
Learning Behaviours data in Programming Education: Community
Analysis and Outcome Prediction with cleaned data
Tai Tan Maia,∗, Marija Bezbradicaa and Martin Cranea

aSchool of Computing, Dublin City University

ART ICLE INFO
Keywords:
community detection
learning analytics
random matrix theory
machine learning
educational data mining

ABSTRACT
Due to the COVID19 pandemic, more higher-level education programmes have moved to online chan-
nels, raising issues in monitoring students’ learning progress. Thanks to advances in online learning
systems, however, student data can be automatically collected and used for the investigation and pre-
diction of the students’ learning performance. In this article, we present a novel approach to analyse
students’ learning behaviour, as well as the relationship between these behaviours and learning assess-
ment results, in the context of programming education. A bespoke method has been built based on
a combination of Random Matrix Theory, a Community Detection algorithm and statistical hypoth-
esis tests. The datasets contain fine-grained information about students’ learning behaviours in two
programming courses over two academic years with about 400 first-year students in a Medium-sized
Metropolitan University in Dublin. The proposed method is a novel approach to data preprocessing
which can improve the analysis and prediction based on learning behavioural datasets. The proposed
approach deals with the issues of noise and trend effect in the data and has shown its success in detect-
ing groups of students who have similar learning behaviours and outcomes. The higher performing
groups have been found to be more active in practical-related activities throughout the course. Con-
versely, we found that the lower performing groups engage more with lecture notes instead of doing
programming tasks. The learning behaviours data can also be used to predict students’ outcomes (i.e.
Pass or Fail the exams) at the early stages of the study, using popular machine learning classification
techniques.

1. Introduction
Education in Computer Programming and related domains

has received increasing attention due to the growth in de-
mand for Information Technology (IT)-related job markets.
Furthermore, in recent years, STEM fields (science, tech-
nology, engineering and mathematics) also require essen-
tial IT skills and knowledge, making these types of skills
an integral part of most STEM sub-disciplines such as Ar-
tificial Intelligence, Bio-informatics, Statistics etc. One of
the pivotal and essential courses in any IT-related degree is
a set of programming courses so understanding and improv-
ing students engagement and process of learning are of key
importance. However, despite the necessity of these skills,
there have been considerable drop-out rates in introductory
programming courses reported from many studies [6]. The
failure rate in introductory programming modules has been
reported to be 28% on average, with a huge variation from
0% to 91% [6], according to a recent study using data from
161 universities around the world.

Typically, lecturers can monitor student progress and, if
necessary, conduct interventions to ensure the learning qual-
ity and progress of students in the class. In addition to prac-
tical exercises and formal assessments, interaction in con-
ventional face-to-face classes could help educators to under-
stand the performance of students. However, online courses
may restrict the potential for direct communication between
educators and students [43]. These difficulties may create
more challenges for lecturers to monitor how the students are

∗Corresponding author
tai.mai2@mail.dcu.ie (T.T. Mai)

ORCID(s):

performing during the courses. In this context, more higher-
level education programmes have moved to online channels
due to the pandemic, causing the lack of direct communi-
cation. Hence, it is necessary to develop novel methods to
support educators inmonitoring and understanding students’
learning behaviour during their online sessions.

Thanks to developments in educational technology, ad-
vanced online learning systems, such as Moodle and Black-
board, enable one to capture learning data generated by par-
ticipants of the courses [58]. These systems provide the abil-
ity to automatically record a large amount of interaction data
at fine-grained levels, e.g. at the level of mouse and key-
board events on a page. Such log data has the potential to
be used to improve the pedagogical value of online teaching
and learning [53]. Analysing the massive amount of educa-
tional data collected during the learning process also has the
potential to help instructors and students to obtain a compre-
hensive view of a student’s learning progress. This insight
enables the possibility of evidence-based interventions and
recommendations [36] which might have effects on learner
perception, learning patterns and learning outcomes [25].

In terms of automatic behavioural log data, there is the
potential for the effect of noise and trend to be present in
the automatically collected data. Students can work flexibly
when completing their learning paths in the online learning
system. For example, they can carry out various learning
activities such as reading lecture notes, coding, navigating
among course documents in any order, resulting in noise
in the logged data, i.e. data heterogeneity and complexity
[32]. In addition, we have noticed from the data gathered
that students are likely given the same instructions and learn-

Tai Mai et al.: Preprint submitted to Elsevier Page 1 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

ing pathway in the same class. As a consequence, this may
create a trend effect, i.e. students’ learning behaviours can
be similar and highly positively correlated with other learn-
ers’ behaviours in the same course. Hence, it is important
to filter noise and clean the trend effect in the event log data
before applying further analysis.

This research aims to investigate the relationship between
students’ learning behaviours on course material items and
their performance in the exams while taking programming-
related courses in online learning systems. Specifically, the
research objective is to answer these research questions:

• RQ1. Do students from different groups, correspond-
ing to different patterns of learning behaviours, per-
form differently in the exams? If this is the case, how
do such groups interactions with items of course ma-
terial differ?

• RQ2. Is there potential for students’ learning behavioural
data to be used to predict learning outcomes (Pass or
Fail) at the early stages of the study period?

To address the research questions, we investigate about 400
university students participating over the two programming-
related courses during the two academic years (2017/2018
and 2018/2019). The courses have been delivered to stu-
dents in a combination of conventional and online formats.
In particular, students have physically attended the lecture
sessions in lecture halls, and have conducted all learning ac-
tivities on a bespoke online system. The learning data were
logged and these serve as input datasets for further analy-
sis here. Behavioural data captured automatically from the
system is stored in the format of an event log. From the in-
put event logs, the concept of a student-event item data ma-
trix and a transition-student data matrix (described below)
have been developed to represent the students’ learning be-
haviour. To deal with the problem of noise and trend effect in
the datasets, we utilise the cleaning methods based on Ran-
dom Matrix Theory (RMT), followed by the construction of
Minimum Spanning Trees (MST) to reflect the difference in
learning behaviours of all students. Community detection al-
gorithms and statistical tests have also been applied to inves-
tigate the students’ behaviours on course material items. For
the prediction of learning outcome, a set of machine learn-
ing algorithms have been applied into every week’s original
and cleaned data and the predictability has been validated by
cross-validation technique.

The rest of the paper is organised as follows: Section 2
discusses the related works; Section 3 describes the context
of the study, data and methods; Section 4 provides detail of
the experimental results; Section 5 discuss the implications
and limitations, followed by the conclusion in Section 6.
2. Related work
2.1. Analysis using Learning Behavioural data

Much research has been carried out to determine the re-
lationship between the learning behaviours and performance

of students [16, 17]. In [37], the authors investigated a vari-
ety of learning activities such as collaborative activities and
giving feedback by using data from 13 participants in an ex-
perimental setting class. The effect of the diversity of learn-
ing styles on learning scores and satisfaction has also been
tested in [57], using the data from an online forum and sur-
vey data from 144 students. Although these efforts consider
awide range of learning activities, they have been carried out
with small size samples so survey data was still required for
the analysis. In the context of this paper, we utilised datasets
from a large number of students in two modules over the two
academic years, i.e. 112 students in Course#1 2018, 151 stu-
dents in Course#1 2019, 62 students in Course#2 2018 and
48 students in Course#2 2019. The datasets were automat-
ically collected during the study from our bespoke online
learning platform.

Complementing the work above, the analysis of mas-
sive learning behavioural log data has been supported with
the emergence of Educational Process Mining (EPM), and
the application of process mining [62] techniques and algo-
rithms in educational event log data [52]. Recently, EPM
appears to be an effective tool to analyse educational data
and deliver new insights into the learning and teaching pro-
cesses. Many of the process mining applications in educa-
tion have been developed and implemented in various as-
pects of education [50, 24]. The applications of Massive
Open Online Courses (MOOCs) attract the most attention
from researchers due to the availability of the input log data
[32]. The majority of applications in EPM aim to discover
learning patterns from the input data so-called event log, re-
sulting in learning process models. However, there may be
challenges for the process discovery approachwhen there are
many complicated and noisy event logs. In such cases, the
process mining techniques would likely produce ‘spaghetti-
like’ process models which can be incomprehensible. It is
also not trivial to combinemany processmodels for the inter-
pretation [15]. This research adopts the notion of ‘event-log’
in EPM as a storage format of the collected dataset. How-
ever, instead of generating complex process models, we ex-
tract features from the logs and then propose a method to
clean the extracted dataset. We suggest that this cleaning
method can separate the information part from the noise in
the dataset, and, in the process, improve the performance of
community analysis, i.e. to produce more logical coherent
communities in terms of their learning performance, as well
as to generate better predictive models of learning outcomes.

In terms of the network-based approach in Education,
there are a few existing works using Community Analysis
and Minimum Spanning Tree, which are most similar to this
paper. Both [29] and [51] studied the network structure of
undergraduate courses and their contributions to students’
learning pathways. However, the authors merely considered
the courses’ grades from a relatively small number of stu-
dents. We not only utilise exam results but also consider
student learning behaviours by extracting behavioural data
features from large automatic collected datasets.

