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Equipped with new powerful and efficient methods for computing quantum expectation values in static-
spherically symmetric spacetimes in arbitrary dimensions, we perform an in-depth investigation of how the
quantum vacuum polarization varies with the parameters in the theory. In particular, we compute and
compare the vacuum polarization for a quantum scalar field in the Schwarzschild–anti–de Sitter black hole
spacetime for a range of values of the field mass and field coupling constant as well as the black hole mass
and number of spacetime dimensions. In addition, a new approximation for the vacuum polarization in
asymptotically anti–de Sitter black hole spacetimes is presented.
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I. INTRODUCTION

The expectation value of the quantum stress-energy
tensor plays a crucial role in the semiclassical theory of
gravity. It governs the quantum backreaction on the classical
spacetime geometry via the semiclassical field equations

Gab þ Λgab ¼ 8πhT̂abi: ð1Þ

Computing the expectation value of the quantum stress-
energy tensor is beset with challenges. The main difficulty is
that in quantizing the system, one promotes classical fields to
operator-valued distributions, and since the classical stress-
energy tensor is quadratic in the field, the quantum stress-
energy tensor is quadratic in an operator-valued distribution,
a mathematically ill-defined object. This implies that hT̂abi
must be regularized. A conceptual framework for regulari-
zation, known as point-splitting regularization, was devel-
oped by DeWitt and Christensen [1,2], and put on a rigorous
footing by Wald [3]. There still followed decades of effort
towards a practical numerical implementation of point-
splitting regularization in black hole spacetimes. This
industry has been recently revived by new methods devel-
oped by Levi and Ori [4] and applied to a scalar field on a
Kerr black hole [5].
A related but technically less-challenging problem is that

of computing the regularized vacuum polarization. It has
become customary to apply techniques to this problem

before applying to the stress-energy tensor, notwithstand-
ing interest in the vacuum polarization in its own right, e.g.,
in the phenomenon of spontaneous symmetry breaking (see
e.g., [6]). The vacuum polarization often shares important
properties with the stress-energy tensor, e.g., they usually
both diverge or are both regular on the horizon of the black
hole for the field in a given quantum state.
In almost all calculations of the regularized stress-energy

tensor or vacuum polarization in the literature, the emphasis
is on describing the method for a given fixed set of
parameters, mainly because these calculations are notori-
ously difficult and computationally expensive. However,
the authors have devised a regularization method [7,8],
which we will refer to as the extended coordinate method,
which provides an extremely efficient way to compute the
vacuum polarization for arbitrary field parameters in static
spherically symmetric spacetimes of arbitrary dimensions.
In particular, this method allows us to explore the parameter
space of the semiclassical theory in a way that would be
so tedious as to be completely impractical using other
schemes, e.g., the Candelas Howard method [9].
We are considering a scalar field satisfying the Klein-

Gordon equation

f□ −m2 − ξRgφðxÞ ¼ 0; ð2Þ

where□ is the d’Alembertian operator,m is the field mass,
R is the Ricci curvature scalar of the background spacetime
and ξ is the coupling strength between the field and the
background geometry. When considering vacuum polari-
zation in a Ricci flat spacetime, the coupling constant is
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irrelevant (though not for the stress-energy tensor) since
the ξR termvanishes in thewave equation.Hence,we choose
to consider a quantum scalar field propagating on a black
hole in anti–de Sitter spacetime, namely, the Schwarzschild–
anti–de Sitter spacetime, which allows us to probe how the
quantum effects vary with the coupling ξ in a simple but
nontrivial way, since the Ricci scalar on this background is
constant but nonzero. As well as probing the dependence on
the coupling constant, we compute the vacuum polarization
for varying field mass, black hole mass and spacetime
dimension. We note that, since the spacetime we are
considering is not asymptotically flat, the black hole solution
we consider here is not the only possibility. There are
asymptotically anti–de Sitter solutions with other horizon
topologies.We donot consider these cases here, but note that
vacuum polarization for massless, conformally coupled
fields in these topological black hole spacetimes have been
recently computed in Ref. [10] by adapting the extended
coordinate method of Ref. [7,8].
This paper is organized as follows: In Sec. II, we review

the main features of the extended coordinate regularization
method [7,8]. In Sec. III, we outline the main features of
the Schwarzschild–anti–de Sitter spacetime, discuss the
numerical calculations required to construct the two-point
function, present and discuss the main numerical results for
the vacuum polarization and, finally, in this section, we
introduce and discuss a new approximation for the vacuum
polarization. Finally, in Sec. IV, we draw some conclusions
based upon the work presented in this paper.

