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ABSTRACT Access to medical data is highly regulated due to its sensitive nature, which can constrain
communities’ ability to utilize these data for research or clinical purposes. Common de-identification
techniques to enable the sharing of data may not provide adequate privacy in every circumstance.
We investigate the ability of Generative Adversarial Networks (GANs) to generate synthetic, and more
significantly, multichannel electrocardiogram signals that are representative of waveforms observed in
patients to address these privacy concerns. Successful generation of high-quality synthetic time series data
has the potential to act as an effective substitute for actual patient data. For the first time, we demonstrate a
range of novel loss functions using our multivariate GAN architecture and analyse their effect on data quality
and privacy. We also present the application of multivariate dynamic time warping as a means of evaluating
generated time series. Quantitative evidence demonstrates that the inclusion of a penalisation coefficient
(Dynamic Time Warping) in the loss function enables our GAN to outperform the other generative models
and loss functions explored by 4.9% according to our metrics. This allows for the generation of data that is
more representative of the training set and diverse across generated samples, all whilst ensuring sufficient
privacy.

INDEX TERMS Generative adversarial networks, ECG, time series.

I. INTRODUCTION

Sharing and using inherently sensitive medical data is
becoming increasingly complex, with tightening restrictions
that lead to a significant challenge in clinical research and
development. As a result, traditional modes of data sharing
have become hampered, and efforts are being made by the
artificial intelligence (AI) community to overcome these
restrictions in ways that respect privacy sensitivities. This is
a significant challenge because the development of effective
Al requires access to extensive datasets. Such data privacy
concerns present researchers and clinicians with an additional
set of obstacles in their pursuit of Al-enhanced innovations.
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Addressing these obstacles raises ethical issues, especially
regarding how data can be used while ensuring privacy is
protected, and public trust is maintained. This poses policy
and regulatory challenges for lawmakers and regulators. They
must balance safeguarding personal data while not retarding
vital innovation and research to improve patient outcomes.

Practitioners with access to sought after data often
find themselves working through complex data privacy
frameworks and discover that sharing and publishing the
information available via the data is highly challenging.
For example, personal sensitive data such as medical data
intended for secondary purposes like clinical training or
research requires anonymisation following its approval for
dissemination.

Common methods for the de-identification of data are
generalisation, randomisation, or pseudonymisation [1].
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However, it has been shown that the de-identification of
medical data does not guarantee privacy protection of all
individuals in the dataset, and it is possible to re-identify
individuals by linkage of data from other sources or residual
information [2]. This may result in the inability to share data
with further research or clinical institutions. In addition, there
is often a shortage of available training data for clinicians and
researchers alike, significantly impeding scientific progress,
particularly in developing countries.

The generation of synthetic data is one such solution to the
presented problem. The goal here lies in producing synthetic
physiological data representative of real data gathered during
the data collection experiment. However, as stated previously,
it is important to note that substantial amounts of data
are required to successfully train deep learning models for
this purpose. Furthermore, protecting the privacy of the
underlying real dataset must also be observed [3], [4].

If these problems can be addressed and overcome, the
generated data can be published without breaching privacy
and used in further training and research. Increasing access
to this type of data will encourage scientific studies and
facilitate the upskilling of clinicians, which will in turn aid in
preventing or limiting chronic illnesses. This can contribute to
a shift in the treatment paradigm from reactive to preventative
healthcare.

Capitalising on recent advancements in machine learning
and, in particular, deep learning could pave the way for the
future of sharing data and disseminating research. The work
described in this paper is part of a larger-scoped effort to
develop artificial intelligence for use in clinical training and
upskilling of medical professionals.

Delaney and Brophy [5], [6] demonstrated that realistic
synthetic physiological signals could be generated from a
dataset of real signals using deep learning methods. However,
that work was limited to single time series. We extend
this by exploring the possibility of generating multivariate,
strongly-coupled physiological time series and investigating
using appropriate evaluation metrics to obtain characteristics
in the output present in the training dataset. This is an
essential step as multivariate medical time series is not
simply a collection of independent time series, each of
which can be synthesised independently. An extensive deep
coupling between the signals exists and is exemplified in
multi-lead electrocardiography (an electrical measure of
cardiac activity), also known as ECG. A multi-lead ECG
involves measuring the heart’s electrical activity via several
projections over the body’s surface via differential bipolar
electrode sets. This produces a tightly coupled time series set
that can reconstruct an approximation of the dipole dynamics
associated with current flow in the beating heart. This paper
focuses on the challenge of synthesising such data using our
novel objective functions.

