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Abstract: Tuberculosis (TB) is an airborne infectious disease caused by organisms in the Mycobacterium
tuberculosis (Mtb) complex. In many low and middle-income countries, TB remains a major cause
of morbidity and mortality. Once a patient has been diagnosed with TB, it is critical that healthcare
workers make the most appropriate treatment decision given the individual conditions of the patient
and the likely course of the disease based on medical experience. Depending on the prognosis,
delayed or inappropriate treatment can result in unsatisfactory results including the exacerbation of
clinical symptoms, poor quality of life, and increased risk of death. This work benchmarks machine
learning models to aid TB prognosis using a Brazilian health database of confirmed cases and deaths
related to TB in the State of Amazonas. The goal is to predict the probability of death by TB thus
aiding the prognosis of TB and associated treatment decision making process. In its original form, the
data set comprised 36,228 records and 130 fields but suffered from missing, incomplete, or incorrect
data. Following data cleaning and preprocessing, a revised data set was generated comprising
24,015 records and 38 fields, including 22,876 reported cured TB patients and 1139 deaths by TB.
To explore how the data imbalance impacts model performance, two controlled experiments were
designed using (1) imbalanced and (2) balanced data sets. The best result is achieved by the Gradient
Boosting (GB) model using the balanced data set to predict TB-mortality, and the ensemble model
composed by the Random Forest (RF), GB and Multi-Layer Perceptron (MLP) models is the best
model to predict the cure class.

Keywords: tuberculosis; neglected tropical disease; prognosis; machine learning; ensemble model;
imbalanced data sets; feature selection; random search; benchmark

1. Introduction

Tuberculosis (TB) is an airborne infectious disease caused by organisms in the My-
cobacterium tuberculosis complex (Mtb). In many low-income and middle-income countries,
such as South Africa, Nigeria and India, TB continues to be a major cause of morbidity and
mortality [1,2]. Despite World Health Organization (WHO) efforts to reduce the incidence
of TB and its mortality rate, 10 million people fell ill with TB and 1.2 million deaths were
registered in 2019 worldwide [2]. According to the WHO Global Tuberculosis Report
2020 [2], in the Americas, “TB incidence is slowly increasing, owing to an upward trend
in Brazil”. In the same year, Brazil registered 96 thousand cases of TB with a mortal-
ity rate of 7% [3]; Brazil has one of the highest TB rates in the world [4]. According to
Ranzani et al. [5], TB is a marker of social inequity and the paradigm of poverty-related
diseases. After a period of poverty reduction, poverty rates began to grow again in Latin
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America in 2015 primarily driven by increases in vulnerable communities in Brazil and
Venezuela, and specifically increased homelessness and incarceration [5].

The Brazilian Sistema Único de Saúde (SUS) is one of the largest public health systems
in the world. It is responsible for providing primary care services, of varying complexity,
including blood donation, chemotherapy, organ transplantation, amongst others [6]. SUS
also provides free vaccines and medicines for people with diabetes, arterial hypertension,
HIV, Alzheimer’s etc. In addition, SUS is responsible for emergency response through the
Serviço de Atendimento Móvel de Urgência (SAMU) [7]. Currently, more than three-fourths
of the Brazilian population rely exclusively on SUS health services for medical treatment [8].
The Sistema de Informação de Agravos de Notificação (SINAN) is an SUS system mainly
comprising notifications of diseases on the National Compulsory Notification List of
diseases. These data are routinely generated by the Epidemiological Surveillance System.
SINAN has a database with demographic, clinical and laboratory data on TB patients, the
SINAN-TB, that can potentially be used for TB prognosis.

Prognosis research is the study of relationships between incidences of outcomes and
predictors in defined populations of people with a disease, in this case, TB [9]. While
diagnosis is the identification of an illness by examination of the symptoms, prognosis is
concerned causes of disease progression, prediction of risk in individuals, and individual
response to treatment so that the improved opportunities for mitigating disease progression
are leveraged, and the risk adverse outcomes reduced [10]. Therefore, once a diagnosis is
made, it is necessary to understand the severity of the clinical situation in order to make
decisions about the most appropriate treatment, including hospitalisation or admission
to an Intensive Care Unit (ICU). The analysis of severity is essential for more reliable
communication of outcome risk to patients, improving opportunities to mitigate disease
progression, to improve the quality of life of patients, and to effectively manage health
resources. Unfortunately, the quality of much prognosis research is poor [10].

The main focus of our work is to evaluate machine learning models to aid TB prog-
nosis and associated decision making by predicting the probability of death using patient
demographic, clinical and laboratory data. Comparisons with extant research is compli-
cated by the difference in goals and data used. Consequently, we benchmark nine machine
learning models used in extant machine learning studies related to TB detection—Logistic
Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Naive
Bayes (NB), Decision Trees (DT), Support Vector Machine (SVM), Gradient Boosting (GB),
Random Forest (RF) and Multi-Layer Perceptron (MLP). Our benchmarking methodology
focuses on disease prognosis, not detection, and is designed to (a) identify the most rele-
vant fields using feature selection techniques; (b) apply a randomized search technique
to select the optimal hyperparameters of the machine learning models; and (c) propose
an ensemble model [11–13] that combines two or more machine learning models in or-
der to achieve better results and reduce the risk associated with using a sub-optimal or
inappropriate models.