II. REVIEW OF REGULARIZATION METHOD

Here we will briefly review the mode-sum regularization
method of [7,8], we refer the reader to those papers for a
comprehensive description.
We wish to compute the vacuum polarization for a scalar

field in the Hartle-Hawking [11] state in the Schwarzschild–
anti–de Sitter (SAdS) black hole spacetime. Since the
spacetime is static, the vacuum polarization is conveniently
defined in terms of a Euclideanized two-point function,

hϕ̂2iHH ¼ lim
x0→x

fGEðx; x0Þ −GSðx; x0Þg ð3Þ

whereGEðx; x0Þ aGreen function for thewave equationon the
Euclidean black hole spacetime obtained by a Wick rotation
t → −iτ, and GSðx; x0Þ is a symmetric two-point function
which is a parametrix for the wave operator and which is
constructed only from the geometry of the spacetime through
its metric and its derivatives [12]. In particular, we take
GSðx; x0Þ to be a Hadamard parametrix of the form,

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
�

Uðx; x0Þ
σðx; x0Þd2−1

þ Vðx; x0Þ logð2σðx; x0Þ=l2Þ
�
: ð4Þ

The biscalar σðx; x0Þ is the world function with respect to the
Euclideanized metric. The parameter l is an arbitrary length
scale required tomake the argument of the log dimensionless.
The biscalarsUðx; x0Þ andVðx; x0Þ are smooth and symmetric
in their arguments. For even d, Vðx; x0Þ is a homogeneous
solution of thewave equation in both its arguments; for oddd,
Vðx; x0Þ≡ 0. High order covariant Taylor expansions for
these biscalar can be found in [13]. By construction, the
difference in (3) is finite in the coincidence limitx0 → x, albeit
difficult to compute in practice.
To see where the difficulty lies, we note that GEðx; x0Þ is

not known in closed form, but can only be expressed as a
mode-sum, which we derive later in (14)–(15). The
divergences as x0 → x in this mode-sum manifest in the
fact that the sums do not converge in this limit, while in
GSðx; x0Þ, they are explicitly geometrical. The mode-sum
approach developed in [7,8] involves a Fourier and multi-
pole decomposition of the Hadamard parametrix so that the
difference in (3) can be taken mode-by-mode. Before
describing this, we first derive the Euclidean Green
function for a scalar field in the SAdS black hole spacetime.

A. The Euclidean Green function

The SAdS black hole spacetime is a static, spherically
symmetric solution to the vacuum Einstein equations

Gab − Λgab ¼ 0; ð5Þ

with a negative cosmological constant Λ < 0. In
Schwarzschild-like coordinates, the Euclideanized version
of this solution has a line element of the form

ds2 ¼ fðrÞdτ2 þ dr2=fðrÞ þ r2dΩ2
d−2; ð6Þ

where dΩ2
d−2 is the metric on Sd−2 and

fðrÞ ¼ 1 −
ϖd

rd−3
þ r2

L2
; ð7Þ

where ϖd is the mass parameter related to the conserved
mass M by [14]

M ¼ ðd − 2ÞΩd−2ϖd

16π
; Ωd−2 ¼

2πðd−1Þ=2

Γðd−1
2
Þ ; ð8Þ

and

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðd − 1Þðd − 2Þ

2Λ

r
ð9Þ

is the AdS curvature length scale. The Ricci scalar for
SAdS in d-dimensional spacetime is given by

R ¼ −
dðd − 1Þ

L2
: ð10Þ
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These coordinates are singular when fðrÞ ¼ 0, which
corresponds to an horizon. When d is even, fðrÞ has a
single real root r ¼ rh corresponding to a black hole
horizon. When d is odd, fðrÞ has two real roots
r ¼ �rh, of which the positive root corresponds to a black
hole horizon. For example,

rh ¼
�
Δ4

9

�
1=3

−
L2

ð3Δ4Þ1=3
for d ¼ 4 ð11Þ

rh ¼
ffiffiffiffiffiffi
Δ5

2

r
for d ¼ 5 ð12Þ

with Δ4 ¼ 9
2
L2

�
ϖ4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12
81
L2 þϖ2

4

q �
and Δ5 ¼

Lð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ 4ϖ5

p
− LÞ.