Regarding programming educational context, in [5], the

Tai Mai et al.: Preprint submitted to Elsevier Page 2 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

author found that practice is essential for improving students’
programming skills and students should be given opportuni-
ties to practice and receive constructive feedback. In [9],
the author developed metrics for use as formative assess-
ment tools to analyse (successful and unsuccessful) students’
learning patterns. However, these approaches have focused
mostly on practical activities such as coding and solving pro-
gramming tasks. Our approach considers comprehensive learn-
ing activities that students do in their programming study,
i.e. coding, reading lecture notes and labsheets.
2.2. Learning Outcome Prediction

Prediction of student performance has been one of the
most popular topics in Learning Analytics in recent years
[44, 53]. In general, input data used for the prediction can
be classified into two categories: static and dynamic data
[25]. Student demographic information and historical edu-
cational records can be classified as static data because these
variables and values do not update or change frequently over
the study period. On the other hand, online behaviours, tex-
tual data and other multimodal data can be considered as
dynamic data because they can be continuously generated
when students are interacting with the system. In terms of
the prediction of learning outcome from the static data, one
can rely on features such as personal attributes and cumu-
lative grade point average (CGPA) from previous years [3].
For instance, using learning grades from previous courses
can predict the drop-out probabilities of computing students
[27]. However, the use of static data to predict learning out-
comes has been shown to cause some problems [25], i.e. the
student’s actual efforts during the learning process can be
ignored. It has also been found that previous student results
(e.g. the CGPA) are not sufficient to predict drop-outs, and
engagement variables also need to be included (e.g., number
of accesses to the platform) to achieve good accuracy results
[1]. The static data can also be difficult to collect as theymay
need to be merged from various data sources, which might
cause data quality and ethical issues.

On the other hand, dynamic features such as behavioural
data can be collected easily due to their availability in the
advanced learning platform. It has been shown that it is pos-
sible to rely on dynamic data [22] to predict student learning
outcomes. For example, learning log data from the Moo-
dle platform has been used for predicting learners’ perfor-
mance [31], using common features in a Learning Manage-
ment System such as Assignment, Feedback, Course login
and Chat. More fine-grained data can be used as predictors
such as mouse interactions (e.g. click and drag) [64]. Multi-
modal features (e.g. eye-tracking, face-video and wristband)
have also been demonstrated its predictability of learning
performance [56]. Generally, according to the recent sur-
veys, most of the current approaches have a focus on either
combining new features collected from learning platforms
or new strategies with different machine learning predictive
models [44, 25]. However, to the best of our knowledge,
none of the existing research directly deals with the issues
of noise and trend in educational data, which, we feel, may

have a negative influence on prediction models. One of the
most commonmethods to pre-process data is Principal Com-
ponent Analysis (PCA) which has been applied in different
areas such as education [67], medical [30] and network se-
curity [8]. Although PCA supports the selection of the most
relevant features, which may help to unintentionally elimi-
nate noise in the data, the trend effect remains. The evalu-
ation of the predictability of the behavioural data at early
stages also remains limited [25]. Based on Random Ma-
trix Theory, our approach aims to identify and separate the
key information part from the noise, which enhances the per-
formance of the prediction models with cleaned datasets in
comparisonwith original and PCA-based processed datasets.

3. Research methodology
3.1. Context of the study

This research has been carried out based on four datasets
representing the learning behaviour of students and their per-
formance in two programming-related courses on a Com-
puter Science (CS) program in a Medium-sized Metropoli-
tan University. The first course is a first-year introductory
programmingmodule that is delivered to Software Engineer-
ing students. These students generally have the aim of tar-
geting programming-related jobs such as software develop-
ment. The second course is a programming module taken
by first-year Business Computing students who are usually
looking for non-technological positions in an IT-related field.
We denote the two courses as Course#1 and Course#2, re-
spectively.

In both courses, learning material items are provided to
the students on a weekly basis. Course items include gen-
eral course information, lecture notes, labsheets and pro-
gramming tasks. Students should read lecture notes during
a lecturing session. In a lab session, students should fol-
low instructions and examples in labsheets and do given pro-
gramming tasks. The solutions to the tasks are uploaded and
tested automatically by the system. Course items are deliv-
ered in the form of web pages on the bespoke online learning
system. We formalise the course material items in this con-
text as material type (i.e. General, Lecture, Labsheet and
Practice) combined with the corresponding week, e.g. Lab-
sheet_1 means the labsheet used in week 1. For the gen-
eral documents, we denote them as General. Students’ in-
teractions with the items (e.g. mouse clicking or scrolling,
highlight a piece of text or switching between two items) are
logged automatically on the database.

There are three lab exams in Course#1, which take place
in weeks 4, 8 and 12 (the final week of the semester) while
Course#2 students have to take two lab exams in weeks 6
and 12. On finishing a programming lab examination task,
students submit their codes to the systems and get the re-
sults as “correct” of “incorrect” submission. A submission
is considered “correct” if it passes all the test cases which are
pre-defined by the instructors. Each task is given the same
mark proportion and the overall mark is given to students
after the exam is finished. A student whose grade is fewer

Tai Mai et al.: Preprint submitted to Elsevier Page 3 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

than 40 out of 100 is labelled as “lower-performing’, other-
wise, that student is considered as “higher-performing”. In
this research, the overall marks of students have been used
for the behavioural analysis while the labelling is used as
a target variable, i.e. “higher-performing = 1” and “lower-
performing = 0” for the evaluation of the predictability of
behavioural data to the students’ learning outcomes.

All lab exams are mandatory and carry the same weight
in the overall assessment. Students are, therefore, required
to take the exams seriously by doing all given programming
tasks as much as they can. The last exam in each module is
the most challenging one, requiring a comprehensive under-
standing of the course knowledge to solve the given prob-
lems. Therefore, the results of the last exam will be used as
a basis for further analysis in this research.

The two courses are expected to provide students with
fundamental knowledge and skills in Python programming.
Both modules are mandatory and key to the aims of the over-
all outcomes. Because they are prerequisites for the pro-
grammes, students are expect to be equally motivated as they
cannot follow curriculumwithout deep understanding of these
modules. Hence, we assume that students are likely to take
these modules seriously and participate fully to maximise
their learning benefits.

Table 1

Datasets information.

Dataset Number of Number of Average events
students events per student

Course#1-2018 112 1,054,394 9414
Course#1-2019 151 1,484,297 9829
Course#2-2018 62 211,855 3417
Course#2-2019 48 200,006 4166

The difference between the two modules relates to the
level of knowledge and task requirements. In Course#1, stu-
dents are taught more advanced concepts in programming
and given more challenging exercises, compared to students
in Course#2, as that relates to their specific programmes. As
a result, students in Course#1 generally have more activities
in learning than Course#2 students, as can be seen in Table
1. In other words, while Course#1 can be seen as a typical
programming course for CS students, Course#2 represents a
programming course for non-IT learners who still need pro-
gramming skills at a certain level. It is important to note that
both courses have the same coordinator and the curriculum
had not significantly changed over the two academic years.
Therefore, the learning motivation of students is expected
to be the same in both courses. However, their behaviours
can be distinct due to the differences in the level of course
requirements. As a result, these datasets can reflect the di-
versity of learning characteristics of students’ learning be-
haviours, giving a good quality of data.
3.2. Event logs for learning behaviours

We can consider a real-life scenario of student learning
programming on the online learning system as follows. On

a day inWeek 5, student s1 read a labsheet for a task instruc-
tion. While reading a labsheet, the student also switched be-
tween lecture notes and the labsheet two times, and another
two mouse events on the lecture page were logged. Then the
student can write code to solve a given task and upload it
to the system via the submission portal. All these learning
events of the student s1 can be recorded and stored as event
data structure so-called event log which can be seen in Table
2 as an example.

Table 2

Example of event log of student s1 on two days in week 5.

Event Item Timestamps Student id

1 Labsheet 5 2018-08-12 14:30:00 s1
1 Labsheet 5 2018-08-12 14:35:00 s1
1 Lecture 5 2018-08-12 14:36:00 s1
1 Labsheet 5 2018-08-12 14:45:00 s1
1 Lecture 5 2018-08-12 14:49:00 s1
1 Labsheet 5 2018-08-12 14:50:00 s1
2 Practice 5 2018-08-13 11:59:00 s1
2 s1

We adopt the format of event log in Process Mining [62]
to store the students’ learning behaviour. An event log in-
cludes a collection of events implemented in chronological
order. Each event belongs to a learning trace which refers to
the sequence of events of a student within a day. Event logs
may contain other attributes such as timestamps, participants
and results. In the context of this research, a student’s learn-
ing event log comprises the following information:

• Trace id: A trace refers to a sequence of learning events
of a student in a day. For example, Table 2 illustrates
two learning traces associating with 12 August and 13
August 2018 of the student s1.

• Event Item: An event item refers to an item of course
material of the corresponding week where students’
interactions with the system are logged.

• Timestamps: Timestamps refer to the date and time
when the corresponding event occurred. The times-
tamp is essential information as it will be used for or-
dering events and reflecting the behaviour of students.

• Student id: Student id refers to the identity of students.
3.3. Learning Behavioural Features

Weuse two types of features to reflect the students’ learn-
ing behaviour in this research. The first type is the event
item features, i.e. the number of events that occurred in each
coursematerial item. Event frequency features extracted from
the event log can be arranged as a student-event item data
matrix where each column refers to the number of events on
a material item generated by students and each row is the
data for each student. An example of a student-event item
data matrix can be seen in Table 3.