In this paper, we demonstrate the contributions of our
method in generating realistic, dependent, multivariate
physiological signals while maintaining sufficient levels
of privacy in the training dataset. Using the Multivariate
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GAN (MVGAN) architecture developed in our preliminary
work [6], we explore novel loss functions and their effects
on generated data quality. We demonstrate our novel
GAN, objective function and evaluation metrics capable of
improved multivariate time series data generation for the first
time. Finally, we benchmark our generative model against
other classical generative models.

Il. RELATED WORK

A variety of methods have been used in the past to generate
synthetic data. In the medical domain, research has mainly
focused on the generation of synthetic Electronic Health
Records (EHR) [3], [7]. Of particular relevance for our
research are those methods which generate synthetic time
series data. Previous approaches include the creation of
dynamical models to produce synthetic electrocardiogram
signals [4]. These models consist of three coupled ordinary
differential equations with the user required to specify the
characteristics of the heart rate signals to be generated.
Many early methods require expert domain knowledge
to generate synthetic data. More recent developments in
the machine learning space remove this dependency. For
example, WaveNet implemented an auto-regressive neural
network that successfully generated synthetic music and
speech [8]. In other research, Dahmen and Cook (2019)
developed SynSys to produce realistic home sensor data using
hidden Markov models and regression models [9].

A significant breakthrough in synthetic data generation
was facilitated by the introduction of Generative Adversarial
Networks (GANs). GANs do not require input from domain
experts and they can be designed to preserve privacy of the
training datasets. They were first proposed in the seminal
paper by Goodfellow in 2014. A multi-layer perceptron
was used for both the discriminator and the generator [10].
Radford et al. (2015) subsequently developed the deep
convolutional generative adversarial network (DCGAN) to
generate synthetic images [11]. A recurrent GAN (RGAN)
was first proposed in 2016. The generator contained a
recurrent feedback loop that used both the input and hidden
states at each time step to generate the final output [12].
Recurrent GANs often utilise Long Short-Term Memory
neural networks (LSTMs) in their generative models to
avoid the vanishing gradient problem associated with more
traditional recurrent networks [13]. Since their inception in
2014, GANs have shown great success in generating high-
quality synthetic images which are indistinguishable from the
actual images [14]-[16].

While the focus has been on developing GANs for
improved image generation, there has been a movement
towards using GANSs for time series and sequence genera-
tion [17]. One such implementation involved the generation
of polyphonic music as real-valued continuous sequential
data using an LSTM in both the generator and discrimina-
tor [18]. In contrast, Yu et al. (2017) generated synthetic
music by representing 88 distinct pitches with discrete
tokens [19]. This GAN, known as SeqGAN, contained an
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FIGURE 1. Generative adversarial network.

LSTM in the generator with a CNN in the discriminator
and outperformed alternative approaches for generating data
sequences. GANs were also used to generate single-channel
electroencephalogram (EEG) data for motor movement in
both the left and right-hand [20]. We are aware of one
work that implements both a GAN and a conditional
GAN (CGAN) to generate real-valued medical time series
data [21]. A CGAN provides additional information to
the generator and the discriminator to aid the creation
of synthetic data [22]. More recent attempts to generate
synthetic ECG used bidirectional LSTMs in the generator and
convolutional neural networks in the discriminator [5], [23].
While these works are focused on the generation of medical
data, they generate independent, single-channel time series
data. Extending on this, we develop a GAN architecture
for dependent multivariate medical time series generation.
Furthermore, we improve the quality of our generated
multichannel ECG through the development of novel loss
functions. We compare them with other common loss
functions that have been previously explored in the time
series GAN literature [17].

lIl. GENERATIVE ADVERSARIAL NETWORKS

A GAN consists of a generator and a discriminator. The
generator G is a neural network that takes random noise
z € R” and generates synthetic data. The discriminator D
is a neural network that determines if the generated data is
real or fake. The generator aims to maximise the failure rate
of the discriminator while the discriminator aims to minimise
it, see Figure 1. The GAN model converges when the Nash
equilibrium is reached. The two networks are locked in a two-
player minimax game defined by the value function V(G,D)
(1), where D(x) is the probability that x comes from the real
data rather than the generated data [10].

