
Introducing Ownership Type Constraints to
UML/OCL

Jagadeeswaran Thangaraj1 and Senthil Kumaran U2

1 DFAT, Dublin, Ireland
jagadeest@gmail.com

2 School of Information Technology and Engineering,
VIT University, Vellore, TN, India

usenthilkumaran@vit.ac.in

Abstract. In an object oriented program, Ownership helps to control
aliasing and assists in structuring object relationships in a program. By
using this ownership representation, an owner object can access the ref-
erence objects for verification purpose. Ownership types help the pro-
grammer track information about object aliasing. This paper aims to
introduce ownership types information to UML/OCL for design specifi-
cation. This helps the implementations easier to develop and less prone
to error.

Keywords: Aliasing, Ownership, USE, UML, OCL, Spec#.

1 Introduction & Motivation

In recent years, model based transformation is getting more popular [3], i.e. code
generation from system design. The Unified Modeling Language (UML) model
makes it easy to describe the object oriented program components clearly at
the system design stage. The UML’s class diagram depicts the details of a class
of the model in an object oriented system. The relationship restrictions with
other classes can be described by associations which are called UML constraints.
Association multiplicities define the connection relation of classes to each other.
Object Constraint Language (OCL) allows users to express textual constraints
about the UML model [10]. So the UML class diagram with OCL constraints can
describe all the elements of object program constructs with their specification.
At the moment, UML/OCL does not allow mentioning the object references with
ownership type in the current context directly. In this paper, we explicitly allow
the reference of other object by adding ownership types to the UML/OCL, so
that we can implement further with no bother about ownership type constraints.

1.1 Motivation

Nowadays, software is developed via automatic code generation from software
designs to implementation when using formal specification and static analysis

to reduce the development effort [4] [7]. The modelling approaches are used to
describe the client’s specification.

In a program implementation, we document objects and those objects which
they own that means have exclusive write access. We refer to these objects as
the “owned objects”. It is important to know what objects an object owns for
purpose of static verification. The correct software maintains the consistency of a
program’s data throughout its verification. If it fails to maintain the consistent
details about ownership, the system may fail and lead to a number of errors
during program development. If we know the information about the ownership
during the design phase, our implementation will be easier and less prone to
errors.

This paper makes this information available in the software design phase to
improve the quality of design specification. It presents ownership type constructs
at the software design phase for dealing with aliasing in programming languages.
Then it transfers these ownership type constructs to the implementation phase
for actual development and practical evaluation of these constructs. We chose the
USE (The UML-based Specification Environment) specification to describe the
program’s specification and Spec# to develop the code at the implementation
level.

2 Background

2.1 USE

The USE tool, which is based on a subset of UML and OCL, allows specification
to be expressed in a textual format for all features of a model, e.g., classes,
attributes in the UML class diagrams. Additional constraints are written using
OCL expressions [8].

The USE specification describes the program’s specification at the specifi-
cation phase. The reason behind this selection is its feature, that is written in
the text format and can easily convert to corresponding graphical representa-
tions using textual editor: Class diagram, Object diagram. Also it performs the
verification of OCL constraint structures easily. In the text format of USE spec-
ification, we can add the ownership constraints as comments with no changes
made in USE tool. Therefore it makes it easy to implement the ownership addi-
tion in their specification.

UML Model Specification: Every UML model in USE has a name and an
optional body. A model may contain Enumerations and Classes. Each class has
a name. It may has optional attribute and operation definitions. Classes can be
linked together via associations. It is possible to define Association multiplic-
ities and role names along with Association definitions. Fig.1 shows an USE
specification of ‘CarSystem’ and corresponding UML diagram generated in USE
tool.

model CarSystem

class Car

attributes

speed: Integer;

operations

addPart();

end

class Radio

attributes

Frequency: Integer;

operations

volume();

end

association Music between

Car[0..1] role carRadio

Radio[0..1] role radio

end

constraints

context Car

inv: self.maxSpeed <= 180

Fig. 1. An USE Specification and Corresponding Class Diagram

Constraints: The constraints segment of a specification follows after the key-
word constraints in USE specifications. Any number of invariants may be defined
in a class context. In addition, we may define preconditions and postconditions
to specify the conditions over operations. We can add names for every constraint
in the constraint definition segment.

2.2 Spec#

We chose Spec# to develop the code at the implementation level. The reason
behind the Spec# selection is that provides support for encoding ownership
relationship to tackle the aliasing [6]. Spec# has run time verifier to verify the
specification constraints over the C# code. Spec#’s specifications are not just
comments, but those are executable [13].

