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Abstract 

In this paper, a new method, called the Lumped-component Circuit Method (LCM), is developed for one- and 

two-dimensional convection-reaction-diffusion with low to moderate Peclet numbers, tested for modelling both 

steady-state and transient problems, and compared to standard FVM schemes. The method has been developed 

principally for solving equations with piecewise-constant coefficients using nodes that are not positioned to 

correspond to the coefficient discontinuities. In such situations, the FVM solutions do not converge consistently 

as the node spacing is decreased, but LCM solutions do. In general, the LCM method is more accurate than the 

FVM schemes tested, and, while the computational cost of LCM is higher, results suggest that it can be more 

efficient. Like the Transmission Line Method (TLM), it is an indirect scheme in which the problem to be solved 

is first represented by an analogous transmission line (TL). Unlike with TLM, however, the TL is then modelled 

using a lumped-component circuit, the voltages at nodes within that circuit being calculated. 

 

Introduction 

The development of efficient, reliable and accurate numerical methods for the solution of convection-reaction-

diffusion equations (CRDEs) is ongoing, especially for certain types of problems, because they occur in the 

modelling of a very broad range of processes. They describe phenomena in chemistry [1], biology [2], 

semiconductor physics [3-4], ecology [5], finance [6-7], computational fluid dynamics [8-9] and other fields. A 

broad range of numerical methods already exist that can be used to estimate solutions of CRDEs [10-11], with 

significant variation in accuracy, consistency and computational cost [12]. 

The CRDE, which accounts for the three processes of convection, reaction and diffusion, can be derived using 

conservation principles from the Reynolds transport equation [12-13]. The concentration of the diffusant, ϕ, is 

governed by 

    D K S
t


     


v


    (1.1) 

where the coefficients of diffusivity, D, convection, v, reaction, K, and source term, S, may all depend on space, 

time and/or ϕ. Only linear problems with piecewise-constant coefficients are considered here. Such problems 

occur, for example, where the problem domain includes two or more physical media through which the diffusant 

moves. An example is the purification and separation of organic compounds by passing them through different 

media [14-15]. Other examples include the modelling of semiconductor drift-diffusion [4], injection-moulding 

[16] and multiphase fluid flow [8, 15, 17]. 

The Lumped-component Circuit Method (LCM) solves CRDEs with convection terms expressed in non-

conservative form, i.e. of the form 

  D K S
t


      


v


     (1.2) 

but could be used to solve CRDEs with conservative convection terms (as in Eq. (1.1)), for example, in one 

dimension, by adding dv/dx to the reaction coefficient K. 

The method is based on the fact that the equation for the voltage along a length of transmission line (TL), i.e. a 

pair of parallel conductors, can have the same form as a CRDE. A series of connected TL sections can act as an 

analogue for a one-dimensional convection-reaction-diffusion problem with piecewise-constant coefficients.  

LCM is very similar to the transmission line method (TLM) in that it seeks a solution for the CRDE by solving 

the voltage along a transmission line whose equation is analogous to the CRDE [18], however, unlike in TLM, 
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the transmission line that is modelled has zero inductance and is, itself, modelled using a lumped component 

circuit.  

The method in one dimension 

Consider a one-dimensional problem with distinct homogeneous physical media as represented in Figure 1(a). 

The corresponding CRDE (with non-conservative convection term) is 

 
i i i i

D K v S
t x x x

  


    
    

    
,

( 1)mi m i
x x x


   (1.3) 

where the values of xmi indicate the positions of the interfaces as shown in the diagram. Figure 1(b) represents a 

series of connected transmission line sections, the distributed resistance, capacitance, shunt conductance (i.e. the 

conductance per unit length between the two conductors that form the TL) and source current (i.e. the current 

per unit length from a current source distributed along the TL length) of section i being given by the functions 

Rdi(x), Cdi(x), Gdi(x) and Idi(x), respectively. The ends of the TL sections correspond to the discontinuities in the 

problem being solved. The voltage along such a TL is governed by (see Appendix A) 

 
1 1 1
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,
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

   (1.4) 

Equations (1.3) and (1.4) are equivalent if the TL section properties satisfy 
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i
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C
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i
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I
S

C
  (1.5) 

Combining two of these conditions gives 

 
1

i
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which, when solved, gives 

  1
1 / exp

di i mi iiC c x x v D


    , ( 1)mi m ix x x    

where ci-1 = 1/Cd(xmi), i.e. one over the distributed capacitance at the start of TL section i. From Eq. (1.5), the 

other distributed properties must also vary exponentially over space. A TL section with such properties is 

referred to here as an “exponential TL section”. 

