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Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their

most significant impact has been in the area of computer vision where great advances have been made in

challenges such as plausible image generation, image-to-image translation, facial attribute manipulation, and

similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems

still poses significant challenges, three of which we focus on here. These are as follows: (1) the generation of

high quality images, (2) diversity of image generation, and (3) stabilizing training. Focusing on the degree to

which popular GAN technologies have made progress against these challenges, we provide a detailed review

of the state-of-the-art in GAN-related research in the published scientific literature. We further structure this

review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss

functions. While several reviews for GANs have been presented to date, none have considered the status of

this field based on their progress toward addressing practical challenges relevant to computer vision. Ac-

cordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for

tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status

of GAN research in terms of relevant progress toward critical computer vision application requirements. As

we do this we also discuss the most compelling applications in computer vision in which GANs have demon-

strated considerable success along with some suggestions for future research directions. Codes related to the

GAN-variants studied in this work is summarized on https://github.com/sheqi/GAN_Review.
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1 INTRODUCTION

Generative adversarial networks (GANs) are attracting growing interest in the deep learning com-
munity [45, 83, 107, 117, 128, 136]. GANs have been applied to various domains such as computer
vision [38, 72, 79, 89, 106, 130, 139, 152], natural language processing [28, 40, 59, 141], time-series
synthesis [15, 34, 39, 48, 75], semantic segmentation [37, 86, 112, 122, 155] and so on. GANs be-
long to the family of generative models in machine learning. Compared to other generative models,
e.g., variational autoencoders, GANs offer advantages such as the ability to handle sharp estimated
density functions, the ability to efficiently generate desired samples, the elimination of determin-
istic bias, and good compatibility with the internal neural architecture [44]. These properties have
allowed GANs to enjoy great success especially in the field of computer vision, e.g., plausible im-
age generation [22, 65, 110, 132, 150], image-to-image translation [23, 58, 82, 83, 90, 125, 153, 154],
image super-resolution [37, 74, 91, 92, 133], and image completion [21, 33, 77, 142, 146].

However, GANs are not without problems. The two most significant are that they are hard to
train and that they are difficult to evaluate. In terms of being difficult to train, it is non-trivial for
the discriminator and generator to achieve Nash equilibrium during training and it is common for
the generator to fail to learn well the full distribution of the datasets. This is the well-known mode
collapse issue. Lots of work has been carried out in this area [27, 68, 69, 78]. In terms of evaluation,
the primary issue is how best to measure the dissimilarity between the real distribution of the
target pr and the generated distribution pд . Unfortunately accurate estimation of pr is not possible.
Thus, it is challenging to produce good estimations of the correspondence between pr and pд .
Previous work has proposed various evaluation metrics for GANs [10, 12, 46, 47, 49, 124, 134, 135,
138] and it is an active area of research. However, it is the first set of problems, those associated
with training, and in particular those concerning image quality, image diversity, and stability that
we are concerned with here. In this work, we are going to study existing GAN-variants that handle
this aspect in the area of computer vision. Those readers interested in the evaluation challenge may
consult [12, 124].

Much of current GAN research can be considered in terms of the following two objectives: (1) the
improvement of training and (2) the deployment of GANs for real-world applications. The former
seeks to improve GANs performance and is therefore a foundation for the latter, i.e., applications.
Considering the many published results that deal with GAN training improvement, we present a
succinct review on the most important GAN-variants that focus on this aspect in this article. The
improvement of the training process provides benefits in terms of GANs performance as follows:
(1) improvements in the generated image diversity (also known as mode diversity), (2) increases
in generated image quality, and (3) stabilizing training such as remedying the vanishing gradient
issue for the generator. To improve the performance as mentioned above, modifications for GANs
can be done from either the architectural side or the loss perspective. We will study these GAN-
variants according to each perspective in terms of how they improve performance.

The rest of the article is organized as follows: (1) We introduce related review work for GANs
and illustrate the difference between those reviews and this work, (2) we give a brief introduction
to GANs, (3) we review the architecture-variant GANs in the literature, (4) we review the loss-
variant GANs in the literature, (5) we introduce some GAN-based applications mainly in the area
of computer vision, (6) we summarize the GAN-variants in this study and illustrate their differences
and relationships and also discuss several avenues for future research regarding GANs, and (7) we
conclude this review and preview likely future research work in the area.

Many GAN-variants have been proposed in the literature to improve performance. These can
be divided into two types: (1) architecture-variants. The first proposed GAN used fully connected
neural networks [45] so specific types of architecture may be beneficial for specific applications,
e.g., convolutional neural networks (CNNs) for images and recurrent neural networks (RNNs) for
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Fig. 1. The proposed taxonomy of the recent GANs.

time-series data; and (2) loss-variants. Here different variations of the loss function (Equation (1))
are explored to enable more stable learning of G.

Figure 1 illustrates our proposed taxonomy for the representative GANs presented in the liter-
ature from 2014 to 2020. We divide current GANs into two main variants, i.e., the architecture-
variant and the loss-variant. In the architecture-variant, we summarize three categories, which
are network architecture, latent space, and application-focus. The network architecture category
refers to improvement or modification made on the overall GAN architecture, e.g., the progressive
mechanism deployed in Progressive GAN (PROGAN) [64]. The latent space category indicates
that the architecture modification is made based on different representations of the latent space,
e.g., Conditional GAN (CGAN) [99] involves providing label information to both the generator
and the discriminator. The last category, application-focused, refers to modifications made ac-
cording to different applications, e.g., CycleGAN [153] has a specific architecture that deals with
image style transfer. In terms of the loss-variants, we divide this into two categories, loss types
and regularization. Loss types refers to different loss functions that can be optimized for GANs
and regularization refers to additional penalization designed into the loss function or any type of
normalization operation made to the network. More specifically, we divide the loss function into
integral probability metric (IPM) [101] based and non-IPM based. In IPM-based GANs, the discrim-

inator is constrained to a specific class of function [60], e.g., the discriminator in Wasserstein GAN
(WGAN) is constrained to 1-Lipschitz. The discriminator in non-IPM based GANs does not have
such constraints.

2 RELATED REVIEWS

There have been previous GANs review papers, for example, in terms of reviewing GANs
performance [71]. That work focuses on experimental validation across different types of GANs
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benchmarking on the Large-scale Scene Understanding (LSUN)-BEDROOM [145], CELEBA-HQ-
128 [84], and the CIFAR10 [70] image datasets. The results suggest that the original GAN [45] with
spectral normalization [144] is a good starting choice when applying GANs to a new dataset. A
limitation of that review is that the benchmark datasets do not consider diversity in a significant
way. Thus the benchmark results tend to focus more on evaluation of the image quality, which
may ignore GANs efficacy in producing diverse images. Other work [51] surveys different GANs
architectures and their evaluation metrics. A further comparison on different architecture-
variants’ performance, applications, complexity and so on needs to be explored. Other papers [26,
52, 131] focus on investigation of the newest development treads and the applications of GANs.
They compare GAN-variants through the lens of different application targets.

Comparing our review to other existing review articles we emphasize an introduction to
GAN-variants based on their performance including their ability to produce high quality and
diverse images, stability of training, and their ability to handle the vanishing gradient prob-
lem. We approach this exposition through taking a perspective based on architecture and loss
function considerations. This perspective is important, because it covers fundamental challenges
for GANs and it will help researchers on how best to choose an architecture and loss func-
tion for their GAN requirements and specific application. It also gives a snapshot of how re-
searchers to date have dealt with those problems and will thus provide new researchers with a
starting point for their own study. Our literature search strategy and the results of this search
are presented in Supplementary Materials. A detail of searched papers are listed at this link:
https://github.com/sheqi/GAN_Review/blob/master/GAN_CV.csv.

In summary, the contributions of this review are threefold:

• We focus on GANs by addressing three important problems: (1) high-quality image gener-
ation; (2) diverse image generation; and (3) stabilizing training.

• We propose a useful GAN taxonomy and contextualize recent GANs through variations in
(1) architecture of generators and discriminators, e.g., network architecture, latent space,
and application driven design, and (2) the objective function for training, e.g., loss design
in IPM based and non-IPM based methods, regularization approaches. Compared to other
reviews on GANs, this review provides a unique view of different GAN variants.

• We also provide a comparison and analysis in terms of pros and cons across the GAN-
variants presented in this article.

3 GENERATIVE ADVERSARIAL NETWORKS

A typical GAN comprises two components, one of which is a discriminator (D) distinguishing
between real images and generated images while the other one is a generator (G) creating images
to fool the discriminator. Given a distribution z ∼ pz,G defines a probability distribution pд as the
distribution of the samplesG (z). The objective of a GAN is to learn the generator’s distribution pд

that approximates the real data distribution pr . Optimization of a GAN is performed with respect
to a joint loss function for D and G

min
G

max
D

Ex∼pr
log[D (x)] + Ez∼pz

log [1 − D (G (z))]. (1)

GANs, as a member of the deep generative model (DGM) family, have attracted exponentially
growing interest in the deep learning community because of some advantages comparing to the
traditional DGMs: (1) GANs are able to produce better output than other DGMs. Compared to the
most well-known DGMs, variational autoencoder (VAE), GANs are able to produce any type of
probability density while VAE is unable to generate sharp images [44]. (2) The GAN framework can
train any type of generator network. Other DGMs may have pre-requirements for the generator,
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Fig. 2. Timeline of architecture-variant GANs presented in this article. Complexity in blue stream refers to
size of the architecture and computational cost such as batch size. Mechanisms refer to the number of types
of operations (e.g., convolution, deconvolution, self-attention) used in the architecture (e.g., FCGAN uses
fully connected layers for both discriminator and generator. In this case, the value for mechanisms is 1).

e.g., the output layer of generator is Gaussian [32, 44, 67]. (3) There is no restriction on the size of
the latent variable. These advantages have led GANs to achieve the state-of-the-art performance
on producing synthetic data especially for image data.

4 ARCHITECTURE-VARIANT GANS

There are many types of architecture-variants proposed in the literature (see Figure 2) [11, 64,
113, 150, 153]. Architecture-variant GANs are mainly proposed for the purpose of different appli-
cations, e.g., image-to-image transfer [153], image super resolution [74], image completion [55],
and text-to-image generation [114]. In this section, we provide a review on architecture-variants
that helps improve the performance for GANs under the three aspects mentioned before, namely
that of improving image diversity, improving image quality and stabilizing training. A review of
architecture-variants in terms of different applications can be found here [26, 51].

4.1 Fully connected GAN

The original Energy-based GAN (EBGAN) paper [45] uses fully connected neural networks for
both generator and discriminator. This architecture-variant was applied for some simple image
datasets, i.e., MNIST [73], CIFAR-10 [70], and the Toronto face dataset. The authors suggest k
steps for optimizing D and one step for optimizing G due to overfitting of the discriminator if the
completion of optimizing D is done in the inner loop of training. In practice, Equation (1) may in-
duce the vanishing gradient issue for optimizing the generator and the authors instead maximize
logD (G (z)) for training G. This modification equivalently optimizes the reverse Kullback-Leibler
(KL) divergence between pд and pr for G, which also causes the asymmetry issue. We will revisit
this in detail in Section 5. For the architecture setting, maxout [41] was deployed for the discrim-
inator while a mixture of ReLU and sigmoid activations were used for the generator. It does not
demonstrate good generalization performance for more complex image types.
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4.2 Semi-supervised GAN

Semi-supervised GAN (SGAN) is proposed in the context of semi-supervised learning [105]. Semi-
supervised learning is a promising research field between supervised learning and unsupervised
learning. Unlike supervised learning, in which we need a label for every sample, and unsupervised
learning, in which no labels are provided, semi-supervised learning has labels for a small subset
of examples. Compared to fully connected GAN (FCGAN), SGAN’s discriminator is multi-headed,
i.e., it has softmax and sigmoid for classifying the real data and distinguishing between real and
fake samples, respectively. The authors trained SGAN on the MNIST dataset. Results show that
both the discriminator and the generator in SGAN are improved compared to the original GAN.
We think the architecture of the multi-headed discriminator is relatively simple that limits the
diversity of the model, i.e., the experiment is only carried out on the the MNIST dataset. A more
complex architecture for the discriminator may improve the performance of the model.

4.3 Bidirectional GAN

Traditional GANs have no means of learning the inverse mapping, i.e., projecting data back into the
latent space. Bidirectional GAN (BiGAN) is designed for this purpose [35]. As seen in Figure 3(c),
the overall architecture consists of an encoder (E), a generator (G), and a discriminator (D). E
encodes real sample data into E (x) whileG decodes z intoG (z). As a result, D aims to evaluate the
difference between each pair of (E (x), x) and (G (z), z). As E and G do not communicate directly,
i.e., E never seesG (z) andG never sees E (x). The authors prove that the encoder and decoder must
learn to invert one another to fool the discriminator in the original paper. It would be interesting
to see if such a model is able to deal with adversarial examples in future work. BiGAN was trained
on the MNIST and the ImageNet datasets. Adam optimizer with β1 = 0.5 and β2 = 0.999 is used for
optimization. The batch size is 128 and the weight decay as 2.5 × 10−5 is applied for all parameters.
Batch normalization is also deployed.

