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Abstract

Rapid label-free spectroscopy of biological and chemical specimen via molecu-

lar vibration through means of broadband coherent anti-Stokes Raman scatter-

ing (B-CARS) could serve as a basis for a robust diagnostic platform for a wide

range of applications. A limiting factor of CARS is the presence of a non-

resonant background (NRB) signal, endemic to the technique. This back-

ground is multiplicative with the chemically resonant signal, meaning the

perturbation it generates cannot be accounted for simply. Although several

numerical approaches exist to account for and remove the NRB, they generally

require some estimate of the NRB in the form of a separate measurement. In

this paper, we propose a deep neural network architecture called Very dEep

Convolutional auTOencodeRs (VECTOR), which retrieves the analytical

Raman-like spectrum from CARS spectra through training of simulated noisy

CARS spectra, without the need for an NRB reference measurement. VECTOR

is composed of an encoder and a decoder. The encoder aims to compress the

input to a lower dimensional latent representation without losing critical infor-

mation. The decoder learns to reconstruct the input from the compressed rep-

resentation. We also introduce skip connection that bypass from the encoder

to the decoder, which benefits the reconstruction performance for deeper net-

works. We conduct abundant experiments to compare our proposed VECTOR

to previous approaches in the literature, including the widely applied

Kramers–Kronig method, as well as two another recently proposed methods

that also use neural networks.

Abbreviations: AE, autoencoder; CARS, coherent anti-Stokes Raman scattering; CNN, convolutional neural network; NRB, non-resonant
background.
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1 | INTRODUCTION

Coherent Raman scattering (CRS) microscopies and
spectroscopies have long sought to acquire the same
chemical-rich information as traditional spontaneous
Raman methods but orders of magnitude faster. Such a
transformative technology would enable a significant
expansion of application, such as live-cell and large-area
imaging. Broadly speaking, the two dominant CRS
modalities based on either stimulated Raman scattering
(SRS) or coherent anti-Stokes Raman scattering (CARS)
have either surpassed traditional Raman spectroscopy/
imaging in speed or matched its spectroscopic bandwidth
and sensitivity, but not both simultaneously. In this
work, we focus on broadband CARS (B-CARS), a method
capable of probing over 4000 cm�1 bandwidth. Like all
CARS-based methods, though, the signal is affected by a
co-generated coherent background signal, the so-called
non-resonant background (NRB). A limiting factor of
CARS is that the third-order susceptibility term, from
which it derives the frequency domain response, has a
resonant and non-resonant component, with respect to
the Raman-active transition frequencies χð3Þ ¼ χRþ χNR.
The intensity of the CARS spectrum is quadratically pro-
portional to the susceptibility term:

ICARS / jχ2Rjþ jχ2NRjþ2χNRRe½χR�: ð1Þ

Though much maligned, the NRB is a stable homo-
dyne amplifier thus partially responsible for the signal
strength of CARS methods,[1] which can also be used as
an internal reference.[2] The side effect, though, is a sig-
nificant perturbation of the recorded spectral shapes. If
the NRB could be independently measured, it could be
removed with analytical methods,[3] though this is not
currently possible; thus, surrogate materials have tradi-
tionally been utilized that contain weak or no vibrational
peaks within swaths of the spectroscopic window.
Though recent work has mitigated some of the
ramifications,[2] removing the necessity of any NRB
estimate while still extracting undistorted Raman fea-
tures would be superior. In this work, we present a new
deep learning method, Very dEep Convolutional
auTOencodeR (VECTOR), based upon an autoencoder
(AE) topology with the addition of skip connections that
provides similar results to analytical methods with NRB

estimates and superior results over an alternative neural
network approach.

Many NRB removal techniques exist, both as
experimental techniques[4–7] and as post-processing
approaches.[2,3,8,9] The majority of approaches seek to
suppress or eliminate the non-resonant contribution, so
that the observed spectrum obtains the form of a Raman-
like spectrum. Experimental approaches have the benefit
of directly collecting a purely resonant signal at the sam-
ple level, but suffer from weak signal, added experimen-
tal complexity and analysis or reduced throughput owing
to requiring multiple measurements per area of interest.
Post-processing approaches use physics or information
theoretic approaches to mathematically extract the imagi-
nary component of the CARS susceptibility χR, as it takes
the form of a Raman-like spectrum. These approaches,
however, necessitate an independent measurement of the
NRB, which is not currently possible; thus, reference
materials such as water, glass slide, or salt[10] is used,
which contain weak or isolated vibrational signatures
over certain regions of the Raman spectrum. Deep neural
networks (DNNs) have achieved striking results in differ-
ent areas such as natural language processing[11] and
computer vision.[12] Recently, deep learning approaches
have been employed to tackle the issue of NRB
removal.[13,14] Houhou et al[13] used a long short-term
memory (LSTM) topology while Valensise et al[14]

