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SUMMARY 

Recent papers have introduced a novel and efficient scheme, based on the Transmission Line Modelling (TLM) 

method, for solving one-dimensional steady-state convection-diffusion problems. This paper introduces an 

alternative method. It presents results obtained using both techniques which suggest that the new scheme 

outlined in this paper is the more accurate and efficient of the two. 

 

INTRODUCTION 

The convection-diffusion equation (CDE) describes physical processes in the areas of pollution 

transport, biochemistry, semiconductor behaviour, heat transfer, and fluid dynamics [1-3]. Recent 

papers have presented a novel Transmission Line Modelling (TLM) scheme, referred to here as the 

“varied impedance” (VI) method, which can solve the steady-state convection-diffusion equation in 

one dimension accurately and efficiently [4, 5]. The method is particularly efficient when the 

convection term dominates, a situation in which most traditional schemes have difficulty producing 

accurate results [1-3, 6]. 

The VI scheme, summarised below, is based on the correspondence, under steady-state conditions, 

between the equation for the voltage along a transmission line (TL) (for example, a pair of parallel 

conductors) and the convection-diffusion equation. Lossy TLM is a straightforward scheme, 

originally developed to solve diffusion equations [7, 8], which can be used to model the voltage 

along such a TL. It has been extended to model two- and three-dimensional diffusion problems by 

using a network of interconnected TLs [7, 9]. Although TLM usually models in the time-domain, 

steady-state solutions can be calculated directly [5]. There is a rigorous procedure, described fully 

elsewhere [4, 5], for determining the parameters of the TLM model from given coefficients of the 

CDE to be solved. 

The novel method introduced here, referred to as the “convection line” (CL) scheme, essentially 

models two connected transmission lines, one that exhibits diffusion, and one that exhibits 
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convection. While there is no clear mathematical or physical basis for doing this, it will be shown 

below that the result is an efficient, accurate, and easily implemented technique for solving the 

steady-state CDE. 

THE VARIED IMPEDANCE SCHEME 

The one-dimensional steady-state convection-diffusion equation (without source or reaction terms) is 
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where D(x) is the diffusion coefficient and v(x) is the convection velocity, both of which are allowed 

to vary over space, x. The VI scheme is based on the similarity between this equation and the 

differential equation governing the voltage under steady-state conditions along a lossy transmission 

line (TL), i.e. a pair of conductors, with distributed resistance, capacitance and inductance Rd(x), 

Cd(x), and Ld(x) respectively (all per unit length and varying with position, x), and with an additional 

distributed current source, ICd(x) [5] 
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This is equivalent to Equation (1) if the TL properties satisfy 
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(where Pe is the Peclet number) and 

       1
 xCxI

dx

dv
xV dCd  (5) 

Modelling such a transmission line is equivalent to solving the convection-diffusion equation. It 

should be noted that the distributed inductance does not appear in Equation (2). The TLM method, 

however, used here to model the TL, requires a time step to be chosen, even if a steady-state solution 

is to be found directly, and this value determines the level of inductance [4, 5]. 

In the 1D TLM scheme, both space (i.e. the length of the TL) and time are divided into finite 

increments. Traditionally steady-state solutions have been found by running the scheme until 

transients reduce to an acceptable level [7, 10, 11], but a recent paper has shown that they can also 

be found directly [5]. The first step in modelling a transmission line using TLM is to choose the 

locations of the nodes at which the solution will be calculated and a time step length, t. The TL is 

then approximated by a network of discrete resistors, current sources, and uniform TL segments as 

illustrated in Figure 1. A pair of equal lossless TL segments (i.e. with zero resistance) connects each 
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pair of adjacent nodes. Two equal resistors located between these segments represent the distributed 

resistance of the TL being modelled. A discrete current source at each node represents the distributed 

current source. 

A transmission line has both capacitance and inductance distributed along its length. The TLM 

scheme keeps track of individual voltage pulses that travel through the network. For simplicity the 

scheme is synchronised by arranging that all pulses leaving nodes at a given time step arrive at 

adjacent nodes t later. The propagation velocity is constant between adjacent nodes and therefore, 

at any point between two nodes x apart, must equal x/t. The propagation velocity, u(x), of a TL 

is 

        2
1

 xCxLxu dd  (6) 

and so, once Cd(x) has been found by solving Equation (4), this relationship can be used to determine 

the required distributed inductance. 

In practice it is not necessary to know the distributed inductance and the distributed capacitance to 

model a TL using the TLM method. The important parameter that links the two is the distributed 

impedance 

       2
1

1
xCxLxZ dd


  (7) 

Combining Equations (6), (7), and u(x) = x/t, gives the impedance at a point x between two nodes 

x apart as 

     xxCtxZ d  (8) 

Once the values of the distributed resistance, impedance, and current source, are known, it is 

possible to determine the properties of the discrete components in the equivalent TLM network [4, 

5]. The pair of resistors between each pair of nodes must have the same total resistance as the 

equivalent section of the TL being modelled. The impedance of the two TL segments must equal the 

average impedance of the TL between the two nodes. The current from the current source at node n 

must equal the sum of that from the distributed current source between nodes n−1 and n that flows to 

the right and that from the distributed current source between nodes n and n+1 that flows to the left 

[5]. 

