
Model Reusability and Multidirectional
Transformation using Unified Metamodel

Jagadeeswaran Thangaraj1 & Senthilkumaran Ulaganathan2

School of Information Technology & Engineering
VIT University, Vellore - 632014

Tamil Nadu, India
1jagadeest@gmail.com & 2usenthilkumaran@vit.ac.in

Abstract—Model Transformation is a software engineering
mechanism for transforming one model into another model be-
tween different phases to develop a software system. A metamodel
defines the abstract syntax of models and the interrelationships
between model elements. Model transformation approaches use
different metamodels to represent source and target model of the
system. This paper investigates for a unified metamodel when
they share set of core representations in different phases and
checks the possibilities for multidirectional transformation for
code generation, upgradation and migration purposes.

Index Terms—UML; OCL; USE; Spec#; Model transformation;
Unified metamodel;

I. INTRODUCTION

In recent days, autonomous systems development ap-
proaches get more attention in Software development. These
help the developers to build software systems from require-
ments phase through maintenance. A model-driven develop-
ment based technique is one of the approaches of software
development. These play in forward and reverse engineering
of development part, such as, software design through imple-
mentation. In software design, developers model a system’s
design according to the client’s requirement and they generate
code using this design using some transformation techniques.
In some cases, they transfer code implementation to design
through reverse engineering for upgrading or verifying the
correctness of the system they developed, or transferring into
other languages for further developments.

A. Motivation

Fig. 1. OMG’s MDA Framework

transformation. Also, it aims to support multidirectional trans-
formation which transforms from design to implementation
and reverse back using the unified metamodel.

II. FUNDAMENTALS

Model Driven Engineering (MDE) refers to the systematic
use of models in the entire software engineering life cycle. The
Object Management Group’s (OMG) Model Driven Architec-
ture (MDA) is an advanced architecture focused approach. Fig.
1 shows the OMG’s MDA approach, which shows the core
implementation of models to specific implementation using
different technology, language or a platform. These software
development approaches are known as Model-Driven Develop-
ment (MDD) approaches [15]. The MDA approaches generate
a corresponding model from an input model or it generates
appropriate code [3][2]. The objective of this approach is to
increase productivity, reduce time consumption and be cost
effective. MDA relies on a set of concepts being models,
modelling languages, metamodels and model transformations.

A. Model Transformation

A model can refer full description about a system which
can be a UML diagram, Java program or Z specification in
different phases [15]. In order to represent an overview of

Nowadays, the skeleton code of the initial version of the
software is developed from the design via automatic code
generation when using formal specification [3]. The modelling
approaches are used to describe the client’s specification and
translate to implementation using appropriate metamodels. We
can use a unified m etamodel w hich i s t he i ntersection of
both source and target metamodels when translating between
related formalism. It will help to produce a common model of
both source and target. This paper aims to propose a model
transformation approach using this unified metamodel in order
to support reusability and interoperability of models, consistent

978-1-5386-5323-4/18/$31.00 ©2018 IEEE 88

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 25,2022 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Model transformation

a system to develop, a model for the system is used in the
design phase. These models are used in model transformation
approaches. For example, a UML class diagram is one such
model. A metamodel defines the abstract syntax of models
and the interrelationships between model elements. In MDA,
metamodels play a key role. Metamodeling is a technique for
constructing properties of the model in a certain domain. The
metamodel defines the general structure and characteristics of
real world phenomena. Therefore, a model must conform to
this protocol of the metamodel similarly to how a grammar
conforms for a programming language.

Model Transformation is a mechanism for transforming
one model into another model, based on some transformation
rules or programs. The OMG introduced two modelling layers
M1 and M2. Each model in M1 is an instance of a Meta-
model in the M2 layer. M1 represents the models and M2
represents metamodels. A transformation engine performs the
transformation using corresponding program which reads one
source model conforming to a source metamodel and writes
a target model conforming to a target metamodel as shown in
Fig. 2. With respect to target models, model transformation
is classified into two types: Model To Model (M2M) and
Model To Text (M2T). M2M transformation creates its target
as a model which conforms to the target meta-model. M2T
transformation creates strings for a given input model. Any
kind of model can be transformed by model transformations
but they must fulfil the specification requirement.