Dynamic ownership in Spec#: Formal specifications are mathematically
based techniques which are used to ensure the correctness of software by pre-
cisely expressing a program’s properties. These are not executable specifications.
Specification properties are typically simple safety properties, non functional
properties or full behaviour properties. Nowadays, number of tools and lan-
guages has been introduced for formal specifications e.g., Key system for JML
verification [1].

Dynamic ownership systems enable ownership transfer in the expose blocks
during program execution. Dynamic ownership has been implemented in the

Spec# language [5]. This dynamic ownership is supported by three major con-
structs: Object topology, ownership types and representation exposure. In Spec#,
an object can refer to other objects for the internal definition of its data. The
[Rep] keyword is used to annotate such attributes. Therefore the this object
is declared as the owner of Rep referenced objects. Generally an invariant is a
constraint of a type over an element of the model, i.e., expressed by the OCL
expression [10]. Object invariant is a constraint of the object during its instance.
Object invariants must be true all the time for an object instance. During execu-
tion of a Spec# program, it is necessary to break some object invariants for the
purpose of verification [12]. Therefore Spec# introduces a block statement called
expose block. Invariants are temporarily broken by exposing an object using the
expose construct. The object invariants may be broken within an expose block
[9] i.e., the object invariant cannot be proved as a logically true inside the expose
block. In the expose block, an owner is mutable. Therefore the current owner is
the owner of the referenced object. At the end of an expose block, the object
invariant must hold. This ownership transfer supports the program verification
in the dynamic ownership system.

2.3 Properties of Ownership Types

In this paper, ownership types representation mainly specified in three anno-
tations: Rep, Peer & Additive. Same ownership objects are represented ‘peers’
or ‘siblings’ [2]. Some objects are referred as reference of an owner object, are
called ‘reference’ objects. Additive is used in specification inheritance. These are
explained in detail as follows.

Rep: ‘Rep’ [14] expresses that a referenced object is owned by current object,
that is, if a class context has a ‘Rep’ reference then ‘this’ objects is the owner of
referred object. This enables one owner which can access other objects to modify
during the verification. If the ‘Rep’ field refers number of objects as array, then
each element in that array can hold by this owner.

Peer: ‘Peer’ expresses that the owner is same [14] for current object and
reference object. The current object and the referenced object share the same
owner and are therefore in the same ownership context or same aggregate [5].
These objects have equal relationships. That means, the class has a reflexive
association of it as ‘Peer’. If ‘Peer’ field refers number of objects then those
elements express as the array of the peer objects.

Additive: Specification contracts can be inherited in Spec#. Spec# supports
specification inheritance by strengthening postconditions and class invariants
and weakening preconditions. Therefore we can add additional postconditions
and invariants which specify properties of superclass attributes. If an attribute
can be overridden in a subclass, this must be highlighted in the superclass. Spec#

introduces the [Additive] keyword to highlight the attributes those mention in
the subclass invariants. To access superclass attributes or methods, [Additive]
ownership is used. An additive expose is needed in method inheritance.

3 Our approach

In this paper, we introduce an approach, called U2S#, which allows the spec-
ification of references to other objects and expose blocks during the software
design phase. Then U2S# helps to generate the code skeleton with ownership
details and expose blocks inserted in the correct place in the implementation
code. An object’s property is accessed by other objects mainly during constraint
specification. The objective of this paper is to highlight references to other object
during the specification phase and transform the corresponding ownership type
constraints to the implementation. This section describes the modifications that
we provide in the USE specification language and the support which we add to
the USE tool to allow addition of ownership details.

3.1 Adding Ownership type constraints to USE

U2S# adds the ownership annotations of Spec# to the given UML/OCL model
based provided by the USE tool. To add ownership type constraints in the USE
tool, we introduce a new grammar for the definitions of Attribute, Operation
and Association. The modified syntax is shown in next sections.

Association Syntax: An association is an inter relationship between two
classes or models in a UML diagram. It shows the logical or physical combi-
nations or links of instances of those models in some formal manner [11]. An
association relationship in UML describes the role names between the classi-
fiers and number of objects acts as role. The main challenge here is the addition
of ownership type constraints to UML. Within a current context, a graphical dot
in the association link is used to denote the ownership. Standard UML notation
does not allow the specification of explicit ownership. But in this paper, we in-
troduce the ownership type notion which allows accessing the object of another
class.