Now, in convection-reaction-diffusion with a non-conservative convection term, the flux due to diffusion must 

be the same on either side of a discontinuity (as opposed to the flux due to the combination of diffusion and 

convection which must be conserved if the CRDE has a conservative convection term) [19]. The diffusive flux 

is given by Fick’s Equation and so, for example, at x = xm2, 

 
1 2

xl xr

D D
x x

  


 
 

where xl indicates the point just to the left of x = xm2 and xr indicates the point just to the right. Similarly, for the 

analogous transmission line at that point, the current to the left of the discontinuity must equal the current to the 

right. From Eq. (A.3) that gives 

 
   1 2 2 2

1 1

d m d mxl xr

V V

x xR x R x

 


 
 

Since, the derivatives of must equal the derivatives of V, the TL can only be an exact analogue of the 

convection-reaction-diffusion problem if 

 
 

 
2 2 1

1 2 2

d m

d m

R x D

R x D
  

Since, at any point, Rdi(x)Cdi(x) = 1/Di, it is clear that this requires that Cd2(xm2) = Cd1(xm2 ). The same is true for 

all other discontinuities (i.e. the value of the distributed capacitance of the transmission line must be continuous 
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along its length). This allows ci (the value of one over the distributed capacitance at the start of exponential TL 

section i) to be written in terms of ci−1 

   1 1
exp

i i mi i im i
c c x x v D

 

  
 

 (1.6) 

where c1 can be any non-zero value. 

If the distributed properties of the TL sections in Figure 1(b) satisfy the equations above, then the TL is an exact 

analogue of the problem represented in Figure 1(a). The next step is to position nodes and then model the 

lengths of transmission line between adjacent nodes using lumped-component circuit elements (LCEs). For an 

exact model, each LCE must behave in the same way as the equivalent length of TL, but only in terms of the 

currents and voltages at either end (since results are only calculated at the nodes). A lumped-component circuit 

cannot, with a finite number of components, model a length of TL exactly in the time-domain. A simple LCE 

can, however, model a length of TL exactly under steady-state conditions. As shown below, each LCE can then 

be adjusted so that it can approximate a length of TL under transient conditions. 

The positioning of the nodes splits the TL into exponential TL segments as shown in Figure 1(c). The 

numbering of these segments is indicated in the diagram, as is the notation for the length of a segment (e.g. l4,3 is 

the length of the third segment, counting from the left, between nodes 4 and 5). The I/O relationship (i.e. the 

relationship between the output, or right-hand end, current and voltage and the input, or left-hand end, current 

and voltage) for each exponential TL segment can be found. From those, the I/O relationships for the 

“compound sections” between each pair of adjacent nodes, as indicated in Figure 1(d), can be calculated. Once 

they are known, equivalent LCEs (as represented in Figure 1(e)) can be found. These can exactly model the TL, 

and hence the CRDE, under steady-state conditions. For transient modelling, the capacitance of these circuit 

elements must be calculated so that they approximate the TL compound sections. Once boundary conditions are 

implemented, it is then straightforward to calculate the voltages at the nodes (i.e. the approximation of the 

solution of the original problem) in the lumped-component circuit over time. 

As mentioned above, the first step in deriving the equations for the method is to find the relationship between 

the inputs and the outputs for a general TL segment numbered n,j under steady-state conditions. As shown in 

Appendix B, it is 

 
| , | ,

| , | ,
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   
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      
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A b  (1.7) 

where the TL “I/O matrices” are 
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b  (1.8) 

where cn,j is the value if 1/Cdn,j at the left-hand end of the segment,  , , , ,
exp 2

n j n j n j n j
v D l  , 

2

, , ,,
4

n j n j n jn j
v K D   ,  , , , ,

sinh 2
n j n j n j n j

D l  ,  , , , ,
cosh 2

n j n j n j n j
D l  , and Dn,j, vn,j, Kn,j and Sn,j are 

the problem coefficients corresponding to that segment. Equivalent equations are given in Appendix C for 

situations where Kn,j is zero, or both vn,j and Kn,j are zero. 

Eq. (1.7) is for a single segment in a compound section. A similar relationship can be found for a compound 

section with multiple segments. To understand how that is done, first consider compound section 2 in Figure 

1(d) composed of two segments. Eq. (1.7) gives 

 
o|2,1 i|2,12,1 2,1

TL TL
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 

   
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A b ,  
o|2,2 i|2,22,2 2,2

TL TL

o|2,2 i|2,2

V V

I I
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   

A b  (1.9) 

Since Vo|2,1 = Vi|2,2 and Io|2,1 = Ii|2,2, these can be combined to give the I/O relationship for the compound section 

 
TL TL

o|2,2 2,2 2,1

o|2,2

i|2,1 2,2 2,1 2,2

TL TL TL
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V V
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  
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The I/O relationship for a more general compound section with Nn segments between nodes n and n + 1 is 

 
1 CS. CS.

1

n+ nn n

n+ n

V V

I I
 

   
   
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TL TL
A b  (1.11) 

where Vn and In are the voltage and current at node n and 

 
=

1
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TL TL

j N
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n
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j
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 
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 
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The next step is to find an LCE to link nodes n and n+1 that has an equivalent steady-state I/O relationship. 

