
Generic Refactoring Methodology for Cloud Migration
Position Paper

Manoj Kesavulu, Marija Bezbradica and Markus Helfert
Lero – Irish Software Research Organization,

School of Computing, Dublin City University, Dublin, Ireland

Keywords: Generic Architectural Refactoring, Cloud Migration, Service-oriented Architecture, Cloud Platform.

Abstract: Cloud migration has attracted a lot of attention in both industry and academia due to the on-demand, high
availability, dynamic scalable nature. Organizations choose to move their on-premise applications to adapt to
the virtualized environment of the cloud where the services are accessed remotely over the internet. These
applications need to be re-engineered to completely exploit the cloud infrastructure such as performance and
scalability improvements over the on-premise infrastructure. This paper proposes a re-engineering approach
called architectural refactoring for restructuring on-premise application components to adopt to the cloud
environment with the aim of achieving significant increase in non-functional quality attributes such as
performance, scalability and maintainability of the cloud architectures. This paper proposes, when needed to
migrate to cloud, the application is divided into smaller components, converted into services and deployed to
cloud. The paper discusses existing issues faced by software developers and engineers during cloud migration,
introduces architectural refactoring as a solution and explains the generic refactoring process at an
architectural level.

1 INTRODUCTION

Cloud computing has become a buzzword in the IT
industry today and it is regarded as the most
influential technology in the present time. Given the
long term benefits of adopting to this promising
technology, many industries decided to migrate their
on-premise applications to cloud. Cloud migration is
defined a process of partially or completely moving
an organization’s digital assets, services, IT resources
or applications to a cloud platform with an intent to
significantly improve various quality attributes such
as performance, scalability, maintainability and
similar (Pahl et al. 2013). Moving an application
using “lift-and-shift” approach, (which is moving it
as it is), moves all the existing issues associated with
it to cloud and it is likely to introduce new concerns
and challenges. An alternative approach to move
legacy on-premise application to cloud is “Big Bang”
rewrite, (where the application is built in cloud from
scratch), is not only a time-consuming process but is
also extremely risky and will likely end in failure.
Another recent option is to follow service-oriented
approach where the target application is divided into
smaller components and converted into services

comprising of core business functions, before its
migration to the cloud. this also involves making sure
that new features are exploited and the entire
application will continue to working in the new
environment (Garg et al. 2016).

Migrating an application to a cloud platform is
difficult, costly and error-prone (Kwon & Tilevich
2014). A major part of the IT system are applications
which are integrated and support core business
process and services, many of which are used for
utility needs, and these are non-core applications,
meaning that components of these applications are
loosely coupled. These application components need
to be re-engineered before deploying to cloud for
better use of the services offered by the cloud
platform. There are scenarios where an application is
deployed over more than one cloud platform which is
termed as multi-cloud deployment (Jamshidi et al.
2015).

This paper presents a generic architectural
refactoring approach that facilitates the process of
transforming on-premise applications to use cloud-
based services. The paper is structured as follows:
Section 2 gives an overview of the cloud platform.
Section 3 discuss cloud migration and identifies

664
Kesavulu, M., Bezbradica, M. and Helfert, M.
Generic Refactoring Methodology for Cloud Migration - Position Paper.
DOI: 10.5220/0006373106920695
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 664-667
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

issues at an architectural level. Section 4 introduces a
generic refactoring methodology and at last Section 5
describes conclusions and future work.

2 CLOUD PLATFORM

Traditional IT (Information Technology) aligns
resources according to the way the applications are
deployed within dedicated infrastructure and data
storage to fulfil business requirements. Cloud
computing (CC) has emerged as a computing
paradigm with benefits such as high scalability,
reduced IT costs, on demand self-service, pay-as-
you-go price models, elasticity in provision
computing resources. It achieves this by varying
workload so organisations became attracted to move
their on-premise systems to the cloud.

CC can be mainly divided into three service layers
as shown in Figure 1 below:

Figure 1: Cloud Service Layers (Petrolo et al. 2014).

 Infrastructure as a Service (IaaS) offers
computing resources, both physical and virtual,
for processing and storage.

 Platform as a Service (PaaS) offers development
environment for software developers to write
their applications on a particular platform
without worrying about the underlying hardware
infrastructure.

 Software as a Service (SaaS) offers software
applications that can be accessed and used by the
end-users.