B. USE

In this paper, we used the USE (The UML-based Speci-
fication Environment) specification to describe the program’s
specification at the design specification phase and Spec# at
the implementation phase of software development process.
The USE tool [16] is based on a subset of UML [14] and
OCL (Object Constraint Language) [12]. The USE tool allows
design specification to be expressed in a textual format for
all features of a model as shown the specification below.
E.g.: classes, attributes in the UML class diagrams. This
specification has a model ‘Company’ with two classes and
an association. Additional constraints are written using OCL
expressions after ‘constraints’.

model Company
class Person
attributes
salary: Integer;
operations
raiseSalary();

end

class Department
attributes

budget: Integer;
operations

hire();
end

association Music between
Person[*] role employee
Department[1] role employer

end

constraints

The USE specification describes the program’s specification
at the specification phase in the textual format as above.
Also, it can easily convert to corresponding graphical rep-
resentations: Class diagram, Object diagram. We have used
ownership type addition in USE as [7]. The USE specification
allows developing the class diagram with OCL constraints
using textual editor. As well, the USE tool validates the OCL
Expressions.

C. Spec#

The Spec# programming [9] system provides static veri-
fier for C# programs. The Spec# system consists of: The
Spec# programming language, the Spec# compiler and the
Spec# static program verifier (Boogie) [10]. Spec# is a for-
mal language, which extends C# with constructs for writing
specification [13]. It helps to write bug free programs in
C# [9]. It supports design by contract properties over C# to
allow programmers to express their restrictions or constraints
in the implementation according to client’s specification at
design level. The constraints are using similar logics as OCL
constraints: invariants, preconditions and postconditions [13].
We chose Spec# to develop the code at the implementation
level. Therefore, we can develop verified software systems
using Spec# with support for checking of OCL constraints
at runtime by translating them to Spec# specifications. The
Spec# code corresponding to above USE specification is as
follows:

namespace Company
{
public class Person
{

[Rep]Department employer= new Department();
int salary;

89

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 25,2022 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Unified Metamodel in Model transformation

public void raiseSalary()
{

}
}

public class Department
{

[Rep][ElementsRep] List<Person>
employee = new List<Person> ();

int budget;
public void hire()

{
}

}
}

III. OUR APPROACH

We have introduced a Unified metamodel for USE speci-
fications and Spec# code in order to check model reusability
and multidirectional transformation. This section describes the
unified metamodel which enable to describe both source and
target models to transform.

A. Unified Metamodel?

A metamodel is an important artefact which defines the
elements of the source and target model in the model transfor-
mation. Therefore, model transformation is done by mapping
the elements of both source and target models. In the final
representation, every source model (which is an instance of
the source metamodel) can be automatically transformed into
the target model (which is an instance of the target meta-
model). Recent days, many researchers are working towards
developing unified representation to generate code from design
when sharing core elements in related formalisms. Ergin et
al. [4] have developed an approach using unified template
for design patterns. Fayoumi et al. [1] and Lucena et al.
[11] have developed a unified metamodel framework for goal-
oriented systems. Sepúlveda et al. [17] have developed a
unified metamodel for feature languages.

We have introduced a unified metamodel which has unified
properties of source and target metamodels of design to
implementation process as shown in Fig. 3. In model transfor-
mation, source metamodel is different from target metamodel.
Unified metamodel is shown in Fig. 3, which is based on
the intersection of both USE and Spec# representations. The

Fig. 4. Unified Metamodel of USE & Spec#

Unified metamodel has same values for related properties for
source and target metamodel. Fig. 3 shows that the source
metamodel and target metamodel in M2 both confirm to the
structure of Unified metamodel at M3. Transformation engine
or program applies transformation rules over source model
to generate target models. Therefore, our system generates the
USE specification or Spec# code according to the given model.

B. An overview of the Unified Metamodel

In our system, we have introduced a unified metamodel
which is based on the mapping between USE and Spec# as
shown in Table I [5]. Our unified metamodel is based on
the mapping between USE metamodel [8] and Spec# [13] as
shown in Fig. 4. All properties of USE specification is mapped
to corresponding properties in Spec#. For example, ‘Model’
of USE is equivalent property of ‘Namespace’ of Spec#. Full
mapping of properties between these two systems can find in
[5].

