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ARTICLE INFO ABSTRACT

Keywords: This paper applies a TVP-VAR model to explore dynamic connectedness between West Texas Intermediate crude
High frequency oil and other US energy prices, stock prices and exchange rate markets during the April 2020 supply shock
Volatility spillovers leading to negative WTI crude oil prices. This period, while coinciding with the escalation of the COVID-19
nglative ices pandemic, is also associated with non-uniform government pandemic responses, widespread expectations of
p OgVID- 1 9p global economic slowdown, and the combined effects of international political influence, all of which generated

immense financial stress. A number of distinct results are identified. Firstly, while WTI is broadly identified as
a volatility receiver from all of the analysed markets, during the negative pricing events WTI rapidly becomes
a volatility transmitter. The inherent signal within such an unexpected market movement sent very sharp
contagion effects throughout traditional financial markets. Spillovers to stock, currency and futures markets
are also substantial. This negative valuation event, although reaffirming the status of the efficient markets
hypothesis, has potentially endangered the role of WTI as a safe-haven during future periods of financial

stress and crises.

1. Introduction

Within the context of a number of substantial crises and shocks,
the very nature of the collapse of West Texas Intermediate oil (WTI
hereafter) prices to an all-time trading low price of -$40.32, before
settling at -$37.63 per barrel on 20 April 2020 provided significant
support to the efficient markets hypotheses. As per (Corbet et al.,
2020a), negative WTI occurred for a number of substantial factors, such
as the financial stresses inherent within the outbreak of COVID-19, a
global reduction of oil demand due to falling economic activity and
increased oil supply due to geopolitical issues. This research focuses
specifically on the interactions between this negative WTI event and
other traditional financial market products during this same period of
time. In particular, we investigate volatility spillovers not only during
the outbreak of the COVID-19 pandemic, but the ability of a market
as central to world finances as that of WTI to simply fall to significant
negative values. Such analysis presents valuable insights into not only
how this phenomenon occurred, but also, as to how such an event
generated contagion effects while further fuelling market panic within
other related energy markets. Negative trading in the markets for WTI
in Midland, Mars Blend, Light and Heavy Louisiana Sweet crude oil
also presented a scenario where some oil producers began to offer oil
at fixed prices to mitigate negative pricing effects.

As presented in Fig. 1, on 20 April 2020, the nearest futures contract
closed at -$37.63 per barrel, however, all other futures remained posi-
tive. This was the penultimate day of trading before contract expiration,
leading to a spread between the May 20 and June 20 contracts of
$58.08 just before 2:30pm ET, before values quickly increased above
$0.00 and as high as $10.01 at the end of the April 20 futures contract,
with the May-June spread falling to just -$1.56 per barrel. Market
sentiment appeared to have been largely driven by supply and demand
imbalances along with a distinct lack of storage capacity in the US.
Much of the imbalance was driven by OPEC and OPEC plus. Although
OPEC Plus members had agreed to reduce supply, the production
changes were not to begin until May 2020, therefore, concerns con-
tinued to increase around elevated production and a lack of storage
availability. In January 2020, there were approximately 49.4 million
barrels of oil in floating storage worldwide. Weekly global floating
storage inflows exceeded 10 million barrels in early March, following
the collapse of the first OPEC Plus agreement. During the first three
weeks of April, the amount of oil in floating storage rose by almost
69 million barrels to approximately 127 million barrels. Forty million
barrels had been added in the week before 20 April alone as the
May Contract had entered its spot period, presenting evidence of the
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substantial pressures that were accumulating. This situation had been
simultaneously exacerbated as Saudi Arabia signalled no breakthrough
in the oil price war with Russia, despite US pressure to end the impasse.
OPEC had recommended additional production cuts of 1.5 million
barrels per day starting in April and extending into the short-term, but
Russia had rejected the additional cuts. The crude oil industry’s demand
response to COVID-19 was faster than its supply response, leading to an
increase in the oversupply problem in the crude oil markets. Consump-
tion of refined production and crude oil fell at a rapid pace as the global
economy slowed while attempts to curtail production lagged behind
the dramatic demand loss. This created a buildup of oil that would be
available for immediate use, pushing nearby prices lower. At the same
time, the expectation that demand would recover in the future kept
forward prices elevated. As more oil flowed into storage, particularly
at Cushing, near-term prices continued falling, in part to discourage the
continued flow of oil into facilities that were reaching their maximum
operational capacity, further widening the spread between the May and
June Contracts. All of these supply and demand dynamics, within the
hostile financial environment driven by the outbreak of the COVID-
19 pandemic generated difficult conditions for traders, many of which
were at this point seeking investment safe-havens while attempting to
make sense of the growing number of lockdowns and restrictions being
imposed by many international governments. The dynamic volatility,
and indeed, the spillover of such volatility are of interest, particularly
due to the growing probability of re-occurrence of such events in the
future.