In addition to the layers, some other layers are
introduced namely Data as a Service, Everything as a
Service, Network as a Service, Things as a Service
and Sensing and Actuation as a Service (SAaaS) and
so on. CC has five deployment models (1) Private
cloud (2) Public Cloud (3) Hybrid Cloud (4)
Community Cloud (Marinos & Briscoe 2009) and (5)
Multi-Cloud (Paraiso et al. 2012). With the the
abundance of options to be considered for the
selection of a suitable cloud service and deployment

model, organization has to decide on the following
aspects (Garg et al. 2016):
 Selection of Deployment Model
 Selection of Service model
 Selection of Appropriate Service Package

Upon making a suitable decision, the target
application should be re-engineered to fit the selected
cloud platform adhering to the chosen deployment
and service model. An important pre-requisite to be
fulfilled, while transforming application components
serving the underlying business functions, is that they
preserve the external behaviour after the migration
process. According to a survey conducted by Kratzke
& Quint (2017), cloud specific design methodologies
are yet to be designed and developed. This paper
introduces an early stage generic refactoring
methodology which guarantees successful
application of architectural refactoring while
migrating on-premise applications to cloud. In the
next section, we discuss cloud migration process in
more details.

3 CLOUD MIGRATION

Cloud migration is the process of moving
applications, services, code, and business logic
deployed on the on-premise infrastructure to cloud
platforms with the aim of achieving significant
improvement in performance, scalability and cost
reduction. There are various methodologies and
approaches discussed in literature regarding cloud
migration. Rowe, Brinkley and Tabrizi (2013)
designed a generic methodology for the migration of
legacy system to Cloud Platform describing the
following steps: (1) Architectural representation of
the legacy application; (2) Redesign the architecture
model; (3) MDA transformation; (4) Web service
generation; (5) Web service-based invocation of
legacy functionalities; (6) Selection of suitable Cloud
Computing Platform; (7) Web service deployment in
the service cloud. Considering the steps (2) and (3),
where the original architecture model is redesigned to
identify services that can be provided in a SaaS
architecture as shown in Figure 2 below:

Figure 2: Refactoring with Architecture Driven
Modernization (Rowe et al. 2013).

Generic Refactoring Methodology for Cloud Migration - Position Paper

665

This methodology explains the prerequisite steps
followed in the refactoring process rather than the
actual refactoring process.

The authors Kwon and Tilevich (2014) describe
an automated transitioning approach to cloud-based
services and discuss three scenarios: moving a part of
application functionality to cloud, adding new (fault-
tolerance) functionality and switching an application
to use an alternate cloud-based service. These three
scenarios use cloud refactoring approaches as a
solution. However, in a real-world situation these
approaches can only be applied to the scenarios
discussed or similar scenarios and do not serve as a
generic refactoring approach which could be applied
to all cloud migration scenarios. Hence there is a
crucial need to derive a generic refactoring process.

4 GENERIC REFACTORING
METHODOLOGY

Refactoring is a process of changing internal design
of the system while preserving its external behaviour
(Fowler 2002). The goal of refactoring is to improve
a certain quality while preserving others. It is a
bottom-up process which helps clean-up inconsistent
or insufficient design decisions which can be applied
for design artifacts, models, documents, UML
diagrams, processes and architectures (Stal 2007).
There have been numerous examples where
refactoring is applied in different cases and scenarios
with migrating legacy applications to cloud platforms
(Zimmermann 2016; Kwon & Tilevich 2014; Rowe
et al. 2013; Chauhan & Babar 2012; Schmidt et al.
2012). Refactoring can be simple – move, add,
rename, remove, pullup, substitute and so on and
complex – combination of two or more simple
refactorings.

The process of refactoring can be described as
follows (Figure 3):

Figure 3: Generic refactoring steps (Kesavulu, et al., 2016).

 Identify architectural bad smell: an architectural
bad smell is commonly (although not always
intentionally) used set of architectural design
decisions that negatively impacts system quality
(Stal 2007). Another definition for architectural
bad smell is the observation or the suspect that
something in architecture design and its
implementation is no longer adequate (i.e., good
enough) under the actual requirements and
current constraints for the system (Zimmermann
2016). Some of the examples are: high coupling
between subsystems or a data store which cannot
handle concurrent queries in reasonable
time(Zimmermann 2016); the former example is
a general architectural bad smell whereas the
latter is a cloud specific bad smell. Though there
are cloud specific bad smells and corresponding
architectural refactoring is available in the form
of catalogues, cloud specific techniques for
identification of smells and tools for application
of refactoring are deficient. Our future work
includes exploration of cloud specific bad smell
detection techniques.

 Choose Architectural Refactoring(s): Choosing
an appropriate architectural refactoring or a set of
refactorings to apply. Almost every bad smell is
associated with a potential architectural
refactoring. But there are various aspects to be
considered while choosing a refactoring such as
each refactoring should be applied incrementally
in small steps and specificity to cloud
environments.

 Check for potential collateral damage: A
refactoring may trigger other design
transformations due to existing dependencies
between application (or service) components,
some of which may be dangerous.

 Define Invariants, Pre and Post Conditions:
Before applying any refactoring, define
necessary steps to be taken to verify the
preservation of behavior of the system after
applying the refactoring.

 Apply Refactoring: The suitable target
refactoring chosen in step 2 is applied to the
legacy system (application) architecture
incrementally. Some of the refactorings are
Virtualize Server for IaaS layer, Swap
Messaging Provider for PaaS layer of the cloud
and so on.

