed proactive query formulation model described in

Chapter 3. We first described a simulation setup based on the TREC Novelty track

180

dataset. In the simulation setup, we show how a user interested in one of the TREC

Novelty track topics could interact in a desktop environment. Our objective was

to proactively suggest to the simulated user a ranked list of documents at different

stages of user interactions with the desktop environment while carrying out their

task. We use our proposed proactive query formulation model to retrieve a ranked

list of suggestions for the user. We reported an ablation study which analysed

the importance of different components in our proposed query formulation model.

We also showed the variation in the effectiveness of the proactive suggestions with

different levels of initial knowledge of the simulated users.

8.1.5 Proactive support in Multi-stage Task Scenario

In Chapter 7 we showed how we can proactively support a user in multi-stage task

scenario. More specifically, we addressed our fourth research question ‘How we can

proactively support a user using similar activities of other users?’ For experimental

purposes, we considered only search activities (i.e. search queries) of the users.

We again used AOL search query log in our experiments. Given the current query

of a user within a session our objective was to predict a ranked list of documents

that could help the user in performing his overall task in the rest of a session. We

used our embedding model proposed in Chapter 5, to bring similar queries of other

users to formulate a proactive query which is used to retrieve a proactive list of

suggestions for the user. From the results of the experiments, we can conclude that

using similar queries of other users makes a proactive IR model more effective rather

than considering only a user’s own history and current search context.

8.2 Future Work

In this thesis we explored how we can use relevance model estimation along with

embedding techniques to proactively support a user in their task. There are a

number of possible directions which can be further explored. We introduce each one

181

of these in this section.

8.2.1 Chapter 3

In this chapter we proposed a proactive suggestion framework for proactive IR. One

of the assumptions in our proposed framework is that a proactive IR model will

provide proactive suggestions after a fixed number of user activities. Future work

in this direction should involve investigation of identification of opportunities for a

proactive IR model to provide suggestions to the user in a more reliable context

dependent manner.

For our proactive suggestion framework, we focused on how we can provide proac-

tive suggestions to the user in terms of a ranked list of documents. A possible future

extension of this could involve investigating the format of proactive suggestions e.g.

document title, document snippet.

8.2.2 Chapter 4

In this chapter we proposed an evaluation framework for proactive IR. We focused

on producing evaluation metric that is more focused on measuring the quality of

the proactive query or the retrieved documents. Since the objective of proactive

IR is to provide information sources to the user that is eventually useful for him to

complete his current task. One future direction is to incorporate user experience in

evaluation metric. The two different possible attributes which can add value to an

existing evaluation metric are described below.

• Usefuleness of the proactive suggestions to the user.

• User satisfaction measured over all the proactive suggestions for a task.

8.2.3 Chapter 5

In this chapter we proposed a graph-based embedding technique which can be used to

group user activities related to the same information goal together. Possible future

182

work in this direction could be to explore embedding techniques which can find

different information needs associated with a single information goal. For example, if

we have activities related to vacation planning, then the embedding technique would

be able the group different aspects (e.g. booking tickets, planning accommodation,

places to explore) of vacation planning separately.

Moreover, another future work direction could be how we might use external

knowledge to enhance existing embeddings to group user activities.

8.2.4 Chapter 6

This chapter discussed creation of proactive suggestions in a simulated personal-

ized desktop setup. Future work could be related to user studies to evaluate the

performance of proactive suggestions in a more realistic setting.

Moreover, another interesting future work direction could involve finding ways to

incorporate external knowledge bases to improve proactive suggestions to the user.

8.2.5 Chapter 7

This chapter described use of proactive suggestion models in a web search scenario.

In our proposed proactive IR setup, for each query typed by a user, two ranked

lists were provided. One is for a user’s current query and the other one is for the

next information need that can be in user’s mind. One possible future work in this

direction could be to carry out real user studies to investigate what should be ideal

format (e.g. both ranked lists combined or separate ranked lists) to show proactive

suggestions to the user.

Moreover, another future direction can be use of click information of the real

users as a part of the creation of the proactive suggestion lists to estimate a user’s

next information need in a better way.

183

8.3 Closing Remarks

We believe that the work presented in this thesis has opened potential new research

directions for proactive information retrieval not only in developing proactive query

formulation methods, but also in comparing proactive IR models in a reproducible

setup. We hope that this work will act as a starting point for other researchers

to continue investigations on the problems that we addressed in an endeavour to

further improve the techniques presented in this thesis and find further applications

for them.

184

Appendices

185

Appendix A

Publications

The research presented in this dissertation was published in several peer-reviewed

conference proceedings. The work presented in Chapter 3 has been published in

(Sen et al., 2018a). The work presented in Chapter 5 was published in (Sen et al.,

2018b) and (Sen et al., 2019).

A.1 My Publications

1. P.Sen, D. Ganguly and G.J.F. Jones, Procrastination is the Thief of Time:

Evaluating the Effectiveness of Proactive Search Systems., In Proceedings of

SIGIR 2018, Ann Arbor, USA, July 2018, pp: 1157-1160.

2. P.Sen, D. Ganguly and G.J.F. Jones, Tempo-Lexical Context Driven Word

Embedding for Cross-Session Search Task Extraction, In Proceedings of NAACL

2018, New Orleans, USA, July 2018, pp: 283-292.

3. P.Sen, D. Ganguly and G.J.F. Jones, Word-Node2Vec: Improving Word Em-

bedding with Document-Level Non-Local Word Co-occurrences, In Proceed-

ings of NAACL 2019, Minneapolis, Minnesota, USA, July 2018, pp: 1041-1051.

4. P.Sen, D. Ganguly and G.J.F. Jones, I know what you need: Investigating

Document Retrieval Effectiveness with Partial Session Contexts. (under re-

186

view in ACM Transactions on Information Systems)

also have a number of publications that are explicitly not linked to the topic of

my PhD. These publications are listed below.

1. P.Sen, D. Ganguly Towards Socially Responsible AI: Cognitive Bias-Aware

Multi-Objective Learning, In Proceedings of AAAI 2020, New York, USA,

February 2020, pp: 2685–2692.

2. P.Sen, D. Ganguly and G.J.F. Jones, The Curious Case of IR Explainability:

Explaining Document Scores within and across Ranking Models, In Proceed-

ings of SIGIR 2020, Virtual Event, China, July 2020, pp: 2069-2072.

3. Gabriella Pasi, Gareth J. F. Jones, Keith Curtis, Stefania Marrara, Camilla

Sanvitto, Debasis Ganguly, Procheta Sen Overview of the CLEF 2018 Per-

sonalised Information Retrieval Lab (PIR-CLEF 2018)

4. Gabriella Pasi, Gareth J. F. Jones, Stefania Marrara, Camilla Sanvitto, Deba-

sis Ganguly,Procheta Sen Evaluation of Personalised Information Retrieval

at CLEF 2017 (PIR-CLEF): Towards a Reproducible Evaluation Framework

for PIR

187

Appendix B

Further Analysis of Proactive IR

Evaluation Metric

B.1 Introduction

We first describe three sample proactive IR systems with an intuitive preferred

ranking order. The objective of the experiments is to compute the values of our

proposed metric (Equation 4.7 in Chapter 4) on these systems, and see if the ranking

induced by our metric corresponds to the intuitive preference among the systems.