It can be shown that the Euclidean metric would possess
a conical singularity on the horizon unless we enforce the
periodicity τ ¼ τ þ 2π=κ where κ is the surface gravity.
Imposing this periodicity discretizes the frequency spec-
trum of the field modes which now satisfy an elliptic wave
equation

ð□E −m2 − ξRÞϕ ¼ 0; ð13Þ

where□E is the d’Alembertian operator with respect to the
Euclidean metric. The corresponding Euclidean Green
function has the following mode-sum representation

GSðx; x0Þ ¼
κ

2π

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 2μÞ
Ωd−2

Cμ
l ðcos γÞgnlðr; r0Þ

ð14Þ

where μ ¼ ðd − 3Þ=2, Cμ
l ðxÞ is the Gegenbauer polynomial

and γ is the geodesic distance between two points on the
(d − 2)-sphere. The radial Green function satisfies

	
d
dr

�
rd−2fðrÞ d

dr

�
− rd−4lðlþ d − 3Þ − rd−2

n2κ2

fðrÞ

− rd−2ðm2 þ ξRÞ


gnlðr; r0Þ ¼ −δðr − r0Þ: ð15Þ

The solution can be expressed as a normalized product of
homogeneous solutions

gnlðr; r0Þ ¼ Nnlpnlðr<Þqnlðr>Þ; ð16Þ

where pnlðrÞ and qnlðrÞ are homogeneous solutions which
are regular on the horizon and the outer boundary (usually
spatial infinity), respectively. We have adopted the notation
r< ≡minfr; r0g, r> ≡maxfr; r0g. The normalization con-
stant is given by

Nnl ¼ −rd−2fðrÞWfpnlðrÞ; qnlðrÞg; ð17Þ

where Wfp; qg denotes the Wronskian of the two
solutions.

B. Mode-sum representation of the
Hadamard parametrix

In order to compute the limit in (3), we need to express
(4) in the same set of basis modes as the Green function
(14). Following Ref. [7,8], we simplify by taking the partial
coincidence limit r0 → r, and then rather than expan-
ding the Hadamard parametrix in coordinate separation
Δx ¼ x − x0, we separate in so-called extended coordinates

w2 ¼ 2

κ2
ð1 − cos κΔτÞ; s2 ¼ fðrÞw2 þ 2r2ð1 − cos γÞ:

ð18Þ
The extended coordinates w and s are formally treated as
OðϵÞ ∼ OðΔxÞ quantities. Then, e.g., the direct part of the
Hadamard parametrix possesses an expansion of the form

U

σ
d
2
−1

¼
Xbdþ1

2
c

i¼0

Xi

j¼0

DðþÞ
ij ðrÞϵ2i−2μ−1 w2iþ2j

s2μþ2jþ1

þ
Xbdþ1

2
c

i¼0

Xi

j¼1

Dð−Þ
ij ðrÞϵ2i−2μ−1 w2i−2j

s2μ−2jþ1
þ Oðϵ4Þ; ð19Þ

where the Dð�Þ
ij ðrÞ coefficients are too lengthy to print,

particularly for higher numbers of dimensions, but a
Mathematica Notebook with the explicit coefficients can
be found online [15]. A similar expansion results for the tail
term, up to the order being considered here, we have

V logð2σ=l2Þ ¼ logðϵ2s2=l2Þ
X1
i¼0

Xi

j¼0

T ðlÞ
ij ðrÞϵ2is2i−2jw2j

þ
X1
j¼0

T ðpÞ
1j ðrÞϵ2s2−2jw2j þ T ðrÞ

10 ðrÞϵ2s−2w4

þOðϵ4 log ϵÞ ð20Þ
where as before the tail coefficients T ij can be found online
[15]; they vanish identically for odd d since V ≡ 0.
Appropriate mode-sum representations of these expres-
sions are obtained by expanding the w and s-dependent
parts in the mode functions used to expand the Green
function, e.g.,

w2i�2j

s2μ�2jþ1
¼

X∞
n¼−∞

einκΔτ
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

× Ψ
½d�

nlði;�jjrÞ; ð21Þ
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where the Ψ
½d�

nlði;�jjrÞ are known as regularization parameters, which are determined by inverting the expression above.
Remarkably, in Refs. [7,8], these regularization parameters have been derived in closed form for arbitrary numbers of
dimensions and for arbitrary metric function fðrÞ. Analogous statements hold for the regularization parameters for the term
involving the logarithm. The main result of Refs. [7,8] can now be stated as follows: For odd d, the Hadamard parametrix
for a scalar field in a static, spherically symmetric spacetime has the mode-sum representation,

