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Introduction

* The failure rate in introductory programming modules has been reported to
be 28% on average, with a huge variation from 0% to 91% (Bennedsen &
Caspersen, Michael, 2019)

* Learning behaviours tend to be correlated with students’ performance in
programming education (Carter & Hundhausen, 2017)

* The learning behaviours in using material items, however, has not been
commonly investigated (Li & Tsai, 2017)

* Problem with noise in the dataset.
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Higher performing
Lower Performing
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data

Trace id Event ltem Timestamps Student id
1 Labsheet 5 2018-08-12 14:30:00 sl
1 Labsheet 5 2018-08-12 14:35:00 sl
1 Lecture 5 2018-08-12 14:36:00 sl
1 Labsheet 5 2018-08-12 14:45:00 sl
1 Lecture b 2018-08-12 14:49:00 sl
1 Labsheet 5 2018-08-12 14:50:00 sl
1 Labsheet 5 2018-08-12 15:00:00 sl
1 sl
2 Labsheet 5 2018-08-13 11:54:00 sl
2 Practice b 2018-08-13 11:59:00 sl
2 sl

- 37 learning items
- 2.5 million events

Datasets information.

Average events
per student

Lecture Notes

Practice exercises

Dataset Number of Number of
students events
Courseft1-2018 126 1,054,394
Course#t1-2019 164 1,484,297
Course#2-2018 62 211,855
Course#t2-2019 52 200,006

8368
9050
3417
3846

Lab sheets




Behavioural features

Example of student-event item data matrix

Studentld Lecturel Labsheetl Practice?

Example of event log of student sl on two days in week 5. s1 5 7 6

Traceid  Ewvent ltem  Timestamps Student id s2 24 14 34

1 Labsheet 5 2018-08-12 14:30:00 51 53 12 54 0

1 Labsheet 5 2018-08-12 14:35:00 sl

1 Lecture b 2018-08-12 14:36:00 51

1 Labsheet b 2018-08-12 14:45:00 51

1 Lecture b 2018-08-12 14:49:00 51

1 Labsheet 5  2018-08-12 14:50:00 sl . ]

1 Labsheet 5  2018-08-12 15:00:00 sl Example of transition-student data matrix

1 sl

2 Labsheet 5  2018-08-13 11:54:00 sl Transition sl 52 s3 sd

2 Practice 5 2018-08-13 11:59:00 sl

9 s1 Lecturel-Lecturel 4 h 10 23
Lecturel-Labsheetl 0 14 g 12
Labsheetl-Practicel 12 6 0 21
Labsheetl-Lecturel 16 25 0 5




Noise and Trend effect

- Students freely interactive with
the learning platform

- High correlation between
students learning behaviours

Students

Correlation matrix

Process mining approach



Noise and Trend effect — Investigation
with PCA

pc2 loadings
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PC1 PC PC3 Biplot of PC2 & PC3 reveals differences of learning behaviours

Eigenvectors: PC1 loadings are all between higher-performing and lower-performing cohorts
positive => Possible Noise & Trend effect



Research objective

* Community Analysis

* Learning outcome prediction

* Deal with the problem of noise and trend in the dataset




Random Matrix Theory

leen d random matrlx mxn A SUCh that Q = 1.75 Il Empirical eigenvalues distribution
m/n > 1 is fixed. R is a correlation matrix of A
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=> Clean correlation matrix
=> Clean dataset



Clean correlation matrix

Eigenvalue clipping
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Clean dataset

Let 44, ..., Ay be the set of all eigenvalues of C and 4; >

. > Ay, and k be the position of the eigenvalue such that

Ay > Ay and 4., < A,. We note that A, refers to the

largest eigenvalues and the first principal component. The
clean dataset G can be constructed as follows:

n n
@ = 2 U X;|— Z v x|~ Boyx, 9) U; :eigenvector i-th (loadings of component i-th)
=1 Py X; :scores of component i-th
a € [0,1] Configurable parameters:
p e [0, 1] how much noise and trend we want to clean
Fully re-constructed dataset G Y
from component scores and Noise part Trend part
loadngs




Community Analysis

Construct a graph from distance matrix

JGirvan-Newman community detection algorithm

JLabelling each community based on the number of higher/lower-performing
students in the community

IComparison analysis




Community Analysis
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Lower performing community

Graph construction -
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Community Analysis
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Community Analysis
Compare best and worst performing communities

N Best Group BN Best Group
Bl \Worst Group Practice_11 B \Worst Group

A 2
[= 2

1
c c » ¥ P ® O’ DD g
BREREREGZ:: L f
3 3 B A AEAR

r " ture_6
= [}
2 5 5
I
= ® 4
[} = ? ¢
ki
2 3
3
)
S 2
e 1
Lab: 11
Labsheet_10
Labsheet 9
Labsheet 8
Labsheet 7
Labsheet_6
bsheet 3
Labsheet_2
abshee!

0 100 200 300 400 500

600
Average number of activities

0 100 200 300 400 500 600
Average number of activities

Lower performing group: doing less practice and lab instruction, reading more lecture notes
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Learning outcome prediction
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Example of student-event item data matrix

Studentld Lecturel Labsheetl Practice2
sl 5 7 6
52 24 14 34

s3

12 54 0

Logistic Regression

Accuracy

ROC AUC

F1 score

10-fold cross
validation

16




ROC AUC

Prediction result
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Summary

) Findings
* Extracted learning behavioural data

* Utilised Random Matrix Theory (RMT) in Educational context to separate the key information from
the noise in the dataset

*  Community Analysis and Learning performance prediction
* Cleaned data can help to cluster more informed communities and improve prediction models

) Future work
* More data features included (e.g. time and sequences of learning activities)

* Compare different ways of constructing graph
¢ Test with more datasets
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