In this paper, we use a combination of the DCC-GARCH type frame-
work and a TVP-VAR approach, developing on the work of Antonakakis
et al. (2020), to generate the volatility spillovers indexes of Diebold and
Yilmaz (2012) in a time-varying fashion to test the interactions between
the price of WTI and several US financial futures prices and market
indices. We focus specifically on the time period surrounding the supply
shocks that occurred in April 2020, which led to the unprecedented
development of negative WTI prices. While the market for WTI has
often acted as a safe-haven asset during periods of immense interna-
tional turmoil, we find several interesting results that occur during the
negative WTI event in April 2020. Firstly, while WTI is found to be
a volatility receiver from all markets analysed, it becomes a volatility
transmitter during the negative WTI price event. Such a result indicates,
that while considering the inherent uncertainty contained within the
development of the COVID-19 pandemic, the events that transpired
within WTI markets during this short time-frame presented such a
signal of market abnormality that the shock reverberated throughout
many other traditional financial assets. Among all financial markets
considered, the magnitude of volatility spillovers from the WTI market
to US energy futures and US exchange rate markets are found to be
largest while the volatility shocks to the stock markets are found to
be smallest. However, the direction of the spillover of shocks remains
consistent throughout all analysed assets. WTI has the largest volatility
spillovers to the gasoline market among all the markets, followed by
the exchange rate markets and NASDAQ 100. Historic market dynamics
and correlations would present support for such a result. Evidence of
volatility transfer from WTI towards both the Dow Jones Industrial
Average and the S&P500 present substantial evidence as to how signif-
icant, and indeed, how unprecedented the April 2020 events within the
WTI market had become. Significant spillovers sourced from WTI upon
the VIX indicates how forward looking implied volatility increased
as signals of such an incredibly rare event in the form of negative
prices presented further evidence as to how perplexed the valuation
process of short- and medium-term risk had become. While the COVID-
19 pandemic had generated much confusion and fear, the timing of
geopolitical confusion and intervention through the form of OPEC and
OPEC plus action proved to be a substantial propellant of market
anxiety, in an environment attempting to rationalise the effects of
broad-ranging pandemic response, the rapid rise of quantitative easing
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and broad close-to-zero interest rate policy-making. Results are found
to be robust across a variety of analysis time-frames.

The rest of this paper is structured as follows: Section 2 presents
a concise overview of the previous literature relating to contagion
effects, the outbreak of COVID-19, diversification behaviour during
crises, and the selected methodologies. Section 3 presents an overview
of the selected data used in this analysis, while 4 presents a concise
overview of the methodology used. Section 5 presents an overview
and discussion of the results with associated robustness testing results.
Section 6 concludes.

2. Previous literature

Within the context of inter-market dynamics during financial crises,
a number of areas of research provide the foundation for our structural
and methodological selection. Firstly, we consider research that has
focused on the volatility spillovers and dynamic interactions between
financial markets surrounding, and inclusive of, periods of crises. Sec-
ondly, we develop our understanding of the breadth of research that has
focused on the outbreak of the COVID-19 pandemic, and as to how this
‘black swan’ event has influenced traditional financial markets. Finally,
we focus on the use of our selected methodological structure in previous
analyses of financial market interactions.

Focusing on the international financial crisis of 2007-2012, Collet
and Ielpo (2018) identified that volatility spillovers are high in the US
credit market and that the insurance, goods and energy sectors have
been net contributors to these shocks over the 1996-2017 period. For
the same crisis, Bratis et al. (2020), amongst other results, found that
financial spillovers intensified in the post-crisis period exhibiting cycles
of inter-linkages among various assets classes. Kotkatvuori-Ornberg
et al. (2013) identified dynamic correlations between fifty exchanges
during key banking events in the same crisis period and Fry-McKibbin
et al. (2021) showed that interdependence peaked during the global
financial crisis with the covariance and co-volatility co-moments being
the dominant factors. Mollah et al. (2016) identified that the bank risk
transfer between the United States and other countries is the key trans-
mission channel for cross-country correlations, whereas, both Koc¢enda
and Moravcova (2019), Dimitriou and Kenourgios (2013) identified
significant differentials in currency comovement during market dis-
tress, a result that is found to be present in a number of financial
markets including credit default swaps (Tamakoshi and Hamori, 2016);
precious metals (Mensi et al., 2020); volatility markets (Kenourgios,
2014); bond markets (Philippas and Siriopoulos, 2013); insurance mar-
kets (Slijkerman et al., 2013); and the market for diamonds (Auer and
Schuhmacher, 2013). Bussiére et al. (2015) found that hedge funds
with a high commonality were affected disproportionately by illiquidity
and exhibited negative returns during the subsequent financial crisis,
thereby providing little diversification benefits to the financial system
and to investors. Areal et al. (2015) verified that gold remained a
safe haven during multiple recent crises. Other examples of dynamic
interlinkage in crisis were also identified by Cioroianu et al. (2020),
who found evidence of substantial corporate reputational pass-through
during the Boeing 737-MAX disasters.

In relation to the recent COVID-19 pandemic, Mensi et al. (2020)
identified strong evidence of asymmetric multifractality that increases
as the fractality scale increases between gold and oil prices the period
surrounding the pandemic. Ashraf (2020) identified significant stock
market effects across sixty-four countries, results that are echoed in the
works of Salisu and Vo (2020), Adekoya and Oliyide (2020), Smales
(2021). Ji et al. (2020) identified that gold and soybean commodity
futures remained robust as safe-haven assets during the pandemic, with
gold found to be particularly susceptible to fear-driven volatility (Salisu
and Vo, 2020; Sharif et al., 2020), while Hu et al. (2020a) add another
dimension through the use of economic policy uncertainty indicators
to test responses in the market for crude oil along with gold. Yarovaya
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Fig. 1. Daily WTI price and trading volumes. Note: Further analysis and methodological variants were estimated by the authors. The red line indicates the ten-day moving average
of WTI contract trading volumes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

et al. (2021) found that equity funds that were ranked higher in hu-
man capital efficiency outperformed their counterparts. Further, Corbet
et al. (2020b) analysed the relationships between cryptocurrencies and
traditional financial markets, finding evidence indication that such new
financial products acted as a store of value during the escalation of the
crisis. Other evidence of cryptocurrency dynamics during the COVID-19
crisis were provided by Conlon et al. (2020), Dutta et al. (2020), Corbet
et al. (2020c¢).