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

X∞
n¼−∞

einκΔτ
�Xd−12

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði; jjrÞ þ

Xd−12
i¼1

Xi

j¼1

Dð−Þ
ij ðrÞΨ

½d�ð−Þ
nl ði; jjrÞ

�

ð22Þ

where the regularization parameters are

Ψ
½d�ðþÞ

nl ði; jjrÞ ¼ 22i−j−1ð−1Þni!Γðiþ 1
2
ÞΓðμÞ

πκ2iþ2jr2μþ2jþ1Γðjþ μþ 1
2
Þ
�
1

η

d
dη

�
j
�Plþμ−1

2
ðηÞQlþμ−1

2
ðηÞ

ði − nÞ!ðiþ nÞ!

þ
Xiþn

k¼maxf1;n−ig

P−k
lþμ−1

2

ðηÞQk
lþμ−1

2

ðηÞ
ðiþ k − nÞ!ði − kþ nÞ!þ

Xi−n
k¼maxf1;−n−ig

P−k
lþμ−1

2

ðηÞQk
lþμ−1

2

ðηÞ
ðiþ kþ nÞ!ði − k − nÞ!

�

Ψ
½d�ð−Þ

nl ði; jjrÞ ¼
22i−2j−1ð−1Þnþjði − jÞ!Γði − jþ 1

2
ÞΓðμÞ

πκ2i−2jr2μ−2jþ1Γðμþ 1
2
− jÞ

Xj

k¼0

ð−1Þk
�
j

k

�
lþ μþ j − 2k
ðlþ μ − kÞjþ1

×

�Plþμ−1
2
þj−2kðηÞQlþμ−1

2
þj−2kðηÞ

ði − j − nÞ!ði − jþ nÞ! þ
Xi−jþn

p¼maxf1;n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ p − nÞ!ði − j − pþ nÞ!

þ
Xi−j−n

p¼maxf1;−n−iþjg

P−p
lþμ−1

2
þj−2kðηÞQ

p
lþμ−1

2
þj−2kðηÞ

ði − jþ pþ nÞ!ði − j − p − nÞ!
�
; ð23Þ

with

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fðrÞ
κ2r2

r
; ð24Þ

ðzÞν is the Pochhamer symbol and Pμ
νðzÞ, Qμ

νðzÞ are the associated Legendre functions of the first and second kind,
respectively, with the branch cut chosen to be on ð−∞; 1�. For even d, the mode-sum representation of the Hadamard
parametrix is even more complicated as a result of the tail terms, the result is

GSðx; x0Þ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
X∞
l¼0

ð2lþ 2μÞCμ
l ðcos γÞ

X∞
n¼−∞

einκΔτ
�Xd

2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði; jjrÞ

þ
Xd

2

i¼1

Xmin½i;d
2
−2�

j¼1

Dð−Þ
i;j ðrÞΨ

½d�ð−Þ
nl ði; jjrÞ þ T ðrÞ

10Ψ
½d�ð−Þ

nl

�
d
2
;
d
2
− 2jr

�
þ
X2
i¼0

Xi

j¼0

T ðlÞ
ij χ

½d�
nlði; jjrÞ

�
þ Γðd

2
− 1Þ

2ð2πÞd=2D
ð−Þ
d
2
−1;d

2
−1ðrÞ

ð25Þ

where the Ψ
½d�ð�Þ

nl ði; jjrÞ are given by (23) and the χ
½d�

nlði; jjrÞ are
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χ
½d�

nlði; jjrÞ ¼ ð−1Þnþμ−1
2

22j−1ði − jÞ!j!Γðjþ 1
2
ÞΓðμÞ

πκ2jr2j−2i
Xμþ1
2
þi−j

k¼0

ð−1Þk
�
μþ 1

2
þ i − j

k

�
lþ 2μþ i − j − 2kþ 1

2

ðlþ μ − kÞμþ3
2
þi−j

×

�
Plþ2μþi−j−2kðηÞQlþ2μþi−j−2kðηÞ

ðj − nÞ!ðjþ nÞ! þ
Xjþn

p¼maxf1;n−jg

P−p
lþ2μþi−j−2kðηÞQp

lþ2μþi−j−2kðηÞ
ðjþ p − nÞ!ðj − pþ nÞ!