Before these values can be calculated, an ODE that depends on Pe(x) (Equation (4)) must be solved 

to find Cd(x). To calculate the average impedance and the total resistance between nodes, it is 

necessary to integrate the result over space. If Pe(x) varies over space then a closed-form solution of 

Equation (4) may not be available and the cost of calculating the parameter values numerically is 

similar to that of solving the CDE itself. Two efficient, but less accurate, alternatives have been 

developed. In the first it is assumed that v and D are both constant over space when deriving the 

necessary equations and in the second it is assumed that v and D vary in a piecewise-constant 



 4 

fashion [5]. These have allowed straightforward relationships to be developed between the CDE 

coefficients, v and D, and the parameters required for the TLM model. The second method is 

generally the more accurate of the two but the cost of parameter calculation is higher. 

To understand what parameters are required for a TLM model, it is first necessary to understand how 

the method is implemented. The scheme keeps track of Dirac voltage pulses that travel through the 

network. At any time step, k, there are voltage pulses incident at node n, one from the left (kViln) and 

one from the right (kVirn). These instantaneously raise the “node voltage” (kVnn), which is common 

to the lines meeting at the node, to [5] 
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where kICn is the current supplied from the current source at that time step and where Pn = Zn/Zn+1 is 

the “impedance ratio” at node n. The values of Vn, along the line and over time, represent the time-

domain solution of the equation being modelled. The difference between the instantaneous node 

voltage and the incident voltages leads to pulses being scattered from the node, one to the left 

 nknknk VilVnVsl   (10) 

and one to the right 

 nknknk VirVnVsr   (11) 

Pulses pass unmodified along the TL segments. Any pulse leaving a node will arrive at an 

impedance discontinuity t later (i.e. when it has travelled the length of one TL segment) due to the 

presence of the resistors in the network. A fraction  (the transmission coefficient, where 0 ≤  <1) 

travels on, arriving at the adjacent node at the next time step. The remaining fraction (1−) is 

reflected back, arriving at the node from which it originated at the next time step. The equations for 

the incident pulses at node n at time step k+1 (generally referred to as the “connection equations” for 

the network) are therefore 

   11 1   nknnknnk VsrVslVil  ,    1111 1   nknnknnk VslVsrVir   (12) 

where n, the transmission coefficient for connecting line n (i.e. the line between nodes n−1 and n), 

is  nnnn RZZ  . 

Now kICn is an integral of ICd(x) between nodes n−1 and n+1 at time step k [5]. This distributed 

current is, from Equation (5), proportional to V(x) at that time step. To simplify the method, it has 

been assumed in calculating kICn that V(x) between nodes n−1 and n+1 at time step k is equal to kVnn. 

This allows the introduction of a new node parameter, Yn, such that 

 nknCnkn VnYIZ   (13) 

and so Equation (9) can be rewritten as 
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A time-domain model is initiated by setting the two incident voltages at each node equal to half the 

desired initial node voltage distribution along the line. Equation (14) is used to calculate the resulting 

node voltages, then Equations (10) and (11) give the scattered voltages, and Equation (12) gives the 

incident voltages for the next time step. These are then used to calculate the new node voltages and 

so on. If a steady state is reached (which will depend on the boundary conditions) the incident pulses 

at time step k will equal those at time step k−1. This fact allows the determination of equations for 

the steady-state incident voltages at each node, ∞Viln and ∞Virn [5] 

 NnVircVilVirbVila nnlnnnlnnl   2,011  (15) 

 11,011   NnVircVilbVirVila nnrnnrnnnr  (16) 

where 
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and 
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It can be seen that, once the values of Yn, n, and Pn, are determined, it takes a further minimum of 8 

additions/subtractions and 23 multiplications/divisions to calculate the coefficients in Equations (15) 

and (16) for each node. 

To solve the resulting equations the boundary conditions must first be implemented. To impose 

Dirichlet boundary conditions, nodes can be located at each boundary and the node voltages at those 

nodes simply fixed at the required values. It is not necessary to locate nodes at the boundaries but 

this does simplify the scheme [4]. The implementation of other types of boundary conditions is not 

considered here. 

The steady-state equations can be written in terms of ∞Viln and ∞Virn as shown above, and modified 

as necessary at the boundaries. They can also be written in terms of ∞Viln and ∞Vnn or of ∞Virn and 

∞Vnn. Testing suggests that there is very little benefit, if any, from doing so, in terms of the overall 

cost of the scheme. 

Before modelling can begin, it is necessary to calculate Pn and Yn for each node and n for each 

connecting line. It has been shown previously that, if Pe and D are assumed to be constant, then [4] 
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If D varies over space then the average of Dn and Dn+1, the values at the nodes at the ends of the 

connecting line, can be used to calculate n. The impedance ratio at node n is 
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where 

     1exp,exp1 1  nnnn xPeBxPeA  (21) 

If Pe varies over space then its value at node n can be used when calculating Pn. If Pe is zero at any 

node n then Pn = xn+1/xn. Assuming dv/dx is also constant over space gives [5] 

 

nn

n

n

n
n

xPe

t

B

A

x

x

dx

dv
Y
















 11  (22) 

or, if Pe = 0, Yn = (dv/dx)t(xn+1 + xn)/xn. The VI method as implemented using these equations 

is referred to here as the VIC scheme.  