Consideration of volatility spillovers builds directly on the work
of Diebold and Yilmaz (2009, 2012, 2014), which has been previ-
ously used to identify spillovers in a number of markets including
foreign exchange markets following the introduction of the Euro (An-
tonakakis, 2012), and that of cryptocurrency markets in more recent
times (Hu et al., 2020b). Other, similar multivariate methodologies
have been used to investigate spillovers including BEKK-GARCH (Katsi-
ampa et al., 2019b,a); CCC-GARCH (Sadorsky, 2012); semi-parametric
GARCH (Serra, 2011); and VAR-DCC-GARCH (Meegan et al., 2018;
Corbet et al., 2020d). However, following a number of pre-estimation

testing procedures, the work of Diebold and Yilmaz (2012) was found to
best represent the methodology necessary to test for specific spillovers
within short, dynamic, crisis-driven periods of time such as those specif-
ically surrounding the negative oil price event. In terms of oil market
research, the previous literature has identified a number of key char-
acteristics relating to volatility spillovers both to and from traditional
financial markets. Mensi et al. (2013) used a VAR-GARCH approach
and found significant evidence of volatility spillovers and transmission
between oil prices and the S&P500. Spillovers have also been identified
between oil markets and agricultural commodity markets Mensi et al.
(2014), while for the same markets, Du et al. (2011) identified evi-
dence of crude oil price dynamics including mean-reversion, asymmetry
between returns and volatility, volatility clustering, and infrequent
compound jumps. Nazlioglu et al. (2013) found that volatility transmis-
sion dynamics are heavily influenced by crises. Dynamic spillovers also
seem to exist between oil markets and equity markets in Europe (Arouri
et al., 2012), Gulf Cooperation Council countries (Awartani and Maghy-
ereh, 2013) and the US (Kang et al., 2015), while Maghyereh et al.
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Fig. 2. Time series plot of 5-minute price data. Note: Our price data runs from 20 March 2020 throughout 20 May 2020.

(2016) identify post-crisis driven interactions for eleven major stock
exchanges and oil when considering the role of volatility indices. Cor-
bet et al. (2020a) identified significant volatility spillovers between
the negative WTI price event of April 2020 upon energy sub-sectors,
with differential effects observed in the markets for both coal and
renewables which were found to be directly attributed to the negative
WTI price event of April 2020 which was related to the onset of the
COVID-19 pandemic.

3. Data

The data used comes from the Thomson Reuters DataScope Select
database where we use the 5-minute high frequency data to best
capture the volatility dynamics across different financial asset markets
during the recent negative WTI oil prices on April 20, 2020. We select
several US energy markets including the WTI crude oil futures, gasoline
futures, heating oil futures and natural gas futures prices and three
US stock market indexes (e.g., Dow Jones Industrial Average (DJIA),
S&P 500 and NASDAQ 100). We also include the VIX index which is a
measures of the 30-day expected volatility of the S&P 500 market. The
VIX index is also known as the ‘fear index’ and it is the most recognised
volatility estimator and is calculated on a real-time basis by the CBOE.
In addition, we consider the US Dollar index, which is a measure of
the value of the United States dollar relative to a basket of US trade
partners’ currencies, to represent the overall US exchange rate market.

A time series plot of these series is provided in Fig. 2 for the period
20 March through 20 May 2020 with 3,084 observations where the
negative WTI oil event determines the choice of sample period for our
empirical analysis. From this figure, we can observe a sudden and large
drop in WTI crude oil futures prices on 20 April and the WTI price
rebounds quickly after the negative oil prices. For the three US stock
market indexes, we clearly see an increasing trend during the sample
period, however, the VIX index exhibits a decreasing trend in general
with several peaks over the sample. The movement of gasoline futures
prices also shows an increasing trend, however, the gasoline price also

falls after the WTI futures turned negative. We also notice the effects
of the negative oil prices on heating oil with a sudden drop in value,
whereas natural gas futures price oscillates and exhibits several peaks
in March, April and May. The US Dollar index falls from 102 to 97 at the
beginning of the sample period and then this index oscillates between
97 and 100 for the rest of the sample period.

Fig. 3 also plots the natural logarithmic returns for each index
or price.! From this figure, we can clearly observe an episode of
exceptional volatility in WTI when its price goes negative for first
time during the global pandemic. We can also see that there are
episodes of volatility movements in other financial markets, however,
the movements of these returns are quite different. The volatility of
DJIA returns is large in the early sample period during late March,
where we also find similar effects for the S&P 500 and NASDAQ 100
indexes returns as the movement of returns, which are substantial at
the end of March. There are exceptional episodes of movements in
the energy markets, for example, the movement of gasoline futures
returns reaches its maximum shortly after the negative oil price. The
heating oil futures returns show the largest fluctuations between the
end of April and early May and natural gas futures returns also show
exceptional volatility during the entire sample period. The US Dollar
index returns presents more negative movements in general while the
positive movement occurs less frequently. The descriptive statistics for
each logarithmic return series are presented in Table 1, where we pro-
vide mean, median, maximum, minimum, standard deviation, skewness
and kurtosis information for each series. All nine series have very high
kurtosis as we expect for typical financial time series. The Jarque-
Bera test for normality for each series is also reported, suggesting a
non-normal distribution.

1 The returns are computed by taking first differences of the natural loga-
rithms for each index or price except that we use only the natural logarithm
for VIX.
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Fig. 3. Natural logarithm of 5-minute return series. Note: Our sample data runs from 20 March 2020 throughout 20 May 2020, representing 3,084 observations.