Such a circuit is shown in Figure 2. The net currents entering nodes n and n+1 must both be zero giving 

 
1
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0
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I
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n
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R


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and 
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Solving these for Vn+1 and In+1 gives 
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where the LCE I/O matrices are 
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Equations (1.11) and (1.15) both have the same form. In order for the lumped-component circuit element 

connecting nodes n and n+1 to be equivalent to the corresponding compound TL section, the component 

parameters must be such that
CS.

LC TL

n n
A A  and 

CS.

LC TL

n n
b b , giving 
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Once these values are calculated, and boundary conditions implemented, the full steady-state lumped-

component circuit (as represented in Figure 1(e)) can be modelled in order to calculate the node voltages (i.e. 

the solution of the CRDE at those points). Only Dirichlet boundaries are implemented here in which the 

voltages at the boundary nodes are simply fixed at the desired values. 

As mentioned above, for transient modelling, capacitance must be added to the LCEs. This is done by adding 

two capacitors to each LCE. Two such LCEs are shown in Figure 3, and the values of the capacitances are given 

below. The next step is to determine the node voltage at any node n in terms of the voltages at the surrounding 

nodes. 

The net current entering node n is zero, and so 

    
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-1 -1 -1

n

n n n n
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 (1.17) 

or, after rearranging, 
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 (1.18) 
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where
1n n n

P R R


 . Note that the coefficients in Eq. (1.18) are all independent of c1, i.e. independent of the TL 

distributed capacitance at x = 0 which, as stated above, can be chosen arbitrarily. 

The capacitance values for the LCEs cannot be determined in the same way as the other circuit parameters 

(because an LCE cannot be equivalent to a length of TL under transient conditions). An approximation is 

required. 

Consider how the distributed source current, Id(x), within a compound TL section is modelled by two lumped 

current sources at either end of the corresponding LCE. It varies in a piecewise-exponential fashion, as does the 

distributed capacitance, but also depends on S(x), the source term being modelled. Some of the TL distributed 

source current flows to the right-hand end of the compound section and some flows to the left-hand end. How 

much reaches each end depends on the distributed resistance and shunt conductance between the nodes. The 

same quantities of current must be supplied by the lumped current sources in the LCE (i.e. Il,n and Ir,n for LCE n) 

in order for it to model the TL section accurately. The relationship between Il,n and Ir,n and Id(x), which depends 

on S(x), v(x), D(x), etc., is derived above.  

Now consider the TL distributed capacitance, Cd(x). For the LCE numbered n, the currents flowing into the two 

lumped capacitors are Cl,ndVn/dt and Cr,ndVn+1/dt. These must represent the current flowing from these points 

into the corresponding compound TL section because of the distributed capacitance in that section. The 

distributed capacitance can be viewed as a distributed current sink, similar to the distributed current source, but 

proportional to dV/dt. If it is assumed that dV/dt is a constant between nodes n and n+1 (and so dVn/dt = dVn+1/dt 

in the corresponding LCE) then the relationship between Cl,n and Cr,n and Cd(x) over the length of the compound 

TL section is similar to that between Il,n and Ir,n and Id(x). In practice that will not be the case, and so each LCE 

can only approximate the equivalent compound section. 

Given this assumption, the two lumped capacitances, for LCE n, can be calculated as 

 

*CS

TL 1,1

*CS

TL 1,2

1

l
C




b

A
,  

*CS

*CS TL 1,1

TL 2,1 *CS

TL 1,2

*CS

TL 2,2

r
C





b
b

A

A
 (1.19) 

where 
*CS

TL 2,2
A and 

*CS

TL
b are calculated in the same way as 

CS

TL 2,2
A  and 

CS

TL
b  from the individual TL I/O matrices 

(i.e. using Eq.(1.12)) but with 
n

S replaced by unity in each 
n

TL
b . 

Testing has shown that this approximation can produce highly accurate results. It is clear that as the node 

spacing approaches zero, errors due to this assumption also approach zero. 

To summarise, the modelling process starts by placing nodes along the domain. The length of each segment, and 

the number of segments between each node, are determined by the positions of the nodes and the discontinuities, 

and the values of cn,j are calculated at the discontinuities and nodes. The I/O matrices, ATL and bTL, are then 

calculated for each TL segment using Eq. (1.8). From those, 
CS.