4.4 Conditional GAN

The CGAN has the innovation of conditioning on both the discriminator and the generator by
feeding each with class labels [99]. As seen in Figure 3(b), CGAN feeds the extra information y

(y that can be class label or other modal data) to both discriminator and generator. It should be
noted that y is normally encoded inside the generator and discriminator before being concatenated
with the encoded z and encoded x. For example, in the MNIST experiment in the original work,
both z and y are mapped to hidden layers with layer sizes 200 and 1,000, respectively, before
being combined with each other (the combined layer dimensionality is 200 + 1000 = 1200) in the
generator. By doing this, CGAN enhances the discriminative ability of the discriminator. The loss
function of CGAN is slightly different from the FCGAN as seen in Equation (2), in which x and y

are conditioned by z. Benefiting from the extra encoded y information, CGAN is not only able to
handle unimodal image datasets but also multimodal datasets such as Flickr that contains labeled
image data with their associated user-generated metadata, i.e., in particular user-tags, which brings
GANs over to the area of multimodal data generation. The authors experimented with the CGAN
on the MNIST and Yahoo Flickr Creative Common 100M (YFCC 100M). For the MNIST dataset,
the model was trained using stochastic gradient descent (SGD) with mini-batch size of 100 and an
initial learning rate of 0.1 that was exponentially decreased down to 1 × 10−6 with the decay factor
set as 1.00004. Dropout was utilized with probability of 0.5 to both generator and discriminator.
Momentum was used with an initial value of 0.5 and finally was increased up to 0.7. Class labels
were encoded as one-hot vectors and fed to bothG and D. In terms of the YFCC 100M experiment,
training hyperparameters are the same as the set-up in the MNIST experiment. Even though CGAN
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Fig. 3. The architectures of SGAN, CGAN, BiGAN, InfoGAN, BEGAN, and AC-GAN studied in this work.

enhances the discriminative ability of the discriminator by introducing encoded labels, some of the
encoded labels still loose connection with images,

min
G

max
D

Ex∼pr
log[D (x|y)] + Ez∼pz

log [1 − D (G (z|y))]. (2)

4.5 InfoGAN

InfoGAN is proposed as a step beyond the CGAN [20], which learns the interpretable represen-
tations in an unsupervised manner by maximizing the mutual information between conditional
variables and the generative data. To achieve this, InfoGAN introduces another classifier Q (see
Figure 3(d)) to predict the y given by G (z|y). The combination of G and Q here can be understood
as an autoencoder, in which we aim to find the embedding (G (z|y)) minimizing the cross entropy
between y and y′. However, D performs the same job as with the FCGAN, which distinguishes
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samples generated from G or from real data. To reduuce computational cost, Q and D share all
convolutional layers except the last fully connected layer, which enables the discriminator to have
the capability of distinguishing real and fake samples and recover the information y. This can im-
prove the discriminative ability for InfoGAN compared to the original GAN architecture. The loss
used in InfoGAN is a regularization of CGAN’s loss

min
G

max
D

V (D,G ) − λI (G,Q ), λ > 0, (3)

whereV (D,G ) is the objective of CGAN except that the discriminator does not take y as input and
I (·) is the mutual information. The authors experimented with InfoGAN using the MNIST, three-
dimensional (3D) face images [109], 3D chair images [6], SVHN and CelebA. All datasets shared
the same training setting, in which the Adam optimizer was used and batch normalization was
applied. Leaky ReLU with a 0.1 leaky rate was applied to the discriminator while ReLU was used
for the generator. A learning rate of 2 × 10−4 was set for D while 1 × 10−3 is set forG. λ was set as
1. Here we think the diversity of the model is very limited due to the fact that the parameters for
D and Q are shared with each other except the last layer. A more complex set-up for Q could be
usefully investigated.

4.6 Auxiliary Classifier GAN

Auxiliary Classifier GAN (AC-GAN) [106] is very similar to CGAN and InfoGAN. It contains an
auxiliary classifier in the architecture as seen in Figure 3(f). In AC-GAN, each generated sample
has a corresponding class label c in addition to z. It should be noted that the difference between
AC-GAN and the previous two architecture-variants (CGAN and InfoGAN) is the additional infor-
mation here, which only refers to the class label while the previous two can be other domain data.
Thus we use c and c ′ in AC-GAN to explicitly flag this difference from the previous two variants.
The discriminator in AC-GAN consists of a discriminator D (distinguishes real and fake samples)
and a classifier Q (classifies real and fake samples). Similarly to InfoGAN, the discriminator and
classifier share all weights except the last layer. The loss function of AC-GAN can be constructed
by considering the discriminator and classifier, which can be stated as

LS = Ex∼pr
log[D (x|c)] + Ez∼pz

log [1 − D (G (z|c))] ,LC = Ex∼pr
log[Q (x|c)] + Ez∼pz

log [Q (G (z|c))] ,
(4)

where D is trained by maximizing LS + LC and G is trained on maximizing LC − LS . The authors
trained AC-GAN on the CIFAR-10 and ImageNet datasets for all 1,000 classes. For both CIFAR-10
and ImageNet, the model was trained by using Adam with α = 2 × 10−4, β1 = 0.5, and β2 = 0.999
for D, G, and Q . The mini-batch size was set to 100. Details of model performance and relate
experiments can be found in the original paper [106]. AC-GAN has improved visual quality for the
generated images and has high model diversity. However, these improvements depend on large-
scale labeled datasets, which may pose challenges in some real-world applications. A combination
of AC-GAN and unsupervised or self-supervised approaches should be further investigated. We
have also introduced a type of GAN, label-noise Robust GANs (rGANs) in Section 4.13, which deals
with the noisy label issue.

4.7 Laplacian Pyramid of Adversarial Networks

Laplacian Pyramid of Adversarial Networks (LAPGAN) is proposed for the production of higher-
resolution images from lower resolution input GAN [31]. The Laplacian pyramid [16] is an image
coding approach, which uses local operators of many scales but identical shape as the basic func-
tions. LAPGAN utilizes a cascade of CNNs within a Laplacian pyramid framework [16] to produce
high quality images, which are demonstrated in Figure 4 (from right to left). Rather than using a
deconvolutional process (i.e., used in Deep Convolutional GAN (DCGAN)) to up-sample the kernel
output of the previous layer, LAPGAN uses Laplacian pyramids to up-sample the image. First,
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Fig. 4. Up-sampling process of generator in LAPGAN (from right to left). The up-sampling process is marked
using green arrow and a conditioning process via a conditional GAN (CGAN) [99] is marked using the orange
arrow. The process initially uses G3 to generate image Ĩ3 and then up-samples the image Ĩ3 to l2. Together

with another noise z2, G2 generates a difference image h̃2 and adds h̃2 to l2, which produces the generated
image Ĩ2. The rest can be done in the same manner. LAPGAN contains 3 generators in this work to up-sample
the image. Figure is regenerated from Ref. [31].

LAPGAN use the first generator to produce a very small image, which can alleviate the instability
issue for the generator, and this image is then up-sampled through use of a Laplacian pyramid.
Then the up-sampled image is fed to the next generator for producing the image difference and
the summation of the image difference. The input image will be the generated image. It can be
seen that only the G3 in Figure 4 is used for generating images but the dimension is very small,
which encourages stabilizing training. For larger images, the generator is used to generate the
image difference, which is much less complex than the same sized raw images. This structure
facilitates stabilizing training and high resolution modeling. CIFAR10 (28 × 28 pixel), STL (96 × 96
pixel), and LSUN (64 × 64 pixel) were used for generation. The Laplacian pyramid up-sampling
processes for each dataset are 8→ 14→ 28 (CIFAR10), 8→ 16→ 32→ 64→ 96 (STL) and
4→ 8→ 16→ 32→ 64 (LSUN). The discriminator used three hidden layers and a sigmoid out-
put, while the generator used a five-layer CNN with ReLU and batch normalization. A linear ouput
layer was utilized. SGD with an initial learning rate of 0.02, decreased by a factor of (4 × 10−5) at ev-
ery epoch, was deployed in the experiment. Momentum started at 0.5, increasing by 0.0008 at each
epoch up to a maximum of 0.8. The current structure includes multiple generators for generating
images and the connections between these generators have not been established. In Section 4.10,
we introduce a more advanced strategy, which trains the model in a progressive fashion, i.e.,
PROGAN.

4.8 Deep Convolutional GAN

DCGAN is the first work that applied a deconvolutional neural network architecture for G [113].
Deconvolution is proposed to visualize the features for a CNN and has shown good performance
for CNNs visualization [148]. DCGAN deploys the spatial up-sampling ability of the deconvo-
lution operation for G, which enables the generation of higher resolution images using GANs.
There are some critical modifications in the architecture of DCGAN compared to original FCGAN,
which benefits high-resolution modeling and stabilizing training. First, DCGAN replaces any
pooling layers with strided convolutions for discriminator and fractional-strided convolutions for
generator. Second, batch normalization is used for both the discriminator and the generator, which
helps locate the generated samples and the real samples centering on zero, i.e., similar statistics for

generated samples and real samples. Third, the ReLU activation is used in the generator for all layers
except the output, which uses Tanh, while Leaky ReLU activation is used in the discriminator for
all layers. In this case, the Leaky ReLU activation will prevent the network stagnating in a “dying
state” situation (e.g., inputs smaller than 0 in the ReLU layers) as the generator receives gradients
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from the discriminator. DCGANs are trained on LSUN [145], ImageNet [30] and the customized-
assembled face datasets. All models were trained using SGD with a mini-batch size of 128. All
weights were initialized from a zero-centered Normal distribution with standard deviation of 0.02.
An Adam optimizer was utilized with a learning rate of 0.0002 and momentum term of 0.5. The
slope of Leaky ReLU was set to 0.2 for all models. Models were trained by using 64 × 64 pixel image.
DCGAN is a very important milestone in the history of GANs and the deconvolution idea becomes
a mainstay for the main architecture used in GAN generators. Due to the limit of the model capac-
ity and the optimization used in DCGAN, it is only successful on low-resolution and less diverse
images.

4.9 Boundary Equilibrium GAN

Boundary Equilibrium GAN (BEGAN) uses an autoencoder architecture for the discriminator that
was first proposed in EBGAN [151]. As seen in Figure 3(e), the autoencoder loss can be gener-
ated for G and D, respectively. When training the autoencoder (D), the objective is to maximize
the reconstruction loss of real images and maximizes the reconstruction loss for generated im-
ages, i.e., minimize E [L (x )] − E [L (G (z))]. When training the G, the objective is to minimize
E [L (G (z))]. By introducing the autoencoder, the authors have proved the optimization of the re-
construction loss above is equivalent to the Wasserstein distance. The authors also propose the

use of a hyperparameter γ = E[L (G (z ))]
E[L (x )] ,γ ∈ [0, 1] to control the balance between the generator

and discriminant losses, which allows a balancing of the effort allocated to the generator and the
discriminator, i.e., control a variety of generated faces. The experiment in the original paper shows
that smallerγ makesG generate faces that look overly uniform. The variety of faces increases with
a larger value of γ but this also introduces artifacts. The overall loss function is summarized in
Equation (5),

⎧⎪⎪⎨⎪⎪⎩
LD = L (x ) − ktL (G (zD )), for updating θD

LG = L (GzG
), for updating θG

kt+1 = kt + λk (γL (x ) − L (G (zG )), for each training iteration t
, (5)

where L (·) represents the autoencoder reconstruction loss (L2), kt ∈ [0, 1] is a variable that con-
trols how much emphasis of L (G (z)) is penalized for the loss. k is initialized as 0 and is controlled
by λk (λk can be interpreted as a learning rate for k , which is set as 1 × 10−3 in the original paper).

Compared to traditional optimization, the BEGAN matches the autoencoder loss distributions
using a loss derived from the Wasserstein distance instead of matching data distributions directly.
This modification helps G to generate easy-to-reconstruct data for the autoencoder at the be-
ginning, because the generated data are close to 0 and the real data distribution has not been
learned accurately yet, which prevents D easily winningG at the early training stage. For encoder
and decoder, exponential linear units were applied at their outputs. The model was trained on
CelebA dataset using 128 × 128 pixel images. Separate Adam optimizers with initial learning rates
of 1 × 10−4, decaying by a factor of 2 when the measure of convergence stalls, were used for D and
G. The batch size was set as 16 in the original work.

4.10 PROGAN

PROGAN involves progressive steps toward the expansion of the network architecture [64].
This architecture uses the idea of progressive neural networks first proposed in Reference [116].
This technology does not suffer from forgetting and is able to deploy prior knowledge via
lateral connections to previously learned features. Consequently it is widely applied for learning
complex task sequences. Figure 5 demonstrates the training process for PROGAN. Training starts
with low resolution 4 × 4 pixels image. Both G and D start to grow with the training progressing.
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Fig. 5. Progressive growing step for PROGAN during the training process. Training starts with 4 × 4 pix-
els image resolution. With the training step growing, layers are incrementally added to G and D, which
increases the resolution for the generated images. All existing layers are trainable throughout the training
stage. Figure is regenerated from Reference [64].

Importantly, all variables remain trainable throughout this growing process. This progressive
training strategy enables substantially more stable learning for both networks. By increasing the
resolution little by little, the networks are continuously asked a much simpler question compared
to the end goal of discovering a mapping from latent vectors. All current state-of-the-art GANs
employ this type of training strategy and it has resulted in impressive, plausible images [13, 64,
65]. The authors start training the PROGAN with 4 × 4 pixel images and incrementally add the
doubled-sized layers to G and D as seen in Figure 5, in which the new layers are faded smoothly.
The multi-scaled training images are produced by using Laplacian pyramid representations [16],
i.e., similar to LAPGAN. Models were trained on CIFAR10 (32 × 32 pixel images), LSUN (256 × 256
pixel images), and CelebA-HQ (1,024 × 1,024 pixel images). Leaky ReLU with leakness 0.2 were
used for all layers of both D and G except for the last layer (used linear activation). Only
pixelwise normalization of the feature vectors after each Conv 3 × 3 layer in the generator was
deployed, i.e., no batch normalization, layer normalization, or weight normalization in either
network. The Adam optimizer with α = 1 × 10−3, β1 = 0, β2 = 0.99, and ϵ = 1 × 10−8 was utilized
for training D and G. The mini-batch size was gradually decreased with increasing image pixel
for saving on memory, i.e., batch size 16 for 4 × 4 to 8 × 8, 256 × 256→ 14, 512 × 512→ 6, and
1,024 × 1,024→ 3. The WGAN-GP [136] loss was used for optimizing both D and G.

4.11 Self-attention GAN

Traditional CNNs can only capture local spatial information and the receptive field may not cover
enough structure, which causes CNN-based GANs to have difficulty in learning multi-class image
datasets (e.g., ImageNet) and the key components in generated images may shift, e.g., the nose
in a face-generated image may not appear in the correct position. Self-attention mechanism have
been proposed to ensure a large receptive field without sacrificing computational efficiency for
CNNs [129]. Self-attention GAN (SAGAN) deploys a self-attention mechanism in the design of
the discriminator and generator architectures for GANs [149] (see Figure 6). Benefiting from the
self-attention mechanism, SAGAN is able to learn global, long-range dependencies for generating
images. It has achieved great performance on multi-class image generation based on the ImageNet
datasets. The authors trained SAGAN on the ImageNet dataset (128 × 128 pixel images). Spectral
normalization [100] was applied for both D and G. Conditional batch normalization was used
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Fig. 6. Self-attention mechanism architecture proposed in the article. f , д, and h correspond with query, key
and value in the self-attention mechanism. The attention map indicates the long-range spatial dependencies.
The ⊗ denotes matrix multiplication. Figure is regenerated from Reference [149].

in the generator while batch projection was used in the discriminator. An Adam optimizer with
β1 = 0 and β2 = 0.9 was used and the learning rate for the discriminator was 4 × 10−4 and for
the generator was 1 × 10−4. The authors also demonstrate that the deployment of a self-attention
mechanism for both the discriminator and the generator at large feature maps is more effective,
i.e., deployment of self-attention mechanism with a feature map with 32 × 32 size achieves the
best performance using FID score and deployment of a self-attention mechanism with a feature
map with 64 × 64 size achieves the best performance using Inception score, which indicates the
self-attention mechanism is complementary to convolution for large feature maps. Thus the self-
attention mechanism, we suggest, should be applied for large feature maps to improve the diversity
for GANs.