2. Related Works

The search for early diagnosis of TB is a goal of health programs around the world
due to the inherent difficulties in eliminating TB [14]. To date, extant research has primarily
explored the use of deep learning for the diagnosis of TB from radiography [15–17] or mi-
croscopic images [18,19]. A number of studies have also explored the use of deep learning
to predict mortality and co-morbidities [20–22]. These studies focus on the diagnosis of TB.
There is, however, a dearth of studies on prognosis of TB, the focus of this work.

Recently, Peetluk et al. [23] published the first systematic review regarding models
proposed to predict TB treatment outcomes. They followed the WHO definition of treat-
ment outcomes for patients with TB i.e., treatment completion, cure, treatment success,
treatment failure, death, loss to follow-up, and not evaluated. 37 prediction models were
identified, 16 of which examined death as an outcome [24–38]. None of the 16 cited papers
that examined death as an outcome used machine learning; 11 used LR. It is important to
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note that Peetluk et al. [23] do not classify LR as machine learning in their review as the
LR analysis was used as a statistical methodology to understand the relationship between
attributes and their prevalence. In the few machine learning studies identified, it was used
primarily for predicting treatment completion [39] or unfavourable outcomes [40,41].

Hussain and Junejo [39] propose and evaluate three machine learning models-SVM,
RF and Neural Network (NN). Their data set comprised 4213 records from an unidentified
location; 64.37% of the records represented completed treatments. The outcome predicted
by the models is treatment completion and the following metrics were used to compare
the models—accuracy, precision, sensitivity, and specificity. The RF model achieved the
highest accuracy (76.32%); the SVM outperformed all models in precision (73.05%) and
specificity (95.71%). The NN achieved the highest sensitivity (68.5%).

Killian et al. [40] used an Indian data set comprising 16,975 patient records to classify
unfavorable outcomes. They considered death, treatment failure, loss to follow-up and not
evaluated as the same class. They proposed a deep learning model, named LSTM Real-time
Adherence Predictor (LEAP) and compared it against a RF model. LEAP achieved an
AUROC of 0.743 and the RF, 0.722.

Sauer et al. [41] also compared different machine learning models to classify unfavor-
able outcomes. They used a multi-country data set (Azerbaijan, Belarus, Georgia, Moldova
and Romania) composed of 587 records of TB cases. They evaluated three machine learning
models, RF, and SVM with linear kernel and polynomial kernel, against classic regression
approaches, stepwise forward selection, stepwise backward elimination, backward elimina-
tion and forward selection, and Least Absolute Shrinkage and Selection Operator (LASSO)
regression. Sauer et al. [41] do not present the outcome number of the models thus nega-
tively impacting comparability. Furthermore, their models presented very low sensitivity
scores (SVM with linear kernel achieved 21%) and high specificity scores (SVM with linear
kernel achieved 94%), suggesting that their model has underfitting/overfitting issues.

While it did not feature in Peetluk et al.’s systematic review [23], Kalhori et al. [42]
explored the use of machine learning to predict the outcome of a course of TB treatment.
Using a data set of 6450 TB incidence from Iran in 2005, they compared six classifiers
including DT, Bayesian networks, LR, MLP, Radial Basis Function, and SVM. The DT
model presented the best performance with 97% of Area Under The Curve (AUC) Receiver
Operating Characteristics (ROC).

In contrast to the limited published research on the topic of TB prognosis using
machine learning, we use computational techniques to (i) reduce the dimensionality of the
data set, and (ii) find optimal hyperparameter configuration. Furthermore, and critically,
we also evaluate ensemble models. Our study uses an extensive data set from Brazil, a
country with one of the highest incidences of TB in the world. In this way, we advance the
state of the art in the study of machine learning for TB prognosis.

3. Background
3.1. Feature Selection Techniques

The feature selection techniques are algorithms that can be used to select a subset of
fields from the original database [43]. In this work, we compare the performance of four
different feature selection techniques: Sequential Forward Selection (SFS), Sequential For-
ward Floating Selection (SFFS), Sequential Backward Selection (SBS), Sequential Backward
Floating Selection (SBFS). The stop criteria for all techniques is 17 fields as per [44] and the
feature selection is based on the F1-score.

The SFS is a greedy search algorithm that selects the feature set following a bottom-up
search procedure. The algorithm starts from an empty set and fills this set iteratively [45]. It
is widely used because it is simple and fast [46]. SFFS is an extension of the SFS algorithm
that includes a new feature using the SFS procedure followed by successive conditional
exclusion of the least significant feature in the set of features. The final feature set is the
one that provides a subset of the best features [47].
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The SBS starts with the complete set of features, and it iteratively removes the less
significant features, until some closure criterion is met [48]. SBFS is an extension of the SBS
technique and it removes irrelevant features by selecting a subset of features from the main
attribute set [49].