implemented a convolutional neural network (CNN), ter-
med “SpecNet,” for NRB removal in CARS. These devel-
opments represent a significant step forward in rapid
extraction of Raman-like spectra from B-CARS measure-
ments. A CNN is comprised of convolutional layers (for
which the neurons are connected to some subset to its
neighbors), which are followed by fully connected layers
and have been shown to be particularly useful in identify-
ing patterns within images with spatial invariance. It has
been pointed out that this property of spatial invariance
is of interest in the context of processing spectra for
which peak location can vary. CNNs can generate feature
maps, which can be described as different representations
of the signal, the complexity of which can increase with
the number of layers used in the CNN. An LSTM is a sub-
class of recurrent neural network (RNN), where the net-
work is trained by looping through sequences of data as
functions of time. CNNs employ filters within con-
volutional layers to transform data, although LSTMs/
RNNs are predictive in nature, reusing activation
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functions from other data points in the sequence in order
to generate the next output in a series. Convolutional
AEs (CAEs) use CNNs to form each of an encoder and
decoder pair, which encodes the input signal into a lower
dimensional latent space and then decodes it to back to
its original value. For the first time, we investigate the
use of CAEs, which belong to the deep generative models
(DGMs) family, for removing the NRB from CARS. A
DGM is a powerful model of learning any kind of data
distribution, and it has achieved tremendous success in
the past few years in the form of AEs,[15] variational AEs
(VAEs),[16] and generative adversarial networks
(GANs).[17,18] Regarding our case, we seek to solve the
problem by finding a “mapping” between a noisy CARS
spectrum and the underlying Raman spectrum. On the
basis of the previous successful deployment of using AE
for denoising images[19] and speech signals,[20] we
explore the use of AE for extraction of the Raman-like
signal from CARS in this work.

The contributions in this paper are summarized as
follows: First, we propose a VECTOR architecture specifi-
cally designed for removing the NRB in CARS. Extensive
experiments were performed to identify the optimal
hyperparameters of VECTOR. We also demonstrate that
skip connections are not only able to boost performance
for deeper networks but also to speed up the training pro-
cess. Second, training was performed for nine different
datasets with increasing complexity in terms of the num-
ber of peaks and the range of peak width. These datasets
have different spectral shapes that emulate different
applications of Raman spectroscopy, with the most com-
plex dataset representative of biochemical spectra, and
the simplest representative of pure chemical spectra. We
demonstrate for the first time that the performance of
deep learning based NRB removal correlates with spec-
tral complexity. Third, we demonstrate significantly supe-
rior performance of VECTOR when compared with a
simpler architecture that was recently proposed for NRB
removal for all of the datasets tested. Lastly, VECTOR is
applied to an experimental B-CARS spectrum of glycerol,
and the results are compared with the Kramers–Kronig
(KK) method. These results highlight a shortcoming of
the trained VECTOR networks in dealing with a real-
world NRB profile, which is not ideally smooth, as for
the cases of the NRB profiles used in training. This in
turn points to new research directions for training future
networks, which are discussed in Section 6.

The breakdown of the paper is as follows: Section 2
briefly reviews B-CARS in terms of the experimental opti-
cal recording system, as well as the current state-of-the
art in numerical NRB removal. In Section 3, the
VECTOR architecture is considered in detail, including
the skip connections. Section 4 details how simulated

data were generated to train the networks and present an
ablation study and cross-validation to find the optimal
hyperparameters. In Section 5, the results are provided.
This includes a quantitative comparison with another
CNN over the aforementioned datasets and experimental
results on a glycerol B-CARS spectrum. Finally, in
Section 6, we offer a conclusion with an emphasis on the
direction of future work.

2 | BROADBAND COHERENT
ANTI-STOKES RAMAN
SPECTROSCOPY

2.1 | Theory and system design

CARS is a third-order nonlinear optical process in which
a “pump” and a “Stokes” photon coherently excite a
molecular vibration at their beat frequency from
which a “probe” photon is able to inelastically scatter,
gaining energy (blue shifting) equal to the vibrational
frequency—the anti-Stokes photon—as depicted in
Figure 1a. Many of the earliest CARS microscopy systems
were narrowband[21] (� 1 ps to 10 ps pulse duration), able
to probe single vibrational modes at high-speed, but