We denote the proposed metric as PREVAL in the rest of this chapter.

B.1.1 Sample Proactive Search Systems (PSS)

While developing a PSS is not the objective here, for the sake of comparisons between

different systems, we describe two simple PSS approaches. We subsequently compute

our proposed PSS effectiveness metrics under a number of different settings.

B.1.2 Relevance Model based PSS (RM-PSS)

The first approach employs a relevance model Lavrenko and Croft (2001) to obtain

the predicted ranked list L(q′i) given the previous query qi−1 and the ranked list

retrieved in response to it, namely L(qi−1). The relevance model employs relevance

188

feedback to improve retrieval effectiveness. In this case, we argue that the expanded

query obtained from the estimated distribution P (w|Q) (see Lavrenko and Croft

(2001) for details on the notations) is representative of a reformulated query, which

is then used to retrieve the recommended documents L(q′i). We call this system

RM-PSS (Relevance Model based PSS).

B.1.3 Query Prediction based PSS (QP-PSS)

The second PSS approach employs a supervised query prediction algorithm to com-

pute a set of most likely query reformulations given a current query. The probability

of query reformulations is trained by constructing a query flow graph (QFG) from a

large number of real-user queries in a query log Boldi et al. (2008). In a QFG, each

node represents a query and the weight of each edge (qi, qj) indicates the likelihood

of qj following qi within a search session. This QP-PSS based system obtains a

ranked list of k predicted next queries, Rk(qi−1), from the current query qi−1, sorted

in descending order by the transition probabilities estimated from a QFG. It then

retrieves documents with each predicted query q ∈ Rk(qi−1) and outputs a weighted

COMBSUM Shaw et al. (1994) of the lists. We experiment with two variants of

COMBSUM weights, one with uniform weights, denoted as QP-PSS-U, and the

other with weights set to probabilities of reformulation estimated from the QFG, de-

noted as QP-PSS-W. With respect to the three approaches described, the intuitive

ranking between them should be RM-PSS < QP-PSS-U < QP-PSS-W.

B.1.4 Experiment Settings and Results

We used a subset of the AOL query log data from the period of Mar’06 to Apr’06

for our experiments, which comprises over 21M queries. The first 20M queries

(preprocessed using a Porter stemmer) were used as a training set to construct

a QFG, which was then used in the QP-PSS approaches. A session length of 26

minutes, as prescribed in Lucchese et al. (2013), was used as the adjacency criteria

189

Table B.1: PREVAL metrics computed over the evaluation set.

Proactive System PREVAL-RR PREVAL-ρ

RM-PSS 0.0235 0.4955
QP-PSS-U 0.0503 0.4980
QP-PSS-W 0.0503 0.5004

to construct the CFG. As our evaluation set to measure the relative performances

of the three PSS systems, we use a random subsample of 50 query sessions. Each

session of the evaluation set comprises at least 5 queries (after removing duplicate

queries within a session). The average session length in our evaluation set is 8.12.

Table B.1 shows the results of applying the two variants of the metric PREVAL

on the test set of 50 query sessions. To compute the reward functions, M was

set to 10 (see Equation 4.6). It can be seen that RM-PSS performs the worst in

terms of both the RR and ρ-based PREVAL scores. This is to be expected since

RM-PSS only uses the information from the current query and the top documents

retrieved in response to it. Our metric is also able to rank QP-PSS-W better than

QP-PSS-U. This is also expected since the latter considers the contribution from all

predicted queries uniformly when constituting the final list of suggested documents.

An interesting observation is that PREVAL-ρ is better able to distinguish between

QP-PSS-W and QP-PSS-U (in terms of the relative differences between the scores)

in comparison to PREVAL-RR. This shows that the rank correlation based reward

acts as a better estimate for PSS effectiveness.

Figure B.1 shows the relative differences between the PREVAL-RR values for

systems A (RM-PSS) and B (QP-PSS-W), i.e., δ = PA−PB

max(PA,PB)
, for a range of π-index

values πA and πB. To report an average over sessions of varying lengths, we plot

relative proportions of πA and πB values within a range of 0.1 to 0.9. A sample cell

(πA, πB) = (0.2, 0.6) in both plots of Figure B.1 indicates that A started suggesting

documents after 20% queries within a session were executed, whereas B waited until

60% of the queries had been executed before initiating proactive suggestions. Each

of the 9×9 = 81 cells of Figure B.1 represents an experimental observation. The left

190

Figure B.1: Comparison of PREVAL-RR values of RM-PSS (x-axis) and QP-PSS-
W (y-axis), π-index values being shown alongside the axes. i) Left: A black cell
indicates that PA > PB. ii) Right: Each cell plots the value of PA−PB

max(PA,PB)
∈ [−1, 1],

darker shades denoting values towards 1 (PA > PB).

plot indicates whether RM-PSS is the winner (black cell). The right plot shows the

relative differences between the PREVAL-RR values of RM-PSS and QP-PSS-W. If

RM-PSS performs better, this relative difference is close to 1 (represented by darker

shades), whereas lighter shades indicate that QP-PSS-W is better.

It can be seen that if QP-PSS-W starts predicting too late in comparison to

RM-PSS (cells corresponding to the upper left region of the plots in Figure B.1),

RM-PSS is the winner. This happens because the rewards accumulated from a

small number of proactive suggestions in these cases is not sufficient to outweigh

the effectiveness of the early suggestions coming from RM-PSS. This in turn shows

that the metric is able to prefer cold-start proactive systems. On the other hand,

the system QP-PSS-W (being a more effective system) often wins in the central and

the bottom-right part of the plots in Figure B.1. This can be seen from the white

regions in the left plot, and the lighter shades in the right plot of Figure B.1, with

the relative differences getting larger towards the bottom-right. This shows that the

191

metric is not overly biased towards cold-start systems and can favour more effective

systems with higher π-index values.

192

Appendix C

Evaluation of Proposed Word

Embedding in Standard Task

C.1 Experimental Setup

In this section, we describe our experimental setup to evaluate our proposed word

embedding method with state-of-the-art word embedding approaches.

C.1.1 Dataset

A word embedding algorithm requires a collection to learn word representations.

To compare the various word embedding approaches (i.e. our method and the

baselines), we use the DBPedia (2014) corpus, which is a collection of abstracts

of Wikipedia pages crawled in 20141. Dataset characteristics are outlined in Table

C.1. As part of pre-processing, we removed words with collection frequency less

than 10 and also removed stopwords2.

1http://downloads.dbpedia.org/2014/en/long_abstracts_en.ttl.bz2
2http://www.lextek.com/manuals/onix/stopwords2.html

193

#Documents 4,641,754
#Avg. Doc Length (#words) 43.23
#Vocabulary size 461,572
#Tokens 202,575,916

Table C.1: Dataset characteristics of DBPedia-2014.