3.2. Machine Learning Models

Machine learning can be understood as the union of forces between statistics and
computer science and is often referenced as the basis for artificial intelligence [50]. It is a
learning process where a mathematical model is used to predict results or define a classifi-
cation based on historical data. These models can be used in the health domain to identify
causes, risk factors, and effective treatments for disease, amongst others applications [51].
In this work, we use the following machine learning techniques: LR, LDA, KNN, DT, GB,
RF, MLP and ensemble models, described in subsequent subsections. With the exception of
ensemble models, these models were selected due to their use in extant TB detection and
prognosis research; ensemble models are proposed due to their absence in these studies.

3.2.1. Logistic Regression (LR)

LR is a machine learning technique used to build classification models [52]. In LR,
it is possible to test whether two variables are linearly related, and calculate the strength
of the linear relationship [53]. It provides a simple and powerful method for solving a
wide range of problems. For instance, in health research, LR can be used to predict the
risk of developing a particular disease based on an observed feature of the patient [52]. As
discussed in the previous section, it has been used in extant research on TB prognosis [42].

3.2.2. Linear Discriminant Analysis (LDA)

LDA is a data analysis method proposed by Fisher [54]. The technique works with a
smaller subset of data and compares it with the size of the original data sample, in which
the data of the original problem is separable [55]. The LDA is able to deal with the problem
of imbalance between the classes of the data set, and maximizes the proportion of the
variance between classes for the variance within the class in any data set, thus ensuring
maximum separability [56].

3.2.3. K-Nearest Neighbors (KNN)

KNN can be used for classification and regression. The k in KNN refers to the number
of nearest neighbors the classifier will retrieve and use to make its prediction [57]. It is
a non-parametric classification method. In order for a d data record to be classified, its k
closest neighbors are taken into account, and this forms a neighborhood of the d data [58].

3.2.4. Naive Bayes (NB)

An NB classifier is a probabilistic model based on the Bayes theorem [59] along with
an independence assumption [60]. NB assigns the most likely class to a given example
described by its characteristic vector. The learning of these classifiers assumes that the
features are independent of a certain class [61]. NB was one of the models evaluated by
Kalhori et al. [42] in their evaluation of machine learning models for TB prognosis.

3.2.5. Decision Trees (DT)

DT are used to solve both classification and regression problems in the form of trees
that can be incrementally updated by splitting the data set into smaller data sets [57]. For
each new element in the test set, the decision tree must be traversed from the root to one
of its leaves, thus, each node in the tree must be checked, and depending on the value, it
must be assigned to one of the sub-trees until that the element reaches a leaf node [62].
Again, Kalhori et al. [42] included DTs in their evaluation of machine learning models for
predicting the outcome of a course of TB treatment.
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3.2.6. Support Vector Machine (SVM)

SVM is a set of supervised learning methods that analyze data and recognize patterns.
It is commonly used for the classification and regression analyzes [63], and has been used in
TB prognosis research [39,41,42] SVM is based on the structural risk minimization criterion
and its goal is to find the optimal separating hyperplane where the separating margin
should be maximized. This approach improves the generalization ability of the learning
machine and is effective in solving problems such as non-linear, high dimension data
separation and classification problems that lack prior knowledge [64].

3.2.7. Gradient Boosting (GB)

GB is an iterative ensemble procedure for supervised tasks (classification or regres-
sion) which combines multiple weak-learners to create a strong ensemble [65]. In GB the
learning procedure consecutively fits new models to provide a more accurate estimate of
the response variable. The principle idea behind this algorithm is to construct the new
base-learners to be maximally correlated with the negative gradient of the loss function,
associated with the whole ensemble [66].

3.2.8. Random Forest (RF)

RF is currently one of the most used machine learning algorithms among mining
techniques, as it is a technique that can be used for both prediction and classification and is
relatively easy to train.This preference is attributable to its high learning performance and
low demands with respect to input preparation and hyperparameter tuning [67]. Basically
it is a technique that unifies several decision trees referring to the input data of the database.
Thus, the classifier consists of N trees, where N is the number of trees to be cultivated,
which can be any user-defined value. To classify a new data set, each case of the data
sets is passed to each of the N trees. The forest chooses a class with the maximum N
votes [1]. It has been widely used in TB detection and in three of the identified studies on
TB prognosis [39,41,42].

3.2.9. Multilayer Perceptron (MLP)

MLP is a machine learning model used for both classification and regression [68], and
has been examined for use in TB prognosis [42]. Basically, it is a perceptron model with one
or more hidden layers, each layer having a certain amount of neurons, which are connected
by weights. The data of the independent variables are inserted in the neurons of the input
layer and are processed in the hidden layer. Ultimately, the result of the MLP is presented
in the output layer.

3.3. Ensemble

Ensemble methods train several machine learning models to solve the same problem.
In contrast to a single classifier, ensemble methods try to build a set of models and combine
them. Ensemble learning is also called learning based on committees or multiple learning
classifier systems [69]. The combination of the learning models, can be traditionally made
in three ways: by average, by vote or by learning model. By average is generally applied
when handling numerical outputs, an average of the values is obtained as output by the
classifiers. By vote is where a count is made from the outputs of the classifiers based on the
frequency of appearances of a class, and the class with the highest number of votes is used
as an input for a new learning model. By a learning model uses the output resulting from
the combination of other models and submits it to another learning model that will learn
from these models to provide its own prediction [69].