In this paper, ownership types are specified using two keywords in the asso-
ciation: [Peer] and [Rep]. This corresponds to the Spec# syntax for the same.
In our USE specifications, association ends have the provision to specify these
ownership type constraints. Normally association relations are represented in
the USE tool by naming association names, classes and role names. This pa-
per introduces a new keyword ownership followed by ownershiptype to name
ownership type constraints as shown in the following syntax.

Syntax: <associationdefinition> ::= (association|composition|aggregation)

<associationname> between

<classname>[<multiplicity>][role<rolename>][ordered][--ownership<ownershiptype>]

<classname>[<multiplicity>][role<rolename>][ordered][--ownership<ownershiptype>]

end
<multiplicity> :== (*| <digit> { <digit> }[..(*| <digit>{<digit>})])
{,(*| <digit> {<digit>}[..(*| <digit> { <digit>}])}
<associationname> :== <name>

<rolename>:==<name>

<ownershiptype>:==(Rep|Peer)

Attribute and Method Syntax: Like association definition, this paper in-
troduces the [Additive] keyword in the definition of attributes and operations
as comments. Each attribute is followed by --[Additive] if it is an additive

element which will be inherited by its subclasses. In the subclasses, the inher-
ited operations are represented by the [Additive] keyword. If attributes and
methods are not additive, then they are represented as empty followed by a
semicolon.

Syntax: <classdefinition> ::=[abstract]class<classname>[< <classname>

{,<classname>}]
[attributes { <attributename>:<type>--[Additive]}]
[operations: {<operationdeclaration>--[Additive] . . . }]
end
<classname>::=<name>

<attributename>::=<name>

In our U2S# approach, the ownership annotations can be specified in the
USE specifications as comments, based on the modified grammar. Therefore
we can generates the Spec# code skeleton. When generating the Spec# code
skeleton, U2S# takes the ownership types: [Rep], [Peer] and [Additive] as
input. It also takes association relation’s multiplicities into account.

4 Adding Ownership type constraints to UML/OCL and
Mapping to Spec#

This section explains the addition of ownership type constraints according to the
modified grammar of USE specifications as discussed in section 3. In a U2S# im-
plementation, a given UML model is transformed into its corresponding Spec#
code skeleton. U2S# adds the correct ownership types to the UML model ac-
cording to the client’s requirements for the relationship between classes and at-
tributes. This is achieved via annotations to the USE specifications. U2S# deals
with three major ownership types: [Peer], [Rep] and [Additive]. Therefore
U2S# adds these ownership type annotations as comments.

4.1 Ownership addition with Association Ends

As discussed in section 3.1, an association relation between the classes plays
an important role in determining ownership type. Ownership types are referred
by the keywords [Peer], [Rep] and [Additive]. In the USE specifications,
association ends normally record the property details such as association names,
classes involved and role names. In addition, we add the ownership type with
association end as an example in Table 1.

Representation in USE U2S# approach

association holds between

Customer[1] role owner

CustomerCard [0..*] role cards

end

association holds between

Customer[1] role owner--ownership [Rep]

CustomerCard [0..*] role cards--ownership [Peer]

end

Table 1. Ownership Representation in Association Ends

In U2S# approach, it adds the ownership type followed by each role name
as comments. The corresponding representation with ownership types is shown
in the right side of Table 1. Here, the role name owner is the Rep owned object
of class CustomerCard. In same manner, the role name cards is the Peer owned
object of class Customer in CustomerCard. As discussed in section 2.2, it is not
necessary that object invariants evaluate to be true through out on execution.
Therefore, Spec# supports the introduction of a frame called expose block. Ob-
ject invariants do not need to evaluate to true within an expose block [9]. At
the end of each expose block, the invariant must hold. Rep objects indicate that
these are two owners. Therefore an expose block must be present in the imple-
mentation. But Peer object indicates that the object belongs to same owner.
Therefore it does not need an expose block in its implementation.

4.2 Ownership addition on Inheritance

We add the [Additive] annotation for each class attributes and operations as
comments in USE to specify these additive properties. Each attribute is fol-
lowed by --[Additive] if it is an additive elements which will be inherited by
subclasses. In subclasses also, the inherited operations are represented by the
[Additive] keyword to denote ownership. If attributes and operations are not
additive then they are left as empty as in the example in Table 2.