C.1.2 Baselines

We use three state-of-the-art embedding approaches namely skip-gram word2vec

with negative sampling (SGNS) (Mikolov et al., 2013a), Glove (Pennington et al.,

2014) and Fasttext (Joulin et al., 2016). All these methods rely only on co-occurrences

(at the level of words for the first two and at the level of character n-grams for the

last one) within a word or character n-gram window of specified length k (acting as

a parameter). Fasttext learns the vector representation of each word by aggregating

(vector sum) the vector representations of its constituent n-grams.

Additionally, we also employ a more recent approach, namely ELMO (Peters

et al., 2018), which relies on a pre-trained model (comprised of stacked bidirectional

LSTMs) to infer vectors for a given context (typically a sequence of words). For our

experiments,

Although not an embedding approach, the LDA topic modeling algorithm out-

puts two matrices, namely θ ∈ RM×d and φ ∈ Rd×V , representing the document-topic

and topic-words distribution respectively (Blei et al., 2003). LDA uses document-

level word co-occurrences to estimate both these matrices. In principle, one can

then use the φ matrix as a substitute for the word embedding parameter matrix of

SGNS (see Equation 5.1). This gives d dimensional vectors for each word purely

with a global co-occurrence based approach.

C.2 Implementation Details

The number of nodes in the graph constructed for our proposed embedding approach

is equal to the number of unique words in the collection of DBPedia. We removed

194

any word that has appeared less than 5 times in the collection. We connect a pair of

words if they have co-occurred in a DBPedia article. Next we described how exactly

we computed weights between a pair of words.

Co-occurrence Weights. The weight ω(xw, xu) between word-nodes xw and

xu is intended to represent a measure of association between these words. The first

step is to include non-local co-occurrences to accommodate weighted document-

level co-occurrences between a pair of words. Instead of considering the collection

C = {t1, . . . , tT} as a stream of words, we consider C as a set of M documents

{Di}Mi=1.

We compute the co-occurrence probability of two words w and u as

P (w, u) =

∑M
i=1 I(w, u,Di)∑M

i=1 I(w,Di)
∑M

i=1 I(u,Di)
, (C.1)

where the numerator denotes the total number of times that the words w and u

co-occur in the collection of all documents, and the denominator denotes the number

of times each occur independently.

In our approach, we use a generalized form of Equation C.1, where analogous to

the Jelinek-Mercer smoothing method Ponte and Croft (1998), we take into account

the informativeness of the co-occurrences by linearly combining the frequencies with

the global statistics of inverse collection frequency. More specifically,

Pα(w, u) = αP (w, u) +
(1− α)T 2

|Λ(w)||Λ(u)|
, (C.2)

where P (w, u) represents the maximum likelihood estimate computed by Equation

C.1 and the denominator denotes the product of the collection frequencies of the

terms. It can be seen that Equation C.2 allows relative weighting of the term

frequency and the informativeness components.

Combination with Local Co-occurrences. The next step in our word-node2vec

method is to augment the non-local co-occurrence information computed as per

195

Equation C.2 with the local co-occurrence of SGNS as defined in Equation 5.6.

For this, analogous to Pennington et al. (2014), we compute the probability of co-

occurrence between a word pair restricted within a window of size k over the whole

collection. More formally,

Pk(w, u) =
1

|Λ(w)|
∑
i∈Λ(w)

I(ti+j = u)kj=−k (C.3)

Next, we assign weight to an edge by combining the local and non-local co-

occurrence probabilities estimated from Equations C.3 and C.2 respectively. For-

mally speaking,

ω(xw, xu) = Pα(w, u)Pk(w, u). (C.4)

C.3 Evaluation Tasks and Datasets

We denote our proposed word embedding approach as word-node2vec. To compare

the relative performance of our proposed word embedding approach with the existing

word embedding baselines, we use a number of datasets, each corresponding to one

of the following three evaluation tasks.

C.3.1 Word Similarity.

A standard way to measure the effectiveness of embedded words is to measure how

well the similarity between a pair of words correlates with human judgments. Two

such standard datasets that we use for our experiments are the WSIM-353 (Finkel-

stein et al., 2014) and the MEN (Bruni et al., 2014) datasets. Both comprise a list

of word pairs, with an associated human judged similarity value. This similarity

value is expected to be high for semantically similar words, such as ‘morning’ and

‘sunrise’ (human assigned score of 49 out of 50), and low for semantically unrelated

words, such as ‘angel’ and ‘gasoline’ (score of 1 out of 50), both examples being

taken from the MEN dataset.

196

Dataset Composition Example

MSR Syntactic good:better rough:X
Google Syntactic and Semantic Athens:Greece Berlin:X
SemEval Syntactic and Semantic dog:bone bird:X

Table C.2: Word analogy datasets overview.

C.3.2 Word Analogy.

The word analogy task consists of templates of the form “A:B as C:X”, where A,

B, and C are given words, whereas X is unknown. Using a vector representation of

words this analogy task is solved by retrieving the vector most similar to that of

B + C −A. A word embedding is considered effective if it finds a greater number

of correct answers (resulting in higher accuracy).

We employed three different analogy datasets, namely, the Google Analogy

(Mikolov et al., 2013a), the MSR Analogy (Mikolov et al., 2013b) and the SemEval-

2012 task 2 (Jurgens et al., 2012) datasets. The MSR dataset contains syntactic

questions only involving morphological variations. The Google dataset on the other

hand contains both syntactic and semantic questions.

Given an analogy ‘A:B as C:D’, the Semeval-2012 task requires prediction of the

degree to which the semantic relations between A and B are similar to those between

C and D. In our experiments, we treat the given entity D as unknown and seek to

predict D, similar to the MSR and Google analogy datasets. Table C.2 provides an

overview of examples from these datasets.

C.3.3 Concept Categorization Task.

The concept categorization task requires classifying nouns into a concept type de-

rived from an ontology. For this task, we employ the AP Almuhareb and Poesio

(2005), BLESS Baroni and Lenci (2011) and ESSL2b Marco Baroni and Lenci (2008)

datasets. The AP dataset contains 402 nouns from 21 WordNet classes, e.g., nouns

such as ‘ceremony’, ‘feast’, and ‘graduation’ belong to the class ‘Social Occasion’.

The BLESS dataset, designed for the evaluation of distributional semantic models,

197

contains 200 distinct English concrete nouns as target concepts. These nouns are

categorized into 17 broad classes.

C.3.4 Evaluation Metrics and Pipeline.

The word similarity prediction effectiveness is measured with the help of Spearman’s

rank correlation coefficient ρ. This measures the rank correlation (higher is better)

between the list of word pairs sorted in decreasing order of inter-similarity values as

predicted by a word embedding algorithm and the reference list of human judged

word pairs. For the analogy and the concept categorization tasks, we report the

accuracy in predicting the reference word and that of the class, respectively.

Parameters and Settings.

In our experiments, for all the methods, except ELMO, we set the number of di-

mensions to 200. To find optimal settings for each method (except ELMO), we use

the MEN dataset as a development set for tuning the parameters of each method.

