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We present a mode-sum regularization prescription for computing the vacuum polarization of a scalar
field in static spherically symmetric black hole spacetimes in even dimensions. This is the first general and
systematic approach to regularized vacuum polarization in higher even dimensions, building upon a
previous scheme we developed for odd dimensions. Things are more complicated here since the even-
dimensional propagator possesses logarithmic singularities which must be regularized. However, in spite of
this complication, the regularization parameters can be computed in closed form in arbitrary even
dimensions and for arbitrary metric function fðrÞ. As an explicit example of our method, we show plots for
vacuum polarization of a massless scalar field in the Schwarzschild-Tangherlini spacetime for even
d ¼ 4;…; 10. However, the method presented applies straightforwardly to massive fields or to nonvacuum
spacetimes.
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I. INTRODUCTION

One particularly important approximation to a full theory
of quantum gravity is semiclassical gravity, which is the
treatment of quantum fields interacting with a classical
spacetime metric via the semiclassical Einstein equations,

Gab ¼ 8πhTabi: ð1Þ

Though there has been considerable debate on how exactly
to interpret these equations, here we will have in mind the
computation of the one-loop quantum correction about a
particular fixed classical background. In this interpretation,
the source term on the right-hand side is the expectation
value of the quantum stress-energy tensor operator for a
particular field in a particular quantum state, where the
stress-energy tensor operator is obtained by taking the
classical expression for stress energy for whatever fields are
being considered and promoting the nongravitational fields
to operators. This procedure can also be adapted to
gravitational perturbations about a fixed classical metric.
This quantization procedure immediately leads to prob-
lems, namely that the source term after quantization is
quadratic in an operator-valued distribution and hence
divergent. A formal prescription to regularize the stress-
energy tensor, the point-splitting scheme, dates back to
DeWitt and Christensen [1,2]. Effectively, the prescription
amounts to considering the stress tensor evaluated at two

nearby spacetime points and then subtracting a parametrix
that encodes all the geometrical divergences in the coinci-
dent limit. This problem is already there in Minkowski
spacetime where the familiar normal-ordering cure is
equivalent to the point-splitting scheme applied to flat
spacetime. In curved spacetime, however, there is no
preferred vacuum state and hence a normal ordering
procedure cannot be adopted.
The Christensen-DeWitt point-splitting scheme offers a

formal resolution to the problem of regularization, but it
does not inform how to compute regularized quantities in
practice. Applying the point-splitting scheme in a way that
is amenable to numerical evaluation has proven extremely
difficult. The first significant breakthrough in this direction
was the seminal work of Candelas and Howard [3] who
computed regularized vacuum polarization for a scalar field
in the Schwarzschild black hole spacetime. Despite serious
drawbacks, including its crucial dependence on WKB
methods (which are problematic in the Lorentzian sector
and generally ill behaved near horizons) and lack of
numerical efficiency, the Candelas-Howard approach has
remained more or less the standard prescription for several
decades.
In Ref. [4], we derived a new regularization scheme that

was both conceptually clearer and much more efficient than
the Candelas-Howard approach. There are several other
advantages, among them is the fact that the method is
mostly agnostic to number of dimensions. This is quite
remarkable given that the severity of the singularities to be
regularized increases with the number of dimensions. In
that paper, we treat only the vacuum polarization of scalar
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fields in odd dimensional static spherically symmetric
spacetimes. In this paper, we extend the method to even
dimensions also. Things are more complicated in even
dimensions since the Feynman Green function possesses
logarithmic singularities. We illustrate the power of the
method by showing results for vacuum polarization for a
scalar field in Schwarzschild-Tangherlini spacetimes with
d ¼ 4, 6, 8, 10. So efficient is the evaluation that the plots
shown are generated on a standard laptop computer and are
accurate to approximately 8–10 decimal places with only a
few tens of modes. We note also that there is no conceptual
obstacle to extend the methods presented in this series of
papers to the computation of the regularized stress-energy
tensor, though the calculations are much more involved.
Finally, apart from presenting this new method for even

dimensions, the results presented for Schwarzschild-
Tangherlini spacetimes are the first exact numerical results
for vacuum polarization on the exterior of higher even-
dimensional black hole spacetimes in the literature, at least
as far as the authors are aware. There has been some work
on regularized vacuum polarization and regularized stress-
energy tensors in higher dimensions in the literature, but the
focus has not been on computing exact quantities in a
particular spacetime of interest but rather on general
properties, expansions of the singular two-point function
or approximations (see Refs. [5–9] for example).

II. THE EUCLIDEAN GREEN FUNCTION

We consider a quantum scalar field on a static, spheri-
cally symmetric black hole spacetime of the form

ds2 ¼ −fðrÞdt2 þ dr2=fðrÞ þ r2dΩ2
d−2; ð2Þ

where dΩ2
d−2 is the metric on Sd−2. Assuming the field is in

a Hartle-Hawking state, we can adopt Euclidean techniques
to simplify the problem. In particular, performing a Wick
rotation t → −iτ results in the Euclidean metric,

ds2 ¼ fðrÞdτ2 þ dr2=fðrÞ þ r2dΩ2
d−2: ð3Þ

It can be shown that this metric would possess a conical
singularity unless we enforce the periodicity τ ¼ τ þ 2π=κ
where κ is the surface gravity. This discretizes the fre-
quency spectrum of the field modes which now satisfy an
elliptic wave equation,

ð□ −m2 − ξRÞϕ ¼ 0; ð4Þ

where here and throughout□ is the d’Alembertian operator
with respect to the Euclidean metric, m is the scalar field
mass and ξ is the constant that couples the scalar to the
gravitational field. The corresponding Euclidean Green
function has the following mode-sum representation:

Gðx; x0Þ ¼ κ

2π

X∞
n¼−∞

einκΔτ
X∞
l¼0

ðlþ μÞ
μΩd−2

Cμ
l ðcos γÞgnlðr; r0Þ;

ð5Þ

where μ ¼ ðd − 3Þ=2 and Ωd−2 ¼ 2πμþ1=Γðμþ 1Þ, Cμ
l ðxÞ

is the Gegenbauer polynomial and γ is the geodesic
distance on the (d − 2)-sphere. The radial Green function
satisfies

�
d
dr

�
rd−2fðrÞ d

dr

�
− rd−2

�
n2κ2

fðrÞ þm2 þ ξRðrÞ
�

− rd−4lðlþ d − 3Þ
�
gnlðr; r0Þ ¼ −δðr − r0Þ: ð6Þ

The solution can be expressed as a normalized product of
homogeneous solutions

gnlðr; r0Þ ¼ Nnlpnlðr<Þqnlðr>Þ; ð7Þ

where pnlðrÞ and qnlðrÞ are homogeneous solutions which
are regular on the horizon and the outer boundary (usually
spatial infinity), respectively. We have adopted the notation
r< ≡minfr; r0g, r> ≡maxfr; r0g. The normalization con-
stant is given by

NnlWfpnlðrÞ; qnlðrÞg ¼ −
1

rd−2fðrÞ ; ð8Þ

where Wfp; qg denotes the Wronskian of the two
solutions.
Now, computing the vacuum polarization involves taking

the so-called coincidence limit x0 → x of the Euclidean
Green function. However, the mode-sum expression (5)
does not converge in this limit reflecting the fact that the
Green function satisfies a wave equation with a delta
distribution source. In order to make the coincidence limit
meaningful, we must regularize the mode sum in a way
described in the remainder of this paper.