þ
Xj−n

p¼maxf1;−n−jg

P−p
lþ2μþi−j−2kðηÞQp

lþ2μþi−j−2kðηÞ
ðjþ pþ nÞ!ðj − p − nÞ!

�

for l > i − j ð26Þ

and

χ
½d�

nlði; jjrÞ ¼
κ

ð2πÞ2
ffiffiffi
π

p
2μþ1

2ΓðμÞð2r2Þi−jð−1Þl
�
2

κ2

�
j
	
d
dλ

ðλþ 1 − lÞl
�
2r2

l2

�
λ−iþj Z 2π=κ

0

ð1 − cos κtÞje−inκt

× ðz2 − 1Þ12ðμþλþ1
2
ÞQ−μ−λ−1

2

lþμ−1
2

dt



λ¼i−j

for l ≤ i − j: ð27Þ

In the last expression, Qν
μðzÞ is Olver’s definition of the

Legendre function of the second kind [16], valid for all
values of μ, ν.
We close this section with a brief comment on the

extension of the extended coordinate method, both to the
calculation of the renormalized expectation of the stress
energy tensor in a static spherically symmetrical space time
and to the calculation of quantum expectation values in the
case of a spinning black hole. First, in relation to the stress-
tensor calculation, it is straightforward to see that angular
derivatives and temporal derivatives can be achieved in an
almost identical way to that described above, except that
the speed of convergence will be a little slower (but still
converging quickly) compared with the calculation of
the vacuum polarization with the Hadamard parametrix
expanded to the same order. The radial derivatives require
some nontrivial adjustments to the scheme described here,
since here we were able to take the radial coincidence
limit immediately whereas for the calculation of the stress-
energy tensor, we must postpone this simplification until
after derivatives have been taken. Nevertheless, there is no
major conceptual problem. Second, in relation to extending
the scheme to spinning black holes, we note that there does
not exist a Hartle-Hawking state on the entire exterior of the
Kerr black hole [17]. However, there does exist a thermal
state with the defining features of the Hartle-Hawking state
(such as regularity on the horizon, for example) on a
modified Kerr exterior with a mirror boundary inside the
speed of light surface [18]. Moreover, this state can be
defined by Wick rotating the time in corotating Boyer-
Lindquist coordinates and working in the (complex)
quasi-Euclidean metric, to which we could apply our
extended coordinate method. However, it is unlikely that
simple closed-form representations of the regularization

parameters can be obtained using this approach. The
derivations involved in obtaining closed-form representa-
tions relied in a crucial way on the symmetry of the
spacetime under consideration. The reduced symmetry of,
e.g., the Kerr black hole spacetime, results in the expan-
sion of the two-point function in a basis of spheroidal
harmonics, and the regularization parameters would then
involve integral transforms of the spheroidal functions
with complicated kernels, of which there are very few
known exact results. However the general guiding prin-
ciples of using extended coordinates and splitting in
multiple directions may still be a useful way to proceed,
and in particular, a useful way to obtain a convergent
mode-sum expression for quantum expectation values in
any geometry, perhaps even when the regularization
parameters cannot be determined in closed form and must
be computed numerically.

III. NUMERICAL RESULTS

A. Radial modes for the Euclidean Green function

We begin this section by describing the numerical
computation of the radial modes pnlðrÞ and qnlðrÞ, the
homogeneous solutions to (15) needed for the Euclidean
Green function, which are regular (for all values of the field
parameters) on the horizon and at infinity, respectively. For
fðrÞ given by (7), solutions cannot be given in terms of
known functions and must be solved numerically.
For the SAdS spacetime, Eq. (15) has regular singular

points at both r ¼ rh and at infinity. This is in contrast to
the asymptotically flat case where infinity is an irregular
singular point. That both r ¼ rh and infinity are regular
singular points implies that Eq. (15) admits the following
Frobenius series solutions
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PnlðrÞ ¼
X∞
i¼0

aiðr − rhÞiþα about r ¼ rh ð28Þ

QnlðrÞ ¼
X∞
i¼0

bi

�
1

r

�
iþρ

about r ¼ ∞ ð29Þ

with α, ρ the indicial exponents to be determined. Inserting
these series into (15) yields, for the indicial exponents,