Each method with the optimal parameter settings is then applied for the rest of the

datasets and tasks.

Since we used a pre-trained model for ELMO, the number of dimensions cor-

responds to the size of the output layer of the network, the value of which in the

default configuration of the Python implementation3 is 1024.

The parameters of SGNS are window size (k) and the number of negative samples

(NS). For the baseline approach SGNS, we varied k from 5 to 40 in steps of 5 and

found that the best results are obtained when k = 10 and NS = 5. Similarly, for

Glove we chose the optimal settings by varying k within the same range of [5, 40]

and found that the optimal ρ for the MEN dataset is obtained for k = 20. We

obtain the LDA results by setting the number of topics to 200 (so as to match with

the dimensionality). As LDA hyper-parameters, we use settings as prescribed in

Griffiths and Steyvers (2004), i.e., β = 0.1 and α = 0.25 (50/(#topics = 200)).

3https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

198

Since we found that SGNS performed significantly better than Glove, we use

SGNS vectors for the linear combination method, which we call SGNS-LDA from

hereon. The parameter λ was varied within a range of [0.1, 0.9] in steps of 0.1

(λ = 0 and λ = 1 degenerate to that of LDA and SGNS respectively). We found

that the best results are obtained for λ = 0.9.

For node2vec baseline approach of word-node embedding, we varied the param-

eters p and q (BFS and DFS parameters) within a range of [0.1, 5] and found that

the best results on the MEN dataset are given for p = 1 and q = 1 Grover and

Leskovec (2016). Another parameter in node2vec is the random walk length, l, for

which the optimal value was found to be 80.

For word-node2vec, in addition to window size (k) and number of negative sam-

ples (NS), three more parameters are: i) α, i.e., the importance of the presence of

a term relative to its informativeness, ii) β, the prior assigned to sampling from the

1-adjacent neighborhood, and iii) the size of the context sampled from the neigh-

borhood, l (this is analogous to the random walk length parameter of node2vec).

Instead of separately optimizing the parameters common to SGNS, we directly use

the optimal values of k = 10 and NS = 5 for word-node2vec. The optimal results

of the additional parameters, tuned on the MEN dataset, are shown in Table C.3.

C.4 Results

Word Similarity Prediction. Table C.3 shows the results obtained by the com-

peting methods on the word similarity prediction task. It can be seen that Glove

turns out to be relatively ineffective in modeling the semantic representations of

words as compared to human judgments. SGNS performs significantly better and

the settings trained on MEN dataset generalize well on the WSIM-353 dataset as

well. LDA performs rather poorly indicating that only global co-occurrences can

lead to noisy representations of words. FastText performs worse as compared to

SGNS. It is worth mentioning that the performance of ELMO is disappointing on

199

this task of semantic similarity prediction, because of the most likely reason that it

better learns vector representations of word in the presence of a context.

A linear combination of SGNS and LDA does not perform better than SGNS,

which means that a simple way of combining the embedded representations obtained

individually with local and non-local approaches does not work well.

The node2vec approach of embedding nodes of the word-nodes graph constructed

relies on a random walk based construction of the context of a word node. This

random walk based context construction is only able to improve the SGNS results

slightly, indicating that random walks can introduce noise in the contexts of word-

nodes.

The word-node based graph construction (incorporating local and non-local co-

occurrences in a principled way) works particularly well in conjunction with the

stratified sampling based approach of selecting context words from the κ-neighborhood.

The optimal value of α = 0.5 suggests that document-level co-occurrences should

be computed by assigning equal importance to term presence and informativeness.

A value of β = 0.7 confirms the hypothesis that more emphasis should be put on

direct co-occurrences.

Word Analogy and Concept Categorization. Similar trends are observed in

the word analogy and concept categorization tasks in Tables C.4 and C.5 respec-

tively. Relatively higher improvements with word-node2vec are noted for the MSR

analogy task (comprised of syntactic categories). Among the baseline approaches,

both node2vec and SGNS-LDA work well on the concept categorization task. How-

ever, the performance improvements are inconsistent across datasets, e.g. SGNS-

LDA performs well on ESSLI2b and poorly on AP. Our proposed method configured

on the MEN dataset works consistently well across all datasets, which indicates that

word-node2vec can generalize well for different tasks.

As a side observation, we note that ELMO performs well for the analogy and

concept categorization tasks (yielding the best results in particular on the Google

200

Method Spearman’s ρ

MEN WSIM

SGNS (k = 10, NS = 5) 0.7432 0.6977
Glove (k = 20) 0.7066 0.6706
FastText 0.7307 0.6518
ELMO 0.4225 0.4631
LDA 0.4933 0.4074
SGNS-LDA (λ = 0.9) 0.7367 0.6548
Node2vec (p = 0.5, q = 0.5, l = 40) 0.7440 0.6988
Word-node2vec (α = 0.5, β = 0.7, l = 20) 0.7491 0.7032

Table C.3: Word similarity prediction results.

Method Accuracy (P@1)

Google MSR SemEval’12

SGNS 0.5615 0.2777 0.1460
Glove 0.4841 0.2485 0.1419
FastText 0.4930 0.2607 0.1592
ELMO 0.5986 0.2789 0.1439
LDA 0.0578 0.0158 0.0596
SGNS-LDA 0.5491 0.2776 0.1413
Node2vec 0.5588 0.2785 0.1427
Word-node2vec 0.5627 0.2890 0.1464

Table C.4: Word analogy results.

analogy dataset). Although the results are not directly comparable because of dif-

ferences in the dimensionality of the vectors and also in the collection of documents

used in the pre-trained ELMO vectors (Billion word benchmark as against DBPedia

in our case), it could possibly be reasoned that the additional contextual information

of the ELMO vectors turns out to be useful for in the analogy task.

C.5 Conclusions

We proposed a word embedding approach that leverages document-level non-local

co-occurrences, in addition to the window-based local co-occurrences. We proposed

a graph-based framework, in which words are represented as nodes and the edges

between a pair of words reflect the degree of association between them. This asso-

ciation is a function of both the local and the document-level co-occurrences, which

201

Method Accuracy

AP BLESS ESSLI2b

SGNS 0.6194 0.7500 0.7500
Glove 0.6343 0.7200 0.7250
FastText 0.6119 0.7950 0.7250
ELMO 0.6368 0.7350 0.7500
LDA 0.3383 0.3900 0.6500
SGNS-LDA 0.5796 0.7850 0.7750
Node2vec 0.6355 0.7500 0.7350
Word-node2vec 0.6393 0.7950 0.7750

Table C.5: Concept categorization results.

enables our approach to achieve ‘the best of both worlds’ in word embedding. Ex-

periments show that our proposed method outperforms local approaches, namely

word2vec, Glove and FastText, on a number of different tasks. Our approach also

outperforms a naive black-box combination of embeddings obtained separately by

local and document-level approaches. This proves the importance of addressing both

these sources of information jointly in an embedding objective.