Another possibility, the VIPC scheme, assumes that both parameters (i.e. v and D) vary in a 

piecewise-constant fashion so that Pe(x) = Pen and D(x) = Dn between xn−xn and xn+xn+1. With 

these assumptions [5] 
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where 
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and the equivalent transmission coefficient is [5] 
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Note that the limits of 4,n and 5,n, as Pen and Pen−1, respectively, go to zero, are both xn. If dv/dx 

also varies in a piecewise-constant fashion (consistent with that described above) then [5] 
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where 
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and nnnn xPePe  1,9 . If Pen = 0 for all nodes then this simplifies to 
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It is clear that the VIC scheme has a significantly lower computational cost than the VIPC scheme. 

THE CONVECTION LINE METHOD 

The novel method introduced here combines a standard lossy TLM diffusion model, composed of a 

series of TL segments and resistors, with a second lossless (i.e. with zero resistance) transmission 

line which essentially models convection. The two lines, referred to here as the “diffusion line” and 

the “convection line” are connected at each node as shown in Figure 2. Each section of the 

convection line has a notional diode, used previously in TLM to model waves in moving media [12, 

13], which allows pulses (either positive or negative) to travel in one direction only. 

The diffusion line is essentially a standard lossy TLM network for modelling diffusion and is 

equivalent to a VI network with v = 0. All TL segment impedances are therefore equal unless the 

nodes are unequally spaced. The impedance ratio, defined as for the VI scheme, at node n is Pn = 

xn+1/xn. 

There are three incident voltage pulses at node n at time step k, kViln and kVirn arriving from the 

diffusion line, and kVilcn arriving from the section of convection line to the left of the node. There 

are also three scattered pulses, kVsln, kVsrn, and kVsrcn which is scattered to the right along the 

convection line. The presence of the diodes, and the absence of resistors, ensure that there are no 

pulses, either incident or scattered, travelling to the left along the convection line. 

The voltage pulses in such a network must obey two physical laws. Firstly, the total current 

associated with the incident pulses (i.e. the voltage divided by the impedance) must equal the total 

current associated with the scattered pulses, and so 
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which can be rewritten as 
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where nQ is called here the “convection/diffusion impedance ratio” for “connecting line” n (i.e. the 

line between nodes n−1 and n) and equals ncn ZZ , . Secondly, a node voltage must equal the sum of 

the incident and scattered voltage pulses on each TL segment connected to the node. This gives the 

scattering equations for the network 

 nknknk VilVnVsl  ,  nknknk VirVnVsr  ,  nknk VnVsrc   (31) 

Note that this rule does not apply to TL segments connected to a node through a diode (i.e. kVnn need 

not equal kVilcn). Combining Equations (30) and (31) gives 
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The connection equations for the diffusion line pulses are the same as for the VI scheme (i.e. 

Equation (12)), while that for the convection line is simply 

 111   nknknk VnVsrcVilc  (33) 

Under steady-state conditions, the diffusion line incident pulses and the node voltages stay the same 

from one time-step to the next. It can be easily shown that the steady-state values of Vir, Vn, and Vil 

for node n must therefore satisfy 

     01211   nnnnnnnn VnVilVirVn   (34) 

   0212 11   nnnnnnnnn VirPVnQPPVilVnQ  (35) 

     021 111111   nnnnnnnn VnVilVirVn   (36) 

If these equations are instead written in terms of ∞Virn, ∞Viln, and ∞Vilcn, the result is significantly 

more complex (the fact that nVilc  equals 1 nVn  allows for their simplification). When written for 

all N nodes in a model, and suitably modified for the boundary nodes (discussed below), these 

equations can be solved to get the steady-state node voltages directly. 

Once the Pn, Qn, and n values are calculated, there are only 4 additions/subtractions and 2 

multiplications/divisions required to calculate the coefficients for each internal node (significantly 

lower than for the VI scheme). The cost of solving the equations is, however, greater than for the VI 

method since there are now 3 equations per node instead of 2. 

The implementation of Dirichlet boundaries is straightforward if nodes are located at the boundaries, 

the boundary node voltages being simply fixed at the required value and the steady-state equations 

altered accordingly. 

Convection velocity 

In order to determine the relationships between the values of Pn, Qn, and n, and the values of D(x) 

and v(x), it is useful to first examine the case where there is zero diffusion. Consider an infinite 
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model with uniformly spaced nodes (i.e. Pn = 1 throughout), with Q the same for all connecting 

lines, and with  = 0 for all diffusion line sections. Voltage pulses can only move from one node to 

the next along the convection-line in such a network, but voltage pulses are also scattered into the 

diffusion line TL segments at each time step, arriving back at the next time step. It is clear that the 

shape of the node voltage profile will be affected over time by this process. The effective convection 

velocity can be determined by measuring the change in the mean position of the node voltage profile 

in a single time step. 

Let  nkVilk Vil , the sum of the voltage pulses incident from the left at all nodes in the model at 

time step k. Similarly let  nkVirk Vir  and  nkVilck Vilc . The sum of the node voltages at 

time step k is then 
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The sums of the scattered pulses are VirkVnkVsrk   , VilkVnkVslk   , and VnkVsrck   . The 

sums of the incident pulses at the next time step are VslkVilk  1 , VsrkVirk  1 , and 

VnkVilck  1 . Combining these equations to get Vnk 1  in terms of the sums of the incident pulses 

at time step k gives 
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For the method to be conservative, Vnk 1  must equal Vnk  (i.e. the sum of the node voltages in an 

infinitely long model must remain constant over time). From Equations (37) and (38), this condition 

is equivalent to VilckVirkVilk   . If the model is not initialised with incident voltage pulses that 

satisfy this condition then the sum of the node voltages will change from one time step to the next. If 

this condition is satisfied then the equations above give VirkVilk  1 , VilkVirk  1 , and 

VilckVilck  1 . If VilckVirkVilk 
2
1  then all three sums will remain constant from one time step 

to the next. Only this case is examined here. 