3.4. Evaluation Metrics

In this study, seven metrics are used to compare the models: accuracy, precision,
sensitivity, specificity, F1-score, AUC ROC, and F1-macro. To understand these metrics,
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it is important to define the composition of a confusion matrix: true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).

Accuracy is a performance metric that indicates how many samples were correctly
classified in relation to the whole, that is, the ratio between the sum of TP and TN and the
sum of all samples Equation (1).

accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision indicates the correct classifications among all classified as positive by the
model, that is, the ratio between TP and the sum of TP and FP Equation (2).

precision =
TP

TP + FP
(2)

Sensitivity indicates the correct classifications among all expected cases as correct, that
is, the ratio between TP and the sum of TP and FN Equation (3).

sensitivity =
TP

TP + FN
(3)

Specificity indicates how well the classifier can identify correctly the negative cases,
that is the ratio between TN and the sum of TN and FP Equation (4).

speci f icity =
TN

TN + FP
(4)

The F1-score metric, used in the feature selection step, is defined as the harmonic
mean between precision and sensitivity, as presented in Equation (5). Note that, if TP = 0,
all positive samples are misclassified, and if FP = FN = 0, there is a perfect classification.

F1-score = 2 × precision × sensitivity
precision + sensitivity

(5)

The Receiver Operating Characteristics (ROC) curve is plotted with sensitivity against
its complement (1 − sensitivity) or False Positive Rate (FPR), where sensitivity is on the y-
axis and FPR is on the x-axis. The Area Under The Curve (AUC) ROC, as the name suggests,
is the area underneath the entire ROC curve, that represents the degree of separability
between classes. Higher the AUC value, the better the model is at predicting class A as
class A, and class B as class B.

The F1-macro average (F1-macro) is a variant of the F1-score, composed of the average
of the F1-score of the positive class and the F1-score of the negative class Equation (6). The
more the model hits the prediction in both classes (positive and negative), the F1-macro
tends to indicate, in general, a degree of a model correctness without bias by balanced or
imbalanced the data set.

F1-macro =
1
m

m

∑
i=1

F1-scorei (6)

4. Materials and Methods

To benchmark the machine learning models, we followed the methodology presented
in Figure 1. The goal was to select the best model to aide TB prognosis. The methodology
adopted for this work included preprocessing the data set; applying the feature selection
algorithm to reduce the dimensionality of the data set; training the models using an
imbalanced data set and a balanced data set; applying randomized search technique to
find the best hyperparameters for the models; usage of statistical techniques to determine
whether models have similar distributions; finding the best models and generating an
ensemble model; usage of statistical techniques to compare the best models; and finally,
evaluation of the models through tests.
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Figure 1. Methodology used to benchmark machine learning models.

The SINAN database contained records of patients with diseases listed on the Brazilian
National Compulsory Notification List. For the purposes of this work, we used records
related to the State of Amazonas from 2007 to 2018 of patients who were diagnosed and
treated for TB, the SINAN-TB. In total, the original data set comprised 36,228 records and
130 fields, having 35,007 records of patients cured of TB and 1221 records of TB-related
deaths. The description of all fields can be consulted in the SINAN data dictionaries [70].

To clean the data, preprocessing was performed. After the preprocessing, the revised
data set included 24,015 records with 38 fields; 22,876 records of patients cured of TB and
1139 records of TB-related deaths.

We compared the performance of four feature selection techniques (SFS, SFFS, SBS
and SBFS as per Section 3.1) to select the most representative fields in the original data set.
We then reduced the dimensionality of the data to be handled by the models. 17 fields were
selected for each of the nine machine learning models. This is consistent with [44] where
the same SINAN-TB data set was used and features selected by a specialist. We used the
entire data set and applied k-fold cross validation, with k = 10 as per [71–74].

As per the original data set, the preprocessed data set was imbalanced (22,876 cured
patients and 1139 TB mortalities). As such, two scenarios were designed for experiments
and evaluations: (1) using the revised imbalanced data set, and (2) using a balanced-
version of the revised data set as per [75]. To create the balanced data set, the random
under-sampling technique was applied and a balanced data set was generated comprising
1139 records of patients cured of TB and 1139 mortalities. The data set was then split
between training and validation (70%) and testing (30%).

For both scenarios, the randomized search hyperparameter optimizer was applied
using the parameters and configurations available in the sci-kit learn library for Python
(https://scikit-learn.org/stable/supervised_learning.html#supervised-learning (accessed
on 14 April 2021)). The randomized search technique set up a grid of hyperparameter
values and selected random combinations to train a given model [76]. Randomized search
can outperform a grid search [76], especially if only a small number of hyperparameters
is used to compare the performance of the machine learning model. Having selected
the hyperparameter configuration of each model, the models were trained as explained
previously and the average of the F1-macro metric was calculated.

The Wilcoxon hypothesis test was performed to eliminate models with similar distri-
butions and compose the ensemble model. The Wilcoxon test is a non-parametric test used
to test the hypothesis that the probability distribution of the first sample is equal to the
probability distribution of the second sample [77]. We assumed an F1-macro greater than
or equal to 80% as the criterion to decide which model should be eliminated to compose the

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning


Informatics 2021, 8, 27 8 of 17

ensemble model. By eliminating models with similar distributions or with a performance
below 80%, the overall performance of the ensemble model would improve. Consequently,
an ensemble model was built with the best models using a stacking classifier. The stacking
classifier stacked the outputs of the selected models and used an LR classifier to calculate
the final prediction, similar to [78]. Finally, given the best models, the test was performed 10
times and the accuracy, precision, sensitivity, specificity, F1-score, AUC ROC and F1-macro
average are calculated for evaluation.