202

Bibliography

Almuhareb, A. and Poesio, M. (2005). Concept learning and categorization from

the web. In Proc. of COGSCI, pages 103–108.

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum likelihood approach

to continuous speech recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-5(2):179–190.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! a systematic

comparison of context-counting vs. context-predicting semantic vectors. In Proc.

of ACL, pages 238–247. Association for Computational Linguistics.

Baroni, M. and Lenci, A. (2011). How we blessed distributional semantic evaluation.

In Proc. of the GEMS 2011 Workshop on GEometrical Models of Natural Language

Semantics, pages 1–10.

Ben Carterette, E. K., Hall, M., and Clough, P. (2014). Overview of the trec 2014

session track. In Proc. of the Twenty Third Text REtrieval Conference (TREC

2014).

Bengio, Y. and Senécal, J.-S. (2003). Quick training of probabilistic neural nets by

importance sampling.

Bernstein, M. S., Van Kleek, M., schraefel, m. c., and Karger, D. R. (2007). Manage-

ment of Personal Information Scraps, page 2285–2290. Association for Computing

Machinery, New York, NY, USA.

203

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022.

Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., and Vigna, S. (2008).

The query-flow graph: Model and applications. In Proc. of CIKM 2008, pages

609–618.

Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., and Venturini, R. (2012). Efficient

query recommendations in the long tail via center-piece subgraphs. In Proc. of

SIGIR 2012, pages 345–354. ACM.

Brondwine, E., Shtok, A., and Kurland, O. (2016). Utilizing focused relevance

feedback. In Proc. of SIGIR 2016, SIGIR ’16, page 1061–1064.

Bruni, E., Tran, N. K., and Baroni, M. (2014). Multimodal distributional semantics.

J. Artif. Int. Res., 49:1–47.

Buscher, G., Dengel, A., and van Elst, L. (2008). Eye movements as implicit rele-

vance feedback. In CHI ’08 Extended Abstracts on Human Factors in Computing

Systems, page 2991–2996.

Cai, Y., Dong, X. L., Halevy, A., Liu, J. M., and Madhavan, J. (2005). Personal

information management with semex. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, page 921–923, New York, NY,

USA. Association for Computing Machinery.

Carterette, B., Kanoulas, E., Hall, M. M., and Clough, P. D. (2014). Overview of

the TREC 2014 session track. In Proc. of TREC ’14.

Chappell, T. and Geva, S. (2010). Overview of the INEX 2010 focused relevance

feedback track. In Comparative Evaluation of Focused Retrieval - 9th International

Workshop of the Inititative for the Evaluation of XML Retrieval, INEX 2010,

pages 303–312.

204

Chein, M. and Mugnier, M.-L. (2008). A Graph-Based Approach to Knowledge

Representation: Computational Foundations of Conceptual Graphs (Part. I).

Chen, J., Guo, H., Wu, W., and Wang, W. (2009). imecho: An associative memory

based desktop search system. In Proceedings of CIKM, pages 731–740.

Chen, J., Guo, H., Wu, W., and Wang, W. (2011). Imecho: A context-aware desktop

search system. In Proc. of SIGIR 2011, page 1269–1270.

Chen, J., Guo, H., Wu, W., and Xie, C. (2010). Search your memory! - an associative

memory based desktop search system. In Proc. of SIGMOD, page 1099–1102.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the

25th International Conference on Machine Learning, ICML ’08, page 160–167,

New York, NY, USA. Association for Computing Machinery.

Cormack, G. V., Smucker, M. D., and Clarke, C. L. (2011). Efficient and effective

spam filtering and re-ranking for large web datasets. Inf. Retr., 14(5):441–465.

Crouch, C. J., Crouch, D. B., and Nareddy, K. R. (1990). The automatic generation

of extended queries. In Proc. of SIGIR, SIGIR ’90, page 369–383.

Dehghani, M., Zamani, H., Severyn, A., Kamps, J., and Croft, W. B. (2017). Neural

ranking models with weak supervision. In Proc. of SIGIR 2017, pages 65–74.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proc.

of NAACL’19, pages 4171–4186.

Dumais, S., Cutrell, E., Cadiz, J. J., Jancke, G., Sarin, R., and Robbins, D. C.

(2016). Stuff i’ve seen: A system for personal information retrieval and re-use.

SIGIR Forum, pages 28–35.

205

Dumais, S., Cutrell, E., Sarin, R., and Horvitz, E. (2004). Implicit queries (iq) for

contextualized search. In Proceedings of SIGIR, pages 594–594.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., and Smith, N. A. (2015).

Retrofitting word vectors to semantic lexicons. In Proc. of the 2015 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 1606–1615, Denver, Colorado. Association

for Computational Linguistics.

Feild, H. and Allan, J. (2013). Task-aware query recommendation. In Proc. of

SIGIR 2013, pages 83–92.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., and

Ruppin, E. (2014). Placing search in context: The concept revisited. In Proc. of

WWW 2014, pages 406–414.

Fitchett, S. and Cockburn, A. (2012). Accessrank: Predicting what users will do

next. In Proceedings of the SIGCHI, pages 2239–2242.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M., and

Mikolov, T. (2013a). Devise: A deep visual-semantic embedding model. In Proc.

of NIPS’13, pages 2121–2129.

Frome, A., Corrado, G. S., Shlens, J., Bengio, S., Dean, J., Ranzato, M. A., and

Mikolov, T. (2013b). Devise: A deep visual-semantic embedding model. In Burges,

C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors,

Advances in Neural Information Processing Systems, volume 26, pages 2121–2129.

Curran Associates, Inc.

Futami, H., Inaguma, H., Ueno, S., Mimura, M., Sakai, S., and Kawahara, T. (2020).

Distilling the knowledge of bert for sequence-to-sequence asr.

Ganguly, D., Ganguly, M., Leveling, J., and Jones, G. J. F. (2013). Topicvis: a

206

GUI for topic-based feedback and navigation. In In Proc. of SIGIR’13, pages

1103–1104.

Ganguly, D., Leveling, J., Magdy, W., and Jones, G. J. (2011a). Patent query

reduction using pseudo relevance feedback. In Proc. of CIKM, CIKM ’11, page

1953–1956.

Ganguly, D., Leveling, J., Magdy, W., and Jones, G. J. F. (2011b). Patent query

reduction using pseudo relevance feedback. In Macdonald, C., Ounis, I., and

Ruthven, I., editors, Proceedings of the 20th ACM Conference on Information

and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October

24-28, 2011, pages 1953–1956. ACM.

Goodman, J. (2001). Classes for fast maximum entropy training.

Grbovic, M., Djuric, N., Radosavljevic, V., Silvestri, F., and Bhamidipati, N. (2015).

Context- and content-aware embeddings for query rewriting in sponsored search.

In Proc. of SIGIR ’15, pages 383–392.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of

the National Academy of Sciences, 101(Suppl. 1):5228–5235.

Grover, A. and Leskovec, J. (2016). Node2vec: Scalable feature learning for net-

works. In Proc. of ACM SIGKDD’16, pages 855–864.