4.12 BigGAN

BigGAN [13] has also achieved state-of-the-art performance on the ImageNet datasets. Its design
is based on SAGAN and it has demonstrated that the performance can yield a scaling up of GAN
training, i.e., an increase in the number of channels for each layer and an increase in the batch
size. The authors train the model on ImageNet with 128 × 128, 256 × 256, and 512 × 512 resolu-
tions. The training setting in this work follows the SAGAN, in which the learning rate was halved
and train two D steps per G step. Different selections of latent variables z are explored and the
authors state that Bernoulli {0, 1} and Censored Normal max(N (0, I ), 0) work best without trun-
cation. The truncation trick involves using a different distribution for the generator as latent space
during training than during inference or image synthesis. In BigGAN, a Gaussian distribution is
used during training, and a truncated Gaussian is used during inference. This truncation trick
provides a tradeoff between image quality or fidelity and image variety. A more narrow sampling
range results in better quality, whereas a larger sampling range results in more variety in sampled
images. We summarize the following operations on BigGAN that make BigGAN scale-up the ar-
chitecture. (1) Self-attention module and Hinge loss: The BigGAN uses a model architecture with
attention modules from SAGAN and is trained via hinge loss, in which self-attention contributes
to the model diversity and hinge loss enables stability of training. (2) Class conditional information:
The class information is provided to the generator model via class-conditional batch normalization.
(3) Update discriminator more than generator: The BigGAN slightly modifies this and updates the
discriminator model twice before updating the generator model in each training iteration. (4) Mov-

ing average of model weights: Before images are generated for evaluation, the model weights are
averaged across prior training iterations using a moving average. (5) Some operations on the net-
work: orthogonal weight initialization, larger batch size, skip-z connections (skip connections from
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Fig. 7. Discriminators of (a) AC-GAN, (b) rAC-GAN, (c) CGAN, and (d) rCGAN. A noise transition model is
denoted as an orange rectangle. Generators in rAC-GAN and rCGAN remain the same as in AC-GAN and
CGAN. The figure is regenerated and reorganized from Reference [62].

the latent to multiple layers), and shared embeddings, i.e., the authors show these operations are
all able to help improve the performance. The authors also characterize the analysis of instability
specific to such large scale. More details can be found in the original paper.

4.13 Label-noise rGANs

We have discussed CGAN in Section 4.4 and AC-GAN in Section 4.6, respectively, in which both
have the ability to learn the disentangled representation and improve the discriminative ability of
GANs. However, large-scale labeled datasets are required for training models, which poses some
challenges in real-world scenarios. Kaneko et al. [62] propose a family of GANs named label-noise
rGANs, which incorporates a noise transition model that is able to learn a clean label conditional
generative distribution even when provided training labels that are noisy. Two variants are dis-
cussed, which are an extension for AC-GAN (rAC-GAN) and an extension for CGAN (rCGAN)
as seen in Figure 7. The core part of rGANs is a noise transition module p (ỹ |ŷ) (ỹ is the noisy
label and ŷ is the clean label) introduced to the discriminator, in which p (ỹ = j |ŷ = i ) = T(i, j ) as

T is a noise transition matrix T(i, j ) ∈ [0, 1](c×c ) (
∑

i Ti, j = 1, c is the number of classes). The au-
thors trained rGANs on CIFAR-10 and CIFAR-100. The authors demonstrate that rAC-GAN and
rCGAN perform better than the original architectures on CIFAR-10 and also exhibit robustness to
label noise. However, in CIFAR-100, when high noise is introduced to labels, their performance
drops. We think such a framework is still somewhat limited when encountering more complicated
datasets, e.g., ImageNet and it needs to be investigated further in the future.

4.14 Your Local GAN

This work [29] introduces a new local sparse attention layer that preserves the two-dimensional
geometry and locality. To show the applicability of the idea, they replace the dense attention layer
of SAGAN [129] with a new construction. The key innovations are (1) the attention patterns are
well supported by the information theoretic framework of Information Flow Graphs; (2) Your Local
GAN (YLG)-SAGAN is introduced and achieves superior performance with reducing the training
time by approximately 40%; (3) they have made the natural inversion process of performing gra-
dient descent on the loss work for bigger models rather than previous work on small GANs. One
specific trick the author utilizes is called Enumerate, Shift, Apply (ESA). They modify one dimen-
sional sparsifications to become aware of two-dimensional locality via enumerating pixels of the
image based on their Manhattan distance from the pixel at location (0, 0) (breaking ties using row
priority), shifting the indices of any given one-dimensional sparsification to match the Manhattan
distance enumeration instead of the reshape enumeration, and applying this new one dimensional
sparsification pattern, that respects two-dimensional locality, to the one-dimensional reshaped
version of the image.
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Fig. 8. Architecture of MSG-GAN. Progressive training similar to PROGAN is deployed here. MSG-GAN
includes connections from the intermediate layers of the generator to the intermediate layers of the dis-
criminator. Multi-scale images are sent to the discriminator, which are concatenated with the corresponding
main path, i.e., green in the discriminator represents images produced by the generator while orange repre-
sents the original features in the main path of the discriminator. Figure is regenerated and reorganized from
Reference [63].

However, we think two conflicting objectives exist in this work. On the one hand, this method
intends to make the networks as sparse as possible for computational and statistical efficiency, on
the other hand they still need to support good and full information flow.

4.15 AutoGAN

AutoGAN [43] introduces the neural architecture search (NAS) algorithm to generative adversarial
networks (GANs). The search space of the generator architectural variations in are guided via an
RNN together with parameter sharing and dynamic-resetting to accelerate the process. They use
the Inception score as the reward, and introduce a multi-level search strategy to perform NAS in
a progressive way. The authors use hinge loss for training the shared GAN, following the training
setting of spectral normalization GAN (SN-GAN).

The whole pipeline is insightful but also poses novel challenges w.r.t. the marriage of NAS and
GANs. NAS remains to be optimized for standard classification problems, let alone the unstable
training problems brought by GANs. Although in the article AutoGAN shows promising results
with NAS for GAN architecture, which is quite unique compared to the manual design GAN ar-
chitectures introduced above. We think it still has two critical issues yet to be solved:

• The search space for the generator is limited and the search strategy for the discriminator
is not discussed.

• AutoGAN has not yet been tested on high-resolution image generation datasets. Thus, we
do not have an intuitive estimation of the applicability of this methods. The current image
generation task is preliminary.

4.16 MSG-GAN

It is well known that GANs are very difficult to adapt to different datasets. Karnewar et al. argue
that one of the reasons for this is gradients passing from the discriminator to the generator become
uninformative when there is not enough overlap in the supports of the real and fake distributions.
They propose MSG-GAN [63] as a means to handle such problems. As seen in Figure 8, latent space
of the generator and the discriminator are connected so as to share more information between the
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Fig. 9. (a) An overview of the footprint for architecture-variant GANs discussed in this section. (b) Summary
of recent architecture-variant GANs for solving the three challenges highlighted in this article (by our esti-
mation and quantitative results can be referred to Table 2 in Section 7). The challenges are represented by the
three orthogonal axes. A larger value for each axis indicates better performance. Red points indicate GAN-
variants that cover all three challenges, blue points cover two, and black points cover only one challenge.
Quantitative results can be found in Table 2 in Section 7.

generator and the discriminator. More specifically, activations in each transpose convolutional step
(three steps in Figure 8) in G are mapped to an image at different scales by operation r , i.e., 1 × 1
convolution in this case. Similarly, the mapped image is then encoded by r ′ to activations, which is
concatenated with activations encoded by a real image. This connection enables more information
sharing between D and G and experimental results demonstrate the benefits. The authors trained
MSG-GAN on multiple datasets, i.e., CIFAR10, Oxford flowers, LSUN, Indian Celebs, CelebA-HQ
(1,024 × 1,024), and FFHQ (1,024 × 1,024). The hyperparameter settings are almost identical for all
datasets. Specifically, z ∈ R512×1 is drawn from a standard normal distribution. The RMSprop with a
learning rate of 0.003 was used for bothD andG. WGAN-GP loss was used for training the network.
Although MSG-GAN has achieved very good results on several image datasets, the ability of MSG-
GAN to generate diverse images has not been tested yet and we found the results on CIFAR10 are
not as good as for the other datasets. We guess this might be caused by the connection betweenG
andD, which may constrain the diversity onG as activations fromG andD. The diversity on images
might cause inconsistent matched activations, which have a negative impact on the training. More
development may solve this issue such as through the addition of a self-attention module.

4.17 Summary

We have provided an overview of architecture-variant GANs centered on how they can poten-
tially improve performance with respect to the three key challenges of image quality, mode diver-
sity and the unstable training problem. Figure 9(a) illustrates a footprint for architecture-variant
GANs from 2014 to 2020 that discussed in this section. It can be seen that there are lots of inter-
connections in different GAN variants. Figure 9(b) illustrates relative performance with respect
to the three challenges. We suggest that interested readers should consult the original articles to
get deeper insights on the theory and the performance of each GAN variant. Here we give a quick
recap on how architecture-variant GANs remedy are identified challenges (quantitative results are
summarized in Table 2 in Section 7).
Image Quality One of the basic objectives of GANs is to produce realistic images with high image
quality. The original GAN (FCGAN) was only applied to the MNIST, Toronto face and CIFAR-10
datasets because of the limited capacity of the architecture. DCGAN and LAPGAN introduced the
deconvolutional and the up-sampling processes to the design. Both enable the model to produce
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higher resolution images. The remaining architecture variants (i.e., BEGAN, PROGAN, SAGAN,
and BigGAN) all have some modifications on the loss function that we will address in a later
section of this article and these are also beneficial in producing better image quality. Regarding
the architecture component only, BEGAN uses an autoencoder architecture for the discriminator,
which compares generated images and real images at the pixel level. This helps the generator
produce easy-to-reconstruct data. PROGAN utilizes a deeper architecture and the model expands
as the training progresses. This progressive training strategy improves the learning stability for
discriminator and generator thus it is easier for the model to learn how to produce high resolution
images. SAGAN mainly benefits from the spectral normalization, which we address in the next
section. BigGAN demonstrates that high resolution image generation can benefit from a deeper
model with larger batch sizes.
Vanishing Gradient Changing the loss function is the only way to remedy such a problem
currently. Some architecture variants here avoid the vanishing gradient issue but only because
they use different loss functions. We will explore this in the next section.
Mode Diversity This is the most challenging problem for GANs. It is very difficult for GANs
to produce realistic diverse images such as natural images. In terms of architecture-variant GANs,
only SAGAN and BigGAN address this issue explicitly. Benefiting from the self-attention mecha-
nism, CNNs in SAGAN and BigGAN can process a large receptive field that overcomes the shift-
ing components problem in generated images. This enables such types of GAN to produce diverse
images.

5 LOSS-VARIANT GANS

Another design decision in GANs that significantly impacts performance is the choice of loss func-
tion in Equation (1). While the original GAN work [45] has already demonstrated global optimal-
ity and the convergence of GANs training, it still highlights the instability problem that can arise
when training a GAN. The problem is caused by the global optimality criterion as stated in Refer-
ence [45]. Global optimality is achieved when an optimal D is reached for any G. So the optimal
D is achieved when the derivative of D for the loss in Equation (1) equals 0. So we have

−pr (x)

D (x)
+

pд (x)

1 − D (x)
= 0→ D∗ (x) =

pr (x)

pr (x) + pд (x)
, (6)

where x represents the real data and generated data,D∗ (x) is the optimal discriminator,pr (x) is the
real data distribution and pд (x) is the generated data distribution. We have the optimal discrimi-
nator D so far and when we have the optimal D, the loss for G can be visualized by substituting
D∗ (x) into Equation (1),

LG =Ex∼pr
log

pr (x)
1
2

[
pr (x) + pд (x)

] + Ex∼pд
log

pд (x)

1
2

[
pr (x) + pд (x)

] − 2 · log2. (7)

Equation (7) demonstrates the loss function for a GAN when the discriminator is optimized and
it is related to two important probability measurement metrics. One is KL divergence, which is
defined as

KL(p1‖p2) = Ex∼p1 log
p1

p2
, (8)

and the other is Jensen-Shannon (JS) divergence, which is stated as

JS (p1‖p2) =
1

2
KL

(
p1‖

p1 + p2

2

)
+

1

2
KL

(
p2‖

p1 + p2

2

)
. (9)
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Fig. 10. Illustration of training progression for a GAN. Two normal distributions are used here for visualiza-
tion. Given an optimal D, the objective of the GAN is to updateG to move the generated distribution pд (red)
toward the real distribution pr (blue) (G is updated from left to right in this figure. Left: initial state, middle:
during training, right: training convergence). However, JS divergence for the left two figures are both 0.693
and the figure on the right is 0.336, indicating that JS divergence does not provide sufficient gradient at the
initial state.

Fig. 11. JS divergence and gradient change with the distance between pr and pд . (a) Left: JS divergence
changes with distance. Right: Gradient JS divergence changes with distance. The distance is the difference
between the two distribution means. (b) Loss and gradient for generator of different loss-variant GANs.

Thus the loss for G regarding the optimal D in Equation (7) can be reformulated as

LG = 2 · JS (pr ‖pд ) − 2 · log2, (10)

which indicates that the loss for G now equally becomes the minimization of the JS divergence
between pr and pд . With training D step by step, the optimization of G will be closer to the mini-
mization of JS divergence between pr and pд . We can now start to describe the instability problem
in training, where D often easily wins over G. This unstable training problem is actually caused
by the JS divergence in Equation (9). Given an optimal D, the objective of optimization for Equa-
tion (10) is to move pд toward pr (see Figure 10). JS divergence for the three plots from left to right
are 0.693, 0.693, and 0.336, which indicates that JS divergence remains constant (log2 = 0.693) if
there is no overlap between pr and pд . Figure 11(a) demonstrates the change of JS divergence and
its gradient corresponding to the distance between pr and pд . It can be seen that JS divergence
is constant and its gradient is almost 0 when the distance is greater than 5, which indicates that
training process does not have any effect on G. The gradient of JS divergence for training the G
is non-zero only when pд and pr have substantial overlap, i.e., the vanishing gradient will arise
for G when D is close to optimal. In practice, the possibility that pr and pд do not overlap or have
negligible overlap is very high [3].