This code has two classes: Customer and CustomerSon. The operation addMoney

is overridden in the subclass and have access to its superclass operation and at-
tributes. Therefore they mentioned as [Additive].

Representation in USE U2S# approach
class Customer

attributes

name : String;

amount : Integer;

operations

addMoney():Integer;

end

class CustomerSon < Customer

attributes

operations

addMoney():Integer;

end

class Customer

attributes

name : String;

amount : Integer;--[Additive]

operations

addMoney():Integer;--[Additive]

end

class CustomerSon < Customer

attributes

operations

addMoney():Integer; --[Additive]

end

Table 2. Ownership Representation in Inheritance

5 Conclusion

This paper has presented an approach, named U2S#, for generating the Spec#
code skeletons by adding ownership type constraints to UML/OCL at the design
phase of software development.

5.1 Properties supported by U2S#

U2S# supports the following properties:
1. Ownership type constraints can be added during the software design phase
2. Additive constraints can be added during the software design phase
3. It helps to generate the Spec# code skeletons with correct ownership type
constraints for actual development in the implementation phase.
4. The Spec# code skeletons will have the expose and additive expose blocks in
the right place to avoid ownership exposure errors.

5.2 Results

U2S# allows users to specify the ownership type constraints at the software
design phase. It avoids complicating code development i.e., tracking the own-
ership type constraints in the code implementation phase. U2S# ensures the
consistency of ownership types during code generation. It helps to transform
correct ownership type in the target language according to its specification at
the design phase. U2S# ensures the consistency of program elements during
code generation.

References

1. Bernhard Beckert, Reiner Hähnle, Martin Hentschel, Peter H. Schmitt: Formal Ver-
ification with KeY: A Tutorial. In Volume 10001 of Lecture Notes in Computer
Science Programming and Software Engineering, Springer (2017).

2. Dave Clarke, Johan Östlund, Tobias Wrigstad: Ownership Types: A Survey. In
Aliasing in Object Oriented Programming. LNCS: Springer, 15-58 (2013).

3. Frank Hilken, Philipp Niemann, Martin Gogolla and Robert Wille: From UML/OCL
to Base Models: Transformation Concepts for Generic Validation and Verification.
In Theory and Practice of Model Transformations - 8th International Conference
ICMT, Held as Part of STAF 2015, L’Aquila, Italy, July 20-21, (2015).

4. Hiroaki Shimba, Kentrao Hanada, Kozo Okano and Shinji Kusumoto: Bidirectional
Translation between OCL and JML for Round-Trip Engineering. In Software Engi-
neering Conference (APSEC, 2013) 20th Asia-Pacific: IEEE 49 - 54 (2013).

5. K. Rustan M. Leino, Peter Müller: Using the Spec# language, methodology and
tools to write bug-free programs. In LASER Summer School 2007/2008: Springer-
Verlag, (2008).

6. K. Rustan M. Leino and Peter Müller: Object Invariants in Dynamic Contexts. In
ECOOP Object-Oriented Programming, 491-515 (2004).

7. L. Carnevali, D. D’Amico, L. Ridi, E. Vicario: Automatic Code Generation from
Real-Time Systems Specifications. In International Symposium on Rapid System
Prototyping, IEEE/IFIP (2009).

8. Martin Gogolla, Fabian Büttner, Mark Richters: USE: A UML-based specification
environment for validating UML and OCL. In Science of Computer Programming
(2007): Elseveir, 27 – 34 (2007).

9. Mike Barnett, Rustan Leino, Wolfram Schulte: The Spec# programming system:
An overview. In CASSIS 2004: Springer (2004).

10. OMG: Object Constraint Language(OCL: Version 2.3.1. Object Management
Group, http://www.omg.org/spec/OCL/2.3.1 (2012).

11. OMG: Unified Modeling Language(UML: Version 2.4.1. Object Management
Group, http://www.omg.org/spec/UML/2.4.1 (2011).

12. Peter Müller: Modular Specification and Verification of Object-Oriented programs.
PhD thesis, Fern Universität Hagen, Germany (2001).

13. Rosemary Monahan, K. Rustan M. Leino: Program Verification using the Spec#
Programming System. In ECOOP Tutorial (2009).

14. Werner Dietl, Sophia Drossopoulou, Peter Müller: Separating ownership topology
and encapsulation with Generic Universe Types. In ACM Transactions on Program-
ming Languages and Systems: ACM:20:1–20:62, (2011).