FIGURE 1 (a) CARS energy-level diagram (ωp, pump

frequency; ωs, Stokes frequency; ωpr , probe frequency; ωas, anti-

Stokes frequency), (b) Diagram of the setup of the broadband

coherent anti-Stokes Raman scattering (B-CARS) micro-

spectrometer [Colour figure can be viewed at wileyonlinelibrary.

com]
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capturing hyperspectral imagery required slow, often
unstable laser tuning. To capture single-shot spectra, one
approach termed broadband or multiplex CARS uses a
broadband Stokes source to stimulate multiple vibrations
simultaneously with the now broadband anti-Stokes sig-
nal captured on a spectrometer.[22,23] Due to practical
limitations in the intensity of laser light that can be
applied to [biological] samples and detector technology,
B-CARS methods collect images relatively slowly but
spectra extremely quickly. It should be noted that in most
implementations of CARS methods, the probe source and
the pump source are the same (and narrowband)—
sometimes specified as “interpulse” excitation or “two-
color” CARS. It is also possible to have a degenerate
pump and Stokes source, “intrapulse,” “impulsive,” or
“three-color” CARS.[24]

Figure 1b presents a simplified schematic of a basic B-
CARS system. Here, the Stokes source (supercontinuum)
is necessarily broadband, the probe source is necessarily
narrowband (i.e., it is a determining factor in the spectro-
scopic resolution), and the pump source is purposely left
ambiguous. The broadband pulsed source and the nar-
rowband probe are combined using a dichroic and
focused on the sample. Though there is a spatial phase-
matching condition for CARS excitation, the use of high
numerical aperture (NA) objective lenses effectively pre-
sents a plethora of permutations of photon vectors, thus
enabling collinear excitation. The generated anti-Stokes
light is collected with another objective lens and sepa-
rated from the remaining excitation beam by low-pass
dichroic filters and recorded with a spectrometer. It
should be highlighted that “epi-detected” systems with a
reflective geometry have also been developed as have sys-
tems with beam-scanning capabilities, though sample
raster scanning is the most prevalent setup.

2.2 | State of the-art for NRB removal

There are two established methods for removing the NRB
from a CARS spectrum: the KK method and the maxi-
mum entropy method (MEM). The KK method utilizes a
Hilbert transform to recover the susceptibility phase from
the CARS spectrum and a reference NRB.[3] The MEM is
an information theoretic approach that attempts to maxi-
mize the spectral entropy of the susceptibility, given the
measured constraints of the CARS spectrum.[25] These
post-processing methods used to remove the NRB contri-
bution from CARS signals take a reference NRB signal
and the resonant CARS signal as inputs. As χNR cannot
be readily extracted from a CARS spectrum, a CARS sig-
nal from a sample with no active Raman transitions in
the region of interest is obtained. Glass or water are

commonly used for this purpose, as they can be easily
measured alongside the sample of interest. However,
these NRB spectra are not perfect analogies for the non-
resonant component of the sample CARS signal as they
do contain some Raman vibrational features. This dis-
crepancy is the major cause of error in the KK and MEM
methods. The KK method is briefly reviewed in the fol-
lowing subsection. The KK method was chosen as the
current best practice for analytical NRB removal because
it requires less parameter optimization in the computa-
tion compared with the MEM. The KK method is also
known to be more computationally efficient than the
MEM approach,[26] which will be pertinent for high-
speed applications of B-CARS.

The KK relations generally relate the real and imagi-
nary parts of any complex quantity that describes a causal
(analytic) system. Under certain conditions, the KK rela-
tions may be extended to relate the intensity modulus
and phase.[27,28] It has been shown that the KK relation
could be applied to CARS,[3] enabling the retrieval of the
spectral phase of the susceptibility (ϕ) from the CARS
intensity:

φðωÞ¼�P
π

Zþ∞

�∞

lnjχð3Þðω0Þj
ω0 �ω

dω0, ð2Þ

where P is the Cauchy principale value.
In this work, we have implement the method from

Camp et al[2] and apply wavelet denoising and a baseline
correction using asymmetrically reweighted penalized
least squares (arPLS) smoothing[29] on the phase prior to
obtaining the complex quantity through Equation (3).

χð3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ICARS

p
exp iφðωÞ½ �: ð3Þ

3 | VERY DEEP CAES

The AE learns how to efficiently encode the input and
learns how to reconstruct the input back from the
reduced representation. Its ability to reduce data dimen-
sions by learning how to ignore the noise in the data by
design has precipitated extensive study in the area of
speech signals[20] and computer vision.[15,19] A typical AE
normally comprises three main components (see
Figure 2): (1) The encoder, in which the model learns
how to reduce the input dimensions and compress input
data into an encoded representation; (2) a latent space or
bottleneck, which is the layer that contains the com-
pressed representation of the input data. This is the
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lowest possible dimension among the AE; (3) the
decoder, in which the model learns how to reconstruct
the input data from the encoded representation. The ordi-
nary AE incorporates all fully connected layers for both
encoder and decoder.[30] However, training a fully con-
nected DNNs suffers from long computation times, over-
fitting, and being difficult to optimize[31] especially for
high-dimensional input data. CNNs[32] were proposed to
mitigate the problems above by introducing sparse con-
nections among neurons.