 Check Invariants, Pre and Post Conditions: The
Invariants, Pre and Post conditions defined in
step 3 are verified which proves that the behavior
of the target system is preserved and the
refactoring is successfully applied.

This process can be considered as a generic
architectural refactoring methodology which can be

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

666

used to verify the successful application of
refactoring to any cloud migration scenario.

5 CONCLUSIONS AND FUTURE
WORK

This paper introduces the cloud platform, discuss its
advantages over traditional IT platform and the need
for cloud migration and issues identified. The paper
proposes a generic architectural refactoring
methodology and introduces its steps while
explaining in detail. This methodology can be used to
verify successful application of refactoring process in
various scenarios of cloud migration.

The future work to this project would be to
develop a concept of detailed refactoring techniques
which includes methods to identify architecture
smells including exploration of existing architectural
smells identification and behaviour preservation
techniques; tools to recommend and apply
architectural refactoring specific to cloud service
architectures using a case study or a real-world
example. Evaluation of the methodology will be
conducted after choosing a suitable cloud
environment.

ACKNOWLEDGEMENTS

This work was supported with the financial support
of the Science Foundation Ireland grant 13/RC/2094
and co-funded under the European Regional
Development Fund through the Southern & Eastern
Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie).

REFERENCES

Chauhan, M.A. & Babar, M.A., 2012. Towards Process
Support for Migrating Applications to Cloud
Computing. 2012 International Conference on Cloud
Computing and Service Computing (Csc), pp.80–87.

Fowler, M., 2002. Refactoring: Improving the Design of
Existing Code. In D. Wells & L. Williams, eds. Extreme
Programming and Agile Methods --- XP/Agile Universe
2002: Second XP Universe and First Agile Universe
Conference Chicago, IL, USA, August 4--7, 2002
Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, p. 256. Available at:
http://dx.doi.org/10.1007/3-540-45672-4_31.

Garg, R., Heimgartner, M. & Stiller, B., 2016. Decision
support system for adoption of cloud-based services.
CLOSER 2016 - Proceedings of the 6th International

Conference on Cloud Computing and Services Science,
1(Closer), pp.71–82. Available at:
https://www.scopus.com/inward/record.uri?eid=2-
s2.0-
84979743405&partnerID=40&md5=9ae740659dbd92
71f229e7cc1feaaf05.

Jamshidi, P. et al., 2015. Cloud Migration Patterns: A
Multi-cloud Service Architecture Perspective. In pp. 6–
19. Available at: http://link.springer.com/10.1007/978-
3-319-22885-3.

Kesavulu, M., Helfert, M. & Bezbradica, M., 2016.
Towards Refactoring in Cloud-Centric Internet of
Things for Smart Cities. Dublin, s.n.

Kratzke, N. & Quint, P.-C., 2017. Understanding Cloud-
native Applications after 10 Years of Cloud Computing
- A Systematic Mapping Study. Journal of Systems and
Software, (January).

Kwon, Y.W. & Tilevich, E., 2014. Cloud refactoring:
Automated transitioning to cloud-based services.
Automated Software Engineering, 21(3), pp.345–372.

Marinos, A. & Briscoe, G., 2009. Community cloud
computing. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 5931
LNCS, pp.472–484.

Pahl, C., Xiong, H. & Walshe, R., 2013. A comparison of
on-premise to cloud migration approaches. Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 8135 LNCS, pp.212–226.

Paraiso, F. et al., 2012. A federated multi-cloud PaaS
infrastructure. Proceedings - 2012 IEEE 5th
International Conference on Cloud Computing,
CLOUD 2012, pp.392–399.

Petrolo, R., Loscrí, V. & Mitton, N., 2014. Towards a smart
city based on cloud of things, a survey on the smart city
vision and paradigms. Proceedings of the 2014 ACM
international workshop on Wireless and mobile
technologies for smart cities - WiMobCity ’14, 25(3),
pp.61–66. Available at:
http://dl.acm.org/citation.cfm?id=2633661.2633667.

Rowe, F., Brinkley, J. & Tabrizi, N., 2013. Migrating
Legacy Applications to the Cloud. 2013 International
Conference on Cloud Computing and Big Data
(Cloudcom-Asia), (October 2009), pp.68–77.

Schmidt, F., MacDonell, S.G. & Connor, A.M., 2012. An
automatic architecture reconstruction and refactoring
framework. Studies in Computational Intelligence, 377,
pp.95–111.

Stal, M., 2007. Refactoring Software Architectures. In
Agile Software Architecture. Elsevier, pp. 63–82.
Available at:
http://linkinghub.elsevier.com/retrieve/pii/B97801240
77720000034.

Zimmermann, O., 2016. Architectural Refactoring for the
Cloud : a Decision-Centric View on Cloud Migration.
Computing.

Generic Refactoring Methodology for Cloud Migration - Position Paper

667