Table 1

Descriptive statistics of the 5-minute logarithmic returns.
Variable Mean Median Max Min Std. Dev. Skewness Kurtosis J.B. N
WTI 0.00037 0.00000 0.9762 —0.6931 0.0543 3.5416 143.7980 3,084
DJIA 0.00007 0.00004 0.0660 —-0.0435 0.0032 2.0705 94.3628 0.0000%** 3,084
Gasoline 0.00020 0.00000 0.1846 -0.1270 0.0106 2.0886 58.4788 0.0000%*** 3,084
Heating oil 0.00004 0.00000 0.1083 —0.0657 0.0071 4.0429 61.4854 0.0000%** 3,084
Natural gas 0.00002 0.00000 0.0766 —-0.0703 0.0053 2.2086 56.5041 0.0000%** 3,084
S&P 500 0.00007 0.00005 0.0599 —-0.0417 0.0030 1.6574 88.4031 0.0000%** 3,084
NASDAQ 100 0.00008 0.00007 0.0567 —-0.0326 0.0027 2.4275 83.1547 0.0000%*** 3,084
US Dollar index —0.00001 0.00001 0.0100 —-0.0104 0.0006 -1.7682 85.4335 0.0000%** 3,084
VIX —-0.00033 —0.00033 0.1215 -0.1532 0.0104 —-0.2196 45.2306 0.0000%*** 3,084

Note: The 5-minute return data runs from 20 March 2020 to 20 May 2020 with 3084 observations.

4. Methodology

The seminal paper of Diebold and Yilmaz (2012) develops a spillover
measure based on forecast error variance decompositions from a gener-
alised VAR framework. The covariance matrix is set to be time-invariant
and is calculated under either the Cholesky factorisation or gener-
alised decomposition. Gamba-Santamaria et al. (2017) is the first to
construct volatility spillover indexes Diebold and Yilmaz (2012) using
a DCC-GARCH framework to model the multivariate relationships of
volatility among assets. The volatility can be computed directly from
the covariance matrix obtained from the DCC-GARCH model of Engle
(2002). Antonakakis et al. (2019) employ the time-varying parameter
(TVP)-VAR-based approach of Antonakakis et al. (2020) to generate
the spillover indices of Diebold and Yilmaz (2012) and the DCC-
GARCH t-Copula model of Patton (2006). The TVP-VAR approach
of Antonakakis et al. (2020) improves the approach of Diebold and
Yilmaz (2012) in that it does not require setting a rolling window-size
to undertake the time-varying estimation. The TVP-VAR approach has
gained considerable support when it comes to exploring transmission
spillovers, for example, see Antonakakis et al. (2018a,b), Gabauer and

Gupta (2018), Antonakakis et al. (2019), Corbet et al. (2021). In this
paper we use a combination of the DCC-GARCH framework and the
TVP-VAR approach of Antonakakis et al. (2020) to investigate the
dynamic volatility spillovers between the negative WTI price event and
several selected US financial futures prices and market indexes.

4.1. Volatility spillover index

The following is derived from Antonakakis et al. (2020), who ex-
tend the spillover index approach of Diebold and Yilmaz (2012) by
allowing the variances to vary via a stochastic volatility Kalman Fil-
ter estimation approach to explore the transmission mechanism as
time-varying. This new approach does not require choosing a arbi-
trary rolling window-size, which could lead to a loss of valuable
observations.

A TVP-VAR(1) model with time-varying volatility can be written as
follows,

&|Fi_y ~N(O,S)), (€8]
&|F_; ~NQO,R)), @

Vi=Bz 1+

vec(f) = vec(f,_1) + v,
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where y, and z,_; = [y,_y,...,y,_,]’ represent N x 1 and Npx 1 dimen-
sional vectors. g, is a N x Np time-varying coefficient matrix and ¢,
is N x 1 error disturbance vector and time-varying variance-covariance
matrix of S,. vec(f), vec(p) and v, are N?px1 dimensional vectors and R,
is an N2px N?p dimensional matrix. The time-varying coefficients of the
vector moving average (VMA) is the fundamental of the connectedness
index introduced by Diebold and Yilmaz (2012) using the generalised
impulse response function (GIRF) and the generalised forecast error
variance decomposition (GFEVD) developed by Koop et al. (1996),
Pesaran and Shin (1998). The GFEVD can be interpreted as the variance
share one variable has on others and it can be calculated as follows:
J-1 g2
& ()= —"‘ e
PINED Wirk oy
where 4’,-&/,;(" ) denotes the J-step ahead GFEVD. Using the GFEVD,
variable i transmits its shock to all other variables j, representing the
total connectedness index of the network by:

i B D)

3

CEJ) = - * 100 )
le 1¢1/1(J)
78
- —2” vits P9 100. 5)
N

The spillovers of all variables i to variable j, known as the total
directional connectedness to others, is defined as:

N

Cg J ZJ:”#J f’ f( )

i Do *
2o 95, )

Similarly, the spillovers of all variables j to variable i (or the direc-

tional connectedness variable i receives it from variables j), known as
the total directional connectedness from others, is defined as:

N
Cl = —Z’ZI i 91
, PINRRMEP!

ij,t

©

()

The net total directional connectedness (Cig,) is calculated using
the total directional connectedness (Cf’_) ;(J)) to others minus total
directional connectedness from others (C“_, ().

c =C¢  (H-C¢ () ®

i—j,t i—j,t

The sign of the net total directional connectedness illustrates
whether a variable i is driving the network (Cg > 0) or driven by
the network (Cg < 0). The net pairwise directional connectedness is
calculated in the bidirectional relationships:

=@ ()

&
NPDCE, = 2 ~ 4100 ©

The net pairwise volatility spillovers between markets i and j is
simply the difference between the gross volatility shocks transmitted
from variable i to variable j and those transmitted from variable j to
variable i.