IV. APPLICATIONS

The main objective of our approach is consistent transfor-
mation of models between source and target phases using the
unified metamodel.

TABLE I
MAPPING BETWEEN USE AND SPEC#

USE Spec#
Model Namespace
Class class

Attribute variable
Enumeration enum

OCL Expressions Spec# Expressions
OCL Collections Spec# standard collection
Attribute Types Variable types

Ownership Types Ownership Types

90

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 25,2022 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Model reusability using Unified Metamodel

Our approach also provides two main applications in model
transformation such as: Model reusability and Multidirectional
transformation.

A. Model Reusability

In model transformation, a model of source metamodel is
transferred into another model of target metamodel. When we
use unified metamodel, the model becomes common for both
source and target metamodels. It produces source or target
specification based on the transformation rules as shown in
Fig. 5.

In Fig. 5, ‘M1’ is a model of the unified metamodel. It
produces USE specification for M1 when we apply USE
transformation rules. In other hand, it produces Spec# code
skeleton when we apply Spec# transformation rules. In the
same way, it produces Other specification for M1 according
the transformation rules. Therefore, the generated code skele-
ton/specification will assist the programmer in writing their
implementation or check their design specification.

B. Multi-directional Transformation

As we explained above, a model is common for all meta
models when using the unified metamodel. Fig. 6 explains the
multi-directional transformability of unified metamodel. Fig. 6
shows the unified metamodel which is the unification of USE,
Spec# and other similar formalism. Therefore, a model which
conforms the unified metamodel is common for all these three
meta models. We can transform one specification of design
to the code of implementation by applying the transforma-
tion rules. Also, we can transform one language to another
language using the corresponding transformation rules. The
transformation rules play main role in the translation. These
rules are developed by mapping between these languages or
formalisms.

Fig. 6 shows the generation of Spec# code from USE
specifications. ‘U1’ is a model of USE can generate to ‘S1’
by applying the transformation rules of USE to Spec#. In
reverse, it can produce USE (UML & OCL) specification from
Spec# model. Also, it can produce another code ‘O3’ from
a Spec# code ‘S3’. Therefore, the unified metamodel allows
the multidirectional transformation such as: from design to
implementation, implementation to design or implementation
to implementation. It supports the system up-gradation and

Fig. 6. Multi-directional Transformation using Unified Metamodel

code migration.

V. CONCLUSION

This paper has presented an approach for generating com-
mon model using unified metamodel for model reusability and
multidirectional transformation. Using this unified metamodel,
our system generates system’s design specification (USE) and
implementation code (Spec#) according to the model based
on unified metamodel. Our system’s implementation can be
found in [6]. This has done by following steps:

• Finding shared elements of concepts by mapping all
metamodels (USE & Spec#).

• Defining unified metamodel based on the findings.
• Generating model for corresponding metamodels.
• Applying transformation rules to generate appropriate

specification/code.

A. Limitations

Our approach supports the following properties:
• This system generates USE specification and Spec# code

according to a model of Unified metamodel which is
based on the mapping in [5]. It does not support other
unmapped properties such as OCL generic collections.

• This system generates the simple constraint’s expres-
sions as given. Like it just copies OCL expressions to
Spec# expressions. We need further re-factoring devel-
opment to support the corresponding expressions.

• We need to develop separate library to support full OCL
in Spec#. Although, it generates ownership constraints
to USE specification which is available in Spec# as [7].

B. Future work

Our future work aims to bridge the gaps as shown in the
limitations.

• Full support: We will Improve the unified metamodel
with full support of both design and implementations
phase.

91

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 25,2022 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

• Auto generation: Our next aim is to study about building
a system to generate models automatically.

• Independence: Here we have used Eclipse modelling
framework for generating unified metamodel. Our main
objective is to develop independent framework which
will enable to generate the unified metamodel in differ-
ent frameworks/tools.

• More support: Finally, we will apply this unified meta-
model to generate other formalisms in other directions
such as, JML, Dafny and other similar formal languages.