3.1 | Architecture

The proposed VECTOR consists of an encoder and a
decoder as seen in Figure 2. The structure of the encoder
and the decoder is symmetric. This design will enable
conducting a symmetric skip connection[12,19,20] between
each paired convolutional layer and transposed con-
volutional layer in the encoder and the decoder, respec-
tively. We will introduce the benefits of employing skip
connections in Section 3.2. Here, we present notations
used in this section: N is the batch size, K is the size of
the 1D convolutional kernel, C is number of channels, S
is the stride number, T is the input or feature length, and
X�ℝN�T is the input.

The encoder and the decoder are fully convolutional
(1D) and fully transposed convolutional (1D), respec-
tively. Batch normalization[33,34] and ReLU[35] are added
to each convolutional layer and transposed convolutional
layer except for the last layer in the decoder. The encoder
acts as a feature extractor that preserves primary infor-
mation and properties of the input CARS spectra. To this
end, the input is compressed to the latent representation
(as seen in the middle of the architecture in Figure 2).
This compression process could have two benefits:
(1) The latent representation holds as much critical

information as input contains but in a much lower
dimension; (2) the compressed representation removes
noise and nonessential information contained in the
input. The decoder is then combined to recover details of
input contents subject to the corresponding set of “clean”
Raman spectra. We use the mean absolute error (MAE),
also known as the L1 norm, between CARS spectra and
clean spectra as the loss (see Equation 4) to train the
VECTOR network in an end-to-end manner.

L1 ¼ 1
N

XN
i

f ðXi;θÞ�Yij j, ð4Þ

where X is CARS input spectra, Y is Raman output spec-
tra, f is the network, and θ represents all of the network
parameters, which have been optimized by the training
process with no a priori knowledge.

Moreover, skip connections are also added from each
convolutional layer to its corresponding paired trans-
posed convolutional layer. The convolutional feature
maps are passed to, and summed to, the transposed con-
volutional feature maps in an element-wise manner
because those two feature maps have the exact same
dimension. Details of VECTOR-8 are provided in Table 1,
and the details of the other VECTOR architectures are
provided in the Supplementary Information S1.

3.2 | Skip connections

Skip connections have been widely applied in the area of
computer vision. The most well-known CNN architecture
with skip connection is ResNet.[12] Figure 3 shows an
example of skip connection.

The output of a residual block can be easily formu-
lated as y :¼FðxÞþx. He et al[12] showed that skip

FIGURE 2 The example of Very dEep Convolutional auTOencodeR (VECTOR)-8 architecture used in this study. Convolutional layers

in the encoder and transposed convolutional layers in the decoder are symmetric; that is, the input dimension to the convolutional layer and

the output dimension to the paired transposed convolutional layer are the same [Colour figure can be viewed at wileyonlinelibrary.com]
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connections are easier to optimize compared to those
“plain” networks without skip connections, in which skip
connections mitigate the vanishing gradient descent to
bottom layers[36] and skip connections are able to boost
performances for the networks with greatly increased
depth. The vanishing gradient is a well-known problem
in training neural networks. Gradients are used to update
the network weights and are in the range (0, 1]. Bac-
kpropagation computes gradients by the chain rule,
which has the effect of multiplying n of these small num-
bers to compute gradients of the early layers in an n-layer
network, meaning that the gradient (error signal)
decreases exponentially with n while the early layers
train slowly. Skip connections offer a solution to this
problem by connecting the early layers to the later layers,
which enables gradients to pass to early layers directly,
instead of passing n layers.

Apart from the vanishing gradient problem, the grow-
ing depth of the AE architecture could also lead to the
critical input information being lost such that they

cannot be recovered via the encoding/decoding process.
Skip connections also enable the recovery of such infor-
mation. We design the VECTOR network in a symmetric
manner; that is, the convolutional layer in the encoder
and the transposed convolutional layer in the decoder are
paired with each other. This design allows connections
bypassing from one convolutional layer to the paired
transposed convolutional layer. An additional benefit of
the symmetrical skip connection is that padding can be
avoided. Figure 2 shows an example of skip connection
for VECTOR-8. In this work, the number of skip connec-
tions is equal the the number of layers in the encoder/
decoder. To address benefits of using skip connection, we
will show that skip connections are able to (1) speed-up
the training and (2) boost the performance for the
deeper networks compared with the “plain” networks in
Section 4.3.