TL

n
A  and 

CS.

TL

n
b  (and 

*CS

TL
b for a time-domain model) 

are calculated for each compound section using Eq. (1.12). The lumped-component circuit parameters are then 

calculated, including, for a time-domain model, the lumped capacitances, using Equations (1.16) and (1.19). 

Once the boundary conditions are correctly implemented, Eq. (1.18) can be solved using any standard implicit 

or explicit time-stepping scheme. 

This method produces exact steady-state solutions, no matter how many nodes are used and where they are 

placed. Errors occur in time-domain solutions due to the fact that the LCEs do not exactly model the equivalent 

compound TL sections when the voltage varies over space and time, due to the time-stepping scheme used, and 

due to the initial conditions being only defined at the nodes. 

As mentioned above, the coefficients in Eq. (1.18) are all independent of c1 (i.e. one over the distributed 

capacitance at node 1). The equations for the method can be reformulated so that they are independent of values 

of dC , and are, instead, written in terms of 1d dnC C  . That ratio is dependent on the convection velocity, the 

diffusion coefficient, and the distance between nodes n−1 and n. Those equations are not presented here. 

The method in two dimensions 

The equation for the voltage on a two-dimensional network of TLs 
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is derived in Appendix D, where r = y/x (i.e. the aspect ratio of the element used in the derivation) and Cd = 

Cdx = Cdyr, where Cdx, Rdx, etc., are the properties of the horizontal lines (i.e. the ones aligned in the x-direction), 

and Cdy, Rdy, etc., are the properties of the vertical lines (i.e. the ones aligned in the y-direction). It is clear that 

this is equivalent to the 2D CRDE with non-conservative convection terms 
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if 
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and 
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Such a network, with the horizontal and vertical lines connected at the nodes, can be used to model convection-

reaction-diffusion in two-dimensions. Along a horizontal line, Gdy and Idy both equal zero and Cd = Cdx, and so 

for such a line, these formulas can be rearranged giving 

 
1

2
x

dx dx

D
R C

 ,  
1

2
2

x

dx

dx x

v
C

x C D

 
 

  
, 

2

dx

dx

G
K

C
 , 

2

dx

dx

I
S

C
  

Similarly, along a vertical line, Gdx and Idx both equal zero, and Cd = Cdyr, and so 

 
1

2
y

dy dy

D
R C

 ,  
1

2
2

y

dy

dy y

v
C

y C D

 
 

   

, 
2

dy

dy

G
K

C
 , 

2

dy

dy

I
S

C
  

These specify what the distributed properties of the vertical and horizontal lines must be (and how they must 

vary over space) so that the equation for the voltage in the network is equivalent to Equation (1.21). These 

relationships are similar to those derived above for 1D LCM, with one exception (the distributed capacitance on 

the vertical and horizontal lines must be half what it would be if those lines each represented individual 1D 

problems). 

These equations dictate how the distributed capacitance must vary along each line in order to correctly model 

the required convection. Figure 4 represents part of a 2D network and indicates the notation used here; e.g., 

, ,dx n mC  is the distributed capacitance in the horizontal line at node n,m, and , ,dy n mC  is the distributed capacitance 

in the vertical line at that node. The values of the ratios , , , 1,dx n m dx n mC C   and , , , , 1dy n m dy n mC C  depend on the local 

values of the convection velocity, the diffusion coefficient and the distance between the nodes (as in one 

dimension). For the voltage on the network to satisfy Equation (1.20), an additional requirement 

 , , , ,dx n m dy n mC C r  

must be satisfied for each node, where r, as shown below, depends on the aspect ratio of the element 

corresponding to the node. 

Consider a model of a problem with diffusion coefficient and convection velocity values and mesh size such that 

the distributed capacitance ratios must be , , , 1, 2dx n m dx n mC C    and , , , , 1 3dy n m dy n mC C   for all nodes. The 

elements are square and so , ,dx n mC  must equal , ,dy n mC  at each node (i.e. r = 1). Figure 5(a) shows twelve nodes in 

the model with corresponding distributed capacitance values that satisfy all three of these requirements. 



7 

 

Now consider a model for a similar problem requiring , , , , 1 3dy n m dy n mC C   , and , , , ,dx n m dy n mC C  as before. The 

value of xv  in this example, however, varies with y requiring , ,2 , 1,2 4dx n dx nC C    and , , , 1, 2dx n m dx n mC C    

elsewhere. Figure 5(b) shows values of the distributed capacitances that have the correct ratios for this problem 

but that do not satisfy , , , ,dx n m dy n mC C r  for all nodes. It is clear that no set of values can satisfy all three 

requirements in this case, and the same is true for 2D problems in general. 