4.2. DCC-GARCH t-Copula

Copula functions can be used for modelling correlated random
variables. Let X; be a random variable with a marginal distribution
F; for i = 1,2,...,n. As Sklar (1973) shows, each distribution function
F(xy,...,x,) can be represented as its marginal distribution by using a
copula such as:

F(xy,...,x,) = C(Fi(x)), ..., F,(xn))- (10)
An n-dimensional copula C determined in [0, 1]" can be written as:

Cluy, ... uy) = F(FI_](ul),...,Fn_l(u,,)), an
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for Vu; € [0,1],i = 1,..., N. According to Patton (2006), copulas
can be based on conditional distributions for estimating a DCC-GARCH
t-copula model:

cluys ooty [Rm) = 1,(Fg Gy lop), o, Fy! (uylon)) (12)
Flw) Pyl it
=/_m /w rHnoN2|R |12
x (1 + %Z;Rt_lz,)(’“'N)/zdzl, dzy a3)

where F;]] (uy|s;) represents the conditional distribution and s; rep-
resents the estimated parameters of the univariate GARCH model.
The DCC model is applied to study the time-varying correlations of
asset returns where the time-varying variance-covariance matrix H, is
defined as:

H, = D,R,D, 14

where D, = diag(\/hll,t,...,\/m) is a diagonal matrix of square
root conditional variances. R, is the dynamic conditional correlations
based on the standardised residuals’ conditional variance—covariances,
Q;, that are followed a GARCH(1,1) model of Engle (2002):

Q,=(—a-b0+az,_,z,_, +b0,_, 1s)
R, = diag(Q,)"'?Q,diag0;'"* (16)

where a and b are positive scalar parameters satisfying a + b < 1 to
ensure stationarity. The DCC model is estimated under a multivariate
Student-t distribution. The multivariate Student-t distribution is applied
as the normality assumption of the innovations is rejected for each
series. In this paper, the volatility is calculated directly from the
covariance matrix obtained from a DCC-GARCH model.

5. Empirical results

In this section we investigate how negative WTI crude oil prices
affected US energy, stock and exchange rate markets. Our primary
goal is to estimate the significance of dynamic volatility spillovers
between WTI and several selected US energy, stock and exchange rate
markets, to understand any contagion effects of volatility shocks using
the spillover index-based framework of Diebold and Yilmaz (2012),
Gamba-Santamaria et al. (2017), Antonakakis et al. (2020). Our re-
search question is of interest, as the volatility transmissions between
the US crude oil and energy markets, stock markets, and exchange rate
markets can provide unique new insights as to how the first negative
WTI price event in US history influenced other traditional financial
markets, during a global pandemic caused by COVID-19.

A nine-variable VAR model is initially estimated, including the
WTI crude oil futures returns, gasoline futures returns, heating oil
futures returns, natural gas futures returns, DJIA stock market returns,
NASDAQ 100 stock market returns, S&P 500 stock returns, US Dollar
index returns together with the CBOE volatility index. Our results are
based on a VAR of order 4 and 10-day-ahead volatility forecast errors
as suggested by Diebold and Yilmaz (2012). The WTI crude oil futures
prices turned negative for the first time in history on 20 April 2020,
where the price fell from $17.85 per barrel at the beginning of the
trading day to negative $37.63 per barrel at the end of the trading day.
20 April is not only an occasion where we see a negative oil price but it
is also the largest one day drop in US crude oil’s history. The negative
oil price represents a sharply reduced demand due to the pandemic,
along with storage scarcity due to large supply increases.

Our empirical analysis will be divided into two parts. We first
examine the contagion of volatility effects for our selected variables
using high-frequency data in the period inclusive of both one month
before, and one month after the negative WTI oil price event of 20 April
2020. A number of robustness checks are also undertaken to investigate
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the volatility spillovers, utilising the same variables, for a range of time
periods.?

Our first model focuses on the volatility spillover effects between
WTI and our selected financial assets for a two-month period (20
March-20 May 2020) using the 5-minute high frequency data. The plot
of dynamic total connectedness and the net directional connectedness
index of WTI is presented as Fig. 4, and is indicative of the overall
volatility spillover transmissions and receptions for all nine variables
considered in the model. As presented in the figure, the dynamic total
connectedness is clearly time-varying and it fluctuates between 48 and
55 during the two-month sample period. There has been a signifi-
cant slowdown in worldwide economic activities since the outbreak
of COVID-19 at the beginning of 2020 and the linkages across all
US financial markets are high as can be observed during our selected
sample period. We can clearly see that there is a sharp increase in
overall volatility spillovers during the negative WTI oil prices in April
as the total connectedness rises sharply due to the effects of negative
oil, indicating that sellers would have to theoretically pay buyers to
take the oil off their hands. With many countries in lockdown due
to the COVID-19 pandemic, many forecasted that global oil demand
would fall sharply as lockdown restrictions reduce the demand of
oil worldwide. Within these conditions, the dynamic net directional
connectedness index of WTI is calculated as the volatility shocks trans-
mitted from WTI to other financial assets minus the volatility shocks
received by WTI from all other assets. As can be observed in Fig. 4,
the net directional connectedness exhibits signs of time-variation. A
negative (positive) value in the plot at a specific time indicates a net
volatility receiver (transmitter) role at that time. The dynamic net
directional connectedness of WTI is negative during most of the sample
period except when the WTI oil price dropped below zero. In general,
the dynamic net directional connectedness plot shows that volatility
spillovers from all other financial assets to WTI play a dominant role
most of the time as the WTI crude oil is a volatility receiver during
the sample period. However, it should be noted that WTI crude oil is a
volatility transmitter during the negative crude oil price period in April
2020, as we can see a substantial positive increase in the net directional
connectedness index of WTT when the WTI crude oil prices fall below
zero. This result is of particular interest, as it presents evidence that
volatility spillovers originate from WTI and transfer to other financial
assets during the short negative crude oil price period.