me mgx V(G, D) = Ex~pyux)[logD(x)]
+E~p (o)llog(1 = D(G())] (1)
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IV. MULTIVARIATE DYNAMIC TIME WARPING

For a GAN to be considered successful, not only should it
converge during training, but it should also learn the distri-
bution of the training data. Dynamic Time Warping (DTW)
is used to measure the similarity or distance between
two time series sequences and can be implemented as a
univariate sequential data classifier. The single-dimensional
DTW cumulative distance function defined in (2) is used to
find the path that minimises the warping cost. Here d(g;, c;)
is the squared Euclidean distance between the i data point of
the univariate time series Q and j"* data point of the univariate
time series C. D(i,j) represents the n-by-n matrix constructed
by the squared Euclidean distance between points g; and c;
where n is the length of the sequence.

DG, j) =d(qi, ¢j) +min{D(i —1,j — 1),
D(i—1,j)).DG.j—D} (2

To adapt to the multivariate Dynamic Time Warp-
ing (MVDTW) case we redefine d(q;, ¢;) as the cumulative
squared Euclidean distances of M data points as in [24].
M is defined as the number of time series that make up the
multi-dimensional time series; for this work, the number of
individual time series is two (M = 2). Q and C are two
separate multivariate time series, both with M = 2. g; ,, is the
i data point in the m™ dimension of one multivariate time
series Q and ¢, is the j™ data point in the m™ dimension of
the other multivariate time series C, d(g;, ¢j) now becomes:

M
d(gi ) = Y _(qim — jm)’ 3)

m=1

Therefore we can now define the cumulative distance
for MVDTW as in equation (4). This allows us to find
the distance that minimises the warping path and calculate
MVDTW. In turn, we can calculate the similarity between
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FIGURE 2. Block diagram of discriminator architecture.

our generated data and training data.

M
Z(‘]i,m - stm)Z
m=1
+min{D(i —1,j— 1), D@ — 1,)), D(i,j — 1)}
4)

DG, j) =

V. MODEL DESIGN

This section presents our MVGAN model for generating
synthetic, dependent, multivariate physiological time series
data. Structurally, our model builds on the architectures
of our previous preliminary work. We increase the limited
sequence length of 187 in [5], [6] to a more realistic
length of 500 sample points. This yields a time series
more representative of digitised ECG for the time windows
considered (5 seconds at a realistic sampling rate). This
length is arbitrary and can be varied through the discriminator
to produce data sequences of differing sizes. In terms of
generating multichannel data, we increase the number of
features available at the input and output of our model. This
enables the model to generate realistic, coupled multivariate
time series data; this has not been done in previous
work. Extending on the earlier models, we also implement
2-dimensional convolution-pooling layers and include a
minibatch discrimination layer in the discriminator to prevent
mode collapse. The optimiser also has noise introduced
to its gradients to create a differentially private GAN
model (GAN-DP).

A. GENERATOR

The generator consists of a two-layer stacked LSTM with
50 hidden units in each layer and a fully connected layer
at the output. With the extra expected features at the input
of the torch.nn.LSTM class, this architecture facilitates the
generation of multivariate time series data and can scale up
to more channels as needed.

B. DISCRIMINATOR

The discriminator is a four-layer 2-dimensional convolutional
neural network, a minibatch discrimination layer, a fully
connected layer and a sigmoid activation function. Noise was
added to the gradient of the optimiser to ensure differential
privacy for the GAN-DP model. See Figure 2 for a block
diagram of the discriminator and Table 1 for an example of
the model parameters.

VI. LOSS FUNCTIONS

Keeping with the same architecture for the MVGAN,
we explore novel loss functions by implementing the Loss
Sensitive GAN’s (LS-GAN) objective function [25] and
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TABLE 1. Parameters for the convolution-pooling pairs in the
discriminator.

Layer | InputSize | Feature Maps [ Filter [ Stride | Output Size |

Cl 2%187 3%2 3 1 3%2*185
P1 3%2%185 3%2 3 1 3%2%183
Cc2 3%2%183 5%2 3 1 5%2%181
P2 5%2*181 5%2 3 2 5%2*90
C3 5%2%90 8%2 3 2 8%2%44
P3 10%2*44 8%2 3 2 8#2%21
C4 10%2%21 10*2 5 2 10%2*9
P4 10%2%9 10*2 5 2 10%2%3

tailoring it to our multivariate time series generation problem.
When the distance between a generated and real multivariate
sample becomes small, the GAN will stop increasing the
difference LO(zG)—L6O(x) between their losses. The LS-GAN
optimizes L6 and G¢ alternately by seeking an equilibrium
(04,%+) such that 8, minimizes (5).