5. Results

All the computation processing (database preprocessing, feature selection, grid search,
and training and test of the models) was done using an AWS instance, i3en.6xlarge. The
configuration included 24 3.1 GHz vCPUs, core turbo Intel Xeon Scalable processors, and
192 GB of memory.

5.1. Preprocessing and Feature Selection

As described in Section 4, after applying the data preprocessing steps, the revised data
set comprised 38 fields. As discussed earlier, Rocha et al. [44] used the same SINAN-TB
data set with 17 fields selected by a specialist to predict TB. In our work, for the application
of the feature selection techniques, the same number of fields was defined. We executed the
four feature selection techniques, SFS, SBS, SFFS and SBFS, under k-fold cross-validation
(with k = 10), using the nine machine learning models.

Table 1 presents the average of the F1-score of each feature selection technique. DT
presented the best F1-score (96.00%) when using the SFS technique; LDA presented the
best F1-score (95.31%) when using the SBS technique; KNN, NB, SVM and RF presented
the best F1-score, 95.40%, 94.39%, 95.23% and 94.84%, respectively, when using the SFFS
technique; and LR, GB and MLP presented the best F1-score, 95.31%, 96.30% and 95.72%,
respectively, when using the SBFS technique. It is worth noting that SFFS achieved the best
result for four of the nine models, followed by SBFS.

Table 1. Results of F1-score (in %) and the respective standard deviation related to the feature
selection techniques for each machine learning model.

Feature Selection TechniquesModel SFS SFFS SBS SBFS

LR 94.71 (±0.007) 94.88 (±0.007) 95.30 (±0.000) 95.31 (±0.000)
LDA 94.94 (±0.007) 95.13 (±0.006) 95.31 (±0.001) 95.30 (±0.001)
KNN 95.17 (±0.004) 95.40 (±0.002) 93.79 (±0.004) 93.89 (±0.005)

DT 96.00 (±0.002) 95.99 (±0.002) 95.71 (±0.001) 95.70 (±0.001)
NB 94.11 (±0.003) 94.39 (±0.001) 90.15 (±0.004) 90.15 (±0.004)

SVM 95.22 (±0.002) 95.23 (±0.002) 94.37 (±0.002) 94.38 (±0.002)
GB 96.04 (±0.003) 96.02 (±0.003) 96.29 (±0.000) 96.30 (±0.000)
RF 94.63 (±0.006) 94.84 (±0.006) 92.69 (±0.005) 92.74 (±0.005)

MLP 95.51 (±0.004) 95.55 (±0.003) 95.70 (±0.000) 95.72 (±0.000)

While the SFFS and SBFS techniques presented the best results for most of the machine
learning models, these techniques are computationally more costly. While SFS took 8.69 h
to run all the experiments, SFFS took 26.15 h. Similarly, while SBS took 20.09 h, SBFS took
30.97 h.

For each machine learning model, we selected the feature selection technique that
produced the best F1-score. These are presented with respective fields in Table 2. The
field “DIAS” (days of hospitalization for which the patient was treated ) was selected by all
models. “BACILOSC_6” (result of sputum smear microscopy for bacillus alcohol resistance)
and “IDADE” (patient age) were the fields selected by eight and seven of the machine
learning models, respectively. On the other hand, the fields “BACILOS_E2” (results of
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sputum smear microscopy for acid-resistant bacillus performed on a sample for diagnosis)
and “ESTREPTOMI” (Etionamide drugs) were selected by only one model.

Table 2. Features selected through the best F1-score average of feature selection techniques.