The dynamic net pairwise directional connectedness between WTI
and other financial markets is shown in Fig. 5, where the estimates of
pairwise connectedness index is labelled on the y-axis for each pair and
the estimate of pairwise connectedness simply measures the intensity
of volatility spillovers. In addition, the summary statistics of dynamic
pairwise directional connectedness estimates between WTI and each
market is provided in Table 2, where mean, median, minimum, maxi-
mum and standard deviation of the pairwise directional connectedness
estimates are reported. In general, as illustrated by Fig. 5, the pairwise
connectedness indexes are negative in most cases. This result is also
reflected in Table 2 as the mean and median estimate of pairwise
directional connectedness for each pair are all negative. However,
there is a large variation between minimum and maximum estimate
for the pairwise directional connectedness index. A negative pairwise
connectedness index means that volatility shocks from the other market
to WTI were larger than in the opposite direction. Therefore, a negative
pairwise connectedness index implies that the other tested traditional
markets influence WTI oil price directly through volatility spillovers.
Similarly, a positive pairwise connectedness index would indicate that
a volatility shock transmitted from WTI to the other market was larger
than in the opposite direction. Hence, a positive pairwise connectedness

2 For brevity, only the two week period both before and after the identified
date are presented, however, further results are available from the authors on
request.
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index implies that the WTI oil price influences an index or asset price
more than vice-versa.

A general finding from Fig. 5 suggests that, when focusing on a short
negative oil price period for each pair, the negative WTI oil affects US
energy, stock and exchange rate markets. Furthermore, we can see a
change of net volatility transmission direction. Both prior to, and after
the negative WTI oil price event, the net pairwise connectedness indices
are generally negative while the net pairwise connectedness indexes
become positive when oil price becomes negative. As can be seen,
the intensity of volatility transmissions from WTI towards the other
financial markets are quite different for each pair. We first explore how
the negative WTI crude oil affects three US stock markets.

The dynamic volatility spillovers between WTI and DJIA, S&P 500
and NASDAQ 100 show that the corresponding pairwise connectedness
indexes are negative for most of the sample except during a short period
of negative oil prices, indicating that the volatility spillovers transmit-
ted by each stock market to WTI are larger under most circumstances.
For all three US stock markets, the magnitude of volatility spillovers
towards the WTI market reach a peak at the end of March or early
April as the corresponding pairwise directional connectedness index
reach a local minimum. For example, we can see that the NASDAQ
100 market has the largest magnitude of volatility spillovers to the WTI
market at the end of March compared to the other two stock markets.
At that time, the estimate of pairwise directional connectedness for
WTI-NASDAQ 100 is —1.30229, which is also the minimum estimate
of the pairwise connectedness index for this pair. Shortly after the
peak volatility transmission, the magnitude of net pairwise directional
connectedness index between WTI and each stock market generally fall
smaller especially for the NASDAQ 100 and S&P 500 markets.

It is particularly interesting that the volatility spillovers transmitted
from WTI to each stock market are substantially larger that the absolute
value in the opposite direction during the negative WTI oil event on
20 April, presenting evidence of the effects of negative oil prices on
all three stock markets. The volatility spillovers transmitted by WTI
to each stock market are much larger than the those received by WTI
from US stock markets, indicating that the historic drop of US crude oil
futures prices quickly sent massive shock waves to the US stock market.
As a result, the Dow Jones fell by over 1200 points in the following
two trading days, while the S&P 500 fell 1.79%. If we compare the net
pairwise directional connectedness index on the y-axis for each stock
market pair, the WTI market presents evidence of the stronger volatility
transmissions to the NASDAQ 100 market compared to the DJIA and
S&P 500 markets. From Table 2, the maximum estimate of the pairwise
directional connectedness is 0.927 for the NASDAQ 100, 0.638 for S&P
500 and 0.407 for DJIA. Turning to the CBOE volatility index, the (VIX)
also jumps to 43.83 at the end of 20 April from 38.15 of the previous
day. This is further evidence of the significant volatility spillovers from
WTI to the VIX index during the negative oil price period. This result is
very interesting as it shows that uncertainty in the crude oil market also
had an impact on the VIX index, a common measure of the volatility
of the S&P 500 market.

Plots of dynamic net pairwise directional connectedness between
WTI and three key US energy futures markets (gasoline, heating oil
and natural gas) are presented as Fig. 5. For all three energy futures
markets, the volatility spillovers from WTI to each energy futures
market is generally smaller than those transmitted by each of the three
energy futures markets to WTI except when the WTI crude oil turned
negative. We can clearly see that the pairwise directional connectedness
indexes are negative most of the time, suggesting that energy futures
market influence WTI market more than vice-versa. This finding is
further confirmed by Table 2, as the corresponding mean and median
estimate of pairwise directional connectedness are negative.