The original GANs work [45] also highlights the minimization of −Ex∼pд
log[D (x)] for training

G to avoid a vanishing gradient. However, this training strategy will lead to another problem called

mode dropping. First, let us examine KL(pд ‖pr ) = Ex∼pд
log

pд

pr
. With an optimal discriminator D∗,

KL(pд ‖pr ) can be reformulated as

KL(pд ‖pr ) = Ex∼pд
log

pд (x)/(pr (x) + pд (x))

pr (x)/(pr (x) + pд (x))
= Ex∼pд

log
1 − D∗ (x)

D∗ (x)

= Ex∼pд
log[1 − D∗ (x)] − Ex∼pд

log[D∗ (x)].

(11)
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Fig. 12. Optimized q (in red) when minimizing KL divergence KL(p‖q) (left) and reverse KL divergence
KL(q‖p) (right).

The alternative loss form for G can now can be stated by switching the order of the two sides in
Equation (11)

−Ex∼pд
log[D∗ (x)] = KL(pд ‖pr ) − Ex∼pд

log[1 − D∗ (x)]

= KL(pд ‖pr ) − 2 · JS (pr ‖pд ) + 2 · log2 + Ex∼px
log[D∗ (x)],

(12)

where the alternative loss for G in Equation (12) is only affected by the first two terms (the last
two terms are constant), however, this loss function is dominated by KL(pд ‖pr ), since JS (pr ‖pд )
is bounded in [0, log 2] as illustrated in Figure 11(a) on the left. It can be seen that the first term in
Equation (12) is reverse KL divergence, in which the pд optimized by the reverse is totally different
from the pд optimized by KL divergence. Figure 12 illustrates this difference by using a mixture
of two Gaussians for p and a single Gaussian for q. When p has multiple modes, q tries to blur all
modes together to put a high-probability mass on all as seen in Figure 12(a). However, Figure 12(b)
shows that q chooses to recover a single Gaussian to avoid putting probability mass in the low-
probability areas at the centre of the two Gaussians. The optimization on reverse KL divergence
therefore will cause mode collapse during the training of GANs. This is highlighted below,

• When pд (x) → 0, pr (x) → 1, KL(pд ‖pr ) → 0.

• When pд (x) → 1, pr (x) → 0, KL(pд ‖pr ) → +∞.

The penalization for two instances of poor performance made by G are totally different. The first
instance of poor performance is that G is not producing a reasonable range of samples and yet
incurs a very small penalization. The second instance of poor performance concerns G producing
implausible samples but has very large penalization. The first example concerns the fact that the
generated samples lack diversity while the second concerns that fact that the generated samples
are not accurate. Considering this first case, G generates repeated but “safe” samples instead of
taking risk to generate diverse but “unsafe” samples, which leads to the mode collapse problem. In
summary, using the original loss in Equation (1) will result in the vanishing gradient for trainingG
and using the alternative loss in Equation (12) will incur the mode collapse problem. These kinds
of problems cannot be solved by simply changing architectures. Therefore, it could be argued that
the ultimate problem for GANs stems from the design of the loss function and that innovative
ideas for this redesign of the loss function may solve the problem. Loss-variant GANs have been
researched extensively to improve the stability of training GANs and we consider these next.

5.1 Wasserstein GAN

WGAN [4] has successfully solved the two problems for the original GAN by using the Earth
mover (EM) or Wasserstein-1 [115] distance as the loss measure for optimization. The EM distance
is defined as

W (pr ,pд ) = inf
γ ∈∏(pr ,pд )

E(x,y)∼γ ‖x − y‖, (13)
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Fig. 13. Comparison of the parameter distribution between WGAN (left) and WGAN-GP (right). Figure from
Reference [47].

where
∏

(pr ,pд ) denotes the set of all joint distributions and γ (x, y) whose marginals are pr and
pд . Compared with KL and JS divergence, EM is able to reflect distance even when pr and pд do
not overlap. It is also continuous and thus able to provide a meaningful gradient for training the
generator. Figure 11(b) illustrates the WGAN gradient compared to that for the original GAN. It
is noticeable that WGAN has a smooth gradient for training the generator spanning the complete
space. However, the infimum in Equation (13) is intractable but the creators demonstrate that the
Wasserstein distance can be alternatively estimated as

max
w∼W

Expr
[fw (x)] − Ez∼pz

[fw (G (z))], (14)

where fw can be realized by D but has some constraints (for details the interested reader can refer
to the original work [4]) and z is the input noise for G. So w here is the parameters in D where D
aims to maximize equation (14) to make the optimization distance equivalent to the Wasserstein
distance. When D is optimized, Equation (13) will become the Wasserstein distance andG aims to
minimize it. So the loss for G is

−min
G

Ez∼pz
[fw (G (z))]. (15)

An important difference between WGAN and the original GAN is the function of D. The D in the
original work is used as a binary classifier but D as used in the WGAN has the purpose of fitting
the Wasserstein distance, which is a regression task. Thus, the sigmoid in the last layer of D is
removed in the WGAN. The authors trained WGAN on the LSUN dataset with 64 × 64 resolution.
Importantly, training of the WGAN will be unstable if a momentum based optimizer such as Adam

(β1 > 0 is used). Therefore, RMSProp is utilized for training the WGAN.

5.2 WGAN-GP

Even though WGAN has been shown to be successful in improving the stability of GAN training,
it is not well generalized for a deeper model. Experimentally it has been determined that most
WGAN parameters are localized at −0.01 and 0.01 because of parameter clipping (see Figure 13).
This will dramatically reduce the modeling capacity of D. WGAN-GP has been proposed using a
gradient penalty for restricting ‖ f ‖L ≤ K for the discriminator [47] and the modified loss for the
discriminator now becomes

LD =Exд∼pд
[D (xд )] − Exr∼pr

[D (xr )] + λEx̂∼px̂
[(‖�x̂D (x̂)‖2 − 1)2], (16)

where xr is sample data drawn from the real data distribution pr , xд is sample data drawn from
the generated data distribution pд and px̂ is sampled uniformly along the straight lines between
those pairs of points, which are sampled from the real data distribution pr and the generated data
distribution pд . The first two terms are the original loss in WGAN and the last term is the gradient
penalty. WGAN-GP demonstrates a better distribution of trained parameters compared to WGAN
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(Figure 13) and better stability performance during training of GANs. Before WGAN-GP, success-
ful training of GANs only took place on those models consisting of a few layers both in the dis-
criminator and generator, i.e., DCGAN uses four convolutional layers in D and 4 deconvolutional
layers in G. WGAN-GP successfully demonstrates stabilizing training by using the ResNet-101
architecture as the backbone. This has had significant impact on research into GANs for large-
scale image generation, i.e., PROGAN, BigGAN. As mentioned in the previous section, WGAN has
stability issues when using momentum based optimizers such as Adam. WGAN-GP in contrast
exhibits stabilizing training by using the Adam optimizer and even faster convergence using the
same training settings. WGAN-GP was experimentally explored using the ImageNet dataset with
32 × 32 image resolution, the LSUN dataset with 128 × 128 image resolution and CIFAR-10 with
32 × 32 image resolution. Adam optimizer with α = 1 × 10−4, β1 = 0, β2 = 0.9 was utilized in the
experiment. The learning rate was 2 × 10−4 and a batch size of 64. The authors find piecewise lin-
ear activation functions, e.g., ReLU, Leaky ReLu and smooth activation functions, e.g., Tanh both
can train the WGAN-GP in a stable way.

5.3 Least Square GAN (LSGAN)

The Least Square GAN (LSGAN) is a new approach proposed in Reference [94] to remedy the
vanishing gradient problem for G from the perspective of the decision boundary determined by
the discriminator. This work argues that the decision boundary forD of the original GAN penalizes
as very small error in updates ofG for those generated samples that are far away from the decision
boundary. The creators propose using a least square loss for D instead of sigmoid cross entropy
loss as stated in the original GAN paper [45]. The proposed loss function is defined as

min
D
LD =

1

2
Ex∼pr

[(D (x) − b)2] +
1

2
Ez∼pz

[(D (G (z)) − a)2], min
G
LG =

1

2
Ez∼pz

[(D (G (z)) − c )2],

(17)
where a is the label for the generated samples, b is the label for the real samples and c is the hy-
perparameter that G wants D to recognize the generated samples as the real samples by mistake.
This modification has two benefits: (1) The new decision boundary generated by D penalizes large
errors arising from those generated samples that are far away from the decision boundary. This
pushes those “bad” generated samples toward the decision boundary. This is beneficial in terms of
generating improved image quality. (2) Penalizing the generated samples that are far away from the
decision boundary provides sufficient gradient when updating the G, which remedies the vanish-
ing gradient problems for trainingG. Figure 14 demonstrates a comparison of decision boundaries
for LSGAN and the original GAN. The work [94] has proven that the optimization of LSGAN is
equivalent to minimizing the Pearson χ 2 divergence between pr + pд and 2pд when a, b and c
subject to b − c = 1 and b − a = 2. Similarly to WGAN, D here involves regression and the sig-
moid is also removed. LSGAN was evaluated on LSUN and HWDB1.0 [81] with 112 × 112 image
resolution. The Adam optimizer with β1 = 0.5 was used and the learning rate was 1 × 10−3 and
2 × 10−4 for LSUN and HWDB1.0, respectively. Similarly to DCGAN, ReLU activations and Leaky
ReLU activations were used for the generator and discriminator respectively.

5.4 f -GAN

f -GAN works on the basis that GANs can be trained by using f -divergence [104]. f -divergence
Df (pr ‖pд ) measures the difference between two probability distributions (pr and pд regarding

GANs), e.g., KL divergence, JS divergence, and Pearson χ 2 as mentioned before, which can be
summarized as

Df (pr ‖pд ) =

∫
X
pд (x ) f

(
pr (x )

pд (x )

)
dx , (18)
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Fig. 14. Decision boundary illustration of original GAN and LSGAN. (a). Decision boundaries forD of original
GAN and LSGAN. (b). Decision boundary of D for the original GAN. It has small errors for the generated
samples, which are far away from the decision boundary (in green), for updating G. (c). Decision boundary
for D of LSGAN. It penalizes as large error any generated sample that is far away from the boundary (in
green). Thus it pushes generated samples (in green) toward the boundary [94].

Table 1. Examples of Df (pr ‖pд ) with f -divergence Function Based on References [103, 104]

Divergence Df (pд ‖pq ) f -divergence function

KL divergence
∫

pr (x ) log
pr (x )
pд (x ) dx t log t

Reverse KL
∫

pд (x ) log
pд (x )

pr (x ) dx − log t

FCGAN (2 · J S − 2 · log 2) [45]
∫

pr (x ) log
2pr (x )

pr (x )+pд (x ) + pд (x ) log
2pд (x )

pr (x )+pд (x ) dx − 2 · log 2 t log t − (t + 1) log(t + 1)

LSGAN (Pearson X2) [94]
∫ (pд (x )−pr (x ))2

pr (x ) dx (t − 1)2

EBGAN [151]
∫
|pr (x ) − pд (x ) |dx |t − 1 |

where f is a convex function and f (1) = 0. It should be noted that f is termed a generator function
in the original paper [104], which is totally different from the concept of a generator G in GANs.
Thus we use f or f -divergence function in this section instead of generator function in the original
paper to avoid confusion with the generator G used in this article. f -GAN generalizes the loss
function of GANs according to an f -divergence function presented in Equation (18). A list of f -
divergence with f -divergence functions are shown in Table 1. However, Equation (18) is intractable
thus it requires estimation in a computable way such as through the use of an expectation form. By
using the convex conjugate (Fenchel conjugate) f (u) = supt ∈domf ∗

{tu − f ∗ (t )} [50], f -divergence

can be represented as a lower bound on the divergence

Df (pr ‖pд ) =

∫
X
pд (x ) sup

t ∈domf ∗

(
t
pr (x )

pд (x )
− f ∗ (t )

)
dx ≥ sup

T ∈T

(∫
X
T (x )pr (x ) − f ∗ (T (x ))pд (x ))

)
dx

= sup
T ∈T

(
Ex ∈pr

[T (x )] − Ex ∈pд
[f ∗ (T (x ))]

)
,

(19)
where T is an arbitrary function class of T that satisfies X → R (e.g., a parameterized discrimi-
nator with a specific activation function such as a sigmoid). The derivation above yields a lower
bound for Df (pr ‖pд ) that is tractable, thus this can be directly calculated. The optimization for
f -GAN firstly is characterized by maximizing the lower bound (last line in Equation (19)) with
respect to the discriminator, which aims to make the lower bound the estimation of f -divergence,
and then minimizes the f -divergence regarding the generator to bring pд close to pr . This opti-
mization is known as variational divergence minimization (VDM). The authors trained generative
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Fig. 15. An example of computation for an unrolled GAN with three unrolling steps. G and D update using
Equation (22). Each step k uses the gradients of fk regarding θk

D
stated in the Equation (20).

neural samplers based on VDM on MNIST (28 × 28 pixel images) and LSUN (96 × 96 pixel images).
The model architecture and training settings are the same as proposed in DCGAN.