4 | TRAINING

4.1 | Datasets for training

VECTOR was trained by a dataset of simulated CARS
spectra. The efficacy of the algorithm was tested by train-
ing it with a number of different datasets of varying com-
plexity. The datasets were varied based on the number of
Raman peaks per spectrum, and the variation in full-
width half-maximum (FWHM) of the peaks themselves.
This is principally of interest owing to the different kinds
of Raman spectra found in different applications. Chemi-
cal and pharmaceutical specimens have sharper peaks

TABLE 1 The architecture of

VECTOR-8
Stage Operation (K ,Cin,Cout ,S) Output size (T�C)

Input — 1000�1

Encoder Layer 1 8, 1, 64, 1 993�64

Layer 2 8, 64, 128, 2 493�128

Layer 3 8, 128, 256, 2 243�256

Layer 4 8, 256, 512, 2 118�512

Latent space — 118�512

Decoder Layer 1 8, 512, 256, 2 243�256

Layer 2 8, 256, 128, 2 493�128

Layer 3 8, 128, 64, 2 993�64

Layer 4 8, 64, 1, 1 1000�1

Output layer Sigmoid 1000�1

Note: The operation refers to 1D convolution and 1D transposed convolution for encoder and decoder
respectively, where K is the kernel size, Cin represents number of input channels, Cout represents number of
output channels, and S refers to the stride. The output size refers to the dimension of feature maps produced
by each stage, where T is the length and C is the number of channels. Rest of VECTOR models can be
referred to Appendix S1.

Abbreviation: VECTOR, Very dEep Convolutional auTOencodeR.

FIGURE 3 Skip connection in residual block12
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qualitatively observed as distinct peaks,[37,38] in compari-
son with biological samples, for example, cellular spectra,
which have broader peaks and appear as more complex
amalgam of broad to narrow peaks.[39,40]

The code used to generate the simulated datasets was
adapted from Valensise et al,[14] which we detail below.
Further details are also given in Supplementary Informa-
tion S2. The CARS spectra were generated as per
Equation (1). The resonant susceptibility is expressed as a
sum of Lorentzian functions, as per its physical basis; see
Equation (5). For each Lorentz function, the peak ampli-
tude A is uniform random value between 0 and 1, with
its resonant peak at Ω between 300 and 1700 cm�1 with
FWHM 2�Γ. Nine datasets were generated of varying
ranges of peaks widths and number of peaks per
spectrum, designated (i–ix). The spectra are generated as
1000 datapoints across 2000 cm�1. FWHM varies from
low (2–10 cm�1) in (i–iii), to moderate (2–25 cm�1) in
(iv–vi), to high (2–75 cm�1) in (vii–ix). The datasets are
further split into three sections by number of spectra.
Each spectrum generated in datasets (i, iv and vii) have
between 1 and 15 peaks. Similarly, (ii, v and viii) contain
between 15 and 30 peaks per spectrum, and (iii, vi and
ix) have between 30 and 50 peaks.The non-resonant sus-
ceptibility is typically expressed as an arbitrary, slowly
varying function. In this case, it is expressed as the prod-
uct of two randomized, countervailing sigmoid functions,
per Equation (6). In Equation (6), c1 and c3 control the
steepness of the rising falling rates of the sigmoid func-
tions; c2 and c2 determine the position of the inflection
points of the sigmoids.

χRðωÞ¼
X
Npeaks

A
Ω�ω� iΓ

, ð5Þ

χNRðωÞ¼
e�c3ðω�c4Þ

ð1þ e�c1ðω�c2ÞÞð1þ e�c3ðω�c4ÞÞ : ð6Þ

A training set of 200 000 spectra and an evaluation
set of 30 000 spectra was generated for each dataset.
Alongside the CARS spectrum, a corresponding Raman
spectrum is created to function as an ideal reference to
train the network.