SBFS SBS SFFS SFS SFFS SFFS SBFS SFFS SBFS

LR LDA KNN DT NB SVM GB RF MLP

CS_SEXO CS_SEXO FORMA CS_SEXO CS_SEXO CS_SEXO TRATAMENTO CS_SEXO RAIOX_TORA

CS_RACA TESTE_TUBE AGRAVDIABE CS_RACA CS_RACA CS_RACA AGRAVAIDS CS_RACA AGRAVALCOO

TRATAMENTO FORMA AGRAVDOENC TRATAMENTO TRATAMENTO TRATAMENTO AGRAVALCOO TRATAMENTO BACILOSC_E

RAIOX_TORA AGRAVAIDS BACILOSC_O TESTE_TUBE RAIOX_TORA AGRAVAIDS BACILOSC_O RAIOX_TORA CULTURA_ES

FORMA AGRAVALCOO RIFAMPICIN AGRAVDOENC TESTE_TUBE AGRAVALCOO CULTURA_ES FORMA HIV

AGRAVDIABE AGRAVDIABE ISONIAZIDA RIFAMPICIN AGRAVAIDS AGRAVDIABE HIV AGRAVDIABE RIFAMPICIN

BACILOSC_E AGRAVOUTRA ETAMBUTOL ETAMBUTOL AGRAVALCOO AGRAVDOENC ETAMBUTOL AGRAVDOENC ISONIAZIDA

BACILOSC_O BACILOSC_E ESTREPTOMI PIRAZINAMI AGRAVOUTRA BACILOSC_E PIRAZINAMI AGRAVOUTRA ETAMBUTOL

RIFAMPICIN BACILOS_E2 PIRAZINAMI OUTRAS BACILOSC_E BACILOSC_O ETIONAMIDA CULTURA_ES TRAT_SUPER

ETAMBUTOL BACILOSC_O ETIONAMIDA DOENCA_TRA CULTURA_ES HIV BACILOSC_1 HIV BACILOSC_1

BACILOSC_1 CULTURA_ES OUTRAS BACILOSC_2 HIV BACILOSC_3 BACILOSC_2 BACILOSC_1 BACILOSC_2

BACILOSC_2 DOENCA_TRA DOENCA_TRA BACILOSC_3 OUTRAS BACILOSC_4 BACILOSC_3 BACILOSC_2 BACILOSC_4

BACILOSC_3 BACILOSC_6 BACILOSC_4 BACILOSC_4 DOENCA_TRA BACILOSC_5 BACILOSC_5 BACILOSC_3 BACILOSC_6

BACILOSC_4 AGRAVDROGA BACILOSC_5 BACILOSC_5 AGRAVDROGA BACILOSC_6 BACILOSC_6 BACILOSC_6 TPUNINOT

BACILOSC_6 AGRAVTABAC BACILOSC_6 BACILOSC_6 AGRAVTABAC TPUNINOT TPUNINOT TPUNINOT AGRAVTABAC

DIAS DIAS AGRAVDROGA AGRAVTABAC DIAS DIAS DIAS DIAS DIAS

IDADE IDADE DIAS DIAS IDADE IDADE IDADE IDADE IDADE

5.2. Results of the Randomized Search Technique

Table 3 presents the best configuration for each model achieved by the randomized
search technique for both scenarios (imbalanced and balanced data sets) assuming the
F1-macro as evaluation metric. These configurations were used to execute the training and
testing of the models.

Selected hyperparameters may change when using imbalanced and balanced data
sets. SVM, GB, RF and MLP models kept the same hyperparameter configuration in
both cases. For more details about the parameters and configurations, please refer to the
scikit-learn library.

5.3. Model Training and Validation

Figure 2a presents the results of the model training based on the F1-macro metric
when using the imbalanced data set. The model that obtained the best mean F1-macro was
GB with 91.14%, and the poorest performing was SVM with 48.88%. Figure 2b presents the
results of the model training based on the F1-macro metric when using the balanced data
set. The model that obtained the best mean F1-macro was GB with 94.52%, and the poorest
performing was NB with 62.39%.

Based on the F1-macro results, the Wilcoxon test was applied to identify the models
with similar distributions and discard the models with the lowest results. When using
the imbalanced data set, KNN, DT and RF models presented similar distributions, and
then KNN and DT were discarded. LR, LDA, NB and SVM models were discarded as they
had the lowest results. Therefore, RF, GB and MLP models were selected to compose the
ensemble model based on the imbalanced database. Figure 3a presents the results of these
models based on the F1-macro and the imbalanced data set.

With respect to the balanced data set, the following models presented similar distri-
bution: LR and LDA; KNN, DT and MLP; GB and RF. In this case, LR, KNN, MLP and
RF models were discarded. The LDA and NB models were discarded due low F1-macro
results. Three models were selected to compose the ensemble model in this case: DT, SVM
and GB. Figure 3b presents the results when using the balanced data set.
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Table 3. Hyperparameter configuration selected by the randomized search technique.

Model Parameters
Randomized
Search Using
Imbalanced Data Set

Randomized
Search Using
Balanced Data Set

LR Penalty none l1
Solver newton-cg liblinear
Multiclass ovr auto

LDA Solver svd svd
Shrinkage None None
Priors None None

KNN Weights distance distance
Algorithm ball_ree ball_ree
Leaf size 30 30
Metric minkowski minkowski
Parameter metric None None
Number of jobs: −1 −1

DT Criterion entropy entropy
Splitter best best
Minimum samples split 3 4
Minimum samples leaf 5 4
Maximum features sqrt log2

SVM Kernel rbf rbf
Gamma scale scale

GB Loss exponential exponential
Criterion friedman_mse friedman_mse
Number of estimators 300 300
Minimum samples split 3 3
Minimum samples leaf 4 4
Maximum depth 9 9
Maximum feature log2 log2

RF Criterion entropy entropy
Number of estimators 200 200
Minimum samples split 2 2
Minimum samples leaf 1 1
Maximum depth 6 6
Maximum feature log2 log2
Maximum samples leaf 4 4
Bootstrap False False
OOB Score False False
Weight class balanced balanced

MLP Hidden layers 2 2
Neurons in each layer 20 20
Activation functions logistic logistic
Solver adam adam
Learning rate invscaling invscaling
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(a) Imbalanced data set (b) Balanced data set

Figure 2. F1-macro results for the machine learning model training when using the (a) imbalanced
and (b) balanced data set

(a) Imbalanced data set (b) Balanced data set

Figure 3. Ensemble model training and associated models based on the (a) imbalanced and (b) bal-
anced data. sets.