S0, ¢™) = Ex~pyuav)[Lo(x) + 4]
FEx~piara) ~p ) [AX, 26) + Lo (x) — Lo(z6)]
)
In exploring other loss functions, we investigate the
LSGAN with (6) and without (7) an additional penalisation
term in the discriminator. This term is the MVDTW,
and it penalises the generator if the distance between the
multivariate real and generated samples is large. This loss
term holds if 1 < MVDTW(x, G(z)). The generator’s
objective function remains unchanged (8). Here, a is the label
for the generated samples, b is the label for the real samples,
and c is the hyperparameter that G wants D to recognise the
generated samples as real samples.

min Visoan (D) = 1/2 % Exwp o [(D() = b)’]

+1/2 % Eonp 0 [(D(G(2) — a)?]
(©6)
min VisGan—prw (D) = 1/2 5 Banp gy [(DCX) = b)*]

+1/2 % Epopp, o [(D(G(2) — @)*]
+EXdiam(X),z~pz(z)
x[1 = 1/log(MVDTW (x, G(2))]
@)
min VisGan(G) = 1/2 % Bz, [(D(GR) — )*1 (8)

The following objective function (9,10) takes the MVDTW
of the probability that a sample is either real or fake along
with the adversarial ground truth. The adversarial ground
truth is an array of either 0’s or I’s. In this case, the
MVDTW computes the distance between the probabilities
and ground truth. In essence, this function computes the
squared euclidean distance, and it is retained in this paper
as it produces both qualitatively plausible and quantitatively
competitive samples.

len Vorwean (D) = 1/2 % MVDTwapdam(x)[(D(x), valid)]
+1/2 % MVDTW ~p_(2) [(D(G(2)), fake)]
)
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(10)

Given these loss functions we now have 5 MVGAN
variants as follows:

1) Least Squares GAN (LSGAN) (6), (8)

2) Least Squares GAN with DTW term (LSGAN-DTW)
(7), ()

3) GAN with DTW criterion (DTWGAN) (9), (10)

4) Loss Sensitive GAN (LS-GAN) (5)

5) Loss Sensitive GAN with DTW distance measure (LS-
GAN-DTW) (5)

VII. MATERIALS AND METHODS

A. DATASETS

Multichannel ECG records are signals from two or more
leads simultaneously and are frequently used in place of
single-channel ECG to give a more complete understanding
of the cardiac state. To demonstrate this MVGAN architecture
effectively generates multichannel ECG, we have used two
datasets in this work. The first openly available dataset
is the MIT-BIH Normal Sinus Rhythm (NSR) Database,
which includes 18 long-term ECG recordings of subjects
found to have had no significant arrhythmia. Recordings
were collected at Boston’s Beth Israel Hospital and digitised
at 128 Hz. Subjects include five men aged 26 to 45, and
13 women, aged 20 to 50.

The second dataset used is the publicly available MIT-
BIH Arrhythmia (ARR) dataset [26]. This database contains
48 half-hour long recordings of two-channel ambulatory
ECG. Both normal ECG and a range of uncommon but
clinically significant ECG irregularities are included in
this dataset. The authors of the data collection experiment
digitised the recordings at 360 Hz. Each of the records
was analysed by two cardiologists to provide reference
annotations for every beat. For this dataset, a modified limb
lead II (MLII) was used for recording one channel and a
unipolar chest lead, also called precordial, or V lead, was used
to measure the other channel. V1 was the most common chest
lead used, but in some cases, V2, V4, or V5 was used.

In both cases, the datasets are open source and freely
available on PhysioNet [27]. Figure 3 shows an example
trace of a classic ECG expected from the datasets. The
multichannel lead configuration illustrates the dependencies
present in the signals that we are seeking to replicate.

B. DATA PREPROCESSING

The datasets were pulled from PhysioNet and loaded using
Python’s wfdb library. Before training our GANS, the datasets
required preprocessing in R-peak alignment, segmentation
and downsampling. These steps are detailed in the following
subsections.