The solution is to consider each element individually instead of trying to create a network of lines that satisfy all 

the criteria required to model the given problem. For example, Figure 5(c) shows values of the distributed 

capacitances that satisfy all criteria for this sample problem for the element corresponding to node 2,2, while 

Figure 5(d) shows values that satisfy all criteria for the element corresponding to node 3,2. For each element, 

then, horizontal and vertical TLs can be found that model the corresponding section of the problem domain. 

Equivalent lumped-component circuit elements can then be found to model each section of both TLs as in the 

1D scheme. The distributed capacitances of the lines (and, therefore, the lumped capacitance values in the 

equivalent LCEs) must be half what they would be if the lines represented one-dimensional models. 

The value of r at any node is the ratio of the distributed capacitances of the two lines at that point. It is also the 

aspect ratio of the element used in deriving Equation (1.20) and, for a given node, must equal the aspect ratio of 

the element corresponding to that node. For example, for the node shown in Figure 6, the ratio must be 

 
, , 1 , ,

,

, 1, , ,

y n m y n m

n m

x n m x n m

h h
r

h h









 (1.24) 

Once the LCE parameters are known, the TL network can be modelled. Consider the four lumped-component 

circuit elements shown in Figure 7. The sum of the currents at node n,m is zero, and so 
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  

 


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  



  
     




      

    
    

     

 
 
 

, , , 1 , ,n m ry n m ly n mI I 

 (1.25) 

or, by rearranging, 

 
   

   ,
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y n m xy n m n m n m n m n m G n m n m I n m

V
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t
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 

 


    



    

 (1.26) 

where the 2D LCM coefficients are 
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(1.27) 

    , , , 1, , 1, , , , 1, , , 1 , ,C n m x n m rx n m lx n m x n m ry n m ly n mR R C C R C C        (1.28) 

    , , , 1, , 1, , , , 1, , , 1 , ,G n m x n m rx n m lx n m x n m ry n m ly n mR R G G R G G        (1.29) 

    , , , 1, , 1, , , , 1, , , 1 , ,I n m x n m rx n m lx n m x n m ry n m ly n mR R I I R I I        (1.30) 

When these are calculated, Equation (1.26) can be solved over time at each node in order to solve the equivalent 

2D convection-reaction-diffusion problem. 

Consider the section of horizontal transmission line between nodes 2,2 and 3,2 in both Figure 5(c) and Figure 

5(d). The equivalent LCE parameters for that section must first be calculated in order to calculate the 2D LCM 

coefficients (using Equations (1.27) to (1.30)) for both nodes 2,2 and 3,2. It is clear from Figure 5(c) and Figure 

5(d), however, that the distributed capacitance of that section of line is different when considering the two 

nodes. That does not, however, mean that those LCE parameters must be calculated twice. Consider, for 

example, a situation in which they are first calculated using the values of the distributed capacitance given in 

Figure 5(c) (following the steps outlined above for one dimensional models) and then used in the calculation of 
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the 2D LCM coefficients for node 2,2. When switching to consider node 3,2, given the values in Figure 5(d), the 

distributed capacitance of the section is reduced by a factor of 4. The LCE parameters already calculated can 

simply be scaled by that factor before being used in the calculation of the 2D LCM coefficients for node 3,2. 

The capacitance, shunt conductance and source current values must simply be reduced by a factor of 4 in this 

case, while the resistance values must be increased by the same factor. This means that the requirement to 

consider one node at a time does not significantly increase the computational cost of the scheme. 

Tests 

Four tests are presented here for the purposes of validating the method and comparing results obtained with 

those calculated using the Finite Volume Method (FVM). FVM has been chosen for comparison because the 

FVM and LCM equations are similar in form, FVM is well-established for solving convection-reaction-

diffusion equations, and FVM is widely used for problems with discontinuous coefficients [20-21]. In FVM, 

when modelling problems with piecewise-constant coefficients, nodes are generally placed so that either volume 

faces or nodes correspond to the points of discontinuity [18-21]. In one test here, however, the FVM models are 

implemented with node and volume positions that do not necessarily correspond to the discontinuities (as shown 

in Figure 8). The FVM model coefficients at boundary faces and across volumes are calculated using harmonic 

mean approximations [12] (i.e. an average value of the coefficient across a volume is used as an estimate of the 

coefficient at the relevant midpoint). 