If Vilk n  is the mean position of the Vil voltage pulse profile at time step k (in terms of node number, 

where the nodes are numbered sequentially from left to right), and Virk n  and Vilck n  are the mean 

positions of the other incident voltage pulse profiles, then the mean position of the node voltage 

profile is 
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The mean positions of the incident voltage pulse profiles at the next time step can easily be 

determined from the equations for scattering and connection given above 

 

   

   

11

,

,

1

1

1













VnkVsrckVilck

kVilkkVnkVilkVilkVnkVnkVslkVilk

kVirkkVnkVirkVirkVnkVnkVsrkVirk

nnn

nnnn

nnnn





 (40) 

These can be used to find the mean position of the node voltage profile at time step k+1 
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If vk
  is the change in mean position during time step k (i.e. if VnkVnkk nnv  1 ), then Equations 

(39) and (41) give 
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where VirkVilkVilbkk nnnn  2 . Equation (40) can be used to find nk 1  in terms of nk  
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Testing has shown that vk
 , measured for such a model, varies initially from one time step to the 

next before converging to a constant value, denoted v . Similar behaviour has been demonstrated 

previously in the effective diffusion rate in standard lossy TLM models [14]. From Equation (42), 

vk
  cannot be constant over time unless nk  is also constant. From Equation (43), nk  can be 

constant only if it equals (2+Q)/(1+Q). Substituting this for nk  in Equation (42) gives 

 QQv  1 . This is the change in the node profile mean position, in terms of node number, 

from one time step to the next for k >> 1. The modelled convection velocity, once vk
  has 

converged to this value, is therefore simply 
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 (44) 

Testing has shown that this equation also holds when VirkVilk   , and, more generally, when n ≠ 0 

(i.e. when diffusion is being modelled as well as convection). The latter is not surprising since 

diffusion is symmetrical. While it affects the mean positions of the Vil and Vir profiles [14], it does 

not affect their sum (and so does not affect nk ). 

Equation (44) allows the value of Q to be chosen for a model for any desired convection velocity 
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where vn is the value of the velocity used to calculate the ratio Q for connecting line n. 

It should be noted that an equation for the convection velocity in the VI scheme, derived in a similar 

manner (i.e. from the change in mean position of the solution profile over time under purely transient 

conditions), does not match the convection velocity exhibited by that scheme under steady-state 

conditions [15]. Test results presented below suggest that in the CL scheme there is no such 

difference between the rates of convection under transient and steady-state conditions. 

Convection-related errors 

Further useful information can be gleaned from the steady-state solution of such a model. For the 

case where  = 0 for all connecting lines, Equations (34) to (36) simplify to 
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Now the solution of Equation (1) with D = 0 is V(x)=c/v(x), where c is a constant, and so the exact 

solution at nodes n and n−1 will satisfy 
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Using Equation (45) for Qn and Qn+1 allows Equation (46) to be rewritten as 
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It is clear from comparing this with Equation (47) that an exact solution of the convection equation 

will only be obtained if t = 0 and if vn+1 = v(xn) and vn = v(xn-1) (i.e. if the convection velocity used 

to calculate Q for the convection line between nodes n and n+1, is that at node n). 

Defining Vnn/n−1 as the error in the ratio 1 nn VnVn  (i.e. as the difference between the actual 

ratio as given by Equation (48) and the desired ratio as given by Equation (47)) gives, for the case 

where vn = v(xn-1) and all nodes are evenly spaced, 
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The error in the value of the solution at node n will depend on this and on the error in Vnn−1. It will 

be infinite if vnt = x. If vnt >> x then   111/   nnnnn vvvVn , a function of the spatial 

variation in v(x) and the node spacing. If vnt << x then    xvvvtvVn nnnnnn   111/ , i.e. 

the error decreases linearly with t. 
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Although setting vn+1 = v(xn) gives accurate results when D = 0 and t is very small (in practice the 

time step cannot be zero), testing has shown that setting vn+1 = [v(xn)+ v(xn+1)] gives significantly 

more accurate results when D ≠ 0. Under such circumstances, again assuming evenly spaced nodes, 

the ratio error is 
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If      xtxvxv nn  12
1  then this is approximately 
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If      xtxvxv nn  12
1  then       111/   nnnnn xvxvxvVn . The error goes to 

infinity if     12  nn xvxvxt  for any node. Note that this corresponds to Qn being infinite. 

The ratio error is zero for a certain value of t, but this is dependent on the local velocity values and 

will, in general, vary from one node to the next. There will, therefore, be no time step length that 

produces an exact result at all nodes, but there may be an optimum time step. There is no efficient 

way, however, to determine its value for a given problem. 

The errors in the solution will be a function of the ratio errors at each node. Figure 3a shows the 

maximum error in results from models over the domain  1,0x  with initial condition Vn1 = 1, with 

v(x) = 5+5x, and with N = 11, while Figure 3b shows results from the same model with N = 81. It can 

be seen that the optimum time step decreases as x is decreased. 

The ratio error at lower t values for the case where v(x) = a + bx is (from Equation (51)) 
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The local error at each step is, therefore, on the order of x
2
 (assuming bx<<2v(xn)). The global 

error at any point in space (for a low value of t) will consequently be on the order of x. Test 

results (including those in Figure 3) have confirmed that this is the case. 