1) R-PEAK ALIGNMENT

Successfully generating dependent multivariate time series
requires the training data to retain its inherent dependencies.
Fortunately, the ECG channels are already concurrent before
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FIGURE 3. Lead configuration used for that data collection experiment
with corresponding expected ECG trace.

any preprocessing steps. An R-peak detector provided by
wfdb’s processing module was used on each of the ECG
records. Aligning an R-peak in the centre of every training
sample ensured a more effective training set as the QRS
complexes occupy similar locations in the sequences. The
QRS complex represents ventricular depolarisation and is a
combination of the Q, R and S waves in the cardiac cycle.

2) RESAMPLING

The signals were then resampled from their original sampling
frequency of 128Hz (NSR dataset) and 360Hz (ARR dataset)
to 100Hz using SciPy’s signal.resample.

3) SEGMENTATION

Following resampling, we normalised and segmented the
recordings into smaller samples, each consisting of 5 seconds
of data for both leads. Naturally, these samples will not
contain the same QRS complexes as the cardiac cycle has
natural variability. The length of the data was varied from our
previous works [5], [6] to demonstrate the scalability of our
GAN architecture. An example of the multichannel input data
is shown below in Figure 4 with an artificial offset on the lead
two for visualisation purposes.

C. TRAINING

For every loss function explored, the GAN was trained for
50 epochs. For each epoch, the entire training set was divided
into batches of 50 multivariate samples. The RMSprop
optimiser was used with a learning rate of « = 0.0002 as
it is computationally efficient and works well for this deep
learning model. The GAN variants were trained without
minibatch discrimination (MBD), and no mode collapse was
observed. We have shown previously that the inclusion of
MBD layers can be used with this architecture to prevent
mode collapse [6]. In addition, noise was introduced into
the gradients of the discriminator optimiser to ensure a
differentially private network [28].

D. EVALUATION

1) QUALITY

Maximum Mean Discrepancy (MMD) and multivariate
Dynamic Time Warping were used to assess generated data
quality. MMD is used here to reinforce the DTW results and
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FIGURE 4. Example of preprocessed multichannel ECG from NSR
dataset (top) and ARR dataset (bottom) used in training.

to demonstrate that the GAN iteratively learns and generates
data from a distribution more representative of the training
data distribution.

Multivariate, dependent DTW was calculated to determine
similarity measures across the dependent signals in the
generated data against the training data. We have shown in
the past that the MVDTW method can be used to evaluate
generated data from time series GANs [6]. Generated
data from the trained generator was compared against the
complete training set for evaluation. The evaluation results
were averaged over several runs of the model.

2) PRIVACY

Membership inference attacks observe the behaviour of our
GAN and attempt to predict examples that were used to
train it. A membership inference attack was run to assess
presence disclosure. Presence disclosure occurs if it is
possible to determine that a particular record was used to
train a GAN by observing the generated samples. The sample
size r was varied between [1000,10000] training records
while the threshold € ranged from [0.05,0.5] of the mean
Euclidean distance between all samples. A synthetic dataset
of 1000 generated samples was used for this test.

E. BENCHMARKING

To further evaluate and demonstrate the advantages of our
GAN, we benchmark our results against current, well-
known generative modelling methods. Using the same
training dataset, we implemented a multivariate Variational
Autoencoder (VAE) and LSTM as a means of generating the
type of multichannel data that the proposed GAN is capable
of generating. It is important to note that these methods are
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usually implemented with single-channel time series data.
Here we adopt these methods from a single time series to the
multichannel context for the first time to create a benchmark
comparison.

To compare how closely the distribution and distance of
the generated data match that of the training data, we imple-
mented two time series classifiers alongside our MVDTW
and MMD metrics. Support Vector Classification (SVC)
and LSTM were the two classifiers of choice. We classify
the generated and training data using these models; a
classification rate closer to 0.5 demonstrates the classifiers
have difficulty distinguishing actual data from the generated
data. The poorer the performance of the classifier, the closer
the generated data is to the training data. We also compare
the data generated from our differentially private GAN to the
GAN without DP.

Following this, we run a membership inference attack on
the generated data for the GAN and GAN-DP to observe
what difference, if any, the differential privacy offers. This
series of experiments allows us to understand which model
generates realistic multivariate time series signals and which
models preserve the underlying privacy of the training data
most effectively.