Test 1 involves a one-dimensional transient convection-reaction-diffusion problem with piecewise-constant 

coefficients. The problem geometry and coefficients are represented in Figure 8. The boundary conditions are 

V(0) = 25 and V(1) = 49, and the initial conditions, except at the boundaries, are V(x, 0) = 25. Standard first 

order explicit (FTCS) time-stepping schemes are used in both LCM and FVM models with a time step length of 

Δt = 1×10-6. Results at t = 0.1 from models with 17 evenly spaced nodes are shown in Figure 9(a). The variation 

in the value of V(0.5, 0.1) with node spacing, h, is plotted in Figure 9(b). The same data is included in Table 1 

along with values of the estimated order of convergence (EOC) [22] calculated using 

 
    2 2 4

ln

ln 2

h h h h
V V V V

EOC
 

  

While the LCM solutions appear to converge consistently in a second-order fashion as h approaches zero, the 

same is not true for the FVM solutions. That is not surprising since the nodes/elements do not correspond to the 

problem coefficient discontinuities. The LCM solutions are also significantly more accurate than the equivalent 

FVM solutions. 

The approximate error in the FVM and LCM solutions (i.e. the differences between the solution values and 

equivalent values calculated using a very fine grid and short time step) at x = 0.5, calculated with N = 17, are 

plotted over time in Figure 10. The LCM error approaches zero, as expected, as the solution approaches a steady 

state. It is clear that the LCM solution at that point is significantly more accurate than the FVM solution over 

most of the solution time. 

Test 2 involves a two-dimensional problem solved using an uneven grid, the grid and the problem geometry and 

coefficients being indicated in Figure 11(a). The grid spacing and numbers of nodes (an N×N grid) are such that 

there are always nodes along the line x = 0.5 (i.e. along the discontinuity), the horizontal node spacing to the 

right of x = 0.5 is always half that to the left, and the vertical node spacing below y = 0.5 is always half that 

above. 

In two-dimensional LCM, each TL is treated as a one-dimensional model, but it must represent a two-

dimensional element of the problem being solved. Coefficient values are required at every point along each TL 

in order to calculate the equivalent LCE parameters. Figure 12 illustrates what coefficient values have been used 

in the tests presented here. It shows a section of three vertical TLs with the middle one highlighted. The dashed 

lines indicate half way between adjacent TLs. The diffusion, convection, reaction and source term coefficients 

modelled by the highlighted line at the point indicated are simply the averages of those coefficients over the 

grey line indicated in the diagram. That allows the model, in a simple way, to account for variations in the 

problem coefficients between TLs. 

The central difference scheme is used for approximating the convection term in the FVM models, and the 

diffusion coefficient at each volume boundary face is calculated as an average of the diffusion coefficients 

between the two adjacent nodes. 

The initial and boundary conditions for the model are V(x, y; 0) = 0, V(0, y; t) = 0, V(x, 0; t) = 0, V(1, y; t) = 1 

and V(x, 1; t) = 1. Time stepping is implemented using the same technique as in the previous test with a time-
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step length of Δt = 1×10−6. The variation in the LCM and FVM estimates of V(0.5, 0.5; 0.02) as the node 

spacing is repeatedly halved are plotted in Figure 11(b) and presented in Table 2 along with estimates of the 

order of the errors. This, and other similar tests not presented here, suggests that LCM solutions converge in a 

consistent second-order manner while the equivalent FVM solutions do not. The LCM solutions are, as in one 

dimension, more accurate than those obtained using the FVM scheme, especially as the solution approaches a 

steady state. 

In Test 2, the problem coefficients are constant along each line section joining adjacent nodes (i.e. there is only 

one exponential TL segment in each compound section). Test 3 involves a similar problem but with the single 

vertical discontinuity located at x = 0.3, as shown in Figure 13. The problem is modelled using an even square 

grid. For the node spacings used, no nodes correspond to the discontinuity. Some horizontal compound sections, 

therefore, comprise two exponential TL segments. 

The initial and boundary conditions, and the time-step used, are the same as for Test 2. LCM solution values for 

different node spacings are listed in Table 3 along with estimates of the order of the errors. The method again 

appears to converge in a consistent second-order manner. Further investigation is required to explore whether 

alternative averaging techniques could improve the accuracy and convergence. 

These tests are for models with relatively low element Peclet numbers, defined as 

:
vh

Pe
D

  

In practice, in many problems of interest, v >> D. Many numerical schemes cannot produce accurate results 

when element Peclet numbers are large [23-24]. If Pe values are large, then implementation of the LCM 

scheme, as presented here, may be problematic, because the values of ic calculated using Equation (1.6) can 

exceed floating point overflow limits. It is possible to reformulate the equations for the scheme in terms of 

1i ic c  , but overflow limits can still be exceeded when Pe is very large for any element. These reformulated 

equations are not presented here. 