While these findings are for the specific case D = 0, it will be shown below that they are useful for 

understanding the errors that occur in the solution of the convection-diffusion equation when v(x) 

varies over space. Importantly, they suggest that, unlike the VI method, this scheme inherently 

models the two convection-related terms in Equation (1) without the need for current sources. 

Diffusion coefficient 

It is necessary to determine the relationship between the rate of diffusion modelled under steady-

state conditions and the transmission coefficient,  as a model parameter. It is clear that connecting 

the convection line to the diffusion line in a CL model affects the behaviour of the diffusion line, and 
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so the relationship between  and D will not be the same as for a diffusion line with no convection 

line attached (as given in Equation (19)) . 

It has been found that, as with the VI scheme, the CL method produces an exact solution to the 

steady-state convection-diffusion equation when both v and D are constant over space (see [4] and 

results presented below). This has allowed the relationship between D and  to be determined 

empirically. The analytical solution of the steady-state convection-diffusion equation with both v and 

D constant and with boundary conditions, V(0) = 0 and V() = 1, is 

  
 
  1exp

1exp






Pe

xPe
xV


 (53) 

A TLM model with constant v and D, and with evenly spaced nodes (x apart), will have the same 

transmission coefficient, , for all sections of the diffusion line, and will have the same value of Q 

for all sections of the convection line. By calculating solutions from models with V(0) = 0 and V() 

= 1 and with different values of  and Q,  and comparing them with Equation (53), the following 

relationship has been found 

 
  QxPe

Q

21exp

2


  (54) 

Note that with v = 0, this becomes equal to Equation (19). Time-domain results suggest that, with v ≠ 

0, the effective rate of diffusion under transient conditions differs from this. Such a difference also 

occurs with the VI method [15]. A study of these differences and a discussion of possible reasons for 

them are beyond the scope of this paper. 

EXAMPLE 

To illustrate the steps required in implementing the CL method an example is included here. 

Consider the case where D(x) = 1, v(x) = 5 + 5x, V(0) = VL, V(1) = VR, N = 4, and the nodes are 

evenly spaced (giving x = 1/3 and Pn = 1 for all nodes). The first step is to calculate the value of Q 

for each of the three connecting lines using Equation (45). A time step is required and the value t = 

1×10
−9

 has been used in this example (the choice of time step for the method is considered in the 

next section). For all tests reported here, the value vn used when calculating Qn is the average of the 

convection velocities at nodes n−1 and n. This method of parameter calculation is consistent with 

that used for the VIC scheme. With these settings Equation (45) gives, approximately, Q2 = 

1.75000003×10
−8

, Q3 = 2.25000005×10
−8

, and Q4 = 2.75000008×10
−8

. Equation (54) can now be 

used to calculate the corresponding transmission coefficients, with Pe = vn/D being used when 

calculating n. This gives, approximately, 2 = 5.84331809×10
−9

, 3 = 4.02414712×10
−9

, and 4 = 

2.71833441×10
−9

. Writing Equations (34) to (36) for all internal nodes, and adding Equation (36) for 

∞Vir1 and Equation (34) for ∞VilN, gives the following system of eight equations 
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(55) 

which, when solved with the coefficients for this example and with VL = 0 and VR = 1, give the 

results shown in Table 1. The exact solution is included along with equivalent results obtained using 

the VIC and VIPC schemes (both calculated using t = 1) and those from two standard second order 

finite difference (FD) schemes (one using centred-differences (CD) and one upwind-difference 

scheme (UP)). 

This example (along with further tests reported below) suggests that the CL method is significantly 

more accurate than the VI schemes (which, in turn, as shown in Table 1, in further results below, and 

in results published previously [5], are significantly more accurate than FD methods when the 

convection term dominates). It is also clear from this example that the computational cost of the 

scheme is not excessive. 

TESTING 

From Equation (45), negative convection velocities require negative Qn values (equivalent to having 

TL segments with negative impedance in the convection line). Testing has shown that, not 

surprisingly, a time-domain TLM model with negative Qn values is unstable but despite this a 

steady-state solution can be found directly. Alternatively, negative convection velocities can be 

modelled while maintaining stability simply by changing the direction and position of the diodes in 

the TLM model. The former option has been used in the models tested here. Solutions in all cases 

have been found directly by solving the steady-state equations. 

The test results below are for convection-diffusion equation problems which have analytical 

solutions available from symbolic maths software. The maximum errors quoted are nn
Nn

VnV 
1

max  

where Vn represents the exact analytical solution at the location of node n. 

Figure 4a shows the maximum errors in the solutions of models with v and D constant over space. It 

is clear that the errors in all three schemes tested are dependent on the choice of t. The close 

correspondence between the maximum error and the condition number, , for the systems of steady-

state equations (Figure 4b), suggests that the solution errors are due to round-off errors in the 

calculation of the solution, the TLM parameters, and/or the steady-state equation coefficients. It 



 15 

should be noted that the peak in the value of  (and the corresponding peak in the maximum error) 

for the CL method corresponds to the point where vt = x (and Qn = ∞). 