VIIl. RESULTS

In this section, we focus on the data generated by the
GAN without differential privacy unless explicitly stated
otherwise. Qualitative examples of high-quality generated
ECG for each GAN can be found from Figure 5 to
Figure 9. It becomes apparent that the LS-GAN-DTW
generates the best qualitative results for the NSR and ARR
datasets. The other variant models appear to have successfully
generated realistic, multivariate and dependent ECG data.
For visualisation purposes, an offset is again artificially
introduced to lead II (orange).

The results shown in Figures 5 through 9 demonstrate
that this architecture can successfully generate realistic ECG
samples. Lead I is shown in blue and lead II in orange with
an artificial offset introduced for visualisation purposes. It
appears that for the ARR dataset the GAN models generate
noisy ECG, but given the diverse nature of this dataset,
the GANs generate good quality data, as is evident in the
metrics that follow. However, a qualitative evaluation cannot
be considered a complete evaluation of GAN performance
due to the lack of a suitable objective function to measure data
quality. We address this challenge in the following section.

A. EVALUATION

1) QUALITY

Visually, and therefore from a qualitative perspective, the
multi-lead ECG synthesised is of high quality; however,
we augment this assessment through the development of
suitable objective quantitative metrics. We demonstrate the
results for these metrics in this section.
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FIGURE 5. Examples of generated multichannel ECG from LSGAN for NSR
dataset (top) and ARR dataset (bottom).
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FIGURE 6. Examples of generated multichannel ECG from LSGAN-DTW for
NSR dataset (top) and ARR dataset (bottom).

Maximum Mean Discrepancy results in Tables 2 and 3
demonstrate that as the GAN iterates through the training
process, it is generating data from a distribution that is more
representative of the training data distribution.

Results for DTW extended to multivariate time series
can be seen in Tables 2 and 3. The distance measures
between the dependent generated signals and the dependent
training signals are reducing throughout the training process,
indicating that the proposed GAN has successfully captured
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FIGURE 7. Examples of generated multichannel ECG from DTWGAN for
NSR dataset (top) and ARR dataset (bottom).
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FIGURE 8. Examples of generated multichannel ECG from LS-GAN for NSR
dataset (top) and ARR dataset (bottom).

the multivariate training data distribution. Although the
LSGAN appears to produce the best quantitative results
for the NSR dataset according to the metrics used in this
paper, the DTWGAN produces an improved MMD for
the ARR dataset. The best performing GAN is shown in
Figure 10. Over both datasets, normalising DTW and MMD
results, the best performing model is the LSGAN-DTW. The
LSGAN-DTW shows a 4.9% improvement over the LSGAN
and 4.5% improvement over the DTWGAN. As a result of
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FIGURE 9. Examples of generated multichannel ECG from LS-GAN-DTW
for NSR dataset (top) and ARR dataset (bottom).

TABLE 2. Metrics NSR.

. Evaluation
Modelling Method MVDTW | MMD
LSGAN 3.0598 0.0057
LSGAN-DTW 3.3069 0.0106
DTWGAN 3.5463 0.0203
LS-GAN 6.7879 0.0194
LS-GAN-DTW 3.3229 0.0086

TABLE 3. Metrics ARR.

. Evaluation
Modelling Method MVDTW [ NMMD
LSGAN 4.0101 0.0568
LSGAN-DTW 4.3463 0.0195
DTWGAN 4.5918 0.0157
LS-GAN 7.4448 0.1917
LS-GAN-DTW 4.2674 0.0747

the LSGAN-DTW being the overall best performing GAN,
the results that follow will be reported for this variant unless
explicitly stated otherwise.

2) PRIVACY

In terms of privacy, Figure 11 and Figure 12 shows the
presence disclosure (averaged over both datasets) for a
membership inference attack on the LSGAN-DTW and
LSGAN-DTW-DP, respectively. The number of training
records identified is very low (Recall), with approximately
0% correctly identified for € < 0.4 % mean distance. However,
as the threshold € increases above this boundary, the number
of records correctly identified as training records increases
independently of the sample size r for the GAN without
differential privacy. The GAN-DP preserves the training data
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FIGURE 10. Combined, normalised MMD and MVDTW results demonstrate

the best performing GAN across both datasets to be the LSGAN-DTW.
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FIGURE 12. Presence disclosure of GAN-DP following a membership
inference attack with increasing e.

privacy with no training records identified for ¢ < 0.5 *
mean distance. Precision is approximately 100% for all €
and r, which means once an attacker deems that a sample
originates from the training set, it is almost always correctly
attributed to the training set. Overall, this result tells us that
for our generated data, an attacker will have a challenging
time correctly identifying if a sample has originated from
the training set. Therefore, this GAN architecture and loss
function can generate data similar in distribution to the
training set while maintaining sufficient privacy of the data.
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TABLE 4. Classifier accuracy for the generative models averaged over
both datasets.