III. THE SINGULAR PROPAGATOR

In the point-splitting approach to computing the regu-
larized vacuum polarizations in the Hartle-Hawking state,
one subtracts an appropriate two-point function from the
Euclidean Green function and then one takes the coinci-
dence limit x0 → x. Of course, in order for this to be
meaningful, the short-distance singularities in the Green
function and in the two-point function that one subtracts
must cancel. This is guaranteed if the two-point function is
chosen to be a parametrix for the scalar wave equation, that
is, if we subtract a two-point functionGSðx; x0Þ that satisfies

ð□ −m2 − ξRÞGSðx; x0Þ ¼ δðx; x0Þ þ Sðx; x0Þ; ð9Þ
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where δðx; x0Þ is the d-dimensional covariant delta distri-
bution and Sðx; x0Þ is an arbitrary smooth biscalar. There
are other constraints on GSðx; x0Þ, the most important of
which is that it must depend only on the geometry via
the metric and its derivatives. This guarantees that the
divergences in the semiclassical equations are renormaliz-
able [10]. These criteria still only fix GSðx; x0Þ up to the
addition of an arbitrary smooth biscalar that depends
functionally only on the geometry. So a choice must be
made. Here, we adopt the Hadamard regularization pre-
scription (see, e.g., [6]), i.e., we define our singular
propagator to be a Hadamard parametrix (or rather a
one-parameter family of parametrices). In even dimensions,
this is given by

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
�

Uðx; x0Þ
σðx; x0Þd2−1

þ Vðx; x0Þ logð2σðx; x0Þ=l2Þ
�
: ð10Þ

The biscalar σðx; x0Þ is the world function with respect to
the Euclideanized metric. The parameter l is a length scale
required to make the argument of the log dimensionless.
The biscalars Uðx; x0Þ and Vðx; x0Þ are smooth and sym-
metric in their arguments. For a scalar field, Uðx; x0Þ
satisfies the wave equation

σð□ −m2 − ξRÞU ¼ ðd − 2Þσa∇aU

− ðd − 2ÞUΔ−1=2σa∇aΔ1=2; ð11Þ

where σa ≡∇aσ and Δðx; x0Þ is the Van Vleck-Morette
determinant. Assuming the Hadamard ansatz for a series
solution

Uðx; x0Þ ¼
Xd2−2
p¼0

Upðx; x0Þσp; ð12Þ

it can be shown that each coefficient Upðx; x0Þ satisfies

ðpþ 1Þð2pþ 4 − dÞUpþ1 þ ð2pþ 4 − dÞσa∇aUpþ1

− ð2pþ 4 − dÞUpΔ−1=2σa∇aΔ1=2

þ ð□ −m2 − ξRÞUp ¼ 0; ð13Þ

with boundary condition U0 ¼ Δ1=2. The biscalar Vðx; x0Þ
satisfies the homogenous wave equation

ð□ −m2 − ξRÞVðx; x0Þ ¼ 0; ð14Þ

and since it is symmetric, it is also a solution with respect to
the wave operator at x0. The Hadamard ansatz for Vðx; x0Þ,

Vðx; x0Þ ¼
X∞
p¼0

Vpðx; x0Þσp; ð15Þ

can be substituted into (14) to obtain a sequence of
recursion relations for Vp:

ðpþ 1Þð2pþ dÞVpþ1 þ 2ðpþ 1Þσa∇aVpþ1

− 2ðpþ 1ÞVpþ1Δ−1
2σa∇aΔ

1
2

þ ð□ −m2 − ξRÞVp ¼ 0; ð16Þ

along with the boundary condition

ðd − 2ÞV0 þ 2σa∇aV0 − 2V0Δ−1
2σa∇aΔ

1
2

þ ð□ −m2 − ξRÞUd
2
−2 ¼ 0: ð17Þ

Subtracting the Hadamard parametrix formally regular-
izes the Euclidean Green function. However, most of the
difficulty in the calculation is how to subtract the Hadamard
parametrix such that the coincidence limit can be taken in a
meaningful way and such that the resultant expression is
numerically tractable. The problem is that the divergences
in the mode-sum representation of the Euclidean Green
function manifest as the nonconvergence of that mode sum
at coincidence, while the divergence in the Hadamard
parametrix is explicitly geometrical. One must attempt to
express the Hadamard parametrix as a mode sum of the
same form as the Euclidean Green function and then
subtract mode by mode. This is the crux of the regulari-
zation problem in quantum field theory in curved
spacetime.
In order to attain the desired mode-sum representation of

the Hadamard parametrix, we must expand in a judiciously
chosen set of variables. Now, the world function possesses
a standard coordinate expansion which to lowest order is
simply σ ¼ 1

2
gabΔxaΔxb þOðΔx3Þ. Following Ref. [4],

we eschew this standard expansion and instead assume an
expansion of the form

σ ¼
X
ijk

σijkðrÞwiΔrjsk; ð18Þ

where

w2 ¼ 2

κ2
ð1 − cos κΔτÞ; s2 ¼ fðrÞw2 þ 2r2ð1 − cos γÞ:

ð19Þ

We will refer to w and s as “extended coordinates” and we
will formally treat these as OðϵÞ ∼OðΔxÞ quantities. The
fact that these extended coordinates are polynomial in
cos κΔτ and cos γ is important in the later development of
the regularization scheme. Substituting (18) and (19) into
the defining equation σaσ

a ¼ 2σ and equating order
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by order uniquely determines the coefficients σijkðrÞ. To
leading order, we simply have σ ¼ 1

2
ϵ2ðs2 þ Δr2=fÞ þ

Oðϵ3Þ, where we insert explicit powers of ϵ as a book-
keeping mechanism for tracking the order of each term.
Analogous expansions may be assumed for Upðx; x0Þ and
Vpðx; x0Þ,

Upðx; x0Þ ¼
X
ijk

uðpÞijk ðrÞϵiþjþkwiΔrjsk

Vpðx; x0Þ ¼
X
ijk

vðpÞijk ðrÞϵiþjþkwiΔrjsk; ð20Þ

and substituting these into (13) and (16) determines the

coefficients uðpÞijk ðrÞ and vðpÞijk ðrÞ, respectively.
Combining (18) and (20) gives a series expansion for the

Hadamard parametrix in terms of the expansion parameters
w, s and Δr. This type of computation is ideally suited to a
symbolic computer package such as Mathematica. Since
we are ultimately interested in the coincidence limit, let us
simplify by taking the partial coincidence limit Δr ¼ 0,
then it can be shown that the Hadamard parametrix
possesses an expansion of the form

U

σ
d
2
−1

þ V logð2σ=l2Þ ¼
Xd2þm−2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞϵ2i−2μ−1 w2iþ2j

s2μþ2jþ1
þ

Xd2þm−2

i¼1

Xi

j¼1

Dð−Þ
ij ðrÞϵ2i−2μ−1 w2i−2j

s2μ−2jþ1

þ logðϵ2s2=l2Þ
Xm−1

i¼0

Xi

j¼0

T ðlÞ
ij ðrÞϵ2is2i−2jw2j þ

Xm−1

i¼1

Xi

j¼0

T ðpÞ
ij ðrÞϵ2is2i−2jw2j

þ
Xm−1

i¼1

Xm−1−i

j¼0

T ðrÞ
ij ðrÞϵ2is−2j−2w2iþ2jþ2 þOðϵ2m log ϵÞ; ð21Þ

where m here is the truncation order, that is, we are
ignoring terms that tend to zero in the coincidence limit

at least as fast as ϵ2m log ϵ. The coefficients Dð�Þ
ij ðrÞ are

those that come from expanding the direct part of the
Hadamard parametrix U=σd=2−1 in the extended coordi-
nates w and s, while the coefficients T ijðrÞ are those
coming from the tail part V log σ. We further divide the

tail coefficients into three types, T ðlÞ
ij which are those

terms in the expansion of the tail that contain a

logarithm, T ðpÞ
ij are those terms in the tail which are

polynomial in s2 and w2, and T ðrÞ
ij which are those terms

in the expansion of the tail which are rational in s2 and
w2 (unlike the polynomial terms, these are not ordinary
integrable function near coincidence). There is a degen-

eracy in what we label as the T ðpÞ
ij terms since we can

absorb some of the logðl2ÞT ðlÞ
ij terms into a redefinition

of the T ðpÞ
ij coefficients. This is simply related to the well-

known ambiguity that arises due to our freedom to add
factors of the homogeneous solution V to the Green
function, which is also crucially related to the trace
anomaly. Regardless, Eq. (21) is our convention for
how these coefficients are defined. For a massless scalar
field in the d ¼ 6 Schwarzschild-Tangherlini spacetime,
we give explicit expressions for these coefficients in
Tables II–IV. For higher even dimensions, the expressions
are too large to be useful in print form, however, a

Mathematica Notebook containing the expressions for
arbitrary metric function fðrÞ is available online [11].
Apart from the existence of log singularities, another

important distinction in the even-dimensional case is that
there are terms that are polynomial in both cos κΔτ and
cos γ. This is a result of the fact that only even powers of
w and s arise in the expansion. This significantly
simplifies matters since we recall that we desire a
mode-sum representation of the parametrix in a basis
of Fourier frequency modes and Gegenbauer polyno-
mials, and this implies, for example, that expanding a
polynomial in cos γ in terms of Gegenbauer polynomials
Cμ
l ðcos γÞ involves only a finite number of terms. Or put

another way, there is no large l contribution coming from
terms that are polynomial in cos γ. Similarly, there are no
large n contributions from terms that are polynomial in
cos κΔτ. This implies that it is redundant to decompose
terms in the Hadamard parametrix that are polynomial in
both cos κΔτ and cos γ since they cannot improve the
convergence of the resultant mode sum, since they do not
contribute for large l and n. In Eq. (21), terms involving

coefficients Dð−Þ
ij for j ≥ d=2 − 1 and terms involving the

coefficients T ðpÞ
ij are polynomial in cos κΔτ and cos γ

and hence need not be expressed as a mode sum, but
rather kept in closed form. Moreover, since we are
eventually interested in the coincidence limit, only the

zeroth order polynomial survives, i.e., the Dð−Þ
ij term with

i ¼ j ¼ d=2 − 1. Hence we may reexpress (21) as
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U

σ
d
2
−1

þ V logð2σ=l2Þ ¼
Xd2þm−2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞϵ2i−2μ−1 w2iþ2j

s2μþ2jþ1
þ

Xd2þm−2

i¼1

Xminfi;d
2
−2g

j¼1

Dð−Þ
ij ðrÞϵ2i−2μ−1 w2i−2j

s2μ−2jþ1

þ logðϵ2s2=l2Þ
Xm−1

i¼0

Xi

j¼0

T ðlÞ
ij ðrÞϵ2is2i−2jw2j þ

Xm−1

i¼1

Xm−1−i

j¼0

T ðrÞ
ij ðrÞϵ2is−2j−2w2iþ2jþ2 þDð−1Þ

d
2
−1;d

2
−1ðrÞ

þOðϵ2m log ϵÞ; ð22Þ

where we have ignored terms that are polynomial in w2 and
s2 which vanish at coincidence. There is a slight abuse of
notation here since these polynomial terms are lower order
than the Oðϵ2m log ϵÞ terms that we are also ignoring in the
small ϵ expansion, but as explained above, the point is that
the polynomial terms do not contribute to either the overall
answer nor the speed of convergence. Hence they can be
safely ignored.
The lowest order truncation of this series that captures all

the singular terms is for m ¼ 0, however, it is generally
useful to keep higher-order terms which can greatly
improve the convergence properties of the mode-sum
expression for the regularized Green function. More spe-
cifically, if we subtract only the m ¼ 0 terms from the
Green function (in a procedure explained in the next
section), then the resultant regularized Green function is
convergent, since we have captured all the divergences, but
in the coincidence limit the convergence is only condi-
tional. This implies that the order in which the mode sum is
performed matters and is actually tied to the order in which
we take coincidence limits (see Ref. [12] for a discussion of
this point). In the present context, the order in which the
limits are taken is already fixed by our choice of w and s,

since it is not possible to take s → 0 without first taking
w → 0. This implies that the n-sum ought to be summed
first to get the correct answer. In the standard coordinate
approach, one can take Δτ → 0 independently from γ → 0
and whichever limit is taken first, the corresponding
sum ought to be performed first. For example, if we take
Δτ → 0 first, then the Fourier frequency sum is the inner
sum of the resultant mode-sum expression. Returning to
our approach, if we further include them ¼ 1 terms then all
the terms we are ignoring formally vanish in the coinci-
dence limit. However, the convergence of the mode sum is
still relatively slow and a high-accuracy calculation can be
computationally expensive. It is therefore prudent to
include still higher-order terms in the Hadamard para-
metrix, even though these terms formally vanish, their
inclusion serves to speed the convergence of the mode sum,
at least in principle. In practice however, including very
high-order terms becomes prohibitively slow simply
because there are so many terms to compute in the
decomposition of the Hadamard parametrix. We find that
including terms up to m ¼ 2 or m ¼ 3 is the most
computationally efficient. In what follows, we take m¼2

for concreteness, which gives

U

σ
d
2
−1

þ V logð2σ=l2Þ ¼
Xd

2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞϵ2i−2μ−1 w2iþ2j

s2μþ2jþ1
þ
Xd

2

i¼1

Xminfi;d
2
−2g

j¼1

Dð−Þ
ij ðrÞϵ2i−2μ−1 w2i−2j

s2μ−2jþ1

þ logðϵ2s2=l2Þ
X1
i¼0

Xi

j¼0

T ðlÞ
ij ðrÞϵ2is2i−2jw2j þ T ðrÞ

10 ðrÞϵ2is−2w4 þDð−Þ
d
2
−1;d

2
−1ðrÞ þOðϵ4 log ϵÞ; ð23Þ

where again we have ignored the terms that are poly-
nomial in w2 and s2. An important point to emphasize
here is that we have maintained a point splitting in
multiple directions in this expression. It is, of course,
tempting to simplify this expression by choosing only
one direction in which to point split and if this direction
was a Killing direction, then the resultant parametrix
would be very simple indeed. This is the procedure that
practically all other regularization schemes adopt. Our
perspective, which is a major departure from the
standard one, is that employing this freedom to point

split in any direction too early in the calculation actually
hinders rather than helps. Recall that what is actually
needed is a mode-by-mode subtraction of the physical
Green function (representing the propagation of a
quantum field in some quantum state) minus the
Hadamard parametrix (which captures the local ultra-
violet behavior of the Green function) and this mode-by-
mode subtraction arises most naturally if we split in
multiple directions. This will be shown in the next
section where an explicit mode-sum decomposition for
the Hadamard parametrix is derived.
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IV. MODE-SUM REPRESENTATION OF THE
HADAMARD PARAMETRIX

We wish to decompose the terms of the Hadamard
parametrix (23) in terms of Fourier frequency modes and
multipole moments. If this can be achieved then a mode-by-
mode subtraction for the regularized Green function is
feasible. We will consider the direct and tail parts
separately.

A. Regularization parameters for the direct part

In this section, we decompose terms of the form
w2i�2j=s2μ�2jþ1 and invert to compute the regularization
parameters. The derivation here is very similar to that
needed to compute regularization parameters in arbitrary
odd dimensions [4], except that the parameter μ ¼
ðd − 3Þ=2 is now half-integer. As in [4], the starting point
is to assume a Fourier frequency and multipole decom-
position of the form

w2i�2j

s2μ�2jþ1
¼

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

× Ψ
½d�ð�Þ

nl ði; jjrÞ; ð24Þ

which we try to invert to determine the regularization

parameters Ψ
½d�ð�Þ

nl ði; jjrÞ. At this point it becomes clearer
why these extended coordinates w2 and s2 were adopted;
for example, since the extended coordinate s2 is polynomial
in cos γ, a property shared by the angular mode functions
Cμ
l ðcos γÞ, it reasonable to hope that the integrals that result

from inverting equations like (24) above may yield closed-
form representations in terms of known functions. To see
that this is precisely what happens, let x ¼ cos γ, then
multiplying both sides of (24) by e−in

0Δτð1 − x2Þμ−1
2Cμ

l0 ðxÞ
and integrating gives

Ψ
½d�ð�Þ

nl ði; jjrÞ ¼ κ

ð2πÞ2
22μ−1ΓðμÞ2l!
Γðlþ 2μÞ

Z
2π=κ

0

Z
1

−1

w2i�2j

s2μ�2jþ1

× e−inκΔτð1 − x2Þμ−1
2Cμ

l ðxÞdxdΔτ; ð25Þ

where we have used the completeness relations

Z
2π=κ

0

e−iðn−n0ÞΔτdΔτ ¼ 2π

κ
δnn0 ;

Z
1

−1
ð1 − x2Þμ−1

2Cμ
l ðxÞCμ

l0 ðxÞdx ¼ 21−2μπΓðnþ 2μÞ
ðlþ μÞl!ΓðμÞ2 δll0 :

ð26Þ

We perform the x integration above by employing the
identity [13]

Z
1

−1

ð1 − x2Þμ−1=2Cμ
l ðxÞ

ðz − xÞμ�jþ1=2 dx

¼ ð−1Þj ffiffiffi
π

p
Γðlþ 2μÞðz2 − 1Þ∓j=2

2μ−3=2l!ΓðμÞΓðμ� jþ 1=2Þ Q�j
lþμ−1=2ðzÞ; ð27Þ

to obtain

Ψ
½d�ð�Þ

nl ði; jjrÞ ¼ κ

ð2πÞ2
2i

ffiffiffi
π

p ð−1ÞjΓðμÞ
κ2i�2jr2μ�2jþ1Γðμþ 1

2
� jÞ

×
Z

2π=κ

0

ð1 − cos κtÞi�je−inκtðz2 − 1Þ∓j=2

×Q�j
lþμ−1

2

ðzÞdt; ð28Þ

with

z ¼ 1þ f2

κ2r2
ð1 − cos κtÞ: ð29Þ

As already mentioned, for even d ≥ 4, the parameter μ ¼
ðd − 3Þ=2 is always half-integer, implying that μ − 1

2
∈ N.

In particular, we note that since lþ μ − 1
2
þ j is a positive

integer, the associated Legendre function of the second
kind appearing in the integral representation of the regu-
larization parameters above is always well defined. Also,

for the Dð−Þ
ij ðrÞ terms, the largest value that j can assume is

d=2 − 2 and hence lþ μ − 1
2
− j cannot be a negative

integer and the right-hand side of (28) remains meaningful.
We focus first on the former case of computing the

Ψ
½d�ðþÞ

nl ði; jjrÞ terms. Using the fact that

ðz2 − 1Þ−j=2Qj
νðzÞ ¼ ð−1Þj

2jð1 − cos κtÞj
�
1

η

∂
∂η

�
j
QνðzÞ; ð30Þ

where

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðrÞ

κ2r2

r
; ð31Þ

we arrive at

Ψ
½d�ðþÞ

nl ði;jjrÞ¼ κ

ð2πÞ2
2i−j

ffiffiffi
π

p
ΓðμÞ

κ2i�2jr2μþ2jþ1Γðμþ 1
2
þjÞ

�
1

η

∂
∂η

�
j

×
Z

2π=κ

0

ð1−cosκtÞie−inκtQlþμ−1
2
ðzÞdt: ð32Þ

In order to perform the integral we must factor out the time
dependence from the Legendre function, which may be
achieved by employing the addition theorem [14],
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QνðzÞ ¼ PνðηÞQνðηÞ þ 2
X∞
p¼1

ð−1ÞpP−p
ν ðηÞQp

ν ðηÞ cospκt;

ð33Þ

whence the time integral reduces to

Z
2π=κ

0

ð1 − cos κtÞie−inκt cospκtdt

¼
ffiffiffi
π

p
κ

�
2ii!Γðiþ 1

2
Þð−1Þn−p

ðiþ p − nÞ!ði − pþ nÞ!

þ 2ii!Γðiþ 1
2
Þð−1Þpþn

ði − p − nÞ!ðiþ pþ nÞ!
�
: ð34Þ

Again, we see that it was our judicious choice of w2 as a
simple polynomial in cos κΔτ that resulted in this relatively
simple time integral which we could do in closed form. The
factorials in the denominator imply that there is a finite
number of integer p for which the integral is nonzero. In
particular, the first term on the right-hand side of (34) is
nonzero only for jp − nj ≤ i while the second term is
nonzero for jpþ nj ≤ i. The range is further restricted in
our case since p ≥ 1 and hence the sets of integers p for
which the first and second terms are nonzero are p ∈
fmaxð1; n − iÞ; nþ ig and p ∈ fmaxð1;−n − iÞ; i − ng,
respectively. An equivalent expression for (34) in terms
of a sum of Kronecker deltas is easily derived. Putting these
together, we obtain

Ψ
½d�ðþÞ

nl ði; jjrÞ ¼ 22i−j−1ð−1Þni!Γðiþ 1
2
ÞΓðμÞ

πκ2iþ2jr2μþ2jþ1Γðjþ μþ 1
2
Þ
�
1

η

d
dη

�
j
�Plþμ−1

2
ðηÞQlþμ−1

2
ðηÞ

ði − nÞ!ðiþ nÞ!

þ
Xiþn

p¼maxf1;n−ig

P−p
lþμ−1

2

ðηÞQp
lþμ−1

2

ðηÞ
ðiþ p − nÞ!ði − pþ nÞ!þ

Xi−n
p¼maxf1;−n−ig

P−p
lþμ−1

2

ðηÞQp
lþμ−1

2

ðηÞ
ðiþ pþ nÞ!ði − p − nÞ!

�
: ð35Þ

We turn now to the Ψ
½d�ð−Þ

nl ði; jjrÞ terms. Again, the derivation is analogous to the odd-dimensional case presented in
Ref. [4] so we omit much of the details. Briefly, making use of the identity

ðz2 − 1Þj=2Q−j
ν ðzÞ ¼

Xj

k¼0

ð−1Þk
2jþ1

�
j
k

� ð2νþ 2j − 4kþ 1Þ
ðν − kþ 1

2
Þjþ1

Qνþj−2kðzÞ ð36Þ

in (28) gives

Ψ
½d�ð−Þ

nl ði; jjrÞ ¼
κ

ð2πÞ2
2i−j

ffiffiffi
π

p ð−1ÞjΓðμÞ
κ2i−2jr2μ−2jþ1Γðμþ 1

2
− jÞ

Xj

k¼0

ð−1Þk
�
j
k

� ðlþ μþ j − 2kÞ
ðlþ μ − kÞjþ1

×
Z

2π=κ

0

ð1 − cos κtÞi−je−inκtQlþμ−1
2
þj−2kðzÞdt: ð37Þ

We now proceed as above: we apply the addition theorem (33) to isolate the time dependence, and integrate using (34). The
result is

Ψ
½d�ð−Þ

nl ði; jjrÞ ¼
22i−2j−1ð−1Þnþjði − jÞ!Γði − jþ 1

2
ÞΓðμÞ

πκ2i−2jr2μ−2jþ1Γðμþ 1
2
− jÞ

Xj

k¼0

ð−1Þk
�
j
k

� ðlþ μþ j − 2kÞ
ðlþ μ − kÞjþ1

×

�Plþμ−1
2
þj−2kðηÞQlþμ−1

2
þj−2kðηÞ

ði − j − nÞ!ði − jþ nÞ! þ
Xi−jþn

p¼maxf1;n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ p − nÞ!ði − j − pþ nÞ!

þ
Xi−j−n

p¼maxf1;−n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ pþ nÞ!ði − j − p − nÞ!
�
: ð38Þ

Equations (35) and (38) are the regularization para-
meters for the direct part of the scalar two-point function in
a static spherically symmetric spacetime in arbitrary even
dimensions.

B. Regularization parameters for the tail

In this section, we derive regularization parameters for
the tail terms in the Hadamard parametrix. Recall that we
divided the tail term into subcategories depending on
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whether there was a logarithm, whether the terms were
polynomial in s2 and w2 or whether they were rational
(generalized) functions of w2 and s2. We have already
explained that the polynomial terms do not need to be
expressed as a mode sum, even if they were, the sums
would be finite and hence offer no advantage in improving
the convergence of the mode-sum expression for the
vacuum polarization. The only rational term coming from
the tail term in the parametrix at the order being considered
is a term of the form w4=s2. This type of term has in fact
already been considered since it shows up in the direct

part corresponding to the coefficient Dð−Þ
ij ðrÞ with i ¼ d

2
,

j ¼ d
2
− 2. Thus, the corresponding regularization param-

eter is given by (38) with i ¼ d
2
, j ¼ d

2
− 2. Equivalently, we

could simply absorb the term T ðrÞ
10 ðrÞ into the direct part in

(23) by the redefinition

~Dð−Þ
d
2
;d
2
−2ðrÞ ¼ Dð−Þ

d
2
;d
2
−2ðrÞ þ T ðrÞ

10 ðrÞ: ð39Þ

Hence, the only remaining terms in the tail that need to
be considered are those that involve a log, i.e., those of the
form logðs2=l2Þs2i−2jw2j. As before the starting point is to
assume an expansion of the form

s2i−2jw2j log

�
s2

l2

�
¼

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

× χ
½d�

nlði; jjrÞ: ð40Þ

Using the completeness relations (26), we can invert to get
the double integral representation for the regularization
parameters:

χ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2
22μ−1ΓðμÞ2l!
Γðlþ 2μÞ

Z
2π=κ

0

Z
1

−1
w2je−inκΔτ

× logðs2=l2Þs2i−2jð1 − x2Þμ−1
2Cμ

l ðxÞdxdΔτ:
ð41Þ

For the angular integral, we wish to find a useful expression
for the integrals of the form

Z
1

−1
logðz − xÞðz − xÞkð1 − x2Þμ−1

2Cμ
l ðxÞdx; ð42Þ

where k ¼ i − j ∈ N and we remind the reader that z > 1 is
given by Eq. (29).
There are several ways one might proceed, for example,

one could attempt to differentiate ðz − xÞλ with respect to the
exponent and then take the limit λ → i − j. This indeed can
be done but is needlessly complicated for all but a handful of
low l-modes. Instead, we start with the Rodrigues’-type
formula for the Gegenbauer polynomials [14]

Cμ
l ðxÞ ¼

ð−1Þlð2μÞl
2ll!ðμþ 1

2
Þl
ð1 − x2Þ12−μ dl

dxl
½ð1 − x2Þμþl−1

2�: ð43Þ

Substituting this into Eq. (42) and integrating by parts l
times gives

Z
1

−1
logðz − xÞðz − xÞkð1 − x2Þμ−1

2Cμ
l ðxÞdx ¼ ð2μÞl

2ll!ðμþ 1
2
Þl

Z
1

−1
Blkðz; xÞð1 − x2Þlþμ−1

2dx; ð44Þ

where

Blkðz; xÞ ¼
� ð−1Þkþ1k!ðl − k − 1Þ!ðz − xÞk−l l > k

ð−1Þlðk − lþ 1Þlðz − xÞk−lflogðz − xÞ þ ψðkþ 1Þ − ψðkþ 1 − lÞg l ≤ k:
ð45Þ

We note that in our case, k ¼ i − j will be a small number and hence all but the lowest-lying l-modes will satisfy l > i − j.
In fact, to compute the regularized Green function up to Oðϵ4 log ϵÞ requires only the k ¼ 0, 1 modes and hence all l ≥ 2
will be given by the more simple expression for Blk above. In this case, the integral in Eq. (44) is expressible in terms of the
Legendre function of the second kind,

Z
1

−1
logðz − xÞðz − xÞkð1 − x2Þμ−1

2Cμ
l ðxÞdx ¼ ð−1Þμ−1

22μþ1
2
k!
l!
ð2μÞlΓ

�
μþ 1

2

�
ðz2 − 1Þ12ðμþkþ1

2
ÞQ−μ−k−1

2

lþμ−1
2

ðzÞ;

for l > k: ð46Þ

Hence, substituting this result into (41) and using some standard identities involving Gamma functions gives

χ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2 ð−1Þ
μ−1

2ði − jÞ!ð2r2Þi−j ffiffiffi
π

p
2μþ1

2ΓðμÞ
Z

2π=κ

0

w2je−inκΔτðz2 − 1Þ12ðμþ1
2
þi−jÞQ−μ−iþj−1

2

lþμ−1
2

ðzÞdΔτ

for l > i − j: ð47Þ
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Note that the terms involving the arbitrary length scale logðl2Þ vanishes for l > i − j. To perform the time integral, we again
adopt Eqs. (36) and (33) to factor out the time dependence in terms of exponentials, in much the same way we did for the
regularization parameters of the direct part. The result for the regularization parameters for the log terms with l > i − j is

χ
½d�

nlði; jjrÞ ¼ ð−1Þnþμ−1
2

22j−1r2i−2jΓðμÞði − jÞ!j!Γðjþ 1
2
Þ

πκ2j
Xμþ1
2
þi−j

k¼0

ð−1Þk
�
μþ 1

2
þ i − j
k

� ðlþ 2μþ i − j − 2kþ 1
2
Þ

ðlþ μ − kÞμþ3
2
þi−j

×

�
Plþ2μþi−j−2kðηÞQlþ2μþi−j−2kðηÞ

ðj − nÞ!ðjþ nÞ! þ
Xjþn

p¼maxf1;n−jg

P−p
lþ2μþi−j−2kðηÞQp

lþ2μþi−j−2kðηÞ
ðjþ p − nÞ!ðj − pþ nÞ!

þ
Xj−n

p¼maxf1;−n−jg

P−p
lþ2μþi−j−2kðηÞQp

lþ2μþi−j−2kðηÞ
ðjþ pþ nÞ!ðj − p − nÞ!

�
;

for l > i − j: ð48Þ
For the l ≤ i − jmodes, we have not found it most convenient to proceed as above, mainly because the integral (44) is not

easily performed in terms of known functions, let alone performing the additional time integral in Eq. (41). Instead, we
rewrite (41) succinctly by adopting Eqs. (44) and (45) and expressing in terms of a derivative with respect to the exponent,

χ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2
ffiffiffi
π

p
ΓðμÞð2r2Þi−jð−1Þl
2lΓðμþ lþ 1

2
Þ

�
2

κ2

�
j
�
d
dλ

Z
2π=κ

0

ð1 − cos κtÞje−inκt

×
Z

1

−1
ð1 − x2Þlþμ−1

2ðλþ 1 − lÞlðz − xÞλ−l
�
2r2

l2

�
λ−iþj

dxdt

�
λ¼i−j

: ð49Þ

The x-integral here can be performed in terms of Olver’s definition [15] of the associated Legendre function of the second
kind. Unlike the usual definition of the Legendre function, Olver’s has the advantage that it is valid for all values of the
parameters. In particular, we have

Z
1

−1
ð1 − x2Þlþμ−1

2ðz − xÞλ−ldx ¼ ðz2 − 1Þ12ðμþλþ1
2
Þ2lþμþ1

2Γ
�
lþ μþ 1

2

�
Q

−μ−λ−1
2

lþμ−1
2

ðzÞ; ð50Þ

where Qμ
νðzÞ is Olver’s Legendre function of the second kind defined by the Hypergeometric series

Qμ
νðzÞ ¼

ffiffiffi
π

p
2νþ1zμþνþ1

ðz2 − 1Þμ=2F
�
1

2
μþ 1

2
νþ 1

2
;
1

2
μþ 1

2
νþ 1; νþ 3

2
;
1

z2

�
ð51Þ

with Fða; b; c; zÞ the regularized hypergeometric function. Whenever μþ ν is not a negative integer, Olver’s definition is
related to the standard one by

Qμ
νðzÞ ¼ e−μπiQμ

νðzÞ
Γðμþ νþ 1Þ : ð52Þ

Employing (50) in (49) results in

χ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2
ffiffiffi
π

p
2μþ1

2ΓðμÞð2r2Þi−jð−1Þl
�
2

κ2

�
j
�
d
dλ

ðλþ 1 − lÞl
�
2r2

l2

�
λ−iþj

Z
2π=κ

0

ð1 − cos κtÞje−inκt

× ðz2 − 1Þ12ðμþλþ1
2
ÞQ−μ−λ−1

2

lþμ−1
2

ðzÞdt
�
λ¼i−j

for l ≤ i − j: ð53Þ

Now, one can in principle perform the derivative with respect to λ (see, for example, [16] for derivatives of associated
Legendre functions with respect to the order) and subsequently perform the integral here to obtain series expansions in
terms of products of Legendre functions. The resultant expressions are extremely complicated so we take the more
pragmatic approach of simply performing the integral above numerically, which presents no difficulty. Moreover, these
numerical integrals are only needed for l ¼ 0, 1 at the order being considered, and hence there is no loss of efficiency in the
calculation as a result of not using a closed-form representation.
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C. The Hadamard parametrix

Combining the results of the previous subsections, the mode-sum representation of the Hadamard parametrix for a scalar
field in a static spherically symmetric even-dimensional spacetime is (ignoring terms that do not contribute in the
coincidence limit and henceforth setting the bookkeeping parameter ϵ to unity)

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

X∞
n¼−∞

einκΔτ
�Xd

2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði; jjrÞ þ

Xd
2

i¼1

Xminfi;d
2
−2g

j¼1

Dð−Þ
i;j ðrÞΨ

½d�ð−Þ
nl ði; jjrÞ

þ T ðrÞ
10 ðrÞΨ

½d�ð−Þ
nl

�
d
2
;
d
2
− 2jr

�
þ
X2
i¼0

Xi

j¼0

T ðlÞ
ij ðrÞχ

½d�
nlði; jjrÞ

�
þ Γðd

2
− 1Þ

2ð2πÞd=2 D
ð−Þ
d
2
−1;d

2
−1ðrÞ; ð54Þ

where Ψ
½d�ð�Þ

nl ði; jjrÞ, χ½d�nlði; jjrÞ are given by Eqs. (35), (38),
(48) and (53). This is the main result. It allows one to
numerically compute the regularized vacuum polarization
in arbitrary even dimensions in an extremely efficient way.
We describe this calculation for a massless scalar field in
the Schwarzschild-Tangherlini spacetimes in the following
section.

V. VACUUM POLARIZATION IN
SCHWARZSCHILD-TANGHERLINI

SPACETIMES

In this section we outline the numerical implementation of
the regularization scheme described above to the calculation
of the vacuum polarization for a scalar field in the Hartle-
Hawking state on the background of even-dimensional
Schwarzschild-Tangherlini black hole spacetimes. In
Schwarzschild coordinates, the Schwarzschild-Tangherlini
metric takes the form (2) with [17]

fðrÞ ¼ 1 −
�
rh
r

�
d−3

: ð55Þ

These coordinates are singular at r ¼ rh which corresponds
to the black hole horizon. For simplicity, throughout the
remainder of this section, we work in units where rh ¼ 1, so
that all lengths having numerical values are in units of the
event horizon radius. That implies, for example, that the
surface gravity κ ¼ 1

2
f0ðrhÞ ¼ 1

2
ðd − 3Þ ¼ μ. We also

choose the length scale l in the Hadamard parametrix to
satisfy l ¼ 1. Now, the regularized vacuum polarization for
a scalar field in the Hartle-Hawking state is defined by the
coincidence limit of the difference between the Euclidean
Green function and the Hadamard parametrix,

hϕ2ireg ¼ lim
x0→x

fGðx; x0Þ −GSðx; x0Þg: ð56Þ

It is clear that to compute the vacuum polarization in this
context requires two ingredients: first, a mode-sum expres-
sion for the Euclidean Green function which includes

accurate numerical data for the radial Green function, see
Eqs. (5)–(7), and second, a mode-sum representation for the
Hadamard parametrix which we have derived in detail in the
previous section.

A. Mode-sum calculation

As mentioned, in order to calculate the vacuum
polarization we must first calculate the radial Green
function (7) which is a normalized product of homo-
geneous solutions pnlðrÞ and qnlðrÞ to Eq. (6) satisfying
boundary conditions of regularity on the horizon and at
infinity, respectively. For fðrÞ given by (55), solutions
cannot in general be given in terms of known functions and
must be solved numerically, with the exception of the zero
frequency modes which are

p0lðrÞ ¼ Pl=ðd−3Þð2rd−3 − 1Þ
q0lðrÞ ¼ Ql=ðd−3Þð2rd−3 − 1Þ; ð57Þ

where PνðzÞ and QνðzÞ are Legendre functions of the
first and second kind, respectively. For the remaining
modes, their numerical calculation is outlined in detail
in the companion paper [4], so the details will be omit-
ted here.
Equipped with both accurate numerical evaluation of

the radial modes for the Euclidean Green function and
explicit closed-form expressions for the regularization
parameters, we are now in a position to calculate
the vacuum polarization hϕ2ireg in even-dimensional
Schwarzschild-Tangherlini spacetimes. We present results
for d ¼ 4, 6, 8, 10. Though results for d ¼ 4 are long
established [3], we include our results here as a nontrivial
check against the tabulated data in [3]. For the higher
even dimensions, to the best of our knowledge, these
are the first exact results for vacuum polarization on the
entire exterior Schwarzschild-Tangherlini geometries.
First, in order to make the mode-by-mode subtraction

more transparent, it is useful to simplify the notation by
defining
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gSnlðrÞ ¼
Ωd−2

2κ

Γðd
2
− 1Þ

ð2πÞd2−1
�Xd

2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði; jjrÞ

þ
Xd

2

i¼1

Xminfi;d
2
−2g

j¼1

Dð−Þ
i;j ðrÞΨ

½d�ð−Þ
nl ði; jjrÞ

þ T ðrÞ
10 ðrÞΨ

½d�ð−Þ
nl

�
d
2
;
d
2
− 2jr

�

þ
X2
i¼0

Xi

j¼0

T ðlÞ
ij ðrÞχ

½d�
nlði; jjrÞ

�
; ð58Þ

whence the mode sum of the Hadamard parametrix can be
more succinctly expressed as

GSðx; x0Þ ¼
κ

2π

X∞
l¼0

ð2lþ 2μÞ
Ωd−2

Cμ
l ðcos γÞ

�
gS0lðrÞ

þ 2
X∞
n¼1

cos κΔτgSnlðrÞ
�
þ Γðd

2
− 1Þ

2ð2πÞd=2D
ð−Þ
d
2
−1;d

2
−1ðrÞ:

ð59Þ

In arriving at this form we have also made use of the
invariance of gSnlðrÞ under the transformation n → −n, a
symmetry that is immediately obvious from the explicit
expressions for the regularization parameters. The radial
part of the Euclidean Green function also possesses this
discrete symmetry and can be written in an analogous way.
Hence, substituting (59) and (5) into the definition (56), and
using the fact that the Gegenbauer polynomials evaluated at
coincidence are

Cμ
l ð1Þ ¼

�
2μþ l − 1

l

�
; ð60Þ

yields the following expression for the regularized vacuum
polarization:

hϕ2ireg ¼
κ

2π

X∞
l¼0

ð2lþ 2μÞ
Ωd−2

�
2μþ l− 1

l

��
g0lðrÞ− gS0lðrÞ

þ 2
X∞
n¼1

ðgnlðrÞ− gSnlðrÞÞ
�
þ Γðd

2
− 1Þ

2ð2πÞd=2D
ð−Þ
d
2
−1;d

2
−1ðrÞ:

ð61Þ

This double sum is now rapidly convergent and amenable
to numerical evaluation. More specifically, when terms up
to and including Oðϵ2Þ are included in the decomposition
of the Hadamard parametrix, as is the case in this paper, the
convergence of the inner sum over n can be shown
numerically to be Oðn−d−3Þ for each value of d under
consideration (see Fig. 1 for plots of convergence for
d ¼ 6). Of course, in principle, any order of convergence

can be achieved by decomposing higher and higher order
terms in the Hadamard parametrix.
Below, we present plots of hϕ2ireg in the exterior region

of a Schwarzschild-Tangherlini black hole spacetime for
d ¼ 4, 6, 8, 10. Recall that we are working in units where
the black hole event horizon has been set to unity. In Fig. 2
we present the results for all dimensions. This is followed
by a series of individual plots for each dimension, in Fig. 3.
From the plots, we might conjecture that for d ¼ 6, 10,…,
the vacuum polarization is rapidly increasing from a
negative value at the horizon out to some turning point,
before decreasing and eventually approaching its value at
infinity. For the alternate even dimensions 8, 12,…, the
vacuum polarization decreases rapidly from a positive
value at the horizon to some turning point, before slowly
increasing and eventually asymptoting to its value at
infinity. A similar pattern of alternating dimensions of

FIG. 1. Log plots showing convergence over n in the mode-sum
expression. The red line represents logðn7jgnlðrÞ − gSnlðrÞjÞwhere
we have not included the Oðϵ2Þ terms in gSnlðrÞ (setting m ¼ 1).
The plot shows that the difference gnlðrÞ − gSnlðrÞ scales like n−7
for large n. The green line represents logðn9jgnlðrÞ − gSnlðrÞjÞ
where we have included Oðϵ2Þ terms (setting m ¼ 2). The plot
shows that the difference scales like n−9 for large n.

FIG. 2. Plot of the regularized vacuum polarization for a
massless scalar field in the Hartle-Hawking state in the exterior
region of a Schwarzschild-Tangherlini black hole as a function of
r for spacetime dimensions d ¼ 4, 6, 8, 10. We have set
rh ¼ l ¼ 1. The plot markers represent the grid points at which
hϕ2ireg was numerically calculated.
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the same parity having similar shape graphs was seen in the
odd-dimensional case also [4].
Another consistency check of our numerical implemen-

tation is to compare our graphs with the known values for
the vacuum polarization at the horizon and infinity. In the
latter case, the fact that Schwarzschild-Tangherlini space-
time is asymptotically flat implies that, as r → ∞, hϕ2ireg
ought to approach the value of the regularized vacuum
polarization for a thermal scalar field in flat spacetime at the
Hawking temperature T ¼ κ=2π, which is given by

hϕ2iMreg ¼
κd−2Γðd

2
− 1Þ

2d−1π3d=2−2
ζðd − 2Þ; ð62Þ

where ζðsÞ is the Riemann zeta function. This agreement as
r → ∞ can be seen in Fig. 3. Moreover, the rate at which
hϕ2ireg approaches its flat spacetime value increases with
the number of spacetime dimensions.
We turn now to the comparison with (quasi)analytic

expressions for the vacuum polarization on the horizon. In
many cases, the Green function near the horizon,
and hence the vacuum polarization, can be computed
in closed form since only the n ¼ 0 mode contributes.
Even in the cases where explicit closed-form repre-
sentations are not available, one can derive simple integral
representations for the Green function by extending the
work of [18]. Moreover, analogous integral representations
for the vacuum polarization can be obtained from these
which are straightforward to evaluate numerically.
Computing vacuum polarization on the horizon in this
independent way and checking that these values smoothly

match with our first off-horizon values calculated using the
methods described in this paper offers another nontrivial
check of the validity of our results. In our plots of hϕ2ireg,
the first grid point is taken to be the value of hϕ2ireg exactly
on the black hole horizon. The relevant horizon values are
given in Table I (with rh ¼ 1). While the result for d ¼ 4 is
well known [19] and straightforward to derive explicitly in
closed form, to the best of the authors’ knowledge this is the
first instance where a closed form result for d ¼ 6 is given.
The results for d ¼ 8 and d ¼ 10 were calculated numeri-
cally using integral expressions that generalize the one
given in [18]. The important thing to note is that in each of
the plots in Fig. 3, the value of hϕ2ireg at the first off-
horizon grid point (which is calculated using the new
method described in this paper) matches up smoothly with
the horizon value (which is calculated using an independent
method). More than simply a check of the validity of our
method, this smooth matching further exhibits little or no

FIG. 3. Separate plots of the regularized vacuum polarization for a massless scalar field in the Hartle-Hawking state in the exterior
region of a Schwarzschild-Tangherlini black hole as a function of r in various even dimensions. We have set rh ¼ l ¼ 1. For d ¼ 6, 8
and d ¼ 10 the plot markers represent the grid points at which we numerically evaluate hϕ2ireg, while for d ¼ 4 they represent the
tabulated results of [3]. Comparison of the tabulated data with the graph for d ¼ 4 shows excellent agreement. The dashed lines are the
asymptotic values given by Eq. (62).

TABLE I. Values of the renormalized vacuum polarization on
the event horizon of a Schwarzschild-Tangherlini black hole in
various even dimensions from d ¼ 4;…; 10. The event horizon is
located at r ¼ rh ¼ 1.

d hϕ2ireg at r ¼ rh ¼ 1

4 1
48π2

6 2γþlnð3Þ
48π3

− 21
320π3

8 0.00539968702
10 −0.08070202480
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TABLE III. We list the Hadamard direct coefficients Dð−Þ
ij ðrÞ for the d ¼ 6 Schwarzschild-Tangherlini spacetime.

In the Table, we list all coefficients needed in the expansion of the Hadamard parametrix assuming we keep all terms
up to and including Oðϵ2Þ. The horizon radius has been set to unity.

Dð−Þ
ij ðrÞ coefficients for 6D Schwarzschild-Tangherlini

j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 1 − 2
3r5

i ¼ 2 4r6−11r3þ7
4r13

59−30r3
180r10

i ¼ 3 1
576r21

ð108r14 − 360r12 − 297r11 þ 3828r9

þ189r8 − 10520r6 þ 11077r3 − 4025Þ
ðr3−1Þð588r6−3065r3þ3325Þ

2016r18
− 42r6−325r3þ321

1008r15

TABLE II. We list the Hadamard direct coefficients DðþÞ
ij ðrÞ for the d ¼ 6 Schwarzschild-Tangherlini spacetime. In the Table, we list

all coefficients needed in the expansion of the Hadamard parametrix assuming we keep all terms up to and includingOðϵ2Þ. The horizon
radius has been set to unity.

DðþÞ
ij ðrÞ coefficients for 6D Schwarzschild-Tangherlini

j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

i ¼ 0 4
i ¼ 1 10ðr3−1Þ

3r8
− 1

6r11 ð9r11 − 9r8

þ16r6 − 41r3 þ 25Þ
i ¼ 2 1

12r16
ð9r11 − 18r9 − 9r8

þ112r6 − 179r3 þ 85Þ
1

720r19 ð−324r19 þ 324r16

−1620r14 þ 480r12 þ 3645r11

−5216r9 − 2025r8 þ 15036r6

−16425r3 þ 6125Þ

ðr−1Þ4
192r22 ð9r9 þ 18r8

þ27r7 þ 27r6 þ 27r5

þ43r4 þ 59r3 þ 75r2

þ50rþ 25Þ2
i ¼ 3 1

8640r24 ð1944r19 − 6480r17

−1944r16 þ 4680r15

þ36315r14 − 69540r12

−55620r11 þ 312416r9

þ25785r8 − 587571r6

þ493140r3 − 153125Þ

− 1
161280r27 ð26244r27 − 26244r24

þ165564r22 − 151200r20

−366849r19 þ 26880r18

þ1312416r17 þ 201285r16

−649600r15 − 3361176r14

þ4320736r12 þ 3400110r11

−12376896r9 − 1200150r8

þ17417980r6 − 11902225r3

þ3163125Þ

1
3840r30 ð972r30 − 1944r27

þ5238r25 þ 972r24

−1440r23 − 17901r22

þ20928r20 þ 20088r19

−2560r18 − 80436r17

−7425r16 þ 30112r15

þ131598r14 − 129344r12

−98400r11 þ 273342r9 þ 27750r8

−306925r6 þ 176000r3 − 40625Þ

− ðr−1Þ6ðr2þrþ1Þ3
6912r33 ð9r7

þ9r6 þ 9r5 þ 9r4 þ 9r3

þ25r2 þ 25rþ 25Þ3

TABLE IV. We list the Hadamard tail coefficients T ðlÞ
ij ðrÞ, T ðrÞ

ij ðrÞ and T ðpÞ
ij ðrÞ for a massless scalar field in d ¼ 6

Schwarzschild-Tangherlini spacetime. These are all the terms needed assuming we keep terms in the Hadamard
expansion up to and including Oðϵ2Þ terms. In d ¼ 4, for a massless scalar field in Schwarzschild, we have that
V ∼Oðϵ4Þ, and hence all of the T ij terms would be zero at this order. As we can see, this is not true in the higher
dimensional Schwarzschild-Tangherlini spacetimes.

T ðlÞ
ij ðrÞ coefficients for 6D Schwarzschild-Tangherlini

j ¼ 0 j ¼ 1

i ¼ 0 − 1
3r10

i ¼ 1 5ð3r3−5Þ
36r15

− 5ðr3−1Þ
12r15

T ðrÞ
ij ðrÞ and T ðpÞ

ij ðrÞ coefficients for 6D Schwarzschild-Tangherlini

j ¼ 0 j ¼ 1

T ðrÞ
1j − 9r11−9r8þ16r6−41r3þ25

144r21

T ðpÞ
1j

− 1
36r15

5ðr3−1Þ
36r18
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loss of accuracy/efficiency of the mode sums very near the
horizon, that is, the method developed in this series of
papers results in mode sums whose convergence properties
are excellent across the entire exterior region. This desir-
able property is not shared by the usual methods based on
WKB techniques, where the convergence close to the
horizon breaks down. We feel that this uniformity is a
major advantage of our method.
Finally in Fig. 4, we draw together the results from this

series of papers to present the vacuum polarization in the
exterior region of a Schwarzschild-Tangherlini black hole
spacetime for all spacetime dimensions d ¼ 4;…; 11. We
see that for d ¼ 4 and d ¼ 5, hϕ2ireg remains positive in the
entire exterior region, for d ¼ 6 and d ¼ 7, hϕ2ireg is
negative at the event horizon, it then increases to a positive
maximum value before limiting to its asymptotic value. For
d ¼ 8 and d ¼ 9, the vacuum polarization is positive on the
event horizon, it then decreases to a minimum negative
value before increasing again and then approaches its
asymptotic value. Lastly, for d ¼ 10 and d ¼ 11, hϕ2ireg
is negative on the horizon, it then increases to a maximum
positive value before decreasing and becoming slightly
negative before limiting to its flat space value. This
grouping between neighboring dimensions appears to be
a universal feature, though it is unclear if it is a physically
interesting one. If this type of pairing persisted in the
calculation of the stress-energy tensor, perhaps it would be
worth further investigation.

VI. CONCLUSIONS

We have extended the method presented in Ref. [4] for
computing vacuum polarization in odd dimensions for a

quantum scalar field in the Hartle-Hawking state in static,
spherically symmetric spacetimes to the even-dimensional
case. These methods offer extremely powerful tools for
computing regularized vacuum polarization for fields
propagating in static, spherically symmetric spacetimes
of any dimension. Computing regularized vacuum polari-
zation, even in four spacetime dimensions, is historically
a notoriously difficult and technical task. The first
successful regularization calculation of this type was
presented by Candelas and Howard for a scalar field
in a Schwarzschild black hole spacetime. Their method is
quite ingenious, relying on the application of WKB
techniques and converting one of the infinite series to
a contour integral using tools from complex analysis.
However, after much endeavor and artfulness, one is still
left with expressions which are inefficient to compute
numerically. Moreover, the method fails completely near
the horizon. Despite these drawbacks, this approach has
more or less remained the standard one for several
decades. This is remedied here by presenting a systematic
out-of-the-box solution that is more direct, conceptually
clearer and much more efficient than the Candelas-
Howard approach. Moreover, the approach presented
here is mostly agnostic to number of dimensions, to
the mass of the field or to whether or not the spacetime is
vacuum. Our approach results in a mode-by-mode sub-
traction for the vacuum polarization that is very rapidly
converging, requiring only a few tens of l and n modes to
obtain approximately 8–10 decimal places of accuracy on
the entire exterior geometry. Finally, we conclude that, in
principle, these methods can be extended to the regular-
ized stress-energy tensor, to other types of fields and to
other vacuum states.

FIG. 4. Plot of the regularized vacuum polarization for a massless scalar field in the Hartle-Hawking state in the exterior region of a
Schwarzschild-Tangherlini black hole for spacetime dimensions d ¼ 4;…; 11. We have set rh ¼ l ¼ 1.
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