Figure 5a shows equivalent results from models with D = 1, v = 5+5x, and with 11 evenly spaced 

nodes. The analytical solution of Equation (1) with v(x) = a + bx, V(0) = 0 and V() = 1, is 
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 (56) 

As expected [5] the VIPC scheme is more accurate than the VIC scheme. The round-off errors for the 

VI schemes are insignificant when compared with the systematic errors resulting from the spatial 

variation in v(x) (except for very short time steps). This is not the case for the CL method. The 

systematic errors for the CL scheme are qualitatively similar to those for the case where D = 0 

(Figure 3), i.e. there is a point at which the error is a minimum, points at which it is infinite 

(corresponding to vnt equalling x for one or more sections of the model), and the systematic error 

is relatively independent of t for both longer and shorter time steps. The round-off error is larger 

than the systematic errors for very small t values. The time step length for which the maximum 

error is a minimum is less than in the equivalent case with D = 0 (and decreases further as D is 

increased). 

Figure 5 also illustrates a difficulty in determining the relationship between the systematic errors and 

the node spacing. Figure 5b shows results equivalent to those in Figure 5a but obtained from a model 

with 41 nodes instead of 11. In that case the values of t at which the error is low and independent of 

t correspond to values for which the round-off error is significant, and so the systematic error as t 

approaches zero cannot be determined empirically. It has been found, however, that the systematic 

errors in models with D = 1 and v = 1/(1+x) can be  measured (with a setting of t = 10
−9

) over a 

relatively wide range of node spacings, thus allowing benchmarking of the scheme. The analytical 

solution with V(0) = 0 and V(1) = 1 is 

  
   

 2ln2

1ln1 xx
xV


  (57) 

Table 2 contains results obtained from the three schemes with these settings (but with t set to 1 for 

the two VI schemes to avoid significant round-off errors) and with different numbers of evenly 

spaced nodes. These suggest that the errors associated with spatial variations in v(x) are of the order 

of x
2
 for all three schemes. The results of testing with v(x) = a + bx, although limited by round-off 

errors, also suggest that the CL scheme is at least second-order accurate. The analysis of the scheme 

with D = 0 presented above has shown that, under such circumstances, the method is first-order 

accurate. The reasons for this difference have not been investigated.  
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These results suggest that the equation giving the required value of Q for given values of v, as 

derived above for transient conditions with D = 0, is more generally applicable. They also confirm 

that this method can model both convection terms in the CDE. 

Table 3 contains results obtained from models with constant v(x) but with D(x) = 1+x. The analytical 

solution for this case, with V(0) = 0 and V(1) = 1, is 

  
 

12

11






v

v
x

xV  (58) 

Because there is no spatial variation in the velocity, the systematic errors in the results are 

independent of t and so a setting of t = 1 has been used for all three schemes. The CL method is, 

in most cases, significantly more accurate than either of the VI schemes. It is almost exactly twice as 

accurate as the VIPC scheme for all v values for which results are presented (but testing has shown 

that this is not the case when D(x) is changed to, for example, 1+x
2
). These results suggest that the 

ability of the TLM network to model the diffusion term in Equation (1) is not affected by the 

addition of the convection line. Results not given here suggest that the error resulting from a 

variation in D(x) is second order for all three schemes. 

All results from CL models presented below have been calculated using a time step of t = 10
−9

 and 

all VI results have been calculated using a time step of t = 1. These have been chosen so that 

systematic errors are presented and not round-off errors (which are dependent on the specific way in 

which the calculations are performed). 

It is clear from Table 3 that the accuracy of the TLM methods can decrease as the convection 

velocity increases. This is consistent with many traditional methods [1, 2, 3]. It has been shown 

previously, however, that this is not generally the case with the VI schemes [5]. Table 4 shows the 

errors in the solutions at 4 internal nodes obtained using the three TLM schemes and two FD 

schemes for three cases with D(x) constant. It shows that with low Peclet numbers the accuracy of 

the VIC and CD schemes are similar. Unlike the FD schemes, however, the accuracy of all three 

TLM methods increases as the convection velocity increases. 

The CL models tested have convection lines with diodes directed to allow convection to the right. To 

model negative convection without changing diode directions, negative TL impedances are required. 

To check whether this affects the accuracy of the scheme under such circumstances, the results from 

a model with V(0) = 1, V(1) = 0, D = 1, and v(x) =  −5+5x have been compared with those from a 

model with V(0) = 0, V(1) = 1, D = 1, and v(x) =  5x. The two solutions are simply mirror images of 

each other, but in the first case the velocities are negative over the domain. Tests have shown that the 

maximum errors are identical. This suggests that, although the presence of negative TL impedances 

may affect the stability of a time-domain solution, it does not affect the accuracy of a directly 

obtained steady-state solution. 
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The equations given above for implementing all three schemes allow the node spacing, x, to vary 

along the model. By more closely spacing nodes where the solution (or the velocity and/or diffusion 

coefficient) has a higher gradient, it may be possible to achieve a required level of accuracy with 

fewer nodes. To test the effect of variations in node spacing, models with xn = mxn−1 (i.e. with xn 

varying exponentially along the model), v(x) = 5+5x, D = 1, N = 11, V(0) = 0, and V(1) = 1, have 

been tested. With m < 1, these have nodes more closely spaced near the right-hand boundary where 

the solution varies most rapidly. Table 5 contains the maximum errors in the three schemes for these 

conditions for different values of m. Note that the first column gives the errors obtained with evenly 

spaced nodes. The accuracy of both the VIPC and CL solutions decreases the more variation there is 

in x. This suggests that any advantage gained due to having more finely spaced nodes near the 

right-hand boundary is more than offset by errors occurring due to the spatial variation in x. The 

VIC scheme, however, gives more accurate results as m is increased up to a point for this case. It is 

clear that the CL scheme is significantly more accurate than the VI schemes in all cases. It should be 

noted that (unlike with the VI schemes and with many traditional methods) the additional cost 

associated with variations in x in a CL model is insignificant. 