The second type is the transition frequency features, i.e.
the number of occurrences that a student moves from an

Tai Mai et al.: Preprint submitted to Elsevier Page 4 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Table 3

Example of student-event item data matrix

StudentId Lecture1 Labsheet1 Practice2 ...

s1 5 7 6 ...
s2 24 14 34 ...
s3 12 54 0 ...
...

event on a course item to another event. Please note that the
two events can be on the same item or two different items.
We use the term transition to denote this phenomenon of
moving between consecutive events. The transition frequency
features can be arranged as a transition-student data ma-
trix where rows refer to transition frequency features and
columns are the data for students. An example of a transition
data matrix of an event log can be seen in Table 4. The value
of Lecture1-Labsheet1 for student s2 equal to 14 indicates
that student s2 performed an event 14 times on the Lecture1
directly before the next event on Labsheet1. Please note that
if the two materials are the same, e.g. Lecture1-Lecture1,
the transition reflects a loop in the learning process, i.e. the
student keeps working on the same course item Lecture1.

In this paper, the student-event item data matrix has been
used for the learning outcome predictions and the transition-
student data matrix has been used for analysing the relation-
ship between students’ learning behaviour and their assess-
ment performances.

Table 4

Example of transition-student data matrix

Transition s1 s2 s3 s4 ...

Lecture1-Lecture1 4 5 10 23 ...
Lecture1-Labsheet1 0 14 9 12 ...
Labsheet1-Practice1 12 6 0 21 ...
Labsheet1-Lecture1 16 25 0 5 ...
...

3.4. PCA and Random Matrix Theory for
Behavioural Features

Given am×n data matrixG extracted from an event log,
we can normalise the matrix G as G(n) as follow:

G(n)j =
Gj −Gj

�j
(1)

where G(n)j is a column of the matrix G(n); Gj is a col-
umn of matrixG. In caseG is a transition-student data ma-
trix, Gj denote a series of the frequency of transitions a stu-dents j. On the other hand, if G is a student-event item data
matrix, Gj denote a series of the frequency of accesses to
the corresponding learning item j from all students. Gj isthe mean value of Gj and �j is a standard deviation of Gj .In other words, Gj and G(n)j reflect the learning behaviour
of student j. The correlation matrix C can be expressed in

terms of the inner product of G(n)i and G(n)j as follows:
Cij =

⟨

G(n)i,G(n)j
⟩. We note that Cij ∈ [−1; 1]. It may

be noticed that the correlation Cij can reflect how similarly
two students i and j interacted with course material items. If
Cij > 0, the transitions of the two students i and j increasedtogether and the students behaved similarly in the course.
Conversely, if Cij < 0, the two students tend to behave dif-
ferently on the learning system.

The characteristic equation ofC can be shown to be given
by: CV = ΛV where Λ is a n x n diagonal matrix of eigen-
values �i and V is a matrix whose columns refers to the cor-
responding eigenvectors vi of C.Based on PCA theory, the new n variables xi, forming
a new data matrix X = [x1, x2, ..., xn] can be obtained after
Principal Component Analysis of G(n) as follows:

xi = vi1G(n)1+vi2G(n)2+ ...+vinG(n)n = vTi G(n) (2)
where 1 ≤ i ≤ n, xi refers to the scores and vi refers to the
loadings of the principal component i. In other words, each
principal component has its own eigenvalue and eigenvector.

We can also reconstruct the original normalised dataG(n)
from X as follows:

G(n) =
n
∑

i=1
vixi (3)

In addition, given a random matrix A where A is a m× n
matrix with randomly distributed elements with zero mean
and unit variance. It has been shown that [66] the proper-
ties of C can be compared to the correlation matrix R of the
random matrix A as R = 1

mAA
T According to RMT, the

statistical properties of such a matrix R are known [26]. In
particular, when the sample size m → ∞ and the number of
features n → ∞, providing that Q = m

n ≥ 1 is fixed, the dis-
tribution of eigenvalues � of the random matrix R is given
by the Marcenko-Pastur probability density function [49]:

PR(�) =
Q
2��2

√

(�+ − �)(� − �−)
�

(4)

where �− ≤ � ≤ �+, �− and �+ are lower and upper limits,
eigenvalues of R respectively, given by:

�± = �2
(

1 ±
√

1
Q
)2 (5)

where � = 1 due to A having an unit variance.
We note that �± are the upper/lower limits of theoretical

eigenvalues distribution. Eigenvalues falling outside of this
range are assumed to deviate from the expected values of
the Random Matrix Theory [41]. As a result, by comparing
this theoretical distribution with the empirical data, we can
identify the key eigenvalues containing specific information
in the data. This characteristic of the RMT supports the need
to clean the effect of noise and trend in the data [49].

Tai Mai et al.: Preprint submitted to Elsevier Page 5 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Figure 1: Uncleaned correlation matrix of students' transitions
in Course#1 dataset

Figure 2: Cleaned correlation matrix of students' transitions
in Course#1 dataset

3.5. Noise and trend effect cleaning
We have noticed that, in practical usage of the online

learning system, students may interact flexibly with course
material items. Although the students can be given the same
instructions and learning pathway, they are free to use learn-
ing functions in their own way. This phenomenon appears
to create noise in the event log data. On the other hand, as
all students attended the same lectures, the learning instruc-
tions given to them are the same. As a consequence, all stu-
dents may interact similarly with course material items. We
can observe this trend effect in Figure 1. Most transitions
among students are highly correlated. This issue may limit
the chance of detecting the difference in learning behaviours
among groups of students. Therefore, it is necessary to clean
the effect of noise and trend in the dataset [49].

We also observe a phenomenon that students’ learning
behaviours can be affected by a trend factor, i.e. they were
asked to follow the same instructions and learning pathway
in the class, causing highly positively correlated learning be-
haviours among the students. (Figure 1). By removing such
a trend component in a classroom, the remaining compo-
nents of the correlation could explain better the character-
istics of the students’ learning behaviours. In this paper, we
adopt, from financial references such as [39, 48], the concept
of a “Market Component”. This is the largest eigenvalue of
a correlation matrix representing a cross-market effect af-
fecting all stocks. Similarly, the trend effect in a classroom
can be reflected by the largest eigenvalue of the correlation
matrix of students’ learning behaviours.

In the following sub-sections, we discuss the methods to
clean the correlation matrix of a dataset as well as propose a
method to clean the dataset based on Random Matrix The-
ory.

3.5.1. Cleaning the correlation matrix
Having reviewed a number of correlation cleaning meth-

ods (e.g eigenvalue clipping [48, 41] and linear shrinkage
[35]), we utilise the eigenvalue clipping because it was found
to be the best in terms of its ability of removing the noise
while preserving the information part, i.e. the trace of the
original correlation matrix, by simply utilising the results of
the Marcenko-Pastur equation [13] instead of choosing a pa-
rameter during the cleaning process such as linear shrink-
age and Rotationally invariant, optimal shrinkage [14]. The
eigenvalue clipping provides robust out-of-sample perfor-
mance [11] and has also been widely adopted [20, 55].

Let �1, ..., �N be the set of all eigenvalues of C and �1 >
... > �N , and i be the position of the eigenvalue such that
�i > �+and�i+1 ⩽ �+.Then we set

�j = 1∕(N − i)
N
∑

k=i+1
�k, (6)

where j = i+1, ..., N . In other words, we keep all the upper
bound eigenvalues, i.e. those with information, and replace
all lower bound eigenvalues, i.e. those within bounds pre-
dicted by RMT, with the average value of them. Hence, this
method can best preserve the trace of the original correlation
matrix. The new set of eigenvalues can be used to construct
a denoised eigenvalue and spectrum associated correlation
matrix Cdenoised . [49].The effect of the first eigenvalue and eigenvector can
be removed from the denoised correlation matrix as follows
[49], forming a cleaned correlation matrix:

Ccleaned = Cdenoised −W1V1W
T
1 (7)

whereW1 and V1 are the first eigenvector and eigenvalue of
C . An example of the effect of the cleaned correlation ma-
trix can be seen in Figure 1 and Figure 2. The two figures
illustrate the correlation coefficients of the transition-student
data matrix in the Course#1-2018 dataset, i.e. each dot in the
figures refers to the correlation of one student to another stu-
dent. The scale on the right side of the two figures indicates
the range value of the correlation coefficients. We can notice
that the dots in the diagonal refer to the correlation of transi-
tion data of a student to her/himself (i.e. correlation values
= 1). It may be seen in Figure 1 that the majority of the
dots are in different shades of green. This phenomenon may
reflect a “trend effect”, i.e. students’ learning behaviours
can be similar and highly positively correlated with other
learners’ behaviours in the same class. These issues may
negatively influence the construction of prediction models
though. After cleaning the data, there are more neutral and
dots shades of orange visible in Figure 2, indicating the neg-
ative correlation values. That is to say, the Ccleaned cor-
relation matrix may contain differences in student learning
behaviours, creating more chances to better cluster the stu-
dents. Similar results are observed in the other three datasets
(Course#1-2019, Course#2-2018 and Course#2-2019). The
use of cleaned correlation matrix in Community Analysis is
discussed in Section 3.6.

Tai Mai et al.: Preprint submitted to Elsevier Page 6 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Figure 3: Learning Behavioural Distance matrix of students in
Course#1 dataset

3.5.2. Cleaning the Dataset
While the cleaned correlation matrix is expected to be

useful in community analysis, the prediction of learning out-
comes, however, require a tabular dataset. As a result, it is
necessary to clean the original data matrix instead of the cor-
relation matrix in case of improving prediction models. In
this section, we propose a method to clean the original data
matrix based on Random Matrix Theory.

In terms of the eigenspectrum of the correlation matrix,
let �1, ..., �N be the set of all eigenvalues of C and �1 ≥
... ≥ �N , and k be the position of the eigenvalue such that
�k > �+ and �k+1 < �+. We note that �1 refers to the
largest eigenvalues and the first principal component. The
clean dataset Ĝ can be constructed as follows:

Ĝ =
n
∑

i=1
vixi − �

n
∑

i=k
vixi − �v1x1 (8)

where ∑n
i=k vixi refers to the noisy part of the dataset

based on RMT, and v1xi refers to the first principal compo-
nent part of data. The parameters � ∈ [0, 1] and � ∈ [0, 1]
control howmuchwewant to remove the noise and trend part
from the original data, respectively. If � and � is equal to
zero, Equation 8 is similar to Equation 3, i.e. the reconstruc-
tion of full original data from the principal component scores
dataset. If � and � have a unit value, we have a fully cleaned
dataset. Otherwise, we have a partly cleaned dataset when
both � and � are between 0 and 1. The cleaned dataset Ĝ can
then be used as input for machine learning predictive mod-
els. We expect that the performance of the predictingmodels
using Ĝ, either fully or partly cleaning, will be improved in
comparison with the use of the original dataset and simple
PCA-based datasets. Results are shown in Section 4.2.1.
3.5.3. Distance matrix of students learning bahaviours

Although the correlation values appear to be useful in re-
flecting the similarity and difference in students’ learning be-
haviours, they are not appropriate metrics as they do not sat-
isfy non-negativity and triangle inequality conditions [49].
For example, the difference between the correlations (0.8,
1.0) is the same as (0.1, 0.3), but the former tuple illustrates
a higher difference regarding co-dependence. Fortunately, it
is possible to translate the correlation matrix into a distance
matrix D as follows: [49]

Dij =
√

0.5 ∗ (1 − Cij) (9)

with Dij ∈ [0, 1] where Dij is a distance value of learn-
ing behaviours between the two students i and j. The value
closer to 1 refers to where two students interact completely
differently with the course material items while the value
closer to 0 indicates that two students behave similarly. Fig-
ure 3 indicates an example of the learning behavioural dis-
tance matrix of students in Course#1-2018 dataset. The di-
agonal comprises zero values, illustrating the behavioural
distance between students and themselves. The other dis-
tance values range from 0 to more than 0.6. The distance
matrix can be used to construct a community graph which is
discussed in the next section.
3.6. Community Analysis

To verify whether students with similar behaviours per-
form similarly and vice-versa in lab exams, we choose to
adopt a network-based approach. Generally, a graph is con-
structed based on the concept of a distance matrix. In the
graph, each node represents a student and the edge weight
between two nodes indicate the distance between learning
behaviours of the two students. Then, a clustering technique
can be applied to the graph to detect the communities where
students having similar learning behaviours are grouped.
3.6.1. Construct graph from distance matrix

A graph can be constructed directly using the distance
matrix values Dij as edge weights. Unfortunately, such a
network is a hardly readable weighted complete graph as
each node (student) has a connection to all other nodes in
the graph. Additionally, we note that the time complexity of
community detection algorithms is proportional to the num-
ber of edges and nodes in the graph. For example, the time
complexity of the Girvan-Newman algorithm [34] isO(m2n)
wherem is the number of edges and n is the number of nodes
(or students). With such a fully connected graph, the number
of edges is m = n(n − 1)∕2, which may lead to, in the worst
case, the time complexity of the algorithm ofO(n5). To over-
come this issue, one possible solution is to reduce the num-
ber of edges in such a fully-connected graph. It is important
to minimise the number of edges in the constructed graph
while preserving the purpose of grouping students having
similar behaviours.

In the context of this paper, all values of the distance
matrix of each dataset are identical. In other words, all edge
weights of the fully connected graph constructed from the
corresponding distance matrix are unique. Taking advan-
tage of this characteristic, we adopt the notion of Minimum
Spanning Tree (MST) [65], i.e. an MST is constructed for
each graph and connects all students in a course without hav-
ing any loops. With the distance matrix D as the adjacency
matrix of a graph, an associated MST is constructed such
that the sum of all edges in the graph is minimal for all pos-
sible spanning trees. We note that if all edge weights of a
graph are unique, then the graph has only one correspond-
ingMST. Hence, in our case, each course dataset can be used
to produce a single associating MST. It can be seen that the
MST of a set of n students is a graph with n−1 edges, reduc-
ing the time complexity of the Girvan-Newman algorithm to

Tai Mai et al.: Preprint submitted to Elsevier Page 7 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Figure 4: An example of an MST constructed from a distance
matrix of the Course#1-2018. Purple nodes refer to the higher
performing students while Blue nodes refer to the lower per-
forming students. Each edge corresponds to the distance of
learning behaviours between two students, as per Eq.9.

O((n − 1)2n) = O(n3). Furthermore, in the MST of a whole
course, each student can be connected to one or more other
students who have the most similar learning behaviours with
that student. Therefore, the clustering purpose is preserved.
3.6.2. Community detection on MST graph

Based on the MST constructed from the distance ma-
trix, it is possible to advance to the further step which is
community detection which is supported by several methods
[10, 34]. In this research, we utilise the popular detection al-
gorithm from Girvan-Newman [34] which is applied in vari-
ous domains such as biology [34], finance and cryptocurren-
cies [18]. The algorithm aims to divide the whole network
into smaller communities or groups by progressively remov-
ing edges with the highest edge betweenness until no edges
are remaining. Betweenness is the number of the shortest
paths between pairs of nodes that run through it from the
original network [34]. Please note that we take the weight
of edges into account when calculating the edge between-
ness. The nodes, i.e. students in a smaller group, are highly
connected to each other than the ones outside the group. Fig-
ure 4 illustrates an example of theMST constructed from the
data for Course#1-2018 in week 12.

The detected groups can be used for further investigation
regarding their performance in lab exams. In particular, we
can use statistical tests to verify if the lab exam grades are
significantly different between the communities. As it is not
guaranteed that the data of students in each community will
be normally distributed, a non-parametric test is preferred in
this case, i.e. Mann-Whitney U Test [46] has been utilised.
It is also possible to verify if the two communities interacted
differently with each coursematerial item in the system. Fur-
ther investigations are discussed in Section 4.
3.6.3. Selecting the number of detected communities

We observe that the Girvan-Newman algorithm can be
seen as a hierarchical method, i.e. it constructs a dendro-
gram that shows the hierarchical clustering structure. The
number of detected communities can, therefore, range from
1 to the number of nodes in the graph where each community

contains only one node. When using Girvan-Newman, it is
necessary to determine criteria to decide the cut-off level in
the dendrogram to create the resulting communities.

In this research, we define the concept of mixed commu-
nity rate. Let C = (c1, c2, ..., cn) be a community structure.
Let ci = (ℎi, li, ni) be a detected community where ℎi is thenumber of higher performing students, li be the number of
lower performing students in the community ci. The label niof the community ci is identified as Equation 10 below:

ni =

⎧

⎪

⎨

⎪

⎩

higher-performing, if ℎi∕(ℎi + li) ≥ k
lower-performing, if li∕(ℎi + li) ≥ k
mixed, otherwise

(10)

The parameter k can be configured, depending on anal-
ysis purposes. In the ideal case of k = 1, a community will
only be labelled as higher or lower performing if it contains
only higher or lower performing students. However, we ex-
pect the similarity in learning behaviours between students
in practice and it could be difficult to detect such a homo-
geneous community. Instead, we set k = 0.7, i.e. a com-
munity is labelled “higher-performing” if there are greater
than or equal to 70% of higher performing students in the
community and similarly for “lower-performing” communi-
ties. Otherwise, the communities are labelled as “mixed”.
The mixed community rate of a community structure can be
computed as follows:

mixed community rate =
No. of mixed communities
total no. of communities

(11)

The higher/lower performing communities may include
key features about student success while mixed communi-
ties may contain less information. As a result, we expect
a good community structure containing fewer mixed com-
munities. Based on the mixed community rate indicator, it
is possible to investigate each possible community in the re-
sulting dendrogram from theGirvan-Newman algorithm and
identify the number of detected communities by considering
their mixed community rates. We also make a comparison
between the original dataset and the cleaned dataset in terms
of the community structures detected from them. If cleaned
datasets can be used to produce community structure with
lowermixed community rates, the cleaning method can show
its effectiveness in community analysis.

Although we mainly focus on the Girvan-Newman algo-
rithm in the scope of this paper, the Louvain algorithm [10],
a commonly-used community detection algorithm [60], is
also used as a benchmark to verify if the two algorithms pro-
duce significantly different results. Particularly, we utilise v-
measure score [54], a widely-used clustering metric to mea-
sure the agreement of two independent community assign-
ments strategies produced by the two algorithms for each
dataset. Furthermore, we also investigate if our cleaning
method can support the Louvain method to generate bet-
ter communities with lower mixed community rates for the
cleaned data in comparison with the original data.

Tai Mai et al.: Preprint submitted to Elsevier Page 8 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

3.7. Early Prediction of Learning Outcome
To evaluate the predictability of the students’ interaction

with course material items for the learning outcomes, we
use the student-event item data matrix as the input variable.
Particularly, we combine the student-event item data matrix
of Course#1 in both academic years into a single tabular
dataset. Then, we conduct the cleaning method proposed
in Section 3.5.2 on the dataset, forming fully cleaned data
and partly cleaned data. For comparison purposes, we also
use the original and PCA transformed datasets as predictors.
The target variable is defined based on the student’s scores
on each lab exam. There are three lab exams for Course#1
on Week 4, 8 and 12. We classify students who achieved
more than 40% in the exam as higher-performing or passed
students and the remaining as lower-performing students.

For each week, a student-event data matrix has been ex-
tracted from the corresponding of theweekly event logs. The
data collected in a certain week contains recorded learning
events from the beginning of the course to that week. Then,
the weekly data was used to predict the student results for
the next exam. For example, in Course#1, the data collected
in weeks 1, 2, 3, 4 are used to predict the results of the lab
exam 1; the data in weeks 5, 6, 7 and 8 are used for predicting
lab exam 2 results and the remaining weekly data are used
to forecast the last exam result.

In terms of prediction algorithms, Support Vector Ma-
chine (SVM) appeared to be the most effective technique
for the data captured from MOOCs in many contexts [21,
2]. In addition to SVM, for references and comparison pur-
poses, we also pick four additional classification techniques
including XGBoost [19], Logistic Regression [12], Gradient
Boosting [28] and K Nearest Neighbours [23] due to their
widely applications in Learning Analytics domain [44]. In
terms of development tools, we use sklearn libraries [47] and
Python as the main programming language.

Each dataset serves as input data for all algorithms with
the same parameter configuration in each technique. In each
dataset, 80% of the data has been used for training themodels
and the remaining 20% are for validation. The 10-fold cross-
validation technique has also been applied, usingROC_AUC,
Accuracy and F1 scores, to evaluate the predicting perfor-
mance of each model.
Table 5

Summary of the features extracted from the four datasets at
the end of the courses (after week 12)

Dataset Number of Number of Number of
materials transitions students

Course#1-2018 37 819 112
Course#1-2019 37 867 155
Course#2-2018 26 409 62
Course#2-2019 26 496 48

4. Experimental results
In this section, we present the analysis results of the four

datasetsmentioned in Section 3.1. Learning behavioural fea-
tures are constructed from the four datasets, as summarised

Figure 5: Mixed community rates in community structures for
Course#1_2018

Figure 6: Mixed community rates in community structures for
Course#1_2019

in Table 5. Course#1 has more material items and transi-
tions than Course#2. This is because Course#1 has been
delivered to Software Engineering students and was more
intensive than Course#2 which targets Business Computing
students who may be “less-technical”.
4.1. Community Analysis
4.1.1. Selecting community structure

The extracted datasets illustrated in Table 5 have been
standardised, and this is followed by the calculation of cross-
correlation matrices. The correlation matrices are cleaned
before being used to calculate the learning behavioural dis-
tance matrices. The distance matrices have been used to
construct MSTs. In other words, for each module, we con-
struct a graph as an MST to display the similarity and dis-
similarity of the students’ learning behaviours. Based on
the MSTs, we implement the Girvan-Newman algorithm for
community detection. Students in each module can be di-
vided into a smaller number of communities based on the
distance between their learning behaviours and other learn-
ers’ behaviours.

We note that the number of groups to be detected by the
Girvan-Newman algorithm can be configurable depending
on analysis purposes, forming a community structure. In
this research, we rely on Mixed community rates, i.e. a good
community structure should contain fewer mixed community
rate and more number of higher or lower performing com-
munities. Figure 5 and Figure 6 shows the investigation of
mixed community rate for each possible community structure
detect by the algorithm in Course#1 in both academic years.
Indeed, the number of detected communities can go up to the

Tai Mai et al.: Preprint submitted to Elsevier Page 9 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

total number of students in the whole graph. However, we
do not want a fragmented community structure where each
community contains only a few students. Hence, we merely
show a part of possible community structures in both figures.
Table 6

Community detection summary for Course#1

Group
Course#1 - 2018 Course#1 - 2019

Number of Average Number of Average
students grade students grade

Group 1 10 0.78 15 0.76

Group 2 18 0.56 26 0.64
Group 3 14 0.44 14 0.64
Group 4 16 0.42 24 0.51
Group 5 21 0.35 23 0.36
Group 6 06 0.16 16 0.31
Group 7 17 0.16 18 0.29
Group 8 10 0.08 15 0.20

Table 7

Community detection summary for Course#2

Group
Course#2 - 2018 Course#2 - 2019

Number of Average Number of Average
students grade students grade

Group 1 05 0.75 06 0.91

Group 2 05 0.60 05 0.9
Group 3 09 0.58 06 0.87
Group 4 09 0.52 06 0.75
Group 5 09 0.44 05 0.7
Group 6 04 0.43 07 0.67
Group 7 08 0.43 08 0.56
Group 8 07 0.39 05 0.55

Group 9 06 0.33 N/A N/A

Both Figures 5 and 6 show that the cleaned dataset have
a better support for community detection in comparison with
the original dataset. Overall, the mixed community rate in
the community structures detected using the cleaned datasets
are lower than the figures for the original datasets for Course#1.
We also observed a similar phenomenon for the Course#2
datasets. In addition, based on these figures, it is possible to
determine the community structures, using the lowest point
of the mixed community rate line. The detected results can
be seen in Table 6 for Course#1 and Table 7 for Course#2. In
Table 6, eight groups have been detected with the number of
students in each group and its average grades of the final lab
exam in week 12. Similarly, Table 7 displays nine detected
groups for Course#2-2018 and eight groups for Course#2-
2019. All groups are ordered from the highest to the lowest
average grades in the tables.
4.1.2. Analysing highest vs lowest performing

communities
The highest and lowest-performing communities in Ta-

ble 6 and 7 can be picked for the further investigation of the
difference of interactions with course material items among
the student cohorts. Table 8 demonstrates the difference in
the number of learning activities in using learning material

items in Course#1 between the two groups while the results
for the Course#2 can be seen in Table 9. For each item, non-
parametric statistical tests (i.e. Mann-Whitney U Test [46])
have been used to verify if there is a significant difference
between the highest and lowest performing communities in
terms of using the item during the courses. The course ma-
terial items in which the highest and the lowest performing
communities have a significant difference in the number of
events (p-value < 0.05) are highlighted.

Table 8

Highest vs Lowest performing communities in Course#1. The
asterisks indicate the learning items where there is a sig-
ni�cant di�erence between the two communities (p-value <
0.05). In particular, * if there is only a signi�cant di�erence
in Course#1-2018 only, ** if there is only a signi�cant di�er-
ence in Course#1-2019 only and *** if there are signi�cant
di�erences in both academic years

Items
Course#1 - 2018 Course#1 - 2019

Highest Lowest Highest Lowest
performingperforming performingperforming
communitycommunity communitycommunity

General 160.0 159.0 403.0 355.0
Lecture1** 43.0 56.0 57.0 70.0

Lecture2* 53.0 129.0 121.0 110.0
Lecture3* 15.0 157.0 129.0 112.0
Lecture4* 33.0 72.0 50.0 47.0
Lecture5*** 53.0 98.0 76.0 79.0

Lecture6*** 36.0 122.0 148.0 150.0

Lecture7*** 31.0 87.0 82.0 104.0

Lecture8** 32.0 38.0 48.0 59.0

Lecture9** 128.0 167.0 140.0 134.0
Lecture10* 91.0 102.0 91.0 76.0
Lecture11*** 15.0 42.0 81.0 138.0

Lecture12** 25.0 2.0 61.0 106.0

Labsheet1*** 167.0 245.0 164.0 66.0
Labsheet2** 283.0 352.0 440.0 235.0
Labsheet3*** 199.0 263.0 313.0 116.0
Labsheet4 95.0 100.0 206.0 121.0
Labsheet5** 325.0 223.0 442.0 208.0
Labsheet6 244.0 213.0 410.0 225.0
Labsheet7*** 245.0 139.0 384.0 194.0
Labsheet8 85.0 85.0 162.0 107.0
Labsheet9** 204.0 132.0 451.0 194.0
Labsheet10** 256.0 140.0 345.0 137.0
Labsheet11*** 163.0 100.0 159.0 104.0
Labsheet12* 80.0 27.0 120.0 133.0
Practice1 286.0 379.0 223.0 52.0
Practice2*** 427.0 613.0 417.0 190.0
Practice3 266.0 348.0 355.0 168.0
Practice4* 173.0 308.0 387.0 222.0
Practice5** 254.0 185.0 382.0 217.0
Practice6*** 277.0 185.0 346.0 206.0
Practice7*** 246.0 88.0 490.0 390.0
Practice8** 251.0 263.0 607.0 232.0
Practice9*** 360.0 138.0 493.0 215.0
Practice10*** 291.0 89.0 492.0 315.0
Practice11*** 328.0 102.0 502.0 426.0
Practice12*** 234.0 163.0 639.0 367.0

Tai Mai et al.: Preprint submitted to Elsevier Page 10 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Table 9

Highest vs Lowest performing communities in Course#2. Sta-
tistical tests were not conducted in this result because there are
merely a small number of students in the two communities(i.e.
5 and 6 students).

Items
Course#2 - 2018 Course#2 - 2019

Highest Lowest Highest of Lowest
performing performing performing performing
community community community community

General 211.0 231.0 93.0 107.0
Lecture1 37.0 100.0 93.0 19.0
Lecture3 54.0 86.0 32.0 30.0
Lecture5 42.0 43.0 29.0 31.0
Lecture9 65.0 19.0 59.0 5.0
Labsheet1 168.0 128.0 269.0 163.0
Labsheet2 127.0 56.0 228.0 98.0
Labsheet3 183.0 68.0 256.0 104.0
Labsheet4 203.0 68.0 315.0 123.0
Labsheet5 169.0 60.0 227.0 60.0
Labsheet7 247.0 144.0 151.0 59.0
Labsheet8 196.0 63.0 104.0 8.0
Labsheet9 29.0 9.0 203.0 18.0
Labsheet10 91.0 15.0 145.0 29.0
Labsheet11 40.0 4.0 96.0 12.0
Practice1 54.0 20.0 112.0 60.0
Practice2 115.0 52.0 335.0 35.0
Practice3 180.0 22.0 452.0 43.0
Practice4 171.0 24.0 400.0 57.0
Practice5 129.0 138.0 453.0 281.0
Practice6 109.0 66.0 161.0 31.0
Practice7 675.0 94.0 500.0 1.0
Practice8 247.0 26.0 382.0 20.0
Practice9 67.0 22.0 345.0 4.0
Practice10 81.0 0.0 427.0 0.0
Practice11 84.0 65.0 274.0 440.0

Regarding learning events on practice-related items, stu-
dents in the highest performing community appeared to be
more active than the lowest-performing community, with the
higher average number of learning events in all Practice and
Labsheet items across all four datasets. These gaps are likely
to increase over time. For example, in Course#1-2018, the
average number of events in Practice_11 (i.e. practice items
in week 11) of the highest performing community is about
three times higher than the figures for the lowest performing
community. A similar phenomenon can be observed in the
data of other cohorts. Nevertheless, students in the lowest
performing community are recorded to create a higher num-
ber of events in lecture records for both classes of Course#1
and Course#2-2018. For example, the number of events in
lecture notes in weeks 2-7 created by the lowest perform-
ing community is about two to three times higher than the
figures for the highest performing community in Course#1.
4.1.3. Girvan Newman vs Louvain methods

We compare the Girvan Newman community detection
results selected above (Table 6 and 7) and the corresponding
results produced by the Louvain method in the four datasets.

Table 10 illustrates an investigation of the possible difference
between the Louvain andGirvanNewmanmethodwhen both
algorithms are applied to the cleaned data and original data
for the four datasets. Overall, the results from the Louvain
and Girvan Newman method Overall, the results from the
Louvain and Girvan Newman methods appear to be broadly
similar. There are strong agreements between the commu-
nity detection results of both algorithmswith v-measure scores
being greater than 0.82. It can also be seen that the v-measure
scores for the cleaned data tend to be higher than that of the
original data. This may imply that the proposed cleaning
method may support the reduction of variation between the
two algorithms when they are applied to the same dataset.
Additionally, the results in Table 10 indicate the values for
mixed community rates of the community structure detected
by the Louvain method. The rates for the cleaned data are
likely to be lower than those for the original data. This is
consistent with the application of theGirvan-Newmanmethod,
i.e. the cleaned data can also support the Louvain method
to deliver better community detection results with the lower
number of mixed communities.
Table 10

Comparison community detection results between the Girvan-
Newman and Louvain method in both cleaned and orignal
datasets.

Dataset
Cleaned data Original data

mixed mixed
v-measure community v-measure community

score rate score rate

Course#1-2018 0.86 0.41 0.86 0.55
Course#1-2019 0.85 0.25 0.82 0.31
Course#2-2018 0.87 0.5 0.85 0.5
Course#2-2019 1 0.12 0.86 0.57

4.2. Learning Outcome Prediction Results
4.2.1. Comparison of Dataset pre-processing strategies

Figure 8, 9 and 7 demonstrate the ROC_AUC, Accuracy,
and F1 scores from different models and input datasets, re-
spectively. It can clearly be seen that the three figures il-
lustrate a similar pattern in the difference of the evaluation
metrics among the models. Overall, fully and partly cleaned
datasets appear to have better-predicting performances in com-
parison with other data preparation strategies. In particu-
lar, regarding the fully cleaned dataset, the Gradient Boost-
ing outperforms other models in all three metrics (i.e. Ac-
curacy: 0.79, F1 score: 0.785 and ROC_AUC: 0.81), fol-
lowed by KNN models, XGBoost and SVM. In terms of the
partly cleaned dataset, the models have shown that they have
been well-performing in all algorithms, especially in XG-
Boost with the highest metric scores (i.e. Accuracy: 0.74,
F1 score: 0.735 and ROC_AUC: 0.75) in comparison with
other algorithms.

Conversely, models using the original and full PCAdatasets
appear to have lower performances across all predicting al-
gorithmswith the scores roughly around 0.60 and 0.70. Mean-
while, although the PCA dataset with the top largest prin-

Tai Mai et al.: Preprint submitted to Elsevier Page 11 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

Figure 7: Comparison of the roc_auc scores of predicting mod-
els using di�erent data pre-processing strategies.

Figure 8: Comparison of the accuracy scores of predicting
models using di�erent data pre-processing strategies

Figure 9: Comparison of the f1 scores of predicting models
using di�erent data pre-processing strategies.

cipal components has the lowest performance in Gradient
Boosting and KNN, the dataset has shown its predictability
in the SVM algorithmwith the highest accuracy and roc_auc
scores. It is possible that when only top principal compo-
nents were kept in the dataset, the noise part has been elim-
inated.
4.2.2. Early prediction investigation

Figure 10 illustrates the mean of the cross-validation on
ROC_AUC score of the models using fully cleaned dataset
over 12 weeks during the course while Figure 11 shows the
results for the partly cleaned dataset. In general, most of the
models can produce good predictions for the datasets after
week 4. The ability to classify students of the data in the
first four weeks is relatively poor, which is expected, proba-
bly due to the imbalance of the number of passed and failed
students in lab exam 1. In fact, lab exam1 usually comprises

the easiest tasks which merely require the understanding of
simple concepts in programming, e.g. using variables, oper-
ators and inputs. As a result, the majority of students usually
pass the first exam. However, the difficulty level increases
over lab exams 2 and 3, causing the target variable to be-
come more balanced. Hence, the models can better predict
the pass or failure of a student in lab exams 2 and 3.

Figure 10: The 10-fold cross validation on roc_auc score of
the models with fully cleaned data.

Figure 11: The 10-fold cross validation on roc_auc score of
the models with partly cleaned data.

Although the performance of the models increases over
time with the growth of the data collected, early data can
support relatively good prediction. For example, the XG-
Boost model for week 5 data, which predicts the students’
results of lab exam 2, achieves the ROC_AUC score of 0.78.
The SVMmodel in week 9, which predicts the final exam in
week 12, also achieves the acceptable result with a score of
0.80. These models appear to have a better performance than
a recent prediction model in a similar computing educational
context [27] where the author achieved the ROC_AUC score
of 0.73 with the SVM model in the prediction of the student
learning outcome in the Data Structure course. Therefore,
early learning behaviours datamay contain signs of students’
learning outcomes [45] and can be good predictors, holding
the potential to be a “leading indicator” of “at-risk” students.
5. Implications and Limitations

From the above, we believe that it is possible to say that
there is a relationship between the students’ learning behaviours
and their exam performances. We found that the students
who are grouped in the same communitywere likely to achieve

Tai Mai et al.: Preprint submitted to Elsevier Page 12 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

similar exam results. In other words, students having similar
learning behaviours tend to perform similarly in the exam.
This finding is in agreement with [40, 63] where the au-
thors have defined and analysed various learning styles with
different learners’ behaviours in perceiving and responding
to learning environments. Moreover, the learning styles ap-
peared to affect students’ satisfaction and can also be a useful
indicator of learning success [57].

Overall, the learning behaviours of students in Course#1
and Course#2 in both academic years tend to be similar. In
bothmodules, we have foundwhat seem to be differences be-
tween lower and higher performing communities. In particu-
lar, higher-performing students were found to be more active
in practising-related items such as navigating lab sheets and
doing exercise. Besides, the higher performing students con-
sistently interacted with course material items and exercises
during the courses. The lower performing students, how-
ever, appeared to lose their focus and motivation to practice,
i.e. actually do programming tasks, in the later stages of the
study. This result is consistent with the initial investigation
of programming [42] that practice is essential for improving
students’ programming skills. These findings, available so
early in the semester, are essential for such core courses es-
pecially since it has been found that students should be given
opportunities to practice and receive constructive feedback
[5]. In [61], the authors indicated that programming skills
may be improved if students practice frequently. However
in the context of this research, the students from the lower
performing group might face challenges during their study
progress at the later stage of the course, e.g. the knowl-
edge was becoming more difficult to understand. As a con-
sequence, they might lose their confidence and motivation to
actively participate in practical sessions, additionally high-
lighting the need for early intervention and encouragement.
Besides, we noticed that the lower performing students tended
only to try to solve only those programming tasks according
to the common methods rather than creatively trying differ-
ent approaches. As a result, they mostly tend to upload so-
lutions once and move to other tasks. In contrast, the higher
performing students tend to try various approaches for a given
programming task and they submitted them all and once,
leading to a higher number of events in practical items logged
on the system, in comparison with the practical activities of
lower performing communities.

We also found that there seems to be a distinction be-
tween the learning behaviours of Course#1 and Course#2
cohorts. In Course#1, the lower performing students appear
to focus more on reading lecture notes than higher perform-
ing students. However, this phenomenon is not observed in
Course#2. Particularly in Course#2, there is almost no dif-
ference in reading lecture notes between the two types of
students. Even, the higher performing students in Course#2
seems to be becoming more active in reading lecture notes
in several weeks during the semester. In fact, the level of
knowledge in Course#2 tended to be lower than Course#1
with less advanced concepts and examples. We note that
Course#1 was designed for Computer Science students and

has a higher level of requirements for acquired knowledge
and skills. Perhaps, the lower performing students in Course#1
might be struggling with acquiring new advanced concepts,
which would keep them engage more with lecture notes in-
stead of doing programming tasks.

In terms of the learning outcome prediction, using log
data collected from online learning systems to predict stu-
dents’ success has been highly developed in the literature.
There have been many scientific reports on building an early
predicting system in many application contexts, from flag-
ging “at-risk” students [7], to recommending next courses
[59] and learning strategies [38, 4]. In our research, we pro-
vide a pre-processing data method that has been proven to
be effective in improving the performance of widely used
machine learning models in our context, i.e. programming
education. This method can also be extended to different
application contexts above as long as the data satisfies the
assumptions of Random Matrix Theory.

We recommend instructors to keep implementing com-
munity detection and prediction as students’ results come in.
Other performance indicators can also be used in addition to
lab exam grades, such as weekly exercise results. In practice,
community detection can be implemented at any point dur-
ing the study. Once communities are detected, the instruc-
tors can implement promptly interventions. For example, the
higher performing groups can be given harder exercises to
keep them focused and avoid getting bored of the study. On
the other hand, the lower performing groups should be given
more basic tasks along with instructions or tutor sessions.
Furthermore, the instructors can provide lower performing
communities with additional supporting materials or easier
tasks with solutions. This would fill the knowledge gap and
build up the confidence and motivation for the students as
well as re-engage them in the study.

However, although the proposed method appears to be
successful in reflecting the relationship between students’
learning behaviours and learning performance, there are lim-
itations due to the assumption of Random Matrix Theory
which might restrict the method from being applicable to
all kinds of learning behavioural data. The distribution of
eigenvalues is given by Equation 6 when the sample size
(matrix rows) m → ∞ and number of features (matrix col-
umn) n→ ∞, provided that the ratio of rows and columns is
greater than or equal to 1. Hence, in the context of this pa-
per, the number of transitions extracted from event log data
is needed to be greater than the number of students. In ad-
dition, the application of the RMT could be less effective
for small size datasets, i.e. with a small number of students
and course material items, although in that case community
detection might not be that useful.

There is also a concern in terms of using MST to reduce
the size of the graph. When a distance matrix contains dupli-
cate values, the associated graph will have duplicated edges.
Consequently, there can be more than oneMST being gener-
ated from the graph and thus the results of the analysis may
not be stable. In such cases, other graph size reduction tech-
niques can be considered to obtain a single reduced graph,

Tai Mai et al.: Preprint submitted to Elsevier Page 13 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

ensuring the stability of results in further analysis. For ex-
ample, in [33], the authors proposed a network sparsification
technique that sparsifies the network while preserving net-
work structures and community properties. The comparison
between such techniques is out of the scope of this paper and
will be the target for future works in line with this research.

In the future, we will also focus on changing the commu-
nity structure (currently represented as an MST) of the stu-
dents during the course. For example, a student may change
their group in a different week, which may reveal that his
or her learning behaviour also changes accordingly. This
analysis can help to understand thoroughly how students are
studying and provide better support for educators to improve
the curriculum. However, this requires more advanced re-
search approaches to be developed to process more complex
data. The time duration on course material items will also be
considered on top of the number of events in future works.
Additionally, while it has been found that the community
analysis results, when using either Girvan-Newman or Lou-
vain method, do not vary significantly, the relationship be-
tween community detection techniques and analysis results
is also worth further investigation, we believe. We will tar-
get this in future works, to further investigate all the insights
of learning behaviours among student communities.
6. Conclusion

In this paper, we propose a novel approach to analyse the
students’ learning behaviours data collected from an online
learning system in the context of programming education.
This research is one of the first attempts to utilise RMT and
Community Detection in the educational domain. The anal-
ysis is based on a range of techniques. First, we extract a
transition-student data matrix from the event log data. Sec-
ond, we clean the effect of noise and trend in the correla-
tion matrix of the transition-student data matrix, which is
based on the Random Matrix Theory. This cleaning pro-
cess can help to reveal the underlying meaning of the data.
The cleaned correlationmatrix is used to construct a distance
matrix and the Minimum Spanning Tree. The MST can rep-
resent the relationships of students’ learning behaviours in
using course material items in the form of an MST graph.
Students having similar behaviours are closer to each other
in the constructed MST graph. The community detection
algorithm, i.e. Girvan Newman, has been applied to detect
the smaller student groups from the MST. Furthermore, the
student-event data matrix is also cleaned and used as input
variables to predict the learning outcome of students in the
lab exams, using a range of machine learning classification
techniques. The findings from the above method have been
used to analyse the learning behaviours of students with dif-
ferent learning abilities in programming. The proposed ap-
proach in cleaning learning behavioural data also shows its
effectiveness in community analysis and building early pre-
diction models. Insights from students’ learning behaviours
and recommendations are also discussed in the paper.

Acknowledgment
This research is supported by the Irish Research Coun-

cil under the project number GOIPG/2017/141 and from the
ADAPT Centre for Digital Content Technology, funded un-
der the SFI ResearchCentres Programme (Grant 13/RC/2106_P2),
co-funded by the EuropeanRegional Development Fund. For
the purpose of Open Access, the author has applied a CC BY
public copyright licence to any Author AcceptedManuscript
version arising from this submission. The authors also ac-
knowledge the support of Dr. Stephen Blott, School of Com-
puting, Dublin City University, on data collection and using
the Einstein learning system.
References
[1] Aguiar, E., Chawla, N.V., Brockman, J., Ambrose, G.A., Goodrich,

V., 2014. Engagement vs performance: using electronic portfolios to
predict first semester engineering student retention , 103–112.

[2] Al-Shabandar, R., Hussain, A., Laws, A., Keight, R., Lunn, J., Radi,
N., 2017. Machine learning approaches to predict learning outcomes
in massive open online courses , 713–720.

[3] Alsheddy, A., Habib, M., 2017. On the application of data mining
algorithms for predicting student performance: A case study. Int. J.
Comput. Sci. Netw. Secur 17, 189–197.

[4] Barthakur, A., Kovanovic, V., Joksimovic, S., Siemens, G., Richey,
M., Dawson, S., 2021. Assessing program-level learning strategies in
moocs. Computers in Human Behavior 117, 106674.

[5] Ben-Ari, M., 2001. Constructivism in computer science education. J.
of Computers in Mathematics and Science Teaching 20, 45–73.

[6] Bennedsen, J., Caspersen, M.E., 2019. Failure rates in introductory
programming: 12 years later. ACM inroads 10, 30–36.

[7] Berens, J., Schneider, K., Görtz, S., Oster, S., Burghoff, J., 2018.
Early detection of students at risk–predicting student dropouts using
administrative student data and machine learning methods. Journal of
Educational Data Mining .

[8] Bhattacharya, S., Maddikunta, P.K.R., Kaluri, R., Singh, S.,
Gadekallu, T.R., Alazab, M., Tariq, U., et al., 2020. A novel pca-
firefly based xgboost classification model for intrusion detection in
networks using gpu. Electronics 9, 219.

[9] Blikstein, P., 2011. Using learning analytics to assess students’ be-
havior in open-ended programming tasks , 110–116.

[10] Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E., 2008.
Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, P10008.

[11] Bouchaud, J.P., Potters, M., . Financial applications of random ma-
trix theory:a short review. The Oxford Handbook of Random Matrix
Theory .

[12] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A.,
Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J.,
et al., 2013. Api design for machine learning software: experiences
from the scikit-learn project. arXiv preprint arXiv:1309.0238 .

[13] Bun, J., Bouchaud, J.P., Potters, M., 2017. Cleaning large correlation
matrices:tools from random matrix theory. Physics Reports 666, 1–
109.

[14] Bun, J., Knowles, A., 2018. An optimal rotational invariant estimator
for general covariance matrices: The outliers. Preprint .

[15] Cairns, A.H., Gueni, B., Fhima, M., Cairns, A., David, S., Khelifa, N.,
2015. Process mining in the education domain. International Journal
on Advances in Intelligent Systems 8, 219–232.

[16] Carter, A.S., Hundhausen, C.D., 2017. Using programming process
data to detect differences in students’ patterns of programming , 105–
110.

[17] Carter, A.S., Hundhausen, C.D., Adesope, O., 2017. Blending mea-
sures of programming and social behavior into predictive models of
student achievement in early computing courses. ACM Transactions
on Computing Education (TOCE) 17, 1–20.