Han, F., Niu, D., Lai, K., Guo, W., He, Y., and Xu, Y. (2019). Inferring search

queries from web documents via a graph-augmented sequence to attention net-

work. In The World Wide Web Conference, page 2792–2798.

Harman, D. (2002). Overview of the trec 2002 novelty track. In Proc. of the

Eleventh Text REtrieval Conference (TREC 2002), NIST Special Publication 500-

251, pages 46–55.

Hassan Awadallah, A., White, R. W., Pantel, P., Dumais, S. T., and Wang, Y.-M.

(2014). Supporting complex search tasks. In Proc. of CIKM 2014, pages 829–838.

207

Hiemstra, D. (2000). Using Language Models for Information Retrieval. PhD thesis,

Center of Telematics and Information Technology, AE Enschede.

Hiemstra, D. and Kraaij, W. (2005). A language modeling approach for TREC. In

Voorhees, E. M. and Harman, D., editors, TREC: Experiment and Evaluation in

Information Retrieval. MIT press.

Hinbarji, Z., Hinbarji, M., Albatal, R., and Gurrin, C. (2016). Personal information

manager to capture and re-access what we see on computers. In Proceedings of

the First Workshop on Lifelogging Tools and Applications, LTA ’16, page 13–17.

Association for Computing Machinery.

Hu, Y. and Janowicz, K. (2012). Improving personal information management by

integrating activities in the physical world with the semantic desktop. In Proceed-

ings of the 20th International Conference on Advances in Geographic Information

Systems, page 578–581, New York, NY, USA. Association for Computing Machin-

ery.

Järvelin, K. (2010). Test collections and evaluation metrics based on graded rele-

vance. In Majumder, P., Mitra, M., Bhattacharyya, P., Subramaniam, L. V., Con-

tractor, D., and Rosso, P., editors, Multilingual Information Access in South Asian

Languages - Second International Workshop, FIRE 2010, Gandhinagar, India,

February 19-21, 2010 and Third International Workshop, FIRE 2011, Bombay,

India, December 2-4, 2011, Revised Selected Papers, Lecture Notes in Computer

Science, pages 280–294. Springer.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of ir tech-

niques. ACM Trans. Inf. Syst., 20(4):422–446.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of Markov source

parameters from sparse data. In Gelsema, E. S. and Kanal, L. N., editors, Pro-

ceedings, Workshop on Pattern Recognition in Practice, pages 381–397. North

Holland, Amsterdam.

208

Jones, R. and Klinkner, K. L. (2008). Beyond the session timeout: Automatic

hierarchical segmentation of search topics in query logs. In Proc. of CIKM ’08,

pages 699–708.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov, T.

(2016). Fasttext.zip: Compressing text classification models. arXiv preprint

arXiv:1612.03651.

Jurgens, D. A., Turney, P. D., Mohammad, S. M., and Holyoak, K. J. (2012).

Semeval-2012 task 2: Measuring degrees of relational similarity. In Proc. of the

First Joint Conference on Lexical and Computational Semantics - Volume 1: Proc.

of the Main Conference and the Shared Task, and Volume 2: Proc. of the Sixth

International Workshop on Semantic Evaluation, SemEval ’12, pages 356–364.

Kanoulas, E., Carterette, B., Clough, P. D., and Sanderson, M. (2011). Evaluating

multi-query sessions. In Proceedings of the 34th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, page 1053–1062,

New York, NY, USA. Association for Computing Machinery.

Karimzadehgan, M. and Zhai, C. (2010). Estimation of statistical translation models

based on mutual information for ad hoc information retrieval. In Proceedings of

the 33rd International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’10, page 323–330, New York, NY, USA. Association

for Computing Machinery.

Karimzadehgan, M. and Zhai, C. (2012). Axiomatic analysis of translation language

model for information retrieval. In Proceedings of the 34th European Conference

on Advances in Information Retrieval, ECIR’12, page 268–280, Berlin, Heidelberg.

Springer-Verlag.

Kelly, D. and Azzopardi, L. (2015a). How many results per page?: A study of

SERP size, search behavior and user experience. In Baeza-Yates, R., Lalmas,

M., Moffat, A., and Ribeiro-Neto, B. A., editors, Proc. of the 38th International

209

ACM SIGIR Conference on Research and Development in Information Retrieval,

Santiago, Chile, August 9-13, 2015, pages 183–192. ACM.

Kelly, D. and Azzopardi, L. (2015b). How many results per page? a study of serp

size, search behavior and user experience. In Proc. of SIGIR 2015, page 183–192.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2):81–

93.

Khattab, O. and Zaharia, M. (2020). Colbert: Efficient and effective passage search

via contextualized late interaction over BERT. In Huang, J., Chang, Y., Cheng,

X., Kamps, J., Murdock, V., Wen, J., and Liu, Y., editors, Proceedings of the 43rd

International ACM SIGIR conference on research and development in Information

Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 39–48.

ACM.

Kim, J., Bakalov, A., Smith, D. A., and Croft, W. B. (2010). Building a semantic

representation for personal information. In Proceedings of CIKM, pages 1741–

1744.

Kong, W., Li, R., Luo, J., Zhang, A., Chang, Y., and Allan, J. (2015). Predicting

search intent based on pre-search context. In Proc. of SIGIR 2015, pages 503–512.

Koskela, M., Luukkonen, P., Ruotsalo, T., SjÖberg, M., and Floréen, P. (2018).

Proactive information retrieval by capturing search intent from primary task con-

text. ACM Trans. Interact. Intell. Syst., pages 20:1–20:25.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou,

L., and Weinberger, K. Q., editors, Advances in Neural Information Processing

Systems 25, pages 1097–1105.

Lavrenko, V. and Croft, W. B. (2001). Relevance based language models. In Proc.

of SIGIR 2001, pages 120–127.

210

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and docu-

ments. In Proc. of ICML 2014, pages II–1188–II–1196.

Lee, C.-J. and Croft, W. B. (2012). Generating queries from user-selected text. In

Proc. of the 4th Information Interaction in Context Symposium, page 100–109.

Levine, N., Roitman, H., and Cohen, D. (2017). An extended relevance model for

session search. In Proc. of SIGIR 2017, pages 865–868.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov,

V., and Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training

for natural language generation, translation, and comprehension.

Li, L., Deng, H., Dong, A., Chang, Y., Baeza-Yates, R., and Zha, H. (2017). Ex-

ploring query auto-completion and click logs for contextual-aware web search and

query suggestion. WWW ’17, page 539–548, Republic and Canton of Geneva,

CHE. International World Wide Web Conferences Steering Committee.

Li, R., Kao, B., Bi, B., Cheng, R., and Lo, E. (2012). Dqr: A probabilistic approach

to diversified query recommendation. In Proc. of CIKM 2012, pages 16–25.

Li, S., Zhu, J., and Miao, C. (2015). A generative word embedding model and its

low rank positive semidefinite solution. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1599–1609, Lisbon,

Portugal. Association for Computational Linguistics.