Again, the Wilcoxon hypothesis test was executed. For the imbalanced data set, no
model had a similar distribution, so all models remained for the testing step. The ensemble
was the best model (F1-macro mean of 91.69%). For the balanced data set, no model had a
similar distribution, so DT, SVM and GB remained for the testing step. The ensemble was
the best model (F1-macro mean of 94.52%). Results are summarized in Table 4.

Table 4. F1-macro results (in %) and associated standard deviation for model training.

Model Imbalanced Data Set Balanced Data Set

LR 55.99 (±0.043) 77.82 (±0.062)
LDA 64.49 (±0.040) 76.40 (±0.060)
KNN 86.07 (±0.029) 91.70 (±0.035)

DT 88.37 (±0.027) 91.93 (±0.047)
NB 53.61 (±0.027) 62.39 (±0.076)

SVM 48.88 (±0.006) 89.76 (±0.039)
GB 91.14 (±0.024) 94.52 (±0.031)
RF 86.89 (±0.021) 94.08 (±0.031)

MLP 89.67 (±0.025) 91.88 (±0.034)
Ensemble 91.69 (±0.022) 94.47 (±0.014)

5.4. Testing the Models

Using the models that presented the best performance during the training step, we
test them using the 30% of the data set not used during model training. Tables 5 and 6
present the test results of each model for imbalanced and balanced data sets, respectively.
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Table 5. Results of metrics (in %) and associated standard deviation for model testing using the
imbalanced data set.

Imbalanced Data Set

Metric GB RF MLP Ensemble

Accuracy 98.47 (±0.000) 97.05 (±0.000) 98.11 (±0.000) 98.57 (±0.000)
Precision 98.90 (±0.000) 99.58 (±0.000) 98.80 (±0.001) 99.02 (±0.000)
Sensitivity 77.12 (±0.008) 91.50 (±0.001) 75.05 (±0.021) 79.67 (±0.003)
Specificity 99.50 (±0.000) 97.32 (±0.000) 99.22 (±0.000) 99.48 (±0.000)
F1-score 99.20 (±0.000) 98.43 (±0.000) 99.01 (±0.000) 99.25 (±0.000)
AUC ROC 88.31 (±0.004) 94.41 (±0.000) 87.13 (±0.010) 89.57 (±0.001)
F1-macro 90.76 (±0.002) 86.65 (±0.002) 89.12 (±0.004) 91.46 (±0.001)

Table 6. Results of metrics (in %) and associated standard deviation for model testing using the
balanced data set.

Balanced Data Set

Metric DT SVM GB Ensemble

Accuracy 94.14 (± 0.017) 95.30 (± 0.000) 95.97 (± 0.001) 95.80 (± 0.004)
Precision 99.56 (± 0.001) 99.17 (± 0.000) 99.86 (± 0.000) 99.85 (± 0.000)
Sensitivity 91.54 (± 0.023) 83.38 (± 0.000) 97.22 (± 0.001) 97.12 (± 0.002)
Specificity 94.26 (± 0.018) 95.88 (± 0.000) 95.91 (± 0.001) 95.74 (± 0.004)
F1-score 96.83 (± 0.001) 97.50 (± 0.000) 97.84 (± 0.000) 97.75 (± 0.002)
AUC ROC 92.90 (± 0.016) 89.63 (± 0.000) 96.56 (± 0.000) 96.43 (± 0.002)
F1-macro 78.29 (± 0.039) 79.76 (± 0.000) 83.40 (± 0.003) 82.92 (± 0.011)

For the imbalanced data set, the RF and ensemble model presented the best mean for
three metrics. RF performed better in precision (99.58%), sensitivity (91.50%) and AUC
ROC (94.41%), while the ensemble model performed better in accuracy (98.57%), F1-score
(99.25%) and F1-macro (91.46%). The best specificity was obtained by the GB, and the MLP
performed worst across all metrics tested.

When using the balanced data set, the GB model performed best of those tested.
Notwithstanding this, it is worth noting that the DT, SVM and ensemble models presented
very similar results to the GB. The ensemble model performance can be explained by its
composition based on the DT, SVM and GB models.

5.5. Discussion

The impact of imbalanced and balanced data sets on model performance during the
training phase can be easily observed (Figure 2a). In general, models trained with the
balanced data set achieved superior results (Figure 2b). When the models were tested
(Table 5), the GB and ensemble models (composed of the RF, GB and MLP models) pre-
sented the best performance in relation to the F1-macro metric using the imbalanced data
set, and the GB model presented the best sensitivity when using the balanced data set.

For discussion purposes, we selected a confusion matrix for each model as an example.
Table 7 presents the confusion matrices of the best performing models when using the
imbalanced data set i.e., GB, RF, MLP and ensemble. The ensemble model classified
6700 cases correctly as cured TB patients and 302 as TB deaths; 29 cases were incorrectly
classified as cured TB patients and 174 cases incorrectly classified as mortalities. The RF
model presented the worst FP results, predicting 178 TB mortalities as cured TB patients.
GB was the model with the worst FN results, predicting 71 TB-related mortalities as cured
TB patients.