To examine the performance of the scheme for large element Peclet numbers, consider a one-dimensional model 

with h, v, D and K all constant, and with S = 0. Under such circumstances, Equation (1.18) can be rewritten as 

    1 , 1
n

d n n m u n n n

V
f V V f V V KV

t
 


  


   (1.31) 

where 

 
* *

1 exp exp 1
2 2

d

K
f

Pe Pe Pe Pe

       
       

      

 

 

 
* *

exp exp 1 exp
2 2

d

K
f

Pe Pe Pe Pe
Pe


     

       
   

 

and 

 
2

* 4h v KD
Pe

D


  

It can be shown that, for any given values of K and h, as v/D approaches infinity, fd approaches 0 and fu 

approaches v/h. Therefore, as v/D increases, Equation (1.31)approaches 

 
 1n n n

n

V V V
KV

t
v

h

 


   (1.32) 

This is a standard first-order upwind method for the CRDE with zero diffusion. Therefore, for high element 

Peclet numbers, the LCM scheme produces similar results to this upwind scheme (which is known to exhibit 

significant levels of implicit numerical diffusion [25]). 
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Test 4 illustrates this with a simple one-dimensional problem with 50v  , 20K  , 31 10D   , (0, ) 0V t  , 

(1, ) 0V t  , and ( , ) 0V x t  except at 0x  , solved using a time step of Δt = 1×10−7.. Figure 14 (a) shows 

solutions obtained at 0.01t   with 2001N  (giving 25Pe  ), while Figure 14(b) shows equivalent solutions 

calculated with 81N   (giving 625Pe  ). The solution labelled “Upwind” in Figure 14(b) has been calculated 

using Equation (1.32). It is clear from Figure 14 (b) that the LCM scheme exhibits greater numerical diffusion 

than the FVM scheme. It does not exhibit, however, the spurious oscillations visible in the FVM solution (which 

can be a significant problem in modelling non-linear problems [26]). 

Note that the steady-state solution for 1D LCM is exact no matter what the element Peclet number is. 

Discussion and conclusions 

A new method has been successfully developed for the solution of convection-reaction-diffusion equations with 

piecewise-constant coefficients. The method is similar to TLM in that the CRDE is solved by modelling an 

analogous transmission line (or network of interlinked TLs). Unlike in TLM, however, the TL (or TLs) is then 

modelled as a lumped-component circuit. The resulting equations are similar in form to those for FVM, but, 

unlike with FVM, steady-state 1D LCM solutions are exact. Transient LCM solutions can also be significantly 

more accurate than FVM solutions, especially as they approach a steady-state. The computational cost of LCM 

is higher than the FVM schemes tested here, but results suggest that, for many problems, LCM is more efficient. 

Solutions obtained using the FVM schemes tested do not converge consistently if the nodes are not positioned to 

correspond with the coefficient discontinuities. That is not the case for LCM. A modeler using the scheme could 

potentially, therefore, position nodes so as to minimize errors, or concentrate nodes where the values of the 

solution are of particular interest, without needing to take into account the positions of discontinuities, while 

having the benefits of consistent convergence. 

Analysis of the LCM method in one dimension shows that it approaches a first-order upwind scheme as the 

element Peclet number approaches infinity. The results presented here (for problems with relatively low element 

Peclet numbers) suggest, however, that the spatial discretization error for the method is second order. Further 

work is required to determine analytically the nature of the errors in one and two dimensions. Transient errors 

occur because of differences between sections of transmission line and the lumped-component circuits used to 

model them. This fact may allow novel approaches to be used for error analysis. 

A simple averaging of problem coefficients has been implemented here when using one-dimensional TLs to 

represent areas of a 2D problem. Further work is required to test whether weighted averages could produce more 

accurate results. 

The tests presented here are limited in scope, and comparison is only made with basic FVM schemes. The 

potential value of this method can only be determined by further comparison, both in terms of accuracy, 

qualitative behaviour, and computational cost, with a wider range of methods.   

There appears to be no reason why the method could not be extended to three-dimensions and to allow the 

modelling of a variety of boundary condition types. 
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Appendices 

Appendix A: Derivation of the equation for the voltage along a TL 

Consider a short segment of TL of length x with its properties (i.e. distributed resistance, Rd(x), shunt 

conductance, Gd(x), capacitance, Cd(x) and source current, Id(x), all per unit length and all potentially varying 

along its length) represented by lumped components as shown in Figure 15. The voltage drop across the 

segment is 

 d

V
V x V IR

x
x


    


 
 

 
 (A.1) 

The sum of the currents entering the point at the right-hand side must be zero, and so 
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 (A.2) 

Rearranging Eq. (A.1) gives 
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d
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R x


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
 (A.3) 

and simplifying Eq. (A.1) and dividing across by Cd yields 
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
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
 (A.4) 