REFERENCES

[1] Fayoumi, Amjad and Kavakli, Evangelia and Loucopoulos, Pericles,
“Towards a Unified Meta-Model for Goal Oriented Modelling”, In Pro-
ceedings of the 12th European, Mediterranean Middle Eastern Conference
on Information Systems, EMCIS 2015.

[2] Florian Heidenreich, Christian Wende, Birgit Demuth, “A Framework for
Generating Query Language Code from OCL Invariants”, In proceedings
of the Workshop Ocl4All: Modelling Systems with OCL with MoDELS
2007: EASST 2007.

[3] Hiroaki Shimba, Kentrao Hanada, Kozo Okano and Shinji Kusumoto,
“Bidirectional Translation between OCL and JML for Round-Trip En-
gineering”, 20th Asia-Pacific Software Engineering Conference (APSEC
2013), IEEE pp.49-54, 2013.

[4] Huseyin Ergin, Eugene Syriani, “A Unified Template for Model Trans-
formation Design Patterns”, In Proceedings of the First Workshop on
Patterns in Model Engineering, co-located with STAF 2015.

[5] Jagadeeswaran Thangaraj, Senthilkumaran Ulaganathan, “Mapping USE
specifications with Spec#”, In Software Technologies: Applications and
Foundations, Springer International Publishing Cham, volume 10748,
pp.331-339, ISSN:978-3-319-74730-9, DOI:10.1007/978-3-319-74730-9
29, 2018.

[6] Jagadeeswaran Thangaraj, Senthilkumaran Ulaganathan, “Towards Uni-
fied Metamodel for Multidirectional Transformation”, In Journal of
Engineering and Applied Sciences, in press.

[7] Jagadeeswaran.T, Senthilkumaran.U, “Introducing Ownership Types to
Specification Design”. International Journal of Scientific & Engineering
Research Volume 8, Issue 8, August- 2017 pages: 843-848. ISSN:2229-
5518, DOI:https://dx.doi.org/10.14299/ijser.2017.08, 2017.

[8] Jos Warmer and Anneke Kleppe, The Object Constraint Language: Get-
ting Your Models Ready for MDA, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition. ISBN: 0321179366, 2003.

[9] K. Rustan M. Leino , Peter Müller, “Using the Spec# language, method-
ology, and tools to write bug-free programs”, LASER Summer School
2007/2008: Springer-Verlag 2008.

[10] K. Rustan M. Leino and Peter Müller, “Object Invariants in Dynamic
Contexts”, In ECOOP Object-Oriented Programming, pp.491-515, 2004.

[11] M. Lucena, E. Santos, C. Silva, F. Alencar, M. J. Silva and J. Castro,
“Towards a unified metamodel for i*”, In 2008 Second International
Conference on Research Challenges in Information Science, June 2008,
pp.237–246, DOI:10.1109/RCIS.2008.4632112, ISSN:2151-1349, 2008.

[12] Martin Gogolla, Fabian Büttner, Mark Richters, “USE: A UML-based
specification environment for validating UML and OCL”, In Science
of Computer Programming (2007): Elseveir, vol 69, number 1, 27-34,
Special issue on Experimental Software and Toolkits, ISSN:0167-6423,
DOI:https://doi.org/10.1016/j.scico.2007.01.013, 2007.

[13] Mike Barnett, Rustan Leino, Wolfram Schulte, “The Spec# programming
system: An overview”, In CASSIS 2004: Springer, 2004.

[14] OMG: Object Constraint Language(OCL): Version 2.4. Object Manage-
ment Group, http://www.omg.org/spec/OCL/2.4, 2014.

[15] OMG: Object Management Group:MDA Guide, version 2.0.
ormsc/2014-06-01, http://www.omg.org/mda/ 2014.

[16] OMG: Unified Modeling Language(UML):Version 2.5.1, Object Man-
agement Group, http://www.omg.org/spec/UML/2.5.1, 2017.

[17] S. Sepúlveda, C. Cares and C. Cachero, “Towards a unified feature
metamodel: A systematic comparison of feature languages”, 7th Iberian
Conference on Information Systems and Technologies (CISTI 2012),
Madrid, 2012, pp.1-7, 2012.

92

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on March 25,2022 at 09:59:07 UTC from IEEE Xplore. Restrictions apply.