Table 8 presents the confusion matrices of the models that presented the best per-
formance when using the balanced data set. As the GB model presented the best results
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(see Table 6), this is reflected in its confusion matrix. In this example, the GB model classi-
fied 6596 cases correctly as cured TB patients and 322 cases as TB mortalities; 278 cases were
incorrectly classified as mortalities and only nine incorrectly classified as cured TB patients.
The model with the best FP results was the DT with 617 cases predicted as TB-related
mortalities. The model with the best FN results was the SVM with 55 deaths predicted as
cured TB patients.

Table 7. Confusion matrix of Gradient Boosting (GB), Random Forest (RF), Multi-Layer Perceptron
(MLP) and ensemble models using the imbalanced data set.

GB
Predicted class

RF
Predicted class

Negative
(cured)

Positive
(death)

Negative
(cured)

Positive
(death)

True class

Negative
(cured) 6840 34

True class

Negative
(cured) 6696 178

Positive
(death) 71 260 Positive

(death) 28 303

MLP
Predicted class

Ensemble
Predicted class

Negative
(cured)

Positive
(death)

Negative
(cured)

Positive
(death)

True class

Negative
(cured) 6808 66

True class

Negative
(cured) 6700 174

Positive
(death) 67 264 Positive

(death) 29 302

Table 8. Confusion matrix of Decision Trees (DT), Support Vector Machine (SVM), Gradient Boosting
(GB) and ensemble models using the balanced data set.

DT
Predicted class

SVM
Predicted class

Negative
(cured)

Positive
(death)

Negative
(cured)

Positive
(death)

True class

Negative
(cured) 6257 617

True class

Negative
(cured) 6591 283

Positive
(death) 21 310 Positive

(death) 55 276

GB
Predicted class

Ensemble
Predicted class

Negative
(cured)

Positive
(death)

Negative
(cured)

Positive
(death)

True class

Negative
(cured) 6596 278

True class

Negative
(cured) 6594 280

Positive
(death) 9 322 Positive

(death) 10 321

These confusion matrices can help explain the earlier discussion regarding the perfor-
mance metrics. In the imbalanced data set, the RF and ensemble models achieved relatively
strong results. For the balanced data set, the GB model outperformed all the other models.
When comparing the results of the balanced and imbalanced data sets, we found the en-
semble model presented the best F1-macro score. However, in the context of TB prognosis,
this involves the possibility of patient TB-mortality if untreated, an unacceptable outcome.
The performance of the GB model when using the balanced database is noteworthy-it
achieved 97.50% in sensitivity on average, or as seen in Table 8, it classified only nine
deaths erroneously as a TB patient. In a TB prognosis, treating a patient who subsequently
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dies from TB is more acceptable than not treating a TB patient who may recover. As such,
in our opinion, the GB presents the best performance for the TB-mortality prognosis use
case in balanced data set, and the ensemble model presents the best performance for the
TB cured prognosis in the imbalanced data set.

As discussed, comparisons with previous studies are difficult due to the difference
and availability of reference data sets. For example, Kalhori et al. [42] used a data set
with 6450 cases of TB from Iran to classify the outcome of a course of TB treatment. Their
results suggested their DT model presented the best performance with 74.21% accuracy,
74.20% sensitivity, 75.30% precision, 74.60% F1-score, and 97.00% of AUC ROC. Our DT
model outperformed their DT model in all these metrics and in both data set scenarios
(imbalanced and balanced), with exception of the AUC ROC where our result was lower at
92.90%. Regarding the other models, our SVM and MLP also presented better performance
than the respective models evaluated by Kalhori et al. [42].

6. Conclusions

There is an established literature based on the use of machine learning for the detection
of TB diagnosis. In contrast, there is a dearth of research on the use of machine learning for
the prognosis of TB, a critical factor in effective TB treatment. In this paper, we addressed
an important gap in the literature by benchmarking several machine learning models to
aide TB prognosis and associated decision making. An ensemble model was also proposed
considering heterogeneous classifiers; it presented the best performance.

We evaluated two data set scenarios—an imbalanced data set and a balanced data
set. For the former, the GB model achieved the best mean specificity at 99.50%. The RF
model achieved the best precision mean at 99.58%, sensitivity at 91.50%, and AUC ROC
at 94.41%. An ensemble model composed of RF, GB and MLP models achieved the best
mean accuracy at 98.57%, F1-score at 99.25%, and F1-macro at 91.45%. When using the
balanced data set, the GB model achieved the best mean in all metrics: 95.97% accuracy,
99.86% precision, 95.91% specificity, 97.22% sensitivity, 97.84% F1-score, 96.56% AUC ROC,
and 84.40% F1-macro. Based on these results, data set preprocessing impacted directly on
the performance of the models.

For future research, we plan to study one-class classification methods and analyze
the usage of other algorithms, including deep learning and deep learning ensembles, to
improve the hyperparameter tuning for models and the selection of the best fields to
be used as the input for the models. Hemingway et al. [10] raises significant issues on
the quality of prognosis research and underlying biases. Machine learning can be used
to augment human decision making. As such, we also plan to develop a framework
composed of the best models to assist health professionals in the treatment of TB. This
framework will inform decision support system in the form of a mobile application so that
physicians, particularly those working remotely in the field, can use our models to support
their decisions regarding post-diagnosis treatment.
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