. Classifier Accuracy
Modelling Method SVC [ LSTM | Average
VAE 0.9 0.68 0.79
LSTM 0.95 0.62 0.78
LSGAN-DTW 04 0.62 0.51
LSGAN-DTW-DP 0.56 0.86 0.71

TABLE 5. Evaluation metrics for other generative models averaged over
both datasets.

. Evaluation Performance
Modelling Method NMVDTW [ MMD
VAE 47.14 0.96
LSTM 27.87 1.09
LSGAN-DTW 3.8266 0.01505
LSGAN-DTW-DP 13.36 0.29

B. BENCHMARKING RESULTS

These experiments offer a benchmark to compare our GAN to
other generative models. Table 4 shows the classifier accuracy
averaged over both datasets for each of the generative
models introduced in Section VII-E. SVC and LSTM were
the two time series classifiers used in these benchmarking
tests. A lower classifier accuracy indicates the classifier had
difficulty distinguishing the classes, which in this case were
the real and generated data. The modelling method that
generated the most similar data to the real data was the
LSGAN-DTW.

To complement the results shown in Table 4, evaluation
metrics were computed for each of the modelling methods.
MVDTW and MMD were calculated as in Section VIII-Al
and the results for which are shown in Table 5 below, averaged
over both datasets. Smaller distances for MVDTW reflect
time series that are more similar to each other and for MMD
indicate that the real and generated data distributions are
closer. As can be seen, LSGAN-DTW has lower distances for
MVDTW and MMD, followed by LSGAN-DTWGAN-DP.
This quantitatively demonstrates that the data generated using
the GANs are more representative of the real data compared
with that of the other generative and time series modelling
methods.

IX. DISCUSSION & CONCLUSION

The multivariate GAN proposed in this work has demon-
strated a capability for generating high-quality, dependent,
multichannel ECG signals. Our introduction of the DTW
penalisation term in the GAN objective function leads to
a more robust design that avoids mode collapse without
the need for MBD layers and results in the generation of
diverse multichannel time series. We also introduced a new
quantitative method for the assessment of output quality for
multichannel time series GANs, namely MVDTW. These
quantitative methods can complement qualitative evaluation
and, in the context of this paper, confirm the strong
performance of the proposed GAN. Ideally, rather than solely
relying on classical and novel metrics, we could enlist the
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help of a trained physician to classify samples of generated
data to determine how accurate the signal traces are, as we
have done in our previous work [29]. This forms an avenue
for our future work. Finally, given the nature of the data,
it would be interesting to implement conditional models to
generate normal and pathological data, which would enable
future researchers to generate ECG based on their needs.

To address the growing privacy concerns with sensi-
tive personal data such as physiological or medical data,
we demonstrated the ability of the LSGAN-DTW, and
in particular, the LSGAN-DTWGAN-DP, to sufficiently
conserve the confidentiality of the underlying training
data. Implementation of a membership inference attack
demonstrated promising results for data privacy with these
GANSs; protecting and isolating the training set from the
generated data ensures that a certain level of privacy is
maintained. With the addition of a differentially private GAN
architecture, we can generate data and ensure that the privacy
of the training data is not violated.

We also presented benchmark experimental results for
showcasing the advantages that the LSGAN-DTW holds over
other generative time series modelling methods. Most of
these well-known methods are tailored explicitly to univariate
signals, whereas our methods can be scaled up to multivariate
use cases, which include strong coupling between time series.
Not only is the proposed method capable of generating
multivariate medical time series data, but it also generates
data from a closer distribution and distance to that of the
training data in comparison to the other generative modelling
methods utilised in this paper.

Multivariate time series data presents an opportunity for
the application of GANs in tackling the data shortage
and sharing problem in medical research. In terms of our
motivating challenge, the successful generation of diverse
samples of multichannel and dependent physiological data
means we have the potential to use this technology for
clinical training and research applications. With that goal
in mind, we have shown, for the first time, a GAN design
capable of generating high-quality dependent multichannel
physiological time series with quality similar to that present
in clinically relevant data repositories.
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