Differentiating Eq. (A.4) with respect to x gives 
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 (A.5) 

while differentiating Eq. (A.2) with respect to t results in 
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2d d

I V V
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  
  
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 (A.6) 

Using Equations (A.2), (A.3) and (A.6) to replace terms in Eq. (A.5) gives 
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 (A.7) 

Appendix B: Steady-state I/O relationship for an exponential TL segment 

Under steady-state conditions, Equations (A.2) and (A.4) for a TL simplify to 

 d

dV
IR

dx
    (B.1) 

and 

 d d

dI
G V I

dx
    (B.2) 

Differentiating both with respect to x, and then using Equations (B.1) and (B.2) to replace dI/dx and dV/dx, gives 
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and 
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Replacing Gd, Id and Rd using Eq. (1.5), and simplifying, gives 
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and 
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Equations (B.5) and (B.6) are second-order ordinary differential equations that can be solved exactly giving the 

I/O relationship for an exponential TL segment. Assuming that the input is at x = 0, the output at x = l, setting

 0
i

V V  and  0
i

I I , and, in order to satisfy Equations (B.1) and (B.2), 
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and solving, gives the I/O relationship 
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where 
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and 

 
2

4v KD    (B.10) 

and c is the value of 1/Cd at the TL input end. 

Appendix C: TL I/O relationships when K = 0 

In a situation where the reaction coefficient is zero, Eq. (B.8) simplifies to 
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In a situation where both reaction and convection coefficients are zero, it becomes 
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Appendix D: Derivation of the equation for the voltage in a 2D TL network 

To derive the equation for the voltage across a two-dimensional network of interconnected vertical and 

horizontal transmission lines, consider a small section of such a network, of dimensions x×y, as represented 

using lumped components in Figure 16. 

Considering the voltage drop along the horizontal TL section gives 
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 (D.11) 

or, as x approaches zero, 

 
1

x

dx

V
I

R x


 


 (D.12) 

Let the distributed capacitance at any point, whether on the TL in the x-direction or the y-direction, equal 

 d dx dyC C C r   (D.13) 

where r = y/x. The reason for doing this is explained below. Dividing Eq. (D.12) by Cd gives 

 
1 x

dx d d

IV

R C x C


 


 (D.14) 

which, when differentiated with respect to x, gives 
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 (D.15) 

Replacing Ix using Eq. (D.14) and rearranging the result gives 
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 (D.16) 

Similarly, for the y-direction,  
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 (D.17) 

The sum of the currents entering the junction of the two TLs equals zero, and so 
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which simplifies to 
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 (D.19) 

Using Equations (D.16) and (D.17) to replace the derivatives of the currents, and using rx = y to simplify the 

result, gives 
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 (D.20) 

Since, from Eq. (D.13), 2dx dy dC C r C  , this can be rewritten as 
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 (D.21) 

This has the same form as the equation for convection-reaction-diffusion in two-dimensions (with non-

conservative convection terms). That would not be the case if the condition in Eq. (D.13) was not satisfied. 
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Table 1: The values plotted in Figure 9(b) and corresponding estimates of the order of convergence.  

N LCM FVMQUICK 

5 30.741299 30.134557 

9 30.785471 30.441016 

17 30.796159 30.619494 

  2.0 0.8 

33 30.799386 30.708041 

  1.7 1.0 

65 30.800234 30.754718 

  1.9 0.9 

129 30.800448 30.761570 

  2.0 2.8 

257 30.800501 30.783930 

  2.0 -1.7 
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Table 2: The values plotted in Figure 11(b) and corresponding estimates of the order of convergence. 

N LCM FVMCD 

7 0.115150 0.110058 

13 0.114826 0.112876 

25 0.114835 0.114104 

  5.1 1.2 

49 0.114842 0.114548 

  0.5 1.5 

97 0.114843 0.114715 

  2.2 1.4 

193 0.114844 0.114784 

  2.3 1.3 

Table 3: Values of V(0.5, 0.5; 0.02) for Test 3 calculated using different numbers of nodes, and corresponding estimates of the order of 

convergence. 

N LCM 

5×5 0.104826 

9×9 0.100109 

17×17 0.098548 

 
1.6 

33×33 0.098077 

  1.7 

65×65 0.097958 

  2.0 

129×129 0.097931 

  2.1 
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(a) (b)

Figure 9: Solution of Test 1 problem using a model with N = 17 nodes, (b), and the convergence of 

the solution as h approaches zero, (b).

Sabawoon Shafaq, Figure 9

Sabawoon Shafaq, Figure 10

Figure 10: Estimated error in the solution, at the midpoint of the domain, 

plotted over time.
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