5.5 Unrolled GAN

Unrolled GAN (UGAN) is a design proposed to solve the problem of mode collapse for GANs during
training [98]. The core design innovation of UGAN is the addition of a gradient term for updating
G, which has an ability of capturing responses of the discriminator to a change in the generator.
The optimal parameter for D can be expressed as an iterative optimization procedure as follows:

θ 0
D = θD , θk+1

D = θk
D + η

k
df (θGθk

D
)

dθk
D

, θ ∗D (θG ) = lim
k→∞

θk
D , (20)

where ηk is the learning rate, θD represents parameters for D and θG represents parameters for
G. The surrogate loss by unrolling for K steps can be expressed as

fK (θG ,θD ) = f (θG ,θ
K
D (θG ,θD )). (21)

This surrogate loss is then used for updating parameters for D and G,

θG ← θG − η
dfK (θGθD )

dθG
, θD ← θD + η

df (θGθD )

dθD
. (22)

Figure 15 illustrates the computational diagram for an unrolled GAN with three unrolling steps.
Equation (23) illustrates the gradient for updating G,

dfK (θG ,θD )

dθG
=
∂ f (θG ,θK

D (θG ,θD ))

θG
+
∂ f (θG ,θK

D (θG ,θD ))

∂θK
D

(θG ,θD )

dθK
D (θG ,θD )

dθG
. (23)

It should be noted that the first term in Equation (23) is the gradient for the original GAN. The
second term here reflects how D reacts to changes in G. If G tends to collapse to one mode, then
D will increase the loss for G. Thus, this unrolled approach is able to prevent the mode collapse
problem for GANs. The authors trained UGAN on MNIST and CIFAR10 datasets. All convolutions
have kernel size of 3 × 3 with batch normalization. The discriminator used Leaky ReLU with a
0.3 leakiness and the generator used ReLUs. The generator consisted of five layers, with one fully
connected layer, three deconvolutional layers, and one convolutional layer. The discriminator had
four layers, three of which are convolutional layers and one fully connected layer. The Adam
optimizer with a generator learning rate of 1 × 10−4 and a discriminator learning rate as 2 × 10−4

was utilized in the experiment.

5.6 Loss Sensitive GAN (LS-GAN)

LS-GAN is introduced to train the generator to produce realistic samples by minimizing the des-
ignated margins between real and generated samples [111]. This work argues that the problems
such as the vanishing gradient and mode collapse as appearing in the original GAN is caused by
a non-parametric hypothesis that the discriminator is able to distinguish any type of probability
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Fig. 16. Demonstration of the loss in Equation (25). Δ(x,G (z)) is used to separate real samples and generated
samples. If some generated samples are close enough to the real samples, then LS-GAN will focus on other
generated samples that are far away from the real samples. This optimization loss puts a restriction on D
to prevent it from separating generated and real samples too well. Thus, it solves the vanishing gradient
problem that arises in the original GAN design. (Gϕ (z) here is equivalent to G (z) where ϕ represents the
parameters for generator). Figure is regenerated from Reference [111].

distribution between real samples and generated samples. As mentioned before, it is very normal
for the overlap between the real samples distribution and the generated samples distribution to
be negligible. Moreover, D is also able to separate real samples and generated samples. The JS di-
vergence will become a constant under this situation, where the vanishing gradient arises for G.
In LS-GAN, the classification ability of D is restricted and is learned by a loss function Lθ (x) pa-
rameterized with θ , which assumes that a real sample ought to have smaller loss than a generated
sample. The loss function can be incorporated as the following constraint:

Lθ (x) ≤ Lθ (G (z)) − Δ(x,G (z)), (24)

where Δ(x,G (z)) is the margin measuring the difference between real samples and generated sam-
ples. This constraint indicates that a real sample is separated from a generated sample by at least
a margin of Δ(x,G (z)). The optimization for the LS-GAN is then stated as

min
D
LD = Ex∼pr

Lθ (x) + λEx∼pr
z∼pz

(Δ(x,G (z)) + Lθ (x) − Lθ (G (z)))+, min
G
LG = Ez∼pz

Lθ (G (z)),

(25)
where λ is a positive balancing parameter, (a)+ = max(a, 0) and θ are the parameters in D. From
the second term in LD in the Equation (25), Δ(x,G (z)) is added as a regularization term for op-
timizing D to prevent D from overfitting the real samples and the generated samples. Figure 16
demonstrates the efficacy of Equation (25). The loss for D puts a restriction on the capability of D,
i.e., it challenges the ability of D to separate well-generated samples from real samples, which is
the original cause for the vanishing gradient. More formally, LS-GAN assumes that pr lies in a set
of Lipschitz densities with a compact support.

The models were trained with CIFAR-10, SVHN [102], and CelebA with a mini-batch of 64 im-
ages. All weights were initialized from a zero-mean Gaussian distribution with a standard devia-
tion of 0.02. The Adam optimizer was used to train the model with an initial learning rate set as
1 × 10−3 and β1 as 0.5 while the learning rate was decreased every 25 epochs by a factor of 0.8.

5.7 Mode Regularized GAN

Mode Regularized GAN proposes a metric for regularization to penalize missing modes [18], which
is then used to solve the mode collapse problem. The key idea behind this work is the use of an
encoder E (x): x→ z to produce the latent variable z for G instead of using noise. This procedure
has two benefits: (1) The encoder reconstruction can add more information toG so that is not that
easy for D to distinguish between generated samples and real samples; and (2) the encoder ensures
a correspondence between x and z (E (x)), which meansG can cover different modes in the x space.
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So it prevents the mode collapse problem. The loss function for this mode regularized GAN is

LG = −Ez[log[D (G (z))]] + Ex∼pr
[λ1d (x,G ◦ E (x)) + λ2log[D (G (x))]]

LE = Ex∼pr
[λ1d (x,G ◦ E (x)) + λ2log[D (G (x))]],

(26)

where d is a geometric measurement that can be chosen from many options, e.g., pixelwise L2

and distance of extracted features. The authors evaluate the performance of including the mode
regularization on the MNIST and CelebA (64 × 64) datasets.

5.8 Geometric GAN

The loss function for geometric GANs [80] can be derived via an alternative means by minimizing
the hinge loss as

LD = −E(x,y )∼pr
[min(0,−1 + D (x ,y))] − Ez∼pz,y∼pr

[min(0,−1 − D (G (z),y))]

LG = −Ez∼pz,y∼pr
D (G (z),y).

(27)

This hinge loss fashion is also deployed in the SAGAN mentioned in Section 4.11 and BigGAN
mentioned in Section 4.12. Compared to the other loss functions, the authors demonstrate the effi-
cacy of hinge loss for dealing with the high-dimension low-sample size problem [2, 17, 96], which
is a classification problem caused when the mini-batch size is much smaller than the dimension
of the feature space. In this article, the geometric GAN is designed based on a soft-margin SVM
linear classifier rather than a hard-margin SVM linear classifier. The networks were trained on
MNIST (64 × 64 resolution), CelebA (64 × 64 resolution), and LSUN (64 × 64 resolution) datasets.
The DCGAN architecture trained using the RMSprop optimizer with learning rate 2 × 10−4 and
mini-batch size 64 was deployed in this work. The authors demonstrate that geometric GAN is
more stable for training and less prone to mode collapse.

5.9 Relativistic GAN

Relativistic GAN (RGAN) [60] is proposed as a general approach to devising new cost functions
from the existing one, i.e., it can be generalized for all IPM [101, 123] GANs. The discriminator
in the original GAN measures the probability for a given real sample or a generated sample. The
authors argue that key relative discriminant information between real data and generated data
is missing in the original GAN. The discriminator in RGAN takes into account how a given real

sample is more realistic compared to a given random generated sample. The loss function of RGAN
applied to the original GAN design is stated as

min
D

Exr∼pr
xд∼pд

[log(sigmoid(C (xr ) −C (xд )))], min
G

Exr∼pr
xд∼pд

[log(sigmoid(C (xд ) −C (xr )))], (28)

where C (x) is the non-transformed layer. Figure 17 demonstrates the effect on D of using the
RGAN approach compared to the original GAN. In terms of the original GAN, the optimization
aims to push the D (x) to 1 (right one). For RGAN, the optimization aims to push D (x) to 0.5 (left
one), which is more stable compared to the original GAN. The author also claims that RGAN can
be generalized to other types of loss-variant GANs if those loss functions belong to IPMs. The
generalization loss is stated as

LD = Exr∼pr
xд∼pд

[f1 (C (xr ) −C (xд ))] + Exr∼pr
xд∼pд

[f2 (C (xд ) −C (xr ))]

LG = Exr∼pr
xд∼pд

[д1 (C (xr ) −C (xд ))] + Exr∼pr
xд∼pд

[д2 (C (xд ) −C (xr ))],
(29)

where f1 (y) = д2 (y) = −y and f2 (y) = д1 (y) = y. Details of loss generalization for other GANs can
be found in the original paper [60].
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Fig. 17. D output comparison between RGAN and the original GAN. (a) D output in RGAN; (b) D output in
the original GAN when training the G. Figure is regenerated from Reference [60].

The authors trained the networks on the CIFAR-10 and the CAT datasets with various image
sizes, i.e., 64 × 64, 128 × 128, and 256 × 256. The DCGAN architecture with the Adam optimizer was
used. Various training settings have been explored and more details can be found in the original
paper [60]. The authors successfully demonstrate that the relativistic discriminator offers a way to
improve on the standard GAN approach and is able to achieve better performance with other tricks,
e.g., spectral normalization and gradient penalty. More importantly, the authors demonstrate the
generability of this approach, in which any type of GAN can be trained through an RGAN fashion.

5.10 SN-GAN

SN-GAN [100] proposes the use of weight normalization to train the discriminator in a more stable
way. This technique is computationally light and easily applied to existing GANs. Previous work
for stabilizing the training of GANs [4, 47, 111] emphasizes the importance that D should be from
the set of K-Lipshitz continuous functions. Lipschitz continuity [5, 36, 42] can be considered a more
strict form of continuity, one which requires that the function does not change rapidly. This smooth
D is of benefit in stabilizing the training of GANs. The work mentioned previously focused on
the control of the Lipschitz constant of the discriminator function. This work demonstrates an
alternative, simpler way to control the Lipschitz constant through spectral normalization of each
layer for D. Spectral normalization is performed as

W̄S N (W) =
W

σ (W)
, (30)

where W represents weights on each layer for D and σ (W) is the L2 matrix norm of W. The article
proves this will make ‖ f ‖ ≤ 1. The fast approximation for the σ (W) is also demonstrated in the
original paper.

The authors evaluated the performance of SN-GAN on the CIFAR-10 (32 × 32 resolution), the
STL-10 (48 × 48 resolution) [25] and the ImageNet (128 × 128 resolution) by comparing to the exist-
ing regularization/normalization techniques including weight clipping [4], gradient penalty [136],
batch normalization [57], weight normalization [118], layer normalization [7], and orthonormal
regularization [14]. Several training settings have been carried out for a comprehensive compari-
son. The authors demonstrate the efficacy of spectral normalization on the diversity and the quality
of generated images compared to previously proposed approaches.

5.11 RealnessGAN

In the original GAN design, the discriminator only outputs 0 and 1, i.e., real and fake instead of a
continuous distribution as the measure of realness. Xiangli et al. [137] propose the RealnessGAN to
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tackle this new perspective, which treats realness as a random variable that can be estimated from
multiple angles. Traditional GANs adopt a single scalar (discriminator output) as the measure of
realness. The authors argue that the realness is more complicated and covers multiple factors such
as texture and overall configuration in the case of images. Following this observation, the discrim-
inator is re-designed to learn a realness distribution instead of a single scalar. To achieve this, Real-
nessGAN replaces the single scalar by a distribution prealness so that D (x) = {prealness (x,u);u ∈ Ω}
given by an input sample, where Ω is the set of outcomes of prealness and each outcome u can be
viewed as a potential realness measure by a chosen realness measuring criteria. In the original
paper, the discriminator returns N probabilities on these N outcomes Ω = {u0,u1, . . . ,uN−1} as

prealness(x,ui ) =
eθi (x)∑
j e

θ j (x)
, (31)

whereθ = {θ0,θ1, . . . ,θN−1} are the parameters ofD. Apart from the outcomes Ω, two distributions
A1 for real and A0 for fake are also defined on Ω. In practical implementation, given a mini-
batch {x0,x1, . . . ,xm−1}, i.e., logits computed by the discriminator on the ith outcome, a Gaussian
distribution N (μi ,σi ) is fitted on {θi (x0),θi (x1), . . . ,θi (xm−1)} and new logits is re-computed as
{θ ′i (x0),θ ′i (x1), . . . ,θ ′i (xm−1);θ ′i ∼ N (μi ,σi )}. Increasing the number of outcomes will make D
more rigorous and put more constraints on G. In other words, a larger number of outcomes is
suggested for a more complicated dataset. The minmax loss can finally be represented as

min
G

max
D

Ex∼pr
KL(A1‖D (x)) + Ez∼pz

KL(A0‖D (G (z))), KL refers to KL divergence. (32)

The authors trained RealnessGAN on CIFAR10 and CelebA by using the Adam optimizer. The
network architecture of RealnessGAN is identical to the DCGAN architecture with z ∼ N (0, I ).
Batch normalization was deployed forG and spectral normalization was applied forD. The number
of outcomes were set to 51 for CelebA and 3 for CIFAR10 datasets, respectively.

5.12 Sphere GAN

Sphere GAN [108] is a novel IPM-based GAN, which uses the hypersphere to bound IPMs in the
objective function, thereby it can facilitate stability of training. By exploiting the information of
higher-order statistics of the data using geometric moment matching, the GAN model can provide
more accurate results. The objective function of sphere GAN is defined as

min
G

max
D

∑
r

Ex

[
dr

s (N),D (x)
] −∑

r

Ez

[
dr

s (N,D (G (z)))
]
. (33)

For r = 1, . . . ,R where the function dr
s measures the r th moment distance between each sample

and the north pole of the hypersphere, N. Note that the subscript s indicates that dr
s is defined

on Sn . Different from conventional discriminators based on the Wasserstein distance that require
Lipschitz constraints (which forces the discriminators to be 1-Lipschitz functions) the sphere GAN
relaxes this condition by defining IPMs on the hypersphere. Figure 18 shows the pipeline of sphere
GAN.

Unlike with conventional approaches such as WGAN-GP, WGAN-CT, and WGANL, sphere GAN
does not need any additional constraints that forces discriminators to lie in a desired function
space. By using geometric transformations, sphere GAN ensures that distance functions lie in a
desired function space with no additional constraint term.

5.13 Self-supervised GAN (SS-GAN)

Although the conditional GAN has achieved great success in natural image synthesis. The main
drawback of conditional GANs is the necessity for labeled data. Self-Supervised GANs [19] exploit
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Fig. 18. Pipeline of sphere GAN. The generator outputs the real and fake data (generated via noisy inputs)
into the discriminator. The final output is ann-dimensional Euclidean feature space (yellow plane). The green
and purple circles are the feature points of the fake and real samples. The key idea behind the sphere GAN is a

remapping of the feature points on to the n-dimensional hypersphere (i.e., yellow sphere). After the geometric
transformation, the mapped points can be used for calculating the geometric moments centered at the north
pole of the hypersphere. At the same time, the discriminator tries to maximize the moment differences of real
and fake samples, while the generator tries to interfere with the discriminator by minimizing the moment
differences. Figure is adopted from Reference [108].

adversarial training and self-supervision for bridging the gap between conditional and uncondi-
tional GANs.