All test results presented above are for CDEs for which analytical solutions are readily available. A 

more general test has been performed with v(x) = 0.1 + x
4
, D(x) = 1 + sin(x), V(0) = 0, and V(1) = 1. 

The solution at x = 0.5, calculated for a range of N values, has been compared with the solution at 

that point obtained using the VIPC scheme with N = 20001. The magnitudes of the differences are 

given in Table 6. Results are given for the VI schemes in which the values of dv/dx at each node 

have been calculated analytically. It can be seen that the accuracy of the CL scheme is slightly less 

than that of the VIPC scheme but is higher than that of the VIC method. Since exact values of dv/dx 

will not generally be available, results are also given for the VI schemes with dv/dx calculated at 

each node using the values of v(x) at the adjacent nodes and a standard second-order central-

difference formula. It is clear that, under these circumstances, the CL method has performed 

significantly better then the VI schemes (which are then first-order accurate).   

In all cases presented above, the maximum systematic error in the CL model solutions is lower as t 

approaches 0 than as t approaches infinity. Analysis of the case where D = 0 shows that this is not 

necessarily the case. Extensive testing has not, however, yielded settings for which this is not the 

case when D ≠ 0. Why this might be so has not been investigated. 

When D = 0 and vn is set to v(xn−1) for each connecting line, it has been shown above that the error in 

the CL scheme goes to zero as t goes to zero. Testing has shown that this is not the case when D ≠ 

0. In that case, if vn = v(xn−1), then the errors vary with t in a similar fashion to when vn = [v(xn−1)+ 

v(xn)], but are, in general, significantly larger. 
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DISCUSSION AND CONCLUDING REMARKS 

The VI scheme is based on the similarity, under steady-state conditions, between the equation for the 

voltage along a TL with spatially varying properties and the convection-diffusion equation. The TL 

properties are directly specified by the equation to be solved and there is a rigorous method for 

determining the TLM model parameters from these. There is no such method for relating the CL 

network parameters to the CDE being solved. Instead, the relationships between the model 

parameters and the coefficients of the convection-diffusion equation have been established through a 

mixture of experiments and an analysis of the limited case where D = 0. While less than ideal, this 

has allowed the value of the scheme to be established. 

The test results presented here show that the novel CL scheme can, in general, be more accurate than 

the VI methods (which have been shown here and previously to compare favourably with finite-

difference schemes, especially when the convection term dominates). In many cases it is 

significantly more accurate than the VI schemes. The cost of calculating CL model parameters 

appears to be similar to that for the VIC scheme but significantly lower than for the VIPC scheme. 

The cost of calculating the steady-state equation coefficients is significantly lower than for either of 

the VI schemes. The CL scheme does require, however, the solution of 50% more equations. All 

three TLM schemes have a significant property in that their accuracy, in general, increases with 

increasing Peclet numbers. 

The VI scheme requires current sources to model the Vdv/dx term in the CDE. The accuracy is 

limited by the assumption, made in deriving the equation for the node voltage, that, when 

considering node n, the solution between nodes n−1 and n+1 is equal to the solution at node n. The 

CL method, on the other hand, inherently models both convection terms in the CDE. To extend the 

CL scheme to model reaction terms, a similar assumption will be required. If the reaction term 

dominates the solution, then it is likely that the two schemes would have similar accuracy. Note that 

the assumption has been made for the sake of simplicity and there is no reason why more accurate 

formulations cannot be developed. 

Systematic errors in steady-state solutions, obtained using the VI scheme, are independent of the 

choice of time step. This is not the case for the CL method. It would appear that, in general, the 

optimum value of t is the one for which the systematic and round-off errors have similar 

magnitudes. If the time step is any longer then the systematic errors may rise significantly, any lower 

and the round-off errors will be greater. To determine this optimum value for a given problem, the 

relationship between both systematic and round-off errors and t must be known. While a 

relationship between the time step and systematic errors has been established for the case where D = 

0, further work is required to determine what effect non-zero values of D have on this relationship. 

Further work is also required to determine the relationship between the round-off errors and t. 
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In practice, sub-optimal values of t may still produce more accurate results than those obtained 

using other methods. Also, for some situations, as has been shown above, the errors are relatively 

independent of t over a wide range of values. 

It should be noted that both schemes are equivalent to the standard 1D lossy TLM method for 

diffusion when v = 0. In the case of the VI method, the distributed capacitance and resistance are 

then constant over space. In the CL method, the impedance of the convection line TL segments is 

then infinite (i.e. Q = 0). 
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x Exact CL VIC VIPC CD UP 

0 0 0 0 0 0 0 

1/3 0.0034294 0.0034287 0.0043320 0.0034523 0.0063579 −0.0062048 

2/3 0.0467505 0.0467494 0.0532179 0.0468823 −0.1462307 0.1427094 

1 1 1 1 1 1 1 

Table 1: The exact solution at four evenly spaced nodes with D = 1, v = 5 + 5x, V(0) = 0, V(1) = 1, and 

equivalent results from the CL, VI, and two FD schemes. 