Liu, J., Liu, C., and Belkin, N. J. (2016). Predicting information searchers’ topic

knowledge at different search stages. JASIST, pages 2652–2666.

Lucchese, C., Orlando, S., Perego, R., Silvestri, F., and Tolomei, G. (2013). Discover-

ing tasks from search engine query logs. ACM Trans. Inf. Syst., 31(3):14:1–14:43.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information

Retrieval. Cambridge University Press, USA.

211

Marco Baroni, S. E. and Lenci, A. (2008). Esslli workshop on distributional lexical

semantics. ESSLLI Workshop on Distributional Lexical Semantics, 101:1–70.

Maxwell, D. and Azzopardi, L. (2016a). Agents, simulated users and humans: An

analysis of performance and behaviour. In Proc. of CIKM 2016, page 731–740.

Maxwell, D. and Azzopardi, L. (2016b). Simulating interactive information retrieval:

Simiir: A framework for the simulation of interaction. In Proc. of SIGIR 2016,

page 1141–1144.

Mehrotra, R., Bhattacharya, P., and Yilmaz, E. (2016). Deconstructing complex

search tasks: a bayesian nonparametric approach for extracting sub-tasks. In

Proc. of NAACL HLT ’16, pages 599–605.

Mehrotra, R. and Yilmaz, E. (2017a). Extracting hierarchies of search tasks and

subtasks via a bayesian nonparametric approach. In Proc. of SIGIR’17, pages

285–294.

Mehrotra, R. and Yilmaz, E. (2017b). Task embeddings: Learning query embeddings

using task context. In Proc. of CIKM 2017, pages 2199–2202.

Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., and Khudanpur, S. (2010).

Recurrent neural network based language model. volume 2, pages 1045–1048.

Mikolov, T., Kopecky, J., Burget, L., Glembek, O., and ?Cernocky, J. (2009). Neural

network based language models for highly inflective languages. In 2009 IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 4725–

4728.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013a). Dis-

tributed representations of words and phrases and their compositionality. In Proc.

NIPS ’13, pages 3111–3119.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguistic regularities in continuous

space word representations. In Proc. of NAACL 2013, pages 746–751.

212

Mitra, B., Shokouhi, M., Radlinski, F., and Hofmann, K. (2014). On user interac-

tions with query auto-completion. In Proceedings of the 37th International ACM

SIGIR Conference on Research Development in Information Retrieval, pages

1055–1058.

Mnih, A. and Hinton, G. (2007). Three new graphical models for statistical language

modelling. In Proceedings of the 24th International Conference on Machine Learn-

ing, ICML ’07, page 641–648, New York, NY, USA. Association for Computing

Machinery.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical distributed language

model. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Ad-

vances in Neural Information Processing Systems, volume 21, pages 1081–1088.

Curran Associates, Inc.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language

model. In AISTATS’05, pages 246–252.

Muntean, C. I., Nardini, F. M., Silvestri, F., and Sydow, M. (2013). Learning to

shorten query sessions. In Proc. of WWW 2013, pages 131–132.

Nogueira, R. and Cho, K. (2020). Passage re-ranking with bert.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for

word representation. In Proc. of EMNLP 2014, pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and

Zettlemoyer, L. (2018). Deep contextualized word representations. In Proc. of

NAACL’18.

Pise, P. D. and Uke, N. J. (2016). Efficient security framework for sensitive data

sharing and privacy preserving on big-data and cloud platforms. In Proceedings of

the International Conference on Internet of Things and Cloud Computing, New

York, NY, USA. Association for Computing Machinery.

213

Ponte, J. M. and Croft, W. B. (1998). A language modeling approach to information

retrieval. In Proc. of SIGIR 1998, pages 275–281.

Puolamäki, K., Salojärvi, J., Savia, E., Simola, J., and Kaski, S. (2005). Combining

eye movements and collaborative filtering for proactive information retrieval. In

Proceedings of SIGIR 2005, pages 146–153.

Qiu, Y. and Frei, H.-P. (1993). Concept based query expansion. In Proc. of ACM

SIGIR Conference on Research and Development in Information Retrieval, SIGIR

’93, page 160–169, New York, NY, USA. Association for Computing Machinery.

Qvarfordt, P., Golovchinsky, G., Dunnigan, T., and Agapie, E. (2013). Looking

ahead: Query preview in exploratory search. In Proc. of SIGIR 2013, pages

243–252.

Rhodes, B. (2000). The wearable remembrance agent: A system for augmented

memory. Personal Technologies, 1.

Rhodes, B. J. and Maes, P. (2000). Just-in-time information retrieval agents. IBM

Syst. J., 39(3–4):685–704.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework:

Bm25 and beyond. page 333–389.

Robertson, S. E. (1977). The Probability Ranking Principle in IR. Journal of

Documentation, 33(4):294–304.

Robertson, S. E. (1990). On term selection for query expansion. J. Documentation,

46(4):359–364.

Robertson, S. E., Kanoulas, E., and Yilmaz, E. (2010). Extending average precision

to graded relevance judgments. In SIGIR, pages 603–610. ACM.

Robertson, S. E., Walker, S., Jones, S., and Hancock-Beaulieu, M. (1994). Okapi at

TREC-3. In Proceedings of the Third Text REtrieval Conference (TREC 1994).

NIST.

214

Rothe, S., Narayan, S., and Severyn, A. (2020). Leveraging pre-trained checkpoints

for sequence generation tasks.

Roy, D., Ganguly, D., Mitra, M., and Jones, G. J. (2016). Word vector composi-

tionality based relevance feedback using kernel density estimation. In Proceedings

of the 25th ACM International on Conference on Information and Knowledge

Management, CIKM ’16, page 1281–1290, New York, NY, USA. Association for

Computing Machinery.

Salakhutdinov, R. and Mnih, A. (2008). Bayesian probabilistic matrix factorization

using markov chain monte carlo. In Proc. of ICML 2008, pages 880–887.

Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text

retrieval. Information Processing and Management, 24(5):513–523.

Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for automatic

indexing. Commun. ACM, 18(11):613–620.

Santos, R. L., Macdonald, C., and Ounis, I. (2010). Exploiting query reformulations

for web search result diversification. In Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, page 881–890, New York, NY, USA.

Association for Computing Machinery.

Sen, P., Ganguly, D., and Jones, G. (2018a). Procrastination is the thief of time:

Evaluating the effectiveness of proactive search systems. In Proc. of SIGIR 2018,

pages 1157–1160.

Sen, P., Ganguly, D., and Jones, G. (2019). Word-Node2Vec: Improving word em-

bedding with document-level non-local word co-occurrences. In Proc. of NAACL,

pages 1041–1051, Minneapolis, Minnesota. Association for Computational Lin-

guistics.

Sen, P., Ganguly, D., and Jones, G. J. (2018b). Tempo-lexical context driven word

215

embedding for cross-session search task extraction. In Proc of NAACL-HLT 2018,

pages 283–292.

Shaw, J. A., Fox, E. A., Shaw, J. A., and Fox, E. A. (1994). Combination of multiple

searches. In Proc. of TREC-2 1994, pages 243–252.