This work imbues the discriminator with a mechanism to learn useful representations, inde-
pendently of the quality of the current generator. In a self-supervised manner, they train a model
on predicting rotation angle for extracting representations from the resulting networks, and then
propose to add a self-supervised task (a rotation-based loss) to the discriminator, as

LG = −V (G,D) − αEx∼PG
Er∼R [logQD (R = r |xr )] , (34)

LD = V (G,D) − βEx∼Pdata
Er∼R [logQD (R = r |xr )] , (35)

whereV (G,D) is the original value function [45], r ∈ R is a rotation selected from a set of possible
rotations (R = {0◦, 90◦, 180◦, 270◦}). Image x rotated by r degrees is denoted as xr , and Q (R |xr ) is
the discriminator’s predictive distribution over the angles of rotation of the sample. The implemen-
tation trick is they use output of the second last layer of discriminator added with a linear layer to
predict the rotation type. This work tries to enforce the discriminator to learn good representation
via learning the rotation information.

5.14 Summary

We explain the training problems (mode collapse and vanishing gradient for G) present in the
original GAN design and we have introduced loss-variant GANs from the literature, which are
proposed primarily for the purposes of improving the GANs performance in terms of three key
aspects. Figure 19(a) illustrates the footprint of loss-variants that are discussed in this section.
Figure 19(b) summarizes the efficacy of loss-variant GANs for these challenges. More details of
quantitative results are provided in Section 7. Losses of LSGAN, RGAN, and WGAN are very sim-
ilar to the original GAN loss. We use a toy example (i.e., two distributions used in Figure 10) to
demonstrate the G loss regarding the distance between real data distribution and generated data
distribution in Figure 11(b).

It can be seen that RGAN and WGAN are able to inherently solve the vanishing gradient prob-
lems for the generator when the discriminator is optimized. LSGAN in contrast still suffers from
a vanishing gradient for the generator, however, it is able to provide a better gradient compared
to the original GAN in Figure 11(a) when the distance between the real data distribution and the
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Fig. 19. (a) An overview of the footprint for loss-variant GANs discussed in this section. (b) Current loss-
variants for solving the main identified challenges. Challenges are categorized in terms of three independent
axes. Red points indicate the GAN-variant covers all three challenges, blue points cover two, and black points
cover only one challenge. A larger value for each axis indicates better performance.

generated data distribution is relatively small. This is demonstrated in the original paper [94]
where LSGAN is shown to more easily push the generated samples to the boundary established
by the discriminator.

Loss-variant GANs can be applied to architecture-variants. However, SN-GAN and RGAN show
stronger generalization abilities compared to other loss-variants, where these two loss-variants can
be deployed by other types of loss-variants. Spectral normalization can be applied to any GAN-
variant [100] while the RGAN concept can be applied to any IPM-based GAN [60]. We strongly
recommend the use of spectral normalization for all GANs applications as described here. There
are a number of loss-variant GANs mentioned in this article that are able to solve the mode collapse
and training stability problems.

6 APPLICATIONS

6.1 Image Synthesis

Image synthesis is still a main focus area for GANs currently, and as a result has produced many
GAN variants. In this section, we classify all applications related to images under the image syn-
thesis category such as image super-resolution, image-to-image translation, and image matting.
Image Super-Resolution Image super-resolution enables a high-resolution image to be gen-
erated from a low-resolution image by upsampling. SRGAN [74] is a representative framework
for image super-resolution by using GANs. Apart from general adversarial loss in GANs, SRGAN
extends the loss by adding content loss (e.g., a pixelwise MSE loss) in the area of super-resolution,
which lead to a perceptual loss presented as follows:

LSR = LSR
X + 10−3LSR

GAN, (36)

where LSR
X

is the content loss and LSR
GAN is the GAN loss. In practice, the content loss LSR

X
is

chosen depending on applications. SRGAN presents three content losses (1) standard pixelwise
MSE loss LSR

MSE
, (2) a loss defined on feature maps representing lower-level features LSR

V GG22, and

(3) a loss defined on feature maps representing higher-level features LSR
V GG54. The authors show

that different content losses perform differently according to different evaluation metrics. The
generator in SRGAN is conditioned by low-resolution images, which are inferred with 4× upscaling
factors. The authors show the superior perceptual performance of SRGAN compared to traditional
approaches.
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Image Completion/Repair Image completion/repair is a common image editing operation,
which aims to fill the missing or masked regions in images with synthesized content. Most efficient
traditional completion algorithms [9, 54] depend on low-level cues, which are used to search for
patches from known regions of the same image, and synthesize the contents that locally appear
similarly to the matched patches. These approaches perform well for background completion as
patterns from the background are similar to each other. The assumption of similar patterns for a
missing part with other parts in an image can be violated in some situations, e.g., filling missing
parts for a face image, in which many objects have unique patterns. Li et al. [77] propose the use of
an autoencoder incorporating GANs. Two discriminators DG and DL are deployed (one for global
image content and the other for local image content), which produces two adversarial losses that
are used for optimization. The overall loss function is represented as

L = Lr + λ1LDG
+ λ2LDL

+ λ3Lp , (37)

whereLr is the L2 distance between the autoencoder output and the original image,LDG
andLDL

are adversarial losses of DG and DL , and Lp is the pixelwise softmax for the parsing network [85,
140]. λ1, λ2, and λ3 are hyperparameters used to control the effects caused by different losses.
Image Matting Natural image matting is defined as the operation of accurately estimating the
opacity of a foreground object in an image or video stream [88]. This field is attracting growing in-
terest as it has wide applications such as for image editing and film post-production. Image matting
approaches formally require an input image with a foreground object and the image background,
which can be mathematically expressed as

Ii = αiFi + (1 − αi )Bi , αi ∈ [0, 1], (38)

where αi is a scalar value that defines the foreground opacity at pixel i , Fi is a scalar value of
foreground object at pixel i andBi is a scalar value of the background at pixel i . Lutz et al. introduces
GANs to this field and proposed AlphaGAN that can produce visually appealing compositions. In
their work, they train the discriminator on images composited with the ground-truth alpha and
the predicted alpha and the generator is used to generate the compositions.
Image-to-image Translation Image-to-image translation is a class of graphic problems, in
which the objective is to learn the mapping between an output image and an input image using a
training set of aligned image pairs. Isola et al. [58] proposed the use of CGAN for image-to-image
translation when paired training data is available. CycleGAN [153] is proposed as a soluution
when unpaired training data is not available for image-to-image translation. CycleGAN achieves
this by introducing a cycle consistency loss to enforce the requirement that the mapping from
one domain X to the other domain Y is roughly the same in each direction. Other work such
as DiscoGAN [66] and DualGAN [143] are also proposed to solve the missing paired training
data issue in the area of image-to-image translation. More details can be found in the original
papers.

6.2 Video Generation

GANs have already achieved striking results for natural images generation. Some recent work has
attempted to extend this success to the area of video generation [24, 61, 126]. Convincing video
generation using GANs remains a significant challenge as it exacerbates all the issues associated
with image generation using GANs. Also it has the problems of increased memory and computa-
tion costs due to the nature of video and the requirement for temporal modeling. In addition, due to
the limitation of memory and training stability, the generation becomes increasingly challenging
with the increase of the resolution/duration of videos. The current foci of video generation re-
search via GANs we believe are (1) the production of high-resolution videos, e.g., up to/more than
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256 × 256, (2) increasing the lengths of the generated video beyond 48 frames, and (3) the genera-
tion of more realistic video so that much of the generated video content is not blurred, indistinct,
or even surreal. Video-based GANs do not only have to consider the spatial modeling problem but
also require temporal modeling, i.e., the motion between each adjacent frames in a video sequence.
MoCoGAN [126] is proposed to learn motion and content in an unsupervised fashion and divides
the image latent space into content and motion spaces. DVD-GAN [24] is able to generate longer
and higher resolution videos based on the BigGAN architecture while introducing scalable, video-
specific generator and discriminator architectures. DVD-GAN comprises two discriminators DS

(spatial discriminators) and DT (temporal discriminators), in which DS scores input frames from
the spatial perspective and DT scores input frames from the temporal perspective (motion).

6.3 Feature Generation

“Can machines think?” This is the question raised in Alan Turing’s seminal paper entitled “Com-
puting Machinery and Intelligence” [127] in 1950. The ultimate goal of machines is to be as intel-
ligent as human beings. Current AI depends on large datasets rather than being generalized from
small datasets and has a catastrophic forgetting problem [97] when learning tasks sequentially.
Few-shot learning and continual learning attract significant attention from the scientific commu-
nity in recent years and aims to fill the gaps between AI and humans. Both of these fields suffer
from the problem of a lack of data, i.e., few-shot learning uses few samples (e.g., normally 1 sam-
ple or 5 samples) for each category and continual learning comes across unseen data in sequential
tasks. Mandal et al. [93] proposes the use of conditional Wasserstein GAN with two additional
terms, i.e., cosine embedding and cycle-consistency losses to synthesize unseen action features for
zero-shot action recognition. Shin et al. [119] proposes a deep generative replay framework for
continual learning, in which training data for previous tasks are sampled by the generator and
interleaved with those for a new task. These show that GANs have the potential ability to provide
solutions for other machine learning problems.

7 DISCUSSION

We have introduced the most significant problems present in the original GAN design namely
mode collapse and vanishing gradients when updating G. We have surveyed significant GAN-
variants that remedy these problems through two design considerations: (1) architecture-variants.
This aspect focuses on architectural options for GANs. This approach enables GANs to be success-
fully applied to different applications, however, it is unable to fully solve the problems mentioned
above; (2) loss-variants. We have provided a detailed explanation as to why these problems arise
in the original GAN. These problems are essentially caused by the loss function in the original
GAN. Consequently, modifying this loss function can solve this problem. It should be noted how-
ever that the loss function may change for some architecture-variants and it is, in many cases,
an architecture-specific loss. Therefore, it is unable to generalize to other architectures. Table 2
demonstrates our summary for the performance of the presented GANs in this work by using
Inception Score and FID as presented in the literature. Four image datasets are considered in the
summary, i.e., CIFAR10, ImageNet, LSUN, and CelebA, which are the most widely used bench-
marking datasets.
Interconnections between Architecture and Loss In this article, we highlight the prob-
lems inherent in the original GAN design. In highlighting how subsequent researchers have reme-
died those problems, we explored architecture-variants and loss-variants in GAN designs sep-
arately. However, it should be noted that there are interconnections between these two types
of GAN-variants. As mentioned before, loss functions are easily integrated to different architec-
tures. Benefiting from improved convergence and stabilization through a redesigned loss function,
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Table 2. Performance Summary across Different Types of GANs Discussed in This Paper on
Different Datasets in the Literature, i.e., CIFAR10, ImageNet, LSUN, and CelebA

Model CIFAR10 (IS/FID) ImageNet (IS/FID) LSUN (FID) CelebA (FID)
FCGAN 6.41/42.6 —/— — —
BEGAN 5.62/— —/— — 83.3

PROGAN 8.80/— —/— 8.3 7.3

LSGAN 6.76/29.5 —/— 21.6 —
DCGAN 6.69/42.5 —/74.2 160.1 63.1

WGAN-GP 8.21/21.5 11.6/62.1 22.8 —
SN-GAN 8.43/18.8 36.8/27.6 — —

Geometric GAN —/27.1 —/— — —
RGAN —/15.9 —/— — —

AC-GAN 8.25/— —/— — —
BigGAN 9.22/14.7 166.5/7.4 — —

RealnessGAN —/34.6 —/— — 23.5
MSG-GAN —/— —/— 5.2 8.0

SS-GAN —/15.7 —/43.9 13.3 24.36
YLG —/— 57.2/15.9 — —

Sphere GAN —/— —/— 16.9 —

“—” refers to experiments have not been done in the literature. Studies from References [47, 56, 60, 63, 63, 64,

94, 95, 100, 106, 113, 120, 120, 121, 134, 137, 149].

architecture-variants are able to achieve better performance and accomplish solutions to more
difficult problems. For examples, BEGAN and PROGAN use Wasserstein distance instead of JS
divergence. SAGAN and BigGAN deploy spectral normalization, where they achieve good perfor-
mance based on multi-class image generation. These two variant types equally contribute to GANs
progress.
Future Directions GANs were originally proposed to produce plausible synthetic images and
have achieved exciting performance in the computer vision area. GANs have been applied to
some other fields (e.g., time-series generation [15, 39, 48, 87] and natural language processing [8,
40, 76, 147]) with some success. Compared to computer vision, GANs research in other areas
is still somewhat limited. The limitation is caused by the different properties inherent in image
versus non-image data. For instance, GANs work to produce continuous value data but natural
language is based on discrete values like words, characters and bytes, so it is difficult to apply
GANs successfully for such data. As this is also a very promising area, success in this area will
lead to many applications such as generating subtitles and comments to live streaming, and so on.
Research areas such as health have sensitivity around privacy issues in particular and successful
data augmentation will have significant impact in these areas. However, generation for other
data modalities relevant to such application areas such as time-series data has only been explored
in a limited way. Notable challenges here include the lack of efficient metrics for evaluating the
performance of GANs in such areas. More research is required in these areas.

Since the first GAN was proposed in 2014, their development has brought many benefits both
in fomenting new research ideas and through impact in the world outside research and academia.
However, improper use of GANs can bring challenges and should be of concern to society, e.g.,
GANs can be used to generate fake video of specific people and fabricate evidence of events that
may have never happened, creating media sources that are counterfactual to a particular person’s
opinions and actions, detrimental to their reputation, and may even affect their personal safety
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[1, 53]. We should therefore focus too, on developing forgery detection and processes to efficiently
and effectively detect AI-genereated images (including those developed using GANs).

8 CONCLUSION

In this article, we reviewed GAN-variants based on performance improvement offered in terms of
higher image quality, more diverse images and stability of training. We reviewed the current state
of GAN-related research from both an architecture and a loss basis. More complex architectures
with larger batch size are associated with an increase in both image quality and image diversity, i.e.,
BigGAN. However, limited GPU memory could be an issue for processing large batches of images.
As an alternative the progressive training strategy used in PROGAN can increase image quality
without requiring very large batches of images. In terms of image diversity, adding self-attention
mechanisms to both the generator and the discriminator has achieved exciting results with the
SAGAN demonstrating compelling performance using the ImageNet dataset. In terms of training
stability, the loss function plays an important role here and different types of loss functions have
been proposed to deal with this challenge. Having reviewed different types of loss functions, we
find that spectral normalization has good generalization qualities, i.e., it can be applied to every
GAN, is easy to implement and has very low computational cost. Current state-of-the-art GANs
models such as BigGAN and PROGAN are able to produce high quality images and diverse images
in the computer vision field. However, research that has applied GANs to the more challenging
scenario of video is limited. Moreover, GAN-related research in other areas such as time-series
generation and natural language processing lags that for computer vision in terms of performance
and capability. We conclude that there are clearly opportunities for future research and application
in these fields in particular.