N 6 11 21 41 81 

CL 1.35E−4 3.44E−5 8.57E−6 2.15E−6 5.32E−7 

VIC 5.21E−4 1.32E−4 3.33E−5 8.33E−6 2.08E−6 

VIPC 9.29E−4 1.40E−4 3.48E−5 8.70E−6 2.17E−6 

Table 2: The variation in the maximum errors in the solutions of models with D = 1, v = 1/(1+x), V(0) = 0, and 

V(1)  = 1, as measured with t = 10
−9

 (CL scheme) and t = 1 (both VI schemes), with changes in the number 

of nodes, N. 

v 1 2.5 5 10 20 

CL 3.55E−5 1.54E−5 6.41E−5 8.32E−5 8.06E−5 

VIC 3.55E−5 5.36E−5 1.50E−4 6.45E−4 1.43E−3 

VIPC 7.11E−5 3.09E−5 1.28E−4 1.66E−4 1.61E−4 

Table 3: The maximum errors in the solutions of models with D = 1+x, V(0) = 0, V(1)  = 1, and 11 nodes, for 

different values of convection velocity. 
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v(x) = 1+x 

 

x 

Exact 

Solution 

Errors 

CL VIC VIPC CD UP 

0.2 8.92E−02 1.57E−07 −3.50E−04 −4.32E−05 2.39E−04 −3.17E−03 

0.4 2.07E−01 2.66E−07 −6.79E−04 −8.70E−05 5.33E−04 −7.36E−03 

0.6 3.72E−01 3.08E−07 −8.99E−04 −1.18E−04 8.32E−04 −1.05E−02 

0.8 6.18E−01 2.38E−07 −8.17E−04 −1.07E−04 9.04E−04 −1.01E−02 

v(x) = 5+5x 

0.2 1.18E−03 5.67E−08 −1.32E−04 −6.22E−06 1.03E−03 −2.79E−03 

0.4 5.68E−03 1.06E−07 −5.14E−04 −2.35E−05 4.85E−03 −1.62E−02 

0.6 2.70E−02 1.46E−07 −1.71E−03 −7.21E−05 2.17E−02 −5.19E−02 

0.8 1.49E−01 1.59E−07 −4.91E−03 −1.85E−04 9.93E−02 −1.25E−01 

v(x) = 10+10x 

0.2 2.50E−06 2.09E−10 −1.13E−06 −1.11E−08 −7.30E−04 2.94E−04 

0.4 3.69E−05 3.79E−10 −1.27E−05 −9.81E−08 8.83E−03 −3.46E−03 

0.6 7.46E−04 5.18E−10 −1.70E−04 −8.71E−07 −5.64E−02 −2.43E−02 

0.8 2.24E−02 6.42E−10 −2.50E−03 −7.28E−06 2.89E−01 −1.31E−01 

Table 4: Exact solutions for D = 1, V(0) = 0, and V(1) = 1, for three cases where v(x) increases linearly with x, 

and the errors in the corresponding solutions obtained using TLM and FD schemes with 6 evenly spaced nodes. 

m 1 0.98 0.95 0.9 0.8 

CL 1.04E−8 3.67E−7 9.31E−7 2.05E−6 5.43E−6 

VIC 1.66E−3 1.21E−3 6.35E−4 5.64E−5 1.00E−3 

VIPC 7.65E−5 5.42E−5 2.31E−4 5.13E−4 1.04E−3 

Table 5: The maximum errors in the solutions from models with 11 nodes and an exponential variation in node 

spacing, determined by the value of m. 

N 11 21 41 81 161 

CL 9.94E−5 3.04E−5 7.98E−6 2.03E−6 5.26E−7 

VIC 2.35E−3 6.08E−4 1.53E−4 3.84E−5 9.62E−6 

VIPC 8.71E−5 1.72E−5 3.99E−6 9.73E−7 2.37E−7 

VIC
*
 1.56E−2 8.40E−3 4.28E−3 2.15E−3 1.07E−3 

VIPC
*
 1.79E−2 8.99E−3 4.43E−3 2.18E−3 1.08E−3 

Table 6: Differences between V(0.5) as calculated by the TLM schemes and a suitable reference value 

calculated using the VIPC scheme with exact values of dv/dx and 20001 nodes. Note that the 
*
 indicates results 

calculated using numerical estimates of dv/dx. 
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Figure 1: Two nodes, numbered n and n+1, in a TLM network. One conductor of each lossless TL segment is 

shown, represented by a thick line. The second conductor is connected to ground and is not shown. 

 

 

Figure 2: Two nodes, numbered n and n+1, in convection line method TLM network. The upper line, the 

“convection line”, is connected to the lower “diffusion line” at each node. 

 

Figure 3: The variation in maximum errors with time step from models with v(x) = 5+5x and D = 0, with (a) 11 

evenly-spaced nodes and (b) 81 evenly-spaced nodes. 
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Figure 4: The maximum errors in the solutions of three models with D = 1, v = 5, V(0) = 0, V(1) = 1, and 11 

evenly spaced nodes, plotted against the time step (a). Also shown are the equivalent condition numbers for the 

systems of steady-state equations (b). There is little difference between both the condition numbers and the 

maximum errors for the VIC and VIPC schemes. 

 

 

Figure 5: The maximum errors in the solutions of three models with D = 1, v = 5+5x, V(0) = 0, V(1) = 1, and 11 

(a) and 41 (b) evenly spaced nodes, plotted against the time step length. 

 