For the WTI-gasoline pair, the volatility spillovers from the gasoline
market to WTI are larger than in the opposite direction. However,
the magnitude of volatility spillovers are generally trending slightly
smaller. The net pairwise directional connectedness changes direction
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Fig. 4. Dynamic total connectedness index for all financial assets and net connectedness index for WTI between 20 March 2020 and 20 May 2020. Note: Our 5-minute sample
data runs from 20 March 2020 throughout 20 May 2020, representing 3084 observations. Further analysis and methodological variants were estimated by the authors.
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Fig. 5. Dynamic estimates for pairwise directional connectedness between the WTI and financial assets between 20 March 2020 and 20 May 2020. Note: Our 5-minute sample
data runs from 20 March 2020 throughout 20 May 2020, representing 3084 observations. Further analysis and methodological variants were estimated by the authors.

for the negative WTI crude oil event on 20 April as the net pair-
wise directional connectedness index becomes positive in Fig. 5. We
can conclude that the volatility spillovers transmitted by WTI to the
gasoline market are much larger during the negative WTI crude oil
prices. This result demonstrates that the negative oil prices had a very
strong influence on the gasoline market. In fact, WTI generates the
largest volatility spillovers to the gasoline market of any other market
we consider as the WTI-gasoline pair has a maximum connectedness
estimate of 1.60648. Apart from the negative WTI oil period, there
are generally constant volatility spillovers from the market for gasoline
through to WTI. Volatility transmissions mainly spillover from the
heating oil market to WTI direction as can be seen in Fig. 5. The
magnitude of volatility spillovers increase in size over the time period
analysed with some sudden shifts in volatility spillover intensity. The
first peak of volatility spillovers to the WTI market took place in early
April and the second peak in early May. Between these two spikes in
terms of volatility transmissions, the direction of volatility spillovers
changed substantially during the negative oil prices, where the pairwise
directional connectedness index shows a sharp positive increase. More
importantly, we find that the net pairwise directional connectedness
index for the WTI-heating oil pair is positive for the negative WTI oil

event. For the WTI-natural gas pair, the volatility spillover from the
natural gas market to WTI is also below zero throughout most of the
sample period investigated, however, during the negative WTI prices,
volatility shocks transmitted by WTI to the natural gas market dominate
as we observe a positive spike in net pairwise directional connectedness
index.

To summarise the key results for three energy futures markets,
we find evidence of volatility spillovers from the WTI to each energy
futures market during the negative WTI event on 20 April. Hence,
the WTTI influences these three energy futures markets more than the
opposite direction at that time period. Moreover, we also find that the
magnitude of volatility spillovers from the WTI market to the gasoline
futures is largest during the negative oil price period followed by
heating oil and natural gas futures. This is clearly shown in Table 2,
where the corresponding maximum pairwise directional connectedness
estimate are 1.60648 for gasoline, 1.07724 for heating oil and 0.79166
for natural gas.

The volatility spillovers from the US Dollar index to WTI are larger
than in the opposite direction as the net pairwise directional connected-
ness index is negative, however, net pairwise directional connectedness
index is positive when the WTI oil price turned negative, indicating
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Table 2

Summary statistics of dynamic pairwise directional connectedness estimates between WTI price and financial assets based on 5-minute return data for the period 20 March 2020-20

May 2020.
WTI relationship with Mean Median Min Max Std. Dev.
DJIA —0.13514 —0.12842 —0.39784 0.40669 0.05591
VIX —0.16988 —-0.16222 —0.65995 0.49213 0.10482
Gasoline —0.64293 —0.63677 -1.69138 1.60648 0.32910
Heating Oil —-0.47737 —0.45089 -1.65079 1.07724 0.23570
Natural gas —0.14403 —0.12828 -0.51017 0.79166 0.14866
S&P 500 —-0.11314 —0.10034 —0.52485 0.63761 0.08164
NASDAQ 100 —0.20431 —0.14435 -1.30229 0.92684 0.21343
US Dollar index —0.07098 —0.08587 —0.25154 1.30681 0.11426

Note: Our sample data runs from 20 March 2020 throughout 20 May 2020, representing 3084 observations. The WTI oil prices dropped below zero on 20 April 2020.

Table 3

Summary statistics of dynamic pairwise directional connectedness estimates between WTI price and financial assets based on 5-minute return data for the period 06 April 2020-04

May 2020.
WTI relationship with Mean Median Min Max Std. Dev.
DJIA —-0.33213 —0.34952 —-0.72153 0.41789 0.17859
VIX -0.51327 —0.54587 -1.19512 0.57881 0.34506
Gasoline —0.97835 —-1.02374 —2.43427 1.71048 0.56961
Heating Oil —-0.31759 —-0.30765 —1.35506 1.14105 0.26489
Natural gas —0.14509 —-0.13357 —0.47257 0.73893 0.14115
S&P 500 —-0.30107 —0.30812 —0.69010 0.51582 0.18066
NASDAQ 100 —-0.57716 —0.59841 -1.41721 0.60923 0.39681
US dollar index —0.40422 —0.43426 -1.00372 1.10473 0.31289

Note: Our sample data runs from 06 April 2020 throughout 04 May 2020, representing 1433 observations. The WTI oil prices dropped below zero on 20 April 2020.

that volatility spillovers transmitted by WTI to the exchange rate
market exceed the opposite spillovers effects. Moreover, the intensity of
volatility spillovers from WTI to the US Dollar index is larger than for
most other asset pairs with a maximum of 1.3068, which is the second
largest spillovers. Negative oil pricing is found to have had a significant
impact on the US exchange rate market.