α� ¼ � jnj
2

ð30Þ

ρ� ¼ d − 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μξ þ

1

4

r
; ð31Þ

where we have found it convenient to define the dimen-
sionless effective field mass

μξ ≡ L2ðm2 þ ðξ − ξcÞRÞ; ξc ¼
1

4

�
d − 2

d − 1

�
; ð32Þ

and we have used the explicit expression for the Ricci
scalar (10) to arrive at (30). With this definition, the
redefined field mass vanishes for massless, conformally
coupled fields and the solutions to the indicial equation in
this case are simply ρ ¼ d=2 or ρ ¼ d=2 − 1. Requiring
that ρ is real gives μξ ≥ −1=4, which we can reexpress as an
upper bound on ξ,

ξ ≤ ξu ¼
m2L2

dðd − 1Þ þ
d − 1

4d
: ð33Þ

This is completely analogous to the Breitenlohner-
Freedman bound for a massive Klein-Gordon field in
AdS [19].
Now, for the quantum field to be in the Hartle-Hawking

state requires that pnlðrÞ be the solution regular at the
horizon, so we choose the following leading order behavior,

pnlðrÞ ∼ ðr − rhÞ
jnj
2 r → rh: ð34Þ

Unlike the asymptotically flat case, the spacetime is not glo-
bally hyperbolic and this implies that we must also specify
boundaryconditionsat the timelikeboundaryr ¼ ∞ inorder
for the Klein Gordon equation to be well posed [20]. It has
been shown [20,21] that the wave equation under consid-
eration has a well-posed initial value formulation for fields
satisfying the Breitenlohner-Freedman bound (33) with
Dirichlet boundary conditions. This corresponds to taking
qnlðrÞ to be the solution satisfying the fast fall-off condition
(corresponding to the indicial exponent ρþ) at infinity

qnlðrÞ ∼ r−
d−1
2
−

ffiffiffiffiffiffiffi
μξþ1

4

p
r → ∞: ð35Þ

The radial mode solutions are invariant under n → −n sowe
need only consider positive frequency modes. To compute
pnlðrÞ, we integrate the homogeneous version of (15) from
an initial point near the horizon outwards using the

Mathematica routine NDSolve. A high-order Frobenius series
of the form (28) is obtained and used, along with its first
derivative, as initial data for the integration. In the numerical
implementation, the internal working precision of each
calculation is set to60digitswhile the accuracyandprecision
goals (i.e., the effective number of digits of precision and
accuracy sought in the final result) were both set to 35 digits.
Similarly we obtain qnlðrÞ by integrating the homo-

geneous version of (15) inwards from some large r-value
with initial data generated from the high order Frobenius
series (29), again using NDSolve with the same accuracy and
precision as before.
As a check of the accuracy of the calculated modes, we

use the modes to compute the Wronskian and hence the
normalization in Eq. (17) at all r-values across the domain
of integration and for all values of the parameters l and n.
We find that Nnl remains constant in r to within 10−30jNnlj
for all l and n, confirming the accuracy of the numerical
calculation of the modes.

B. Mode-sum vacuum polarization

Equipped with an accurate numerical evaluation of the
radial Green function and a mode-sum representation of the
Hadamard parametrix from [7,8], we are now in a position
to calculate the vacuum polarization for a scalar field in a
given quantum state. In the asymptotically flat case, the
Unruh vacuum is a well-defined state and is of physical
interest as it corresponds to an evaporating black hole.
However, as argued in [22], no such Unruh-like vacuum
can be defined in the SAdS black hole spacetime. This can
be seen to be a consequence of the boundary conditions at
infinity, which correspond to placing a reflective surface
there. Hence outgoing radiation is ultimately reflected back
towards the black hole that will eventually reach a state in
thermal equilibrium at the Hawking temperature, which is
precisely the Hartle-Hawking state. Hence this is the state
in which we chose to calculate the vacuum polarization for
a scalar field, which we will denote by hϕ̂2iHH.
Using the n → −n symmetