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Abstract—Environmental perception is a key task for au-
tonomous vehicles to ensure intelligent planning and safe
decision-making. Most current state-of-the-art perceptual meth-
ods in vehicles, and in particular for 3D object detection, are
based on a single-frame reference. However, these methods do
not effectively utilise temporal information associated with the
objects or the scene from the input data sequences. The work
presented in this paper corroborates the use of spatial and
temporal information through multi-frame, lidar, point cloud
data to leverage spatio-temporal contextual information and
improve the accuracy of 3D object detection. The study also
gathers more insights into the effect of inducing temporal infor-
mation into a network and the overall performance of the deep
learning model. We consider the Frustum-ConvNet architecture
as the baseline model and propose methods to incorporate spatio-
temporal information using convolutional-LSTMs to detect the
3D object detection using lidar data. We also propose to employ
an attention mechanism with temporal encoding to stimulate
the model to focus on salient feature points within the region
proposals. The results from this study shows the inclusion of
temporal information considerably improves the true positive
metric specifically the orientation error of the 3D bounding box
from 0.819 to 0.784 and 0.294 to 0.111 for cars and pedestrian
classes respectively on the customized subset of nuScenes training
dataset. The overall nuScenes detection score (NDS) is improved
from 0.822 to 0.837 compared to the baseline.

Index Terms—Object detection, Spatio-temporal, Attention
Mechanism, Convolution-LSTM, Salient features, nuScenes
dataset, nuScenes detection metric.

I. INTRODUCTION

Rapid developments in autonomous driver assistance sys-
tems and the need to achieve full autonomy have driven many
researchers to propose technologies specifically related to per-
ception systems for autonomous vehicles (AV). The perception
system needs to process, understand and correlate the spatial
and contextual information of the scenes and its associated
objects analogous to how human perceive their surrounding.
2D and 3D object detection is an important task of perception
systems to provide location, direction, size, and orientation of
the targets to the subsequent modules. This makes accurate
detection a significant task to support autonomous driving in
an dynamically changing drive environment.

Autonomous vehicle perception sensing uses various sen-
sors such as cameras, radar and lidar to collectively view,
sense and understand the environment around the vehicle.
In this paper we utilise lidar data as it provides precise
depth information about the scene, which is valuable for
accurate object localization. Even though the point cloud data
is highly sparse, lacks colour and other rich texture features
that characterize the objects, the data is extensively used for
3D object detection tasks.

In the literature lidar point cloud data is processed in various
ways. Firstly, the data can be fed to the network in its raw form
as in [1]–[4]. Secondly, methods like [5]–[8] project the data
onto a 2D plane to generate a bird-eye-view (BEV), Similarly,
[9] transformed the data to obtain a front-view image and
[10] used range-view (RV). An alternative projection is to
create vertical column-like representation to form a pillar
like structures termed as point pillars [11]. Finally, [12]–[14]
have proposed transforming the point cloud into a voxel grid-
structured format, that can be fed to the CNN. All these
methods aim to incorporate the spatial and depth information
available from the lidar data in a form that can be utilised by
the object detection and localisation model.

While lidar can capture object depth (spatial) information,
another key aspect worth considering is the variations in the
lidar point cloud distribution as the position and appearance
(temporal) information of the object changes in a scenes which
can assist the deep learning based model while performing
detection task. Most state-of-the-art 3D object detection meth-
ods are based on a single-frame reference and these methods
do not include temporal information though approaches have
been proposed for 2D detection that use sliding window inputs
for path prediction [15]. However, temporal information is
extensively used in other computer vision applications such
as 2D object detection and tracking in videos, for human
pose estimation and activity recognition [16] and flow pre-
dictions [17].

Typically this lack of using temporal information was due
to inadequacy of available annotated sequence data, espe-
cially for autonomous vehicles. Recent release of large scale
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perception datasets such as nuScenes [18] by ‘NuTonomy’
and waymo [19] by ‘Waymo Driver’ has drawn considerable
interest among researchers to utilize temporal features from
multi-frame reference and leverage both spatial and temporal
information about the observed objects. However, there is
still limited research about extraction of temporal information
using lidar data and its potential use in depth understanding
and improved localisation accuracy. The dynamic nature of
objects encountered during autonomous vehicles driving has
motivated us to propose to incorporate spatial (lidar data) and
temporal (convolution-LSTM and kernel attention modules)
cues in object detection architecture to gain valuable insight
towards understanding the influence of spatio-temporal infor-
mation on 3D estimations.

The rest of this paper is as follows: first, an overview of
prior work on 3D object detection is presented in Section II,
followed by the description of the proposed approach for ex-
ploring the influence of temporal information on object detec-
tion (Section III) and then we present detailed experiments and
analysis in Section IV. Finally, we conclude with significance
of temporal information in improving the estimation of object
parameters and its potential usage to further investigation in
Section V.

II. RELATED WORK

3D object detection methods for autonomous vehicle
datasets can be categorised into single-frame and multiple-
frame reference based methods. The lidar based 3D object
detection methods that use projection-based [8], [11], voxel-
based [12]–[14] and point-based [1], [14] all considered a
single-frame reference and were limited in how these model
adopted temporal aspects while learning.

However, open datasets like nuScenes [18] and waymo [19],
provide annotated sequence data which has led to the proposal
of multi-frame based 3D object detection [20], [21] and the
incorporation of temporal information into the deep learning
models proposed by El Sallab et al. [22] and McCrae and
Zakhor [23] who used convolution-LSTMs [24]. Similar works
presented in [25] and [26] emphasise utilising temporal infor-
mation to address the effect of occlusion during estimation of
box parameters and show the improvement in object detection
and localisation with temporal inputs.

Koh, Junho, et al. [27] used detector and tracker modules
to work in tandem to generate spato-temporal representations
of camera and lidar data to perform detection and tracking.
Previously 3D CNNs for multi-frame BEV features were used
by Luo, Yang and Urtasun [14] while a temporal fusion model
(TFM) was used in [4] to fuse the features extracted from raw
image and lidar point cloud data through a frustum network.

To aggregate the scene-level temporal features from a
multiple frame reference, Yin, Zhou, and Krahenbuhl [21]
employed motion cues between the successive frames while
Huang et al. [26] propose an RNN based method. Since
these methods utilises the whole point cloud data, motion
compensation was required to align feature in time. Erçelik,
Yurtsever & Knoll [20] focus on the need for spatial alignment

of features between successive frames while aggregating the
features. In contrast, Kumar and Al-Stouhi [28] used a non-
liner attention mechanism to build the spatio-temporal relation
between multiple frames. Finally, object detection and motion
forecasting are jointly performed in Laddha et al. [25] by
fusing range view and BEV representation for spatial temporal
feature learning.

These methods are mostly recent arising from the availabil-
ity of appropriate datasets and demonstrate the advantage of
considering multi-frame reference and temporal information
to improve performance of 3D object detector. However, we
believe there still exists scope to further explore the strategies
to make use of attention mechanism while learning temporal
features from the sequences data which could further improve
the detection accuracy during occlusion, change in perceptive
or appearance of the object.

III. PROPOSED APPROACH

The proposed architecture shown in Fig. 1 is inspired by
methods presented in Wang et al. [2] and Erçelik, Yurtsever
& Knoll [4]. These methods use data representation to handle
sparse point cloud data processing by localising the region
from the 2D proposal from image space and later are employed
to generate a sequence of frustum for each of the proposals.
We formulate the estimation of the 3D bounding boxes as
B = {bi | i = 0, 1, 2, ..., N}, where bi ∈ R7 and N is the
number of objects in the scene, parameterised as: box centre
coordinates, (x, y, z); box dimension, (h,w, l), representing
the height, width and length of each box respectively; and
the orientation or heading angle, θ, described using the
raw point cloud data, P = {pi | i = 0, 1, 2, ..., N}, where
pi ∈ R3xM and M is the total number of raw points.
We make use of the 2D proposal from the image space,
D = {di | i = 0, 1, 2, ..., N}, where di ∈ R4 and N is the
number of objects in the scene. Using these we generate the
Frustum Point, F = {fi | i = 0, 1, 2, ..., N}, where fi ∈ R3xL

and L is the number of points inside the frustum.
The data takes a whole new dimension when we associate

these entities over time or with the sequence length of an
object. This is done by sequentially referencing sensor data
and the object from its first appearance until its exit (“sequence
death”).

The remainder of this section describes the baseline archi-
tecture in Section III-A, the methods used to encode temporal
information – frame stacking in Section III-B, – Convolution-
LSTM in Section III-C and finally Section III-D describes
Kernel Attention Module which is employed in this study to
make the model focus on the salient feature while training and
inference.

A. Baseline Architecture

Frustum-ConvNet [2] is employed as the baseline architec-
ture and the network trained with single-frame reference on
a subset of the nuScenes data, described in IV-A. We use
the same loss functions mentioned in the original Frustum-
ConvNet architecture, which uses Euclidean distance-based



Fig. 1. Proposed spatio-temporal architecture. (a) Incorporating temporal information and attention mechanism into Frustum-ConvNet architecture. (b)
Convolution-LSTM (CLSTM) and kernel attention (KA) block. (c) kernel attention module (KAM) block. (d) Fully convolution Network (FCN) architecture:
the values presented inside the FCN network represented Kernel size/Filter/Striding/Padding.

regression loss for the box centers, smooth l1 regression loss
for box sizes, and the angle. Focal loss is for classification
and corner loss is used to regularize box regression of all
parameters.

B. Frame Stacking

To capture the temporal information we first employed a
frame stacking approach where the sequence of frames are
stacked without any shuffle so the network is exposed to
the change in context and the objects as it appears in the
data. All the frustum containing the objects are extracted
using 2D region proposals, arranged as they appear in the
successive frames and presented as a single input to the
detection network. While training we make use of the same
losses as in baseline model. The frame stacking approach relies
on the network to encode the temporal information based on
the varying object information in the sequence data.

C. Convolution-LSTM

Fig. 2. Spatio-temporal encoding using convolutional-LSTMs

The network architecture to encode temporal informa-
tion using convolutional-LSTMs is shown in Fig. 2. A
convolutional-LSTM layer is placed between the PointNet and
fully connected network (FCN) block to learn spatial and
temporal information from the input sequence. The network is

trained using the same sequence of data as in frame stacking
approach. The extracted temporal information is shared be-
tween the frames appearing in later sequences to compensate
for any loss of information or context during learning due to
occlusion or perspective changes.

D. Kernel Attention Module

The purpose of an attention mechanism is to aid the network
to focus on the salient regions of the point cloud. We have
employed a kernel attention mechanism shown in Fig. 1-(c).

The feature vector generated from the PointNet is repre-
sented as f ∈ RCinxL, where C is the number of channel
and L is the length of the feature map. We generate three new
tensor D1, D2 and D3 as shown in ”(1)” using three 1D dilated
convolution (DConv) layers with kernel size = 3, stride length
= 1 and different dilation rates of 2, 3 and 4 respectively. Each
of these outputs are then passed to the 1D convolution (Conv)
to obtain a spatial feature vector that are then concatenated to
form a multi-scale feature vector, fm ∈ RCinxL presented in
”(2)”.

D1 = Conv1(DConv1(f))
D2 = Conv2(DConv2(f))
D3 = Conv3(DConv3(f))

(1)

fm = Concat(D1,D2,D3) (2)

fm is fed to a fully connected layer (FC) to obtain vector
fm

′ ∈ RrxCin with reduce the channel dimension to generate
three channel feature vector S1, S2 and S3. This is performed
to learn the relationship among feature with different dilation
rate. Each of the channel vector computed as in ”(4)” of fm′ is
passed to a FC layer as in ”(3)” to generate a attention vectors
SA across channels S ∈ RCoutxr whose weights are computed
by a softmax function as shown in ”(5)”.



fm
′ = FCr(fm) (3)

S1 = FC1(fm
′)

S2 = FC2(fm
′)

S3 = FC3(fm
′)

(4)

SA = softmax {Concat(S1,S2,S3)} (5)

Finally, we obtain the refined feature map FKA ∈ RCoutxr

of channel attention by multiplying SA and fm:

fKA = SA

⊗
fm (6)

The network architecture with kernel attention only is shown
in Fig. 4 and Fig. 1 presents the proposed spatio-temporal
architecture using CLSTM and attention mechanism to aid
the network to propagate temporal information extracted input
sequence. The model further benefit with the use of attention
mechanism to focus on the spatially distrusted points defining
the object and the context associated with the scene. Both the
architecture are trained with the same sequences of data as in
frame stacking approach.

Fig. 3. Comparison of the spatio-temporal 3D object detection results with the
baseline and ground truth. Top row presents the ground truth (GT) annotation,
middle row presents the Baseline results and bottom row presents the results
obtained using Proposed spatio-temporal architecture

IV. EXPERIMENTS

A. Dataset

The nuScenes [18] dataset consists of data collected by
autonomous vehicles equipped with 6 cameras, 5 RADAR sen-
sors and 1 lidar scanner. The dataset comprises 1,000 scenes,
distributed as training, validation and test sets consisting of
700, 150 and 150 scenes respectively and are packaged into
10 different archives containing 85 scenes with ≈ 40 samples
per scene. For 3D object detection, the dataset provides full

3D annotation for 10 classes with 8 attributes and the classes
with few samples are removed.

To study the influence of temporal information on the
detection network we have used five of the available 10 subsets
of the nuScenes dataset with first three subsets, comprising
255 scenes with 10,120 samples, as the training set and next
two subsets for the test set, comprising 170 scenes with 6,854
samples. The training data is further divided into training
and validation with 7,180 and 2,940 samples respectively.
Instead of considering all 10 classes, we focused our work
on car and pedestrian classes and footage from the front
camera. Furthermore, for consistency and ease of comparison
to KITTI-like data, all annotations are converted to the KITTI
3D object detection format [29] using the development toolkit
provided by the nuScenes repository.

Fig. 4. Spatio-temporal encoding using frame stacking with KAM

B. Setup

The models were trained on a single Nvidia-TitanX GPU
with 12GB RAM for 75 epochs using the adam optimizer [30]
from scratch without using any pre-trained model weights.
The learning rate and weight decay values were set to 0.001
and 0.0001 respectively with a batch size of 16 for single-
frame reference mode and during multi-frame reference mode
we have considered 3 consecutive frames and batch size of 4
without shuffling the input sequence.

The region proposals are obtained from the ground-truth
annotation and are augmented with a translation and scaling
factor during training. The number of sample points for each
region proposal is set to 1,024, selected randomly. Similar
to [2] we use 4 frustum resolutions of [0.5, 1.0, 2.0, 4.0] and
stride value is [0.25, 0.5, 1.0, 2.0] for the car category and 4
frustum resolutions of [0.2, 0.4, 0.8, 1.6] and stride value are
set to [0.1, 0.2, 0.4, 0.8] for the pedestrian.

During the inference, the performance of the methods is
evaluated using the nuScenes metric IV-C on the custom
nuScenes test data. We have considered both single-frame and
multiple-frame reference modes to understand its effect on the
model performance.

C. Metrics

The perfromance of the model are evaluated using nuScenes
metric [18] which includes: Average Precision (AP) metric
”(7)” and True Positive (TP) metric ”(8)” for car and pedes-
trian class on the custom test data. While computing the TP
metric we have considered only Average Translation Error
(ATE), Average Scale Error (ASE) and Average Orientation



TABLE I
3D OBJECT DETECTION FOR CARS AND PEDESTRIANS ON SINGLE FRAME (‘S’) AND MULTI-FRAMES (‘M’) USING FRAME STACKING (FS),

CONVOLUTIONAL-LSTMS (CLSTM) AND KERNEL ATTENTION (KA) MECHANISM WITH THE BASELINE FRUSTUM-CONVNET METHOD ON SUBSET OF
NUSCENES DATA. LEGEND: AP = AVERAGE PRECISION, ATE = AVERAGE TRANSLATION ERROR, ASE = AVERAGE SCALE ERROR, AOE = AVERAGE

ORIENTATION ERROR

Cars Pedestrians
Model AP ATE ASE AOE AP ATE ASE AOE

Baseline-s 0.961 0.203 0.184 0.819 0.981 0.118 0.327 0.264
Baseline-m 0.961 0.203 0.184 0.819 0.975 0.118 0.326 0.294

FS-s 0.956 0.227 0.199 0.989 0.983 0.116 0.306 1.494
FS-m 0.950 0.227 0.197 0.970 0.983 0.116 0.306 1.494

CLSTM-s 0.958 0.220 0.190 0.832 0.981 0.101 0.328 0.693
CLSTM-m 0.933 0.219 0.188 0.784 0.928 0.104 0.328 0.692
FS-KA-s 0.961 0.210 0.182 0.924 0.983 0.116 0.297 0.862
FS-KA-m 0.956 0.232 0.200 0.975 0.972 0.097 0.360 0.416

CLSTM-KA-s 0.958 0.220 0.191 0.840 0.978 0.107 0.351 0.143
CLSTM-KA-m 0.958 0.219 0.188 0.784 0.975 0.107 0.351 0.111

TABLE II
PERFORMANCE OF METHODS ON SINGLE FRAME (‘S’) AND

MULTI-FRAMES (‘M’) USING FRAME STACKING (FS),
CONVOLUTIONAL-LSTMS (CLSTM) AND KERNEL ATTENTION (KA)
MECHANISM WITH THE BASELINE FRUSTUM-CONVNET METHOD ON

SUBSET NUSCENES DATA. LEGEND: MAP = MEAN AVERAGE PRECISION,
MATE = MEAN AVERAGE TRANSLATION ERROR, MASE = MEAN

AVERAGE SCALE ERROR, MAOE = MEAN AVERAGE ORIENTATION
ERROR, NDS = NUSCENES DETECTION SCORE

nuScene Metric
Method mAP mATE mASE mAOE NDS

Baseline-s 0.9708 0.1606 0.2554 0.5415 0.8258
Baseline-m 0.9681 0.1607 0.2552 0.5567 0.8219

FS-s 0.9694 0.1714 0.2525 1.2414 0.7474
FS-m 0.9667 0.1713 0.2514 1.2321 0.7462

CLSTM-s 0.9694 0.1604 0.2589 0.7625 0.7878
CLSTM-m 0.9306 0.1612 0.2580 0.7382 0.7724
FS-KA-s 0.9722 0.1631 0.2393 0.8929 0.7702
FS-KA-m 0.9639 0.1645 0.2800 0.6957 0.7919

CLSTM-KA-s 0.9681 0.1637 0.2708 0.4916 0.8297
CLSTM-KA-m 0.9681 0.1629 0.2697 0.4474 0.8378

Error (AOE). Average Attribute Error (AAE) and Average
Velocity Error (AVE) are discarded as we considered the
groundtruth 2D bounding boxes as proposals and after the data
format is converted to KITTI like the velocity component is
not captured. nuScenes detection score (NDS) is calculated
using ”(9)” after computing mAP and mTP using ”(7)” and
”(8) respectively. In ”(7)” and ”(8)”, D represents distance
threshold in meters, {0.5m, 1m, 2m, 4m} and C is set of
classes {cars, pedestrians} considered for evaluation.

mAP =
1

|C||D|
∑
c∈C

∑
d∈D

APc,d (7)

mTP =
1

|C|
∑
c∈C

TPc (8)

NDS =
1

6
[3mAP +

∑
mTP∈TP

(1− min(1,mTP))] (9)

Here mAP is mean Average Precision presented in ”(7)”, and
TP is the set of three mean True Positive metrics presented in

”(8)” obtained by averaging mATE, mASE, and mAOE with
all the metric values are bound between the range 0 to 1. We
assign a weight of 3 to mAP and 1 to each of the 3 TP scores
to obtain the normalized sum value before computing nuScene
Detection Metric (NDS) presented in ”(9)”.

mean Average Precision (mAP) as used by KITTI bench-
mark can only provide a general understanding of the perfor-
mance of the model and fails to capture the other aspects caus-
ing effecting the performance of the model. However, nuScene
metrics allows us to gain a more complete understanding of
the impact of encoding temporal information and the use of the
attention mechanism. To propose a pipeline capable of giving
accurate 3D positioning and orientation of dynamic objects, we
also examine the orientation error (mAOE). NDS also provides
a more nuanced metric for comparing the methods.

D. Results and Discussion

The performance of baseline and the proposed methods
incorporating temporal information through frame stacking
(FS), convolutional-LSTMs (CLSTM) and attention mecha-
nism models (KA) are evaluated for car and pedestrian classes
on the subset of the nuScenes test data are depicted in Tab. I.
Tab. II presents the performance in terms of mean Average
error and nuScenes detection score (NDS) of all the models
employed in this study.

The results show that temporal information does play an
important role in influencing the model while estimating
the 3D box parameters. While the mAP values are very
slightly lower, the mAOE and NDS values show improvements
when temporal information (FS or CLSTM) are included
and increase again when the kernel attention (KA) is also
incorporated. Note the ∼17% improvement over the baseline
in the orientation error (mAOE) when CLSTM and KA are
applied with the multi-frame reference method.

A visual comparison of the proposed methods with the
ground truth and Frustum-ConvNet (baseline) model is shown
in Fig. 3. In the figure, the blobs highlighted in red represents
the instances where the model predicts the heading angle
incorrectly. With the proposed method, the spatio-temporal



information is encoded using multi-frame reference and the
network is injected with additional information during esti-
mation which eventually gets better as the model sees more
instances of the object in the input sequence.

V. CONCLUSION

In this paper, we proposed a spatio-temporal approach to
encode temporal information into a Frustum-ConvNet archi-
tecture by employing Convolutional-LSTMs and an atten-
tion mechanism. The proposed architecture was trained and
evaluated on a subset from the nuScenes training data. The
results of this study has expanded our understanding of how
temporal information and attention mechanisms in a deep
network can improve the overall performance, specifically for
dynamic objects (pedestrian). Further utilisation of spatio-
temporal information has the potential to improve network
design for 3D object detection. In particular, the significance
of temporal information during multi-frame, multi-modal data
fusion techniques for effective and targeted utilisation of
sensor data from instrumented vehicles.
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