4.2 | Implementation details

Experiments were conducted on nine synthetic datasets
using the formulation presented in Section 4.1. When
comparing to previous studies,[14] we select VECTOR-16
by default as an acceptable trade-off between computa-
tion time and performance; more details on this selection

are given in Section 4.3. The models were trained on one
TITAN Xp GPU. We adopted stochastic gradient descent
(SGD) as an optimizer with a momentum of 0.9 and a
weight decay of 5�10�4. The batch size was set to
256 for the training. The initial learning rate was 0.1 and
was reduced by a factor of 10 at 25, 50 and 75 epochs.
Training was stopped at 100 epochs. The code is based on
the Pytorch library and is freely available.[41]

4.3 | Model dimensionality

Figure 4 compares the performance of six architectures of
VECTOR with different numbers of layers including
(red) and excluding (blue) skip connections. The MAE
between the synthetic Raman spectrum and the recov-
ered Raman spectrum from the corresponding CARS
spectrum in the validation datasets was used as the per-
formance metric for this study. It should be noted that
architectures without skip connections achieve compara-
ble performance for lower sets of layers, that is,
VECTOR-8, VECTOR-10 and VECTOR-12. Starting from
VECTOR-14, performance of architectures without skip
connection saturates, which indicates that the critical
information contained in the bottom layers gets lost and
does not pass to the transposed convolutional layers suc-
cessfully. For VECTOR-18, the performance is even
worse than VECTOR-14 and VECTOR-16, which indi-
cates the vanishing gradient problem may arise for the
bottom layers leading to the bottom layer weights receiv-
ing very small gradient and has not been fully optimized.

Increasing number of layers of the VECTOR will
increase computation times leading to slower training

FIGURE 4 Mean absolute error (MAE) performance of Very
dEep Convolutional auTOencodeR (VECTOR) for different

encoder-decoder depths,applied to the most complex dataset

(dataset ix) [Colour figure can be viewed at wileyonlinelibrary.com]
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but only provide very limited performance enhancement.
As such, VECTOR-16 was determined to be optimal for
our purposes. Shown in Figure 5 is the training loss for
VECTOR-16 and VECTOR-18 with and without skip con-
nections. It can seen that skip connections are able to

accelerate the training process especially for the first
25 epochs. This is most pronounced in VECTOR-18
where the skip connection architecture produces consis-
tently better performance throughout all training epochs.

5 | RESULTS

5.1 | Performance on simulated datasets

We trained and performed validation on nine different
networks, where each network was trained/validated
using the nine different training/validation datasets
described in Section 4.1. These nine networks were then
tested using nine test datasets of size 4096 spectra. The
test dataset used for each network matched the parame-
ters of the training/validation datasets for that given net-
work in terms of peak number and width. The SpecNet
network[14] was trained/validated using the same nine
datasets as described in Section S3 and were then subject
to the identical test datasets. Visualizations of spectra
recovered by VECTOR-16 and the SpecNet network are
shown in Figure 6. Figure 7 illustrates the average MAE
(as defined in Equation 4) for both networks on each
dataset. It can be noticed that the VECTOR network sig-
nificantly outperforms SpecNet for all nine datasets.

FIGURE 6 Example of

recovered spectra for Very dEep
Convolutional auTOencodeR
(VECTOR)-16 (red) and SpecNet

architecture (blue) for each

algorithm trained and evaluated

on datasets (i–ix). True Raman

spectrum is overlaid (black) and

input coherent anti-Stokes

Raman scattering (CARS)

spectrum (green) is plotted with

offset [Colour figure can be

viewed at wileyonlinelibrary.

com]

FIGURE 5 Training loss for Very dEep Convolutional
auTOencodeR (VECTOR)-16 and VECTOR-18 with and

without skip connections [Colour figure can be viewed at

wileyonlinelibrary.com]
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For both networks, MAE increases proportionally
with number of peaks. Datasets (i, iv and vii) have
between 1 and 15 peaks, datasets (ii, v and viii) have
between 15 and 30, and datasets (iii, vi and ix) have
between 30 and 50 peaks per spectrum (these correspond
to left, center and right columns in Figure 6). Similarly,
an increase in the ranges of peak widths produces an
increase in MAE. Datasets (i–iii) contain narrow peak
widths between 2 and 10 cm�1

, widening to between
2 and 25 cm�1

for datasets (iv–vi), with the widest
range of 2–75 cm�1

in the case of datasets (vii–ix)
(corresponding to top, middle and bottom rows in
Figure 6). MAE increases most sharply for the most com-
plex datasets containing the broadest range of peaks. The
relative change in MAE is broadly consistent across
datasets for both networks. VECTOR is seen to out-
perform SpecNet for all datasets.

Both Figures 6 and 7 clearly demonstrate that the
VECTOR-16 network is able to recover spectra with
high quality for the case of all nine datasets. For datasets
(i–iii), both SpecNet and our three individual networks
perform well in recovering peak position and shape.
However, close inspection of the peak values reveals that
VECTOR is more successful at recovering peak height
and also at removing noise in the baseline. For the case
of datasets (vii–ix) SpecNet returns erroneous values at
the ends of the spectrum.