ACKNOWLEDGMENT

The authors appreciate informative and insightful comments provided by anonymous reviewers,
which significantly improve the quality of this survey.

REFERENCES

[1] Darius Afchar, Vincent Nozick, Junichi Yamagishi, and Isao Echizen. 2018. MesoNet: A compact facial video forgery

detection network. In Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security

(WIFS’18). IEEE, 1–7.

[2] Jeongyoun Ahn and J. S. Marron. 2010. The maximal data piling direction for discrimination. Biometrika 97, 1 (2010),

254–259.

[3] Martin Arjovsky and Léon Bottou. 2017. Towards Principled Methods for Training Generative Adversarial Networks.

arXiv:1701.04862. Retrieved from https://arxiv.org/abs/1701.04862.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. arXiv:1701.07875. Retrieved from

https://arxiv.org/abs/1701.07875.

[5] Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16,

1 (1966), 1–3.

[6] Mathieu Aubry, Daniel Maturana, Alexei A. Efros, Bryan C. Russell, and Josef Sivic. 2014. Seeing 3D chairs: Exemplar

part-based 2D-3D alignment using a large dataset of CAD models. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. IEEE, 3762–3769.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normalization. arXiv:1607.06450. Retrieved

from https://arxiv.org/abs/1607.06450.

[8] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, and

Yoshua Bengio. 2016. An Actor-critic Algorithm for Sequence Prediction. arXiv:1607.07086. Retrieved from https://

arxiv.org/abs/1607.07086.

[9] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Goldman. 2009. PatchMatch: A randomized corre-

spondence algorithm for structural image editing. ACM Trans. Graph. 28, 3 (2009), 24.

[10] Shane Barratt and Rishi Sharma. 2018. A Note on the Inception Score. arXiv:1801.01973. Retrieved from https://arxiv.

org/abs/1801.01973.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1607.06450
https://penalty -@M arxiv.org/abs/1607.07086
https://penalty -@M arxiv.org/abs/1607.07086
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1801.01973


Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy 37:33

[11] David Berthelot, Thomas Schumm, and Luke Metz. 2017. BEGAN: Boundary Equilibrium Generative Adversarial

Networks. arXiv:1703.10717. Retrieved from https://arxiv.org/abs/1703.10717.

[12] Ali Borji. 2019. Pros and cons of GAN evaluation measures. Comput. Vis. Image Understand. 179 (2019), 41–65.

[13] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2018. Large Scale GAN Training for High Fidelity Natural Image

Synthesis. arXiv:1809.11096. Retrieved from https://arxiv.org/abs/1809.11096.

[14] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston. 2016. Neural Photo Editing with Introspective

Adversarial Networks. arXiv:1609.07093. Retrieved from https://arxiv.org/abs/1609.07093.

[15] Eoin Brophy, Zhengwei Wang, and Tomas E. Ward. 2019. Quick and Easy Time Series Generation with Established

Image-based GANs. arXiv:1902.05624. Retrieved from https://arxiv.org/abs/1902.05624.

[16] Peter Burt and Edward Adelson. 1983. The laplacian pyramid as a compact image code. IEEE Trans. Commun. 31, 4

(1983), 532–540.

[17] Iain Carmichael and J. S. Marron. 2017. Geometric Insights into Support Vector Machine Behavior Using the KKT

Conditions. arXiv:1704.00767. Retrieved from https://arxiv.org/abs/1704.00767.

[18] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. 2016. Mode Regularized Generative Adver-

sarial Networks. arXiv:1612.02136. Retrieved from https://arxiv.org/abs/1612.02136.

[19] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and Neil Houlsby. 2019. Self-supervised GANs via auxiliary

rotation loss. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19).

[20] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016. InfoGAN: Interpretable

representation learning by information maximizing generative adversarial nets. In Advances in Neural Information

Processing Systems. 2172–2180.

[21] Zeyuan Chen, Shaoliang Nie, Tianfu Wu, and Christopher G. Healey. 2018. High Resolution Face Comple-

tion with Multiple Controllable Attributes via Fully End-to-end Progressive Generative Adversarial Networks.

arXiv:1801.07632. Retrieved from https://arxiv.org/abs/1801.07632.

[22] Junsuk Choe, Song Park, Kyungmin Kim, Joo Hyun Park, Dongseob Kim, and Hyunjung Shim. 2017. Face generation

for low-shot learning using generative adversarial networks. In Proceedings of the IEEE International Conference on

Computer Vision. 1940–1948.

[23] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. 2018. StarGAN: Unified

generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 8789–8797.

[24] A. Clark, J. Donahue, and K. Simonyan. 2019. Adversarial Video Generation on Complex Datasets. arXiv:1907.06571.

Retrieved from https://arxiv.org/abs/1907.0657.

[25] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An analysis of single-layer networks in unsupervised feature

learning. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. 215–223.

[26] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A. Bharath. 2018.

Generative adversarial networks: An overview. IEEE Sign. Process. Mag. 35, 1 (2018), 53–65.

[27] Quanyu Dai, Qiang Li, Jian Tang, and Dan Wang. 2018. Adversarial network embedding. In Proceedings of the 32nd

AAAI Conference on Artificial Intelligence.

[28] Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and Ruslan R. Salakhutdinov. 2017. Good semi-supervised

learning that requires a bad GAN. In Advances in Neural Information Processing Systems. 6510–6520.

[29] Giannis Daras, Augustus Odena, Han Zhang, and Alexandros G. Dimakis. 2020. Your local GAN: Designing two di-

mensional local attention mechanisms for generative models. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR’20).

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image

database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248–255.

[31] Emily L. Denton, Soumith Chintala, Rob Fergus, et al. 2015. Deep generative image models using a laplacian pyramid

of adversarial networks. In Advances in Neural Information Processing Systems. 1486–1494.

[32] Carl Doersch. 2016. Tutorial on Variational Autoencoders. arXiv:1606.05908. Retrieved from https://arxiv.org/abs/

1606.05908.

[33] Brian Dolhansky and Cristian Canton Ferrer. 2018. Eye in-painting with exemplar generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7902–7911.

[34] Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Synthesizing Audio with Generative Adversarial Net-

works. arXiv:1802.04208. Retrieved from https://arxiv.orb/abs/1802.04208.

[35] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. 2016. Adversarial Feature Learning. arXiv:1605.09782. Re-

trieved from https://arxiv.org/abs/1605.0978.

[36] Tzanko Donchev and Elza Farkhi. 1998. Stability and euler approximation of one-sided lipschitz differential inclu-

sions. SIAM J. Contr. Optim. 36, 2 (1998), 780–796.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1703.10717
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1609.07093
https://arxiv.org/abs/1902.05624
https://arxiv.org/abs/1704.00767
https://arxiv.org/abs/1612.02136
https://arxiv.org/abs/1801.07632
https://arxiv.org/abs/1907.0657
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1606.05908
https://arxiv.orb/abs/1802.04208
https://arxiv.org/abs/1605.0978


37:34 Z. Wang et al.

[37] Hao Dong, Simiao Yu, Chao Wu, and Yike Guo. 2017. Semantic image synthesis via adversarial learning. In Proceed-

ings of the IEEE International Conference on Computer Vision. 5706–5714.

[38] Gintare Karolina Dziugaite, Daniel M. Roy, and Zoubin Ghahramani. 2015. Training Generative Neural Networks

via Maximum Mean Discrepancy Optimization. arXiv:1505.03906. Retrieved from https://arxiv.org/abs/1505.03906.

[39] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. 2017. Real-valued (Medical) Time Series Generation

with Recurrent Conditional GANs. arXiv:1706.02633. Retrieved from https://arxiv.org/abs/1706.02633.

[40] William Fedus, Ian Goodfellow, and Andrew M. Dai. 2018. MaskGAN: Better Text Generation via Filling in the _.

arXiv:1801.07736. Retrieved from https://arxiv.org/abs/1801.07736.

[41] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of

the 14th International Conference on Artificial Intelligence and Statistics. 315–323.

[42] A. A. Goldstein. 1977. Optimization of Lipschitz continuous functions. Math. Program. 13, 1 (1977), 14–22.

[43] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. 2019. AutoGAN: Neural architecture search for gen-

erative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV’19).

[44] Ian Goodfellow. 2016. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160. Retrieved from

https://arxiv.orb/abs/1701.00160.

[45] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems. 2672–2680.

[46] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A kernel

two-sample test. J. Mach. Learn. Res. 13, 1 (Mar. 2012), 723–773.

[47] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C. Courville. 2017. Improved train-

ing of wasserstein GANs. In Advances in Neural Information Processing Systems. 5767–5777.

[48] Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. 2018. EEG-GAN: Generative Adversarial Net-

works for Electroencephalographic Brain Signals. arXiv:1806.01875. Retrieved from https://arxiv.org/abs/1806.01875.

[49] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs trained

by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing

Systems. 6626–6637.

[50] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. 2012. Fundamentals of Convex Analysis. Springer Science &

Business Media.

[51] Saifuddin Hitawala. 2018. Comparative Study on Generative Adversarial Networks. arXiv:1801.04271 (2). Retrieved

from https://arxiv.org/abs/1801.04271.

[52] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. 2019. How generative adversarial networks and

their variants work: An overview. ACM Comput. Surv. 52, 1 (2019), 10.

[53] Chih-Chung Hsu, Chia-Yen Lee, and Yi-Xiu Zhuang. 2018. Learning to detect fake face images in the wild. In Pro-

ceedings of the 2018 International Symposium on Computer, Consumer and Control (IS3C’18). IEEE, 388–391.

[54] Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. 2014. Image completion using planar structure

guidance. ACM Trans. Graph. 33, 4 (2014), 1–10.

[55] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and locally consistent image completion.

ACM Trans. Graph. 36, 4 (2017), 107.

[56] Daniel Jiwoong Im, He Ma, Graham Taylor, and Kristin Branson. 2018. Quantitatively Evaluating GANs with Diver-

gences Proposed for Training. arXiv:1803.01045. Retrieved from https://arxiv.org/abs/1803.01045.

[57] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift. arXiv:1502.03167. Retrieved from https://arxiv.org/abs/1502.03167.

[58] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2017. Image-to-image translation with conditional

adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1125–1134.

[59] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. 2016. Texture Synthesis with Spatial Generative Adversarial

Networks. arXiv:1611.08207. Retrieved from https://arxiv.org/abs/1611.08207.

[60] Alexia Jolicoeur-Martineau. 2018. The Relativistic Discriminator: A Key Element Missing from Standard GAN.

arXiv:1807.00734. Retrieved from https://arxiv.org/abs/1807.00734.

[61] Emmanuel Kahembwe and Subramanian Ramamoorthy. 2019. Lower Dimensional Kernels for Video Discriminators.

arXiv:1912.08860. Retrieved from https://arxiv.org/abs/1912.08860.

[62] Takuhiro Kaneko, Yoshitaka Ushiku, and Tatsuya Harada. 2019. Label-noise robust generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2467–2476.

[63] Animesh Karnewar and Oliver Wang. 2020. MSG-GAN: Multi-scale gradients for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7799–7808.

[64] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive Growing of GANs for Improved Qual-

ity, Stability, and Variation. arXiv:1710.10196. Retrieved from https://arxiv.org/abs/1710.10196.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1706.02633
https://arxiv.org/abs/1801.07736
https://arxiv.orb/abs/1701.00160
https://arxiv.org/abs/1806.01875
https://arxiv.org/abs/1801.04271
https://arxiv.org/abs/1803.01045
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1611.08207
https://arxiv.org/abs/1807.00734
https://arxiv.org/abs/1912.08860
https://arxiv.org/abs/1710.10196


Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy 37:35

[65] Tero Karras, Samuli Laine, and Timo Aila. 2018. A Style-based Generator Architecture for Generative Adversarial

Networks. arXiv:1812.04948. Retrieved from https://arxiv.org/abs/1812.04948.

[66] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. 2017. Learning to discover cross-domain

relations with generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learn-

ing, Volume 70. 1857–1865.

[67] Diederik P. Kingma and Max Welling. 2013. Auto-encoding Variational Bayes. arXiv:1312.6114. Retrieved from

https://arxiv.org/abs/1312.6114.

[68] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. 2017. On Convergence and Stability of GANs.

arXiv:1705.07215. Retrieved from https://arxiv.org/abs/1705.07215.

[69] Jean Kossaifi, Linh Tran, Yannis Panagakis, and Maja Pantic. 2018. GANGAN: Geometry-aware generative adver-

sarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 878–887.

[70] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report.

Citeseer.

[71] Karol Kurach, Mario Lucic, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. 2018. The GAN Landscape: Losses,

Architectures, Regularization, and Normalization. arXiv:1807.04720. Retrieved from https://arxiv.org/abs/1807.04720.

[72] Christoph Lassner, Gerard Pons-Moll, and Peter V. Gehler. 2017. A generative model of people in clothing. In Pro-

ceedings of the IEEE International Conference on Computer Vision. 853–862.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[74] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew

Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. 2017. Photo-realistic single image super-resolution us-

ing a generative adversarial network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern

Recognition. IEEE, 105–114.

[75] Dan Li, Dacheng Chen, Lei Shi, Baihong Jin, Jonathan Goh, and See-Kiong Ng. 2019. MAD-GAN: Multivariate

Anomaly Detection for Time Series Data with Generative Adversarial Networks. arXiv:1901.04997. Retrieved from

https://arxiv.org/abs/1901.04997.

[76] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. 2016. Deep Reinforcement Learn-

ing for Dialogue Generation. arXiv:1606.01541. Retrieved from https://arxiv.org/abs/1606.01541.

[77] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. 2017. Generative face completion. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 3911–3919.

[78] Yujia Li, Alexander Schwing, Kuan-Chieh Wang, and Richard Zemel. 2017. Dualing GANs. In Advances in Neural

Information Processing Systems. 5606–5616.