Finally, we complete a number of robustness checks using a variety
of additional sample sizes. We present evidence of a shorter sample
period between 06 April 2020 and 04 May 2020, consisting of 1433
observations at 5-minute frequency. This allows us to test for simi-
lar volatility spillovers between WTI and US financial markets. The
dynamic total connectedness index and net directional connectedness
index of WTI is provided in Fig. 6. The dynamic net pairwise directional
connectedness index for each pair is presented in Fig. 7 together with
summary statistics of pairwise directional connectedness in Table 3.
Both Figs. 6 and 7 confirm that the results based on a short sample
period are generally consistent with the conclusion we draw earlier.
In Table 3, we identify the average spillover relationships for this
short time-period of analysis. When comparing such results with the
maximum values, each of which are identified specifically in the period
in which negative WTI prices occurred, we further verify that heating
oil and natural gas markets present the closest volatility relationship
with WTI (-0.31 and —0.14 respectively, before increasing to +1.14
and +0.73 during negative WTI), while the market for gasoline is found
to present the largest breadth of volatility spillovers with WTI (ranging
between a minimum of —2.43 and maximum of +1.71 respectively).
In each sample size, both substantial and significant short-term volatil-
ity spillovers are sourced within the negative WTI pricing event are
identified.

Such results should be of interest to policy-makers and market
participants alike. While broad confusion surrounded the severity and
international breadth of the COVID-19 pandemic, as previously iden-
tified, traditional financial markets had somewhat failed to uniformly
quantify the inherent risks. A number of distinct reasons can be of-
fered, consisting of broad geopolitical risk within the quite unusual
verbal jousting between international oil-supplying superpowers, the
inherent side-effects associated with unprecedented quantities of global
quantitative easing, close-to-zero interest rate policy implementation,
and lack of uniform international response to the COVID-19 pandemic.

While research suggests that Chinese-related COVID-19 cases can be
identified as far back as November 2019, evidence suggests that there
were no prior related media announcements before 17 November 2019.
Such timing pre-dates the official WHO announcement of a global
pandemic in early January 2020, and the imposition of strict, official
Chinese government lock-downs in mid-January 2020. However, it is
not until 9 March 2020 that lock-downs are implemented in Italy
and Saudi Arabia, while in the following seven days, lock-downs are
imposed in Ireland, Qatar, Bulgaria, Poland, Spain, Serbia and the
Philippines. It is not until the 18 & 19 March 2020 that government
lock-downs are imposed in Canada (British Columbia) and the United
States (California and Nevada). Government agencies during this period
attempted to make decisions surrounding freedom of movement and
risk of infection, and financial markets appeared to have incorporated
much of the valuation of associated risks associated with a ‘black-
swan’ event such as COVID-19. However, the once-in-a-generation’
event where WTI prices turned negative appears to have created a
reality check on the true global-scale of the problems associated with
the spread of the pandemic.

6. Conclusion

This paper applies a TVP-VAR model to explore dynamic connected-
ness between the WTI and US energy, stock and exchange rate markets
for the effects of the first occurrence of negative WTI crude oil prices
in history, which coincided with the COVID-19 pandemic. Using 5-
minute high frequency data, our research provide insights into what is
happening in various futures markets during time periods surrounding
the WTI supply shocks that occurred on 20 April 2020 which led to
the unprecedented development of negative WTI prices. During periods
of immense financial market stress and chaos, such as that of the
2008 international financial crisis, the market for WTI has acted as
a short-term investment safe-haven. However, during the onset of the
COVID-19 pandemic, combined with substantial uncertainty surround-
ing non-uniform government responses to the pandemic, the variety
of regional difficulties directly attributed to the pandemic, widespread
expectations of global economic slowdown, and the effects of political
influence from both OPEC and OPEC plus, the events of April 2020 have
not only rendered those seeking financial shelter to be suspicious as to
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Fig. 6. Dynamic total connectedness index for all financial assets and net connectedness index for WTI between 06 April 2020 and 04 May 2020. Note: Our 5-minute sample data
runs from 06 April 2020 and 04 May 2020, representing 1433 observations. Further analysis and methodological variants were estimated by the authors.
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Fig. 7. Dynamic estimates for pairwise directional connectedness between the WTI and financial assets between 06 April 2020 and 04 May 2020. Note: Our 5-minute sample data
runs from 06 April 2020 and 04 May 2020, representing 1433 observations. Further analysis and methodological variants were estimated by the authors.

the potential future safe-have properties of WTI, but also the potential
spillover effects sourced within such markets during immense financial
stress.

A number of distinct results are identified. First, WTI is found
to be a volatility receiver from all of the analysed markets during
most periods, however, it rapidly becomes a volatility transmitter in
the period surrounding negative WTI pricing. This suggests that when
considering the inherent uncertainty that occurred as the COVID-19
pandemic developed, the abnormality of structural changes in the
market for near-contract WTI futures generated such market panic
that it translated into significant volatility spillovers across a range
of traditional financial market products. Among all financial markets
considered, the magnitude of volatility spillovers from the WTI market
to US energy futures and US exchange rate markets are found to be
largest while the volatility shocks to the stock markets are found to
be smaller, however, the direction of the spillover of shocks remains
consistent throughout all analysed assets. Significant spillovers sourced
from WTI upon the VIX shows that forward looking implied volatility
increased as signals of this rare event of negative prices presented
further evidence as to how confused the valuation process of short- and
medium-term risk had become. This result coincides with significant

10

volatility spillovers from WTI upon stock markets in the form of the
Dow Jones Industrial Average, the NASDAQ 100 and the S&P500.

Policy-makers, regulators and market participants should proceed
with particular caution during future episodes of significant financial
crises, particularly those possessing the inherent risk of global economic
slowdown. While the price of oil breached $100 per barrel during the
international financial crisis of 2008, it broadened the range of investor
expectations due to the use of the asset as a safe-haven investment
while stock market investors re-calibrated their estimation of bank val-
uations. The very fact that oil prices have achieved negative valuation
during the global pandemic of 2020 has generated uncertainty as to
a possible recurrence of negative oil which may have damaged the
potential for WTI to be considered as a safe-haven asset during future
economics shocks.
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