Shokouhi, M. and Guo, Q. (2015). From queries to cards: Re-ranking proactive

card recommendations based on reactive search history. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Informa-

tion Retrieval, page 695–704, New York, NY, USA. Association for Computing

Machinery.

Singhal, A. (1997). Term Weighting Revisited. PhD thesis, Cornell University,

Department of computer science.

smart (2019). SMART stopword list. https://www.lextek.com/manuals/onix/

stopwords2.html,.

Smyth, B., Balfe, E., Briggs, P., Coyle, M., and Freyne, J. (2003). I-spy - anonymous,

community-based personalization by collaborative meta-search.

Smyth, B., Briggs, P., Coyle, M., and O’Mahony, M. P. (2009). Google shared.

A case-study in social search. In Houben, G., McCalla, G. I., Pianesi, F., and

Zancanaro, M., editors, User Modeling, Adaptation, and Personalization, 17th

International Conference, UMAP 2009, formerly UM and AH, Trento, Italy, June

22-26, 2009. Proceedings, volume 5535 of Lecture Notes in Computer Science,

pages 283–294. Springer.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., and Manning, C. D. (2011).

Semi-supervised recursive autoencoders for predicting sentiment distributions. In

Proceedings of the 2011 Conference on Empirical Methods in Natural Language

Processing, pages 151–161, Edinburgh, Scotland, UK. Association for Computa-

tional Linguistics.

216

Somlo, G. L. and Howe, A. E. (2003). Using web helper agent profiles in query

generation. In Proc. of the Second International Joint Conference on Autonomous

Agents and Multiagent Systems, page 812–818.

Song, Y. and Guo, Q. (2016). Query-less: Predicting task repetition for nextgen

proactive search and recommendation engines. In Proceedings of the 25th Interna-

tional Conference on World Wide Web, WWW ’16, page 543–553, Republic and

Canton of Geneva, CHE. International World Wide Web Conferences Steering

Committee.

Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., and Nie, J.-

Y. (2015). A hierarchical recurrent encoder-decoder for generative context-aware

query suggestion. In Proc. of CIKM 2015, pages 553–562.

Sparck Jones, K. (1973). Index term weighting. Journal of Documentation,

9(11):619–633.

Sparck-Jones, K., Walker, S., and Robertson, S. E. (2000). A probabilistic model

of information retrieval: development and comparative experiments. Information

Processing and Management, 36(6):779–840.

Takaki, T., Fujii, A., and Ishikawa, T. (2004). Associative document retrieval by

query subtopic analysis and its application to invalidity patent search. In Proc.

of CIKM’04, pages 399–405.

Tan, B., Shen, X., and Zhai, C. (2006). Mining long-term search history to improve

search accuracy. In Proc. of SIGKDD 2006, pages 718–723.

Tran, T. A., Schwarz, S., Niederée, C., Maus, H., and Kanhabua, N. (2016). The

forgotten needle in my collections: Task-aware ranking of documents in semantic

information space. In Proceedings of CHIIR, pages 13–22.

Tripathy, A. and Pradhan, M. (2012). A novel framework for preserving privacy of

data using correlation analysis. In Proceedings of the International Conference on

217

Advances in Computing, Communications and Informatics, page 650–655, New

York, NY, USA. Association for Computing Machinery.

Van Gysel, C., Kanoulas, E., and de Rijke, M. (2016). Lexical query modeling in

session search. In Proceedings of the 2016 ACM International Conference on the

Theory of Information Retrieval, page 69–72, New York, NY, USA. Association

for Computing Machinery.

Van Gysel, C., Mitra, B., Venanzi, M., Rosemarin, R., Kukla, G., Grudzien, P., and

Cancedda, N. (2017). Reply with: Proactive recommendation of email attach-

ments. In Proc. of CIKM 2017, page 327–336.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. u., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural

Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Verma, M. and Yilmaz, E. (2014). Entity oriented task extraction from query logs.

In Proc. of CIKM’14, pages 1975–1978.

Vieira, M. R., Razente, H. L., Barioni, M. C. N., Hadjieleftheriou, M., Srivastava,

D., Traina, C., and Tsotras, V. J. (2011). Divdb: A system for diversifying query

results. Proc. VLDB Endow., 4(12):1395–1398.

Voorhees, E. M. (2003). Overview of the TREC 2003 robust retrieval track. In

Voorhees, E. M. and Buckland, L. P., editors, Proc. of The Twelfth Text RE-

trieval Conference, TREC 2003, Gaithersburg, Maryland, USA, November 18-21,

2003, NIST Special Publication, pages 69–77. National Institute of Standards and

Technology (NIST).

Vuong, T., Jacucci, G., and Ruotsalo, T. (2017). Proactive information retrieval via

screen surveillance. In Proceedings of SIGIR 2017, pages 1313–1316.

Wang, H., Song, Y., Chang, M.-W., He, X., White, R. W., and Chu, W. (2013).

218

Learning to extract cross-session search tasks. In Proc. of WWW ’13, pages 1353–

1364.

Wei, X. and Croft, W. B. (2006). Lda-based document models for ad-hoc retrieval. In

Poceedings of the 29th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, page 178–185, New York, NY, USA.

Association for Computing Machinery.

White, R. W. and Morris, D. (2007). Investigating the querying and browsing

behavior of advanced search engine users. In Proc. of SIGIR, page 255–262.

Xue, X. and Croft, W. B. (2009). Automatic query generation for patent search. In

Proc. of CIKM, page 2037–2040.

Yang, L., Guo, Q., Song, Y., Meng, S., Shokouhi, M., McDonald, K., and Croft,

W. B. (2016). Modelling user interest for zero-query ranking. In European Con-

ference on Information Retrieval (ECIR 2016).

Yang, Y., Bansal, N., Dakka, W., Ipeirotis, P., Koudas, N., and Papadias, D. (2009).

Query by document. In Proc. of WSDM 2009, page 34–43.

Yilmaz, Z. A., Wang, S., Yang, W., Zhang, H., and Lin, J. (2019). Applying BERT

to document retrieval with birch. pages 19–24.

Yoshua Bengio, Réjean Ducharme, P. V. and Jauvin, C. (2003). A neural proba-

bilistic language model. Journal of Machine Learning Research, 3:1137–1155.

Yu, X., Ma, H., Hsu, B.-J. P., and Han, J. (2014). On building entity recommender

systems using user click log and freebase knowledge. In Proceedings of the 7th

ACM International Conference on Web Search and Data Mining, WSDM ’14,

page 263–272, New York, NY, USA. Association for Computing Machinery.

Zamani, H. and Croft, W. B. (2017). Relevance-based word embedding. In Proc. of

SIGIR’17, pages 505–514.

219

Zhang, S., Guan, D., and Yang, H. (2013). Query change as relevance feedback in

session search. In Proc. of SIGIR 2013, pages 821–824.

Zheng, G. and Callan, J. (2015). Learning to reweight terms with distributed rep-

resentations. In Proc. of SIGIR ’15, pages 575–584.

220