[79] Yujia Li, Kevin Swersky, and Rich Zemel. 2015. Generative moment matching networks. In Proceedings of the Inter-

national Conference on Machine Learning. 1718–1727.

[80] Jae Hyun Lim and Jong Chul Ye. 2017. Geometric GAN. arXiv:1705.02894. Retrieved from https://arxiv.org/abs/1705.

02894.

[81] Cheng-Lin Liu, Fei Yin, Da-Han Wang, and Qiu-Feng Wang. 2013. Online and offline handwritten chinese character

recognition: Benchmarking on new databases. Pattern Recogn. 46, 1 (2013), 155–162.

[82] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised image-to-image translation networks. In Advances

in Neural Information Processing Systems. 700–708.

[83] Ming-Yu Liu and Oncel Tuzel. 2016. Coupled generative adversarial networks. In Advances in Neural Information

Processing Systems. 469–477.

[84] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2018. Deep learning face attributes in the wild. In Proceedings

of International Conference on Computer Vision (ICCV’15).

[85] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3431–3440.

[86] Pauline Luc, Camille Couprie, Soumith Chintala, and Jakob Verbeek. 2016. Semantic Segmentation Using Adversarial

Networks. arXiv:1611.08408. Retrieved from https://arxiv.org/abs/1611.08408.

[87] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. 2018. Multivariate time series imputation with generative

adversarial networks. In Advances in Neural Information Processing Systems. 1596–1607.

[88] Sebastian Lutz, Konstantinos Amplianitis, and Aljosa Smolic. 2018. AlphaGAN: Generative Adversarial Networks

for Natural Image Matting. arXiv:1807.10088. Retrieved from https://arxiv.org/abs/1807.10088.

[89] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. 2017. Pose guided person image

generation. In Advances in Neural Information Processing Systems. 406–416.

[90] Shuang Ma, Jianlong Fu, Chang Wen Chen, and Tao Mei. 2018. DA-GAN: Instance-level image translation by deep

attention generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 5657–5666.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1705.07215
https://arxiv.org/abs/1807.04720
https://arxiv.org/abs/1901.04997
https://arxiv.org/abs/1606.01541
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1705.02894
https://arxiv.org/abs/1611.08408
https://arxiv.org/abs/1807.10088


37:36 Z. Wang et al.

[91] Dwarikanath Mahapatra, Behzad Bozorgtabar, and Rahil Garnavi. 2019. Image super-resolution using progressive

generative adversarial networks for medical image analysis. Comput. Med. Imag. Graph. 71 (2019), 30–39.

[92] Dwarikanath Mahapatra, Behzad Bozorgtabar, Sajini Hewavitharanage, and Rahil Garnavi. 2017. Image super res-

olution using generative adversarial networks and local saliency maps for retinal image analysis. In Proceedings of

the International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 382–390.

[93] Devraj Mandal, Sanath Narayan, Sai Kumar Dwivedi, Vikram Gupta, Shuaib Ahmed, Fahad Shahbaz Khan, and Ling

Shao. 2019. Out-of-distribution detection for generalized zero-shot action recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 9985–9993.

[94] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley. 2017. Least squares

generative adversarial networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE,

2813–2821.

[95] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and Stephen Paul Smolley. 2018. On the ef-

fectiveness of least squares generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41, 12 (2018),

2947–2960.

[96] James Stephen Marron, Michael J. Todd, and Jeongyoun Ahn. 2007. Distance-weighted discrimination. J. Am. Stat.

Assoc. 102, 480 (2007), 1267–1271.

[97] Michael McCloskey and Neal J. Cohen. 1989. Catastrophic interference in connectionist networks: The sequential

learning problem. In Psychology of Learning and Motivation. Vol. 24. Elsevier, 109–165.

[98] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2016. Unrolled Generative Adversarial Networks.

arXiv:1611.02163. Retrieved from http://arxiv.org/abs/1611.02163.

[99] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. arXiv:1411.1784. Retrieved from

https://arxiv.org/abs/1411.1784.

[100] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral Normalization for Generative

Adversarial Networks. arXiv:1802.05957. Retrieved from https://arxiv.org/abs/1802.05957.

[101] Alfred Müller. 1997. Integral probability metrics and their generating classes of functions. Adv. Appl. Probab. 29, 2

(1997), 429–443.

[102] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. 2011. Reading digits in

natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised Feature

Learning.

[103] Frank Nielsen and Richard Nock. 2013. On the chi square and higher-order chi distances for approximating f-

divergences. IEEE Sign. Process. Lett. 21, 1 (2013), 10–13.

[104] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Training generative neural samplers using

variational divergence minimization. In Advances in Neural Information Processing Systems. 271–279.

[105] Augustus Odena. 2016. Semi-supervised Learning with Generative Adversarial Networks. arXiv:1606.01583. Re-

trieved from https://arxiv.org/abs/1606.01583.

[106] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image synthesis with auxiliary classifier

gans. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. 2642–2651.

[107] Junting Pan, Cristian Canton Ferrer, Kevin McGuinness, Noel E. O’Connor, Jordi Torres, Elisa Sayrol, and Xavier

Giro-i Nieto. 2017. SalGAN: Visual Saliency Prediction with Generative Adversarial Networks. arXiv:1701.01081.

Retrieved from https://arxiv.org/abs/1701.01081.

[108] Sung Woo Park and Junseok Kwon. 2019. Sphere generative adversarial network based on geometric moment match-

ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19).

[109] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. 2009. A 3D face model for pose

and illumination invariant face recognition. In Proceedings of the 2009 6th IEEE International Conference on Advanced

Video and Signal Based Surveillance. IEEE, 296–301.

[110] Ben Poole, Alexander A. Alemi, Jascha Sohl-Dickstein, and Anelia Angelova. 2016. Improved Generator Objectives

for GANs. arXiv:1612.02780. Retrieved from https://arxiv.org/abs/1612.02780.

[111] Guo-Jun Qi. 2017. Loss-sensitive Generative Adversarial Networks on Lipschitz Densities. arXiv:1701.06264. Re-

trieved from https://arxiv.org/abs/1701.06264.

[112] Zhaofan Qiu, Yingwei Pan, Ting Yao, and Tao Mei. 2017. Deep semantic hashing with generative adversarial net-

works. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, 225–234.

[113] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representation Learning with Deep Convolu-

tional Generative Adversarial Networks. arXiv:1511.06434. Retrieved from https://arxiv.org/abs/1511.06434.

[114] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee. 2016. Generative

Adversarial Text to Image Synthesis. arXiv:1605.05396. Retrieved from https://arxiv.org/abs/1605.05396.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

http://arxiv.org/abs/1611.02163
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1701.01081
https://arxiv.org/abs/1612.02780
https://arxiv.org/abs/1701.06264
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1605.05396


Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy 37:37

[115] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance as a metric for image retrieval.

Int. J. Comput. Vis. 40, 2 (2000), 99–121.

[116] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,

Razvan Pascanu, and Raia Hadsell. 2016. Progressive Neural Networks. arXiv:1606.04671. Retrieved from https://

arxiv.org/abs/1606.04671.

[117] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved tech-

niques for training GANs. In Advances in Neural Information Processing Systems. 2234–2242.

[118] Tim Salimans and Durk P. Kingma. 2016. Weight normalization: A simple reparameterization to accelerate training

of deep neural networks. In Advances in Neural Information Processing Systems. 901–909.

[119] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. 2017. Continual learning with deep generative replay. In

Advances in Neural Information Processing Systems. 2990–2999.

[120] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. 2018. How good is my GAN? In Proceedings of the

European Conference on Computer Vision (ECCV’18). 213–229.

[121] Jiaming Song and Stefano Ermon. 2019. Bridging the Gap between f -GANs and Wasserstein GANs. arXiv:1910.09779.

Retrieved from https://arxiv.org/abs/1910.09779.

[122] Nasim Souly, Concetto Spampinato, and Mubarak Shah. 2017. Semi supervised semantic segmentation using gen-

erative adversarial network. In Proceedings of the IEEE International Conference on Computer Vision. 5688–5696.

[123] Bharath K. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert R. G. Lanckriet. 2009. On

Integral Probability Metrics,ϕ-divergences and Binary Classification. arXiv:0901.2698. Retrieved from https://arxiv.

org/abs/0901.2698.

[124] Lucas Theis, Aäron van den Oord, and Matthias Bethge. 2015. A Note on the Evaluation of Generative Models.

arXiv:1511.01844. Retrieved from https://arxiv.org/abs/1511.01844.

[125] Matteo Tomei, Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. 2018. Art2Real: Unfolding the Reality of Art-

works via Semantically-aware Image-to-image Translation. arXiv:1811.10666. Retrieved from https://arxiv.org/abs/

1811.10666.

[126] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. MoCoGAN: Decomposing motion and content

for video generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1526–1535.

[127] Alan M. Turing. 2009. Computing machinery and intelligence. In Parsing the Turing Test. Springer, 23–65.

[128] Mehmet Ozgur Turkoglu, Luuk Spreeuwers, William Thong, and Berkay Kicanaoglu. 2019. A layer-based sequential

framework for scene generation with GANs. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence.

[129] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems. 5998–6008.

[130] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. 2016. Generating videos with scene dynamics. In Advances

in Neural Information Processing Systems. 613–621.

[131] Kunfeng Wang, Chao Gou, Yanjie Duan, Yilun Lin, Xinhu Zheng, and Fei-Yue Wang. 2017. Generative adversarial

networks: Introduction and outlook. IEEE/CAA J. Autom. Sin. 4, 4 (2017), 588–598.

[132] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. 2018. High-resolution

image synthesis and semantic manipulation with conditional GANs. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 8798–8807.

[133] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. 2018. ESRGAN:

Enhanced super-resolution generative adversarial networks. In Proceedings of the European Conference on Computer

Vision Workshop.

[134] Zhengwei Wang, Graham Healy, Alan F. Smeaton, and Tomas E. Ward. 2020. Use of neural signals to evaluate the

quality of generative adversarial network performance in facial image generation. Cogn. Comput. 12, 1 (2020), 13–24.

[135] Zhengwei Wang, Qi She, Alan F. Smeaton, Tomas E. Ward, and Graham Healy. 2020. Synthetic-neuroscore: Using a

neuro-ai interface for evaluating generative adversarial networks. Neurocomputing 405 (2020), 26–36.

[136] Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. 2017. GP-GAN: Towards Realistic High-resolution Image

Blending. arXiv:1703.07195. Retrieved from https://arxiv.org/abs/1703.07195.

[137] Yuanbo Xiangli, Yubin Deng, Bo Dai, Chen Change Loy, and Dahua Lin. 2020. Real or Not Real, That Is the Question.

arXiv:2002.05512. Retrieved from https://arxiv.org/abs/2002.05512.

[138] Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and Kilian Weinberger. 2018. An Empirical

Study on Evaluation Metrics of Generative Adversarial Networks. arXiv:1806.07755. Retrieved from https://arxiv.

org/abs/1806.07755.

[139] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. 2017. High-resolution image inpainting using

multi-scale neural patch synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

6721–6729.

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1910.09779
https://arxiv.org/abs/0901.2698
https://arxiv.org/abs/0901.2698
https://arxiv.org/abs/1511.01844
https://arxiv.org/abs/1811.10666
https://arxiv.org/abs/1811.10666
https://arxiv.org/abs/1703.07195
https://arxiv.org/abs/2002.05512
https://arxiv.org/abs/1806.07755
https://arxiv.org/abs/1806.07755


37:38 Z. Wang et al.

[140] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and Ming-Hsuan Yang. 2016. Object contour detection with a

fully convolutional encoder-decoder network. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 193–202.

[141] Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov, and William Cohen. 2017. Semi-supervised QA with generative

domain-adaptive nets. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). 1040–1050.

[142] Raymond A. Yeh, Chen Chen, Teck Yian Lim, Alexander G. Schwing, Mark Hasegawa-Johnson, and Minh N. Do.

2017. Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 5485–5493.

[143] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. DualGAN: Unsupervised dual learning for image-to-image

translation. In Proceedings of the IEEE International Conference On Computer Vision. 2849–2857.

[144] Yuichi Yoshida and Takeru Miyato. 2017. Spectral Norm Regularization for Improving the Generalizability of Deep

Learning. arXiv:1705.10941. Retrieved from https://arxiv.org/abs/1705.10941.

[145] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. 2015. Lsun: Construction

of a Large-scale Image Dataset Using Deep Learning with Humans in the Loop. arXiv:1506.03365. Retrieved from

https://arxiv.org/abs/1506.03365.

[146] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S. Huang. 2018. Generative Image Inpainting with

Contextual Attention. arXiv:1801.07892. Retrieved from https://arxiv.org/abs/1801.07892.

[147] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2017. SeqGAN: Sequence generative adversarial nets with policy

gradient. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

[148] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In Proceedings of

the European Conference on Computer Vision. Springer, 818–833.

[149] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2018. Self-attention Generative Adversarial

Networks. arXiv:1805.08318. Retrieved from https://arxiv.org/abs/1805.08318.

[150] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N. Metaxas. 2017.

Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In Proceedings of

the IEEE International Conference on Computer Vision. 5907–5915.

[151] Junbo Zhao, Michael Mathieu, and Yann LeCun. 2016. Energy-based Generative Adversarial Network.

arXiv:1609.03126. Retrieved from https://arxiv.org/abs/1609.03126.

[152] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. 2016. Generative visual manipulation on the

natural image manifold. In Proceedings of the European Conference on Computer Vision. Springer, 597–613.

[153] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired Image-to-image Translation Using

Cycle-consistent Adversarial Networks. arXiv:1703.10593v6. Retrieved from https://arxiv.org/abs/1703.10593v6.

[154] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, and Eli Shechtman. 2017.

Toward multimodal image-to-image translation. In Advances in Neural Information Processing Systems. 465–476.

[155] Wentao Zhu, Xiang Xiang, Trac D. Tran, and Xiaohui Xie. 2016. Adversarial Deep Structural Networks for Mammo-

graphic Mass Segmentation. arXiv:1612.05970. Retrieved from https://arxiv.org/abs/1612.05970.

Received November 2019; revised September 2020; accepted November 2020

ACM Computing Surveys, Vol. 54, No. 2, Article 37. Publication date: February 2021.

https://arxiv.org/abs/1705.10941
https://arxiv.org/abs/1506.03365
https://arxiv.org/abs/1801.07892
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1609.03126
https://arxiv.org/abs/1703.10593v6
https://arxiv.org/abs/1612.05970