We also highlight the capability of the VECTOR net-
work to reduce the effect of noise in the CARS intensity.
Figure 8 shows the result of applying VECTOR-16
(trained on dataset ix) for two test cases also
corresponding to dataset ix. In the first case, on the left
side of the figure, we see the result of processing a high

SNR CARS spectrum, with high-quality output as
expected. In the second case on the right a lower SNR sig-
nal is processed. In this case, the random noise fluctua-
tions are clearly seen in the input CARS spectrum. The
recovered Raman spectrum is high quality and contains
no such noisy signal. However, the insert in the figure
highlights that small spectral features, with similar
amplitude to the noise signal have been lost. These
results show that the VECTOR network is robust to han-
dle low SNR inputs, with the caveat that spectral features
matching the noise floor may be lost. However, dealing
with very low SNR signals would require further training
with datasets of similar quality. A more detailed discus-
sion of prediction accuracy in the presence of noise is
provided in Section S4.

5.2 | Performance on experimental data

A B-CARS spectrum of glycerol was recorded using an
Er-Fibre system as described in Section 2.1. Neat glycerol
was applied into a 120-μ m-thick imaging spacer sand-
wiched between a microscope slide and coverslip glass. A
spectrum of a glass coverslip was also recorded, as an
NRB reference spectrum. The spectrum was processed
independently by VECTOR-16, trained on datasets (iii),

FIGURE 8 An example of high and low signal noise ratio

(SNR) broadband coherent anti-Stokes Raman scattering (B-CARS)

spectra processed by Very dEep Convolutional auTOencodeR
(VECTOR)-16 trained on dataset ix. Although the network

effectively removes the noise in the retrieved Raman spectrum, the

insert on the right figure highlights that spectral features under the

noise floor may be lost [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Average mean absolute error (MAE) from each of

the datasets [Colour figure can be viewed at wileyonlinelibrary.

com]
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(vi) and (ix). The recovered spectrum is shown in
Figure 9. Although VECTOR-16 shows robust perfor-
mance for simulated datasets, performance with real
spectra is found to be sensitive to the training data used
for the network.

The form of the NRB seen in an Er-Fibre CARS sys-
tem is not simply modeled as a slowly varying polyno-
mial such as the countervailing sigmoids used here, as is
more appropriate for a conventional two-color B-CARS
platform. The combination of two-color and three-color
excitation domains produces a complex NRB signal that
is highly subject to the laser properties, such as spectral
envelope and phase delay. This is particularly difficult for
an NRB agnostic system such as VECTOR, in comparison
with KK or MEM, which incorporate an NRB reference
in their process. As a result, the high degree of variation
in the NRB intensity means the peak heights of the C–H

band in glycerol are not as intense as would be expected,
as achieved by KK. As a result, components of the NRB
profile are interpreted by the network as resonant fea-
tures, and attempts to construct peaks, as can be seen
most acutely in datasets (vi) and (ix), which are trained
on broader sets of peak widths.

However, VECTOR does not produce many of the
artifacts of the KK method common to low intensity
regions, typically the Raman silent region, where quo-
tients of small values produce noisy results. VECTOR
also seeks to smooth the extracted Raman-like output.
For comparison, a Raman spectrum of glycerol was also
recorded and is shown in green in Figure 9. This spec-
trum was recorded using a coomercial Raman micro-
spectrometer (Horiba Jobin Yvon LabRAM HR, grating
300 lines/mm, excitation 532 nm). The spectrum was
wavenumber calibrated using 4-Acetamidophenol
(Sigma) and intensity calibrated using a NIST calibrated
White-Light source (Ocean-Optics) as described in Hut-
sebaut et al.[42] Interestingly, the spectrum recovered
from the various VECTOR architectures appears to be
more consistent regarding the relative intensity of the
peaks in the higher wavenumbers.

6 | CONCLUSION

In this paper, we have proposed a general architecture
called VECTOR specifically designed for removing the
NRB from CARS spectra. The VECTOR network is sym-
metric and consists of an encoder and decoder. Each con-
volutional layer and transposed convolutional layer are
paired to each other. More importantly, the VECTOR
network contains the skip connection from one con-
volutional layer and the paired transposed convolutional
layer. We design abundant experiments to demonstrate
the skip connection is able to help on recovering clean
spectra and tackles the optimization difficulty caused by
vanishing gradient for deeper networks. The proposed
VECTOR network outperforms the previous works on
recovering the clean spectra and is also robust to low
SNR input spectra.