[18] Chaudhari, H., Crane, M., 2020. Cross-correlation dynamics and

Tai Mai et al.: Preprint submitted to Elsevier Page 14 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

community structures of cryptocurrencies. Journal of Computational
Science 44, 101130.

[19] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,
et al., 2015. Xgboost: extreme gradient boosting. R package version
0.4-2 1.

[20] Conlon, T., Ruskin, H.J., Crane, M., 2007. Randommatrix theory and
fund of funds portfolio optimisation. Physica A: Statistical Mechanics
and its applications 382, 565–576.

[21] Costa, E.B., Fonseca, B., Santana, M.A., de Araújo, F.F., Rego, J.,
2017. Evaluating the effectiveness of educational data mining tech-
niques for early prediction of students’ academic failure in introduc-
tory programming courses. Computers in Human Behavior 73, 247–
256.

[22] Crossley, S., Liu, R., McNamara, D., 2017. Predicting math perfor-
mance using natural language processing tools , 339–347.

[23] Cunningham, P., Delany, S.J., 2020. k-nearest neighbour classifiers–.
arXiv preprint arXiv:2004.04523 .

[24] Doleck, T., Jarrell, A., Poitras, E.G., Chaouachi, M., Lajoie, S.P.,
2016. Examining diagnosis paths: A process mining approach , 663–
667.

[25] Du, X., Yang, J., Hung, J.L., Shelton, B., 2020. Educational data min-
ing: a systematic review of research and emerging trends. Information
Discovery and Delivery .

[26] Dyson, F.J., 1971. Distribution of eigenvalues for a class of real sym-
metric matrices. Revista Mexicana de Fisica 20, 231–237.

[27] Erickson, V.L., 2019. Data-driven models to predict student perfor-
mance and improve advising in computer science , 3–9.

[28] Friedman, J.H., 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics , 1189–1232.

[29] Gajewski, Ł., Chołoniewski, J., Hołyst, J., 2016. Key courses of
academic curriculum uncovered by data mining of students’ grades.
arXiv preprint arXiv:1604.07074 .

[30] Gárate-Escamila, A.K., El Hassani, A.H., Andrès, E., 2020. Classifi-
cation models for heart disease prediction using feature selection and
pca. Informatics in Medicine Unlocked 19, 100330.

[31] Gašević, D., Dawson, S., Rogers, T., Gasevic, D., 2016. Learning an-
alytics should not promote one size fits all: The effects of instructional
conditions in predicting academic success. The Internet and Higher
Education 28, 68–84.

[32] Ghazal, M.A., Ibrahim, O., Salama, M.A., 2017. Educational process
mining: a systematic literature review , 198–203.

[33] Gionis, A., Rozenshtein, P., Tatti, N., Terzi, E., 2017. Community-
aware network sparsification, in: Proceedings of the 2017 SIAM In-
ternational Conference on Data Mining, SIAM. pp. 426–434.

[34] Girvan, M., Newman, M.E., 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences
99, 7821–7826.

[35] Haff, L., 1980. Empirical bayes estimation of the multivariate normal
covariance matrix. The Annals of Statistics , 586–597.

[36] Hung, J.L., Wang, M.C., Wang, S., Abdelrasoul, M., Li, Y., He, W.,
2015. Identifying at-risk students for early interventions: A time-
series clustering approach. IEEE Transactions on Emerging Topics
in Computing 5, 45–55.

[37] Hwang, W.Y., Shadiev, R., Wang, C.Y., Huang, Z.H., 2012. A pilot
study of cooperative programming learning behavior and its relation-
ship with students’ learning performance. Computers & education 58,
1267–1281.

[38] Jovanović, J., Dawson, S., Joksimović, S., Siemens, G., 2020. Sup-
porting actionable intelligence: reframing the analysis of observed
study strategies, in: Proceedings of the Tenth International Confer-
ence on Learning Analytics & Knowledge, pp. 161–170.

[39] Kim, D.H., Jeong, H., 2005. Systematic analysis of group identifica-
tion in stock markets. Physical Review E 72, 046133.

[40] Kolb, D.A., 2014. Experiential learning: Experience as the source of
learning and development. FT press.

[41] Laloux, L., Cizeau, P., Potters, M., Bouchaud, J.P., 2000. Random
matrix theory and financial correlations. International Journal of The-
oretical and Applied Finance 3, 391–397.

[42] Mai, T.T., Crane, M., Bezbradica, M., 2021. Students’ behaviours
in using learning resources in higher education: How do behaviours
reflect success in programming education?, in: Proceedings of the 7th
International Conference on Higher Education Advances (HEAd’21),
pp. 47–55.

[43] Markova, T., Glazkova, I., Zaborova, E., 2017. Quality issues of on-
line distance learning. Procedia-Social and Behavioral Sciences 237,
685–691.

[44] Moreno-Marcos, P.M., Alario-Hoyos, C., Muñoz-Merino, P.J., Kloos,
C.D., 2018. Prediction in moocs: A review and future research direc-
tions. IEEE Transactions on Learning Technologies 12, 384–401.

[45] Na, K.S., Tasir, Z., 2017. Identifying at-risk students in online learn-
ing by analysing learning behaviour: A systematic review , 118–123.

[46] Nachar, N., et al., 2008. The mann-whitney u: A test for assessing
whether two independent samples come from the same distribution.
Tutorials in quantitative Methods for Psychology 4, 13–20.

[47] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E., 2011. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research 12, 2825–2830.

[48] Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T.,
Stanley, H.E., 2002. Random matrix approach to cross correlations
in financial data. Physical Review E 65, 066126.

[49] de Prado, M.M.L., 2020. Machine learning for asset managers. Cam-
bridge University Press.

[50] Reimann, P., Frerejean, J., Thompson, K., 2009. Using process min-
ing to identify models of group decision making in chat data .

[51] Ren, Q., Peng, X., Liu, X., Zheng, Q., He, T., Zhang, L., 2021. Net-
work modelling and visualisation analysis of the undergraduate dental
curriculum system in china. Journal of Computer and Communica-
tions 9, 38–51.

[52] Romero, C., Cerezo, R., 2016. Educational process mining: a tutorial
and case study using moodle data sets 00072.

[53] Romero, C., Ventura, S., 2013. Data mining in education. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery
3, 12–27.

[54] Rosenberg, A., Hirschberg, J., 2007. V-measure: A conditional
entropy-based external cluster evaluation measure, in: Proceedings of
the 2007 joint conference on empirical methods in natural language
processing and computational natural language learning (EMNLP-
CoNLL), pp. 410–420.

[55] Sharifi, S., Crane, M., Shamaie, A., Ruskin, H., 2004. Randommatrix
theory for portfolio optimization: a stability approach. Physica A:
Statistical Mechanics and its Applications 335, 629–643.

[56] Sharma, K., Papamitsiou, Z., Olsen, J.K., Giannakos, M., 2020.
Predicting learners’ effortful behaviour in adaptive assessment using
multimodal data, in: Proceedings of the Tenth International Confer-
ence on Learning Analytics & Knowledge, pp. 480–489.

[57] Shaw, R.S., 2012. A study of the relationships among learning styles,
participation types, and performance in programming language learn-
ing supported by online forums. Computers & Education 58, 111–
120.

[58] Sin, K., Muthu, L., 2015. Application of big data in education data
mining and learning analytics–a literature review. ICTACT journal
on soft computing 5.

[59] Sweeney, M., Lester, J., Rangwala, H., Johri, A., et al., 2016. Next-
term student performance prediction: A recommender systems ap-
proach. Journal of Educational Data Mining 8, 22–51.

[60] Traag, V.A., Waltman, L., Van Eck, N.J., 2019. From louvain to lei-
den: guaranteeing well-connected communities. Scientific reports 9,
1–12.

[61] Truong, N., Bancroft, P., Roe, P., 2003. A web based environment for
learning to program, in: Proceedings of the 26th Australasian com-
puter science conference-Volume 16, pp. 255–264.

[62] Van Der Aalst, W., 2012. Process mining. Communications of the
ACM 55, 76–83.

[63] Wang, K.H., Wang, T.H., Wang, W.L., Huang, S.C., 2006. Learning

Tai Mai et al.: Preprint submitted to Elsevier Page 15 of 16

Learning Behaviours data in Programming Education: Community Analysis and Outcome Prediction with Cleaned data

styles and formative assessment strategy: enhancing student achieve-
ment in web-based learning. Journal of computer assisted learning
22, 207–217.

[64] Wei, H., Li, H., Xia, M., Wang, Y., Qu, H., 2020. Predicting student
performance in interactive online question pools using mouse interac-
tion features, in: Proceedings of the Tenth International Conference
on Learning Analytics & Knowledge, pp. 645–654.

[65] West, D.B., et al., 2001. Introduction to graph theory. volume 2. Pren-
tice hall Upper Saddle River.

[66] Wishart, J., 1928. The generalised product moment distribution in
samples from a normal multivariate population. Biometrika , 32–52.

[67] Yang, S.J., Lu, O.H., Huang, A.Y., Huang, J.C., Ogata, H., Lin, A.J.,
2018. Predicting students’ academic performance using multiple lin-
ear regression and principal component analysis. Journal of Informa-
tion Processing 26, 170–176.

Tai Mai et al.: Preprint submitted to Elsevier Page 16 of 16

