Community analysis and learning outcome prediction based on learning behaviours in the context of programming education

TAI MAI, MARIJA BEZBRADICA, MARTIN CRANE, SCHOOL OF COMPUTING, DUBLIN CITY UNIVERSITY

Introduction

- The failure rate in introductory programming modules has been reported to be 28% on average, with a huge variation from 0% to 91% (Bennedsen & Caspersen, Michael, 2019)
- Learning behaviours tend to be correlated with students' performance in programming education (Carter & Hundhausen, 2017)
- The learning behaviours in using material items, however, has not been commonly investigated (Li & Tsai, 2017)
- Problem with noise in the dataset.

Context of the study

Assessement Performance

Lab exam

Higher performing Lower Performing

Learning behavioural data

- 37 learning items
- 2.5 million events

Lecture Notes

Practice exercises

Lab sheets

12 weeks

Example of event log of student s1 on two days in week 5.

Trace id	Event Item	Timestamps	Student id
1	Labsheet 5	2018-08-12 14:30:00	s1
1	Labsheet 5	2018-08-12 14:35:00	s1
1	Lecture 5	2018-08-12 14:36:00	s1
1	Labsheet 5	2018-08-12 14:45:00	s1
1	Lecture 5	2018-08-12 14:49:00	s1
1	Labsheet 5	2018-08-12 14:50:00	s1
1	Labsheet 5	2018-08-12 15:00:00	s1
1			s1
2	Labsheet 5	2018-08-13 11:54:00	s1
2	Practice 5	2018-08-13 11:59:00	s1
2			s1

Datasets information.

Dataset	Number of students	Number of events	Average events per student
Course#1-2018	126	1,054,394	8368
Course#1-2019	164	1,484,297	9050
Course#2-2018	62	211,855	3417
Course#2-2019	52	200,006	3846

Behavioural features

Example of event log of student s1 on two days in week 5.

Trace id	Event Item	Timestamps	Student id
1	Labsheet 5	2018-08-12 14:30:00	s1
1	Labsheet 5	2018-08-12 14:35:00	s1
1	Lecture 5	2018-08-12 14:36:00	s1
1	Labsheet 5	2018-08-12 14:45:00	s1
1	Lecture 5	2018-08-12 14:49:00	s1
1	Labsheet 5	2018-08-12 14:50:00	s1
1	Labsheet 5	2018-08-12 15:00:00	s1
1			s1
2	Labsheet 5	2018-08-13 11:54:00	s1
2	Practice 5	2018-08-13 11:59:00	s1
2			s1

Example of student-event item data matrix

Stu dent Id	Lecture1	Labsheet1	Practice2	
s1	5	7	6	
s2	24	14	34	
s3	12	54	0	
	•••			

Example of transition-student data matrix

Transition	s1	s2	s3	s4	
Lecture1-Lecture1	4	5	10	23	
Lecture1-Labsheet1	0	14	9	12	
Labsheet1-Practice1	12	6	0	21	
Labsheet1-Lecture1	16	25	0	5	
		•••			

Noise and Trend effect

Noise and Trend effect — Investigation with PCA

Eigenvectors: PC1 loadings are all positive => Possible Noise & Trend effect

Biplot of PC2 & PC3 reveals differences of learning behaviours between higher-performing and lower-performing cohorts

Research objective

- Community Analysis
- Learning outcome prediction
- Deal with the problem of noise and trend in the dataset

Random Matrix Theory

Given a random matrix mxn A such that Q = m/n > 1 is fixed. **R** is a correlation matrix of **A**

Marcenko-Pastur probability density function of eigenvalue λ of **R** is given by:

$$P_R(\lambda) = \frac{Q}{2\pi\sigma^2} \frac{\sqrt{(\lambda_+ - \lambda)(\lambda - \lambda_-)}}{\lambda}$$

where $\lambda_{-} \leq \lambda \leq \lambda_{+}$, λ_{-} and λ_{+} are lower and upper bounds, (i.e. minimum and maximum), eigenvalues of R respectively, given by:

$$\lambda_{\pm} = \sigma^2 \left(1 \pm \sqrt{\frac{1}{Q}}\right)^2$$

=> Clean correlation matrix

=> Clean dataset

Clean correlation matrix

Eigenvalue clipping

Let $\lambda_1, ..., \lambda_N$ be the set of all eigenvalues of \mathbb{C} and $\lambda_1 > ... > \lambda_N$, and i be the position of the eigenvalue such that $\lambda_i > \lambda_+ and \lambda_{i+1} \leq \lambda_+$.

Then we set

$$\lambda_j = 1/(N-i) \sum_{k=i+1}^{N} \lambda_k, \tag{7}$$

- Where C is the correlation matrix of the standardised dataset G
- W1 and V1 are the first eigenvector and eigenvalue of C

Clean dataset

Let $\lambda_1, ..., \lambda_N$ be the set of all eigenvalues of \mathbb{C} and $\lambda_1 \ge ... \ge \lambda_N$, and k be the position of the eigenvalue such that $\lambda_k > \lambda_+$ and $\lambda_{k+1} < \lambda_+$. We note that λ_1 refers to the largest eigenvalues and the first principal component. The clean dataset \widehat{G} can be constructed as follows:

(9) v_i : eigenvector *i-th* (loadings of component i-th) x_i : scores of component *i-th* $\alpha \in [0,1] \quad \text{Configurable parameters:}$ $\beta \in [0,1] \quad \text{how much noise and trend we want to clean}$

Community Analysis

- □ Construct a graph from distance matrix
- ☐ Girvan-Newman community detection algorithm
- □ Labelling each community based on the number of higher/lower-performing students in the community
- □Comparison analysis

Community Analysis

$$D_{ij} \in [0,1]$$
 $D_{ij} \rightarrow 1$
Learning behaviours between two students are more different
 $D_{ij} \rightarrow 0$
Learning behaviours between two students are more similar

Graph construction

Lower performing community (>70% of lower-performing students)

 $mixed\ community\ rate = \frac{namber\ of\ mixed\ communities}{total\ number\ of\ detected\ communities}$

We want less mixed communities and more lower/higher-performing communities

Community Analysis

Comparison between original data and cleaned data when apply Girvan-Newman algorithm

Community Analysis Compare best and worst performing communities

Lower performing group: doing less practice and lab instruction, reading more lecture notes Higher performing group: doing more practice and lab instructions, reading less lecture notes

Learning outcome prediction

Prediction result

Summary

Findings

- Extracted learning behavioural data
- Utilised Random Matrix Theory (RMT) in Educational context to separate the key information from the noise in the dataset
- Community Analysis and Learning performance prediction
- Cleaned data can help to cluster more informed communities and improve prediction models

☐ Future work

- More data features included (e.g. time and sequences of learning activities)
- Compare different ways of constructing graph
- Test with more datasets

THANK YOU FOR YOUR ATTENTION!