Compared with the traditional AE, we adopt two crit-
ical designs in the VECTOR: (1) Replace fully connected
layers by convolutional layers; (2) skip connections are
bypassed from a convolutional layer to a paired trans-
posed convolutional layer. We design ablation studies to
demonstrate that skip connections are able to improve
the reconstruct performance and speed up the training.
The key difference between VECTOR and CNNs is that
VECTOR is symmetric. It contains a symmetric encoder–
decoder architecture to reconstruct spectra in a “squeeze-
and-unsqueeze” manner. This symmetric design enables

FIGURE 9 Recovery of experimental coherent anti-Stokes

Raman scattering (CARS) spectrum. The top spectrum shows the

CARS spectrum recorded from glycerol, and a corresponding non-

resonant background (NRB) reference spectrum of glass. The

successive spectra shown are the recovered Raman-like spectra

from the KK method, followed by Very dEep Convolutional
auTOencodeR (VECTOR)-16 trained on different dataset

configurations, all shown in blue. The NRB spectra were also

processed for the case of VECTOR-16 and is shown in red [Colour

figure can be viewed at wileyonlinelibrary.com]

10 WANG ET AL.

http://wileyonlinelibrary.com


the skip connection between paired convolutional layer
and transposed convolutional layer. In Figure 4, we have
shown that deeper VECTOR has better reconstruction
performance. However, we only investigate the impact of
the network depth scaling in this study. Other expansion
for networks such as width scaling, resolution scaling,
and compound scaling[43] can be further investigated
beyond the VECTOR network for CARS-related research.

We have shown the superior performance of our
VECTOR compared to the previous CNNs approach[14]

for all nine datasets. We trained our network on different
configurations of simulated spectra, which demonstrated
the importance of training the network for the specific
types of spectra that it is intended to be used
on. Although the network created by Valensise et al[14]

performed well on the simulated datasets that were simi-
lar or simpler to their training set (i–iv), its qualitative
and quantitative performance suffered from more com-
plex datasets, as seen in Figures 6 and 7.

Although VECTOR performs well when processing
synthetic spectra that is used to train it, further work is
required for use with real-world experimental data. The
use of experimental spectra would be cumbersome for
training due to the large volume of data required to train
the network, and therefore, improvements must be made
to the training set to better emulate the spectra recorded
from the CARS platform. Furthermore, it is not strictly
possible to obtain a ground truth Raman spectrum for a
given recorded CARS spectrum. Any algorithm used to
retrieve a CARS spectrum would be an approximation,
which would compound errors to the retrieval network.
Constraining and tailoring the peak shapes, heights, and
frequencies to emulate those observed in the fingerprint
and C–H stretching regions of the spectrum are a natural
next step. This would be achieved by a wider range of
peak amplitudes, SNR ranges, and generating taller,
sharper peaks in the C–H range with smaller, denser,
wider peaks in the fingerprint region. At present, the
double sigmoid function used to model the slowly vary-
ing frequency response of the NRB is not sufficient to
model a three-color CARS system. In order to train
VECTOR on data that better emulate the types of experi-
mental data seen in Figure 9, rather than use an arbitrary
function, it may be advantageous to model the excitation
profile of the specific laser system to create the two- and
three-color NRB domains. This can be achieved by accu-
rately modeling the laser sources in the frequency
domain and applying the appropriate convolutional and
cross-correlation operators to model the three-color and
two-color interactions. In this configuration, the excita-
tion profile would describe the NRB shape, assuming the
non-resonant susceptibility contribution is non-zero
across the frequency domain, as is physically appropriate.

An important point of discussion is the relationship
between the proposed architecture (VECTOR) and
U-Net,[44] which is a CNN developed for 2D image seg-
mentation, and which has become the gold-standard in
this area. VECTOR and U-Net are both specific types of
the more general AE architecture[45,46] for which the
encoder learns an efficient representation of unlabelled
data in the form of key features, which can then be used
by the decoder to reconstruct the data in the absence of
unwanted data such as noise. Both VECTOR and U-Net
use an “hourglass architecture,” and both use skip con-
nections. The skip in VECTOR is different from that used
in U-Net. Our skip is similar to the ResNet skip connec-
tion[12] in which the original input data is also added to
the output of the convolution block, although U-Net con-
catenates feature maps through the channel dimension.
The skip connection in VECTOR can be described as
(a + b), compared with U-Net's [a, b]. Another dis-
tinguishing feature is that U-Net uses max pooling, while
VECTOR uses striding convolution.

In this paper, we have successfully demonstrated the
application of the AE architecture as an effective method
to remove the NRB contribution to a CARS spectrum.
Further, we have demonstrated the use of skip connec-
tions to boost the performance of deeper networks. This
work sets the baseline for AE research in this application
area and any future research can incrementally build on
this work. Examples of future work could include an
investigation of U-Net (it should be noted that our
VECTOR architecture is easily adapted to U-Net), atten-
tion mechanism,[47] transformer,[47] etc., all of which
belong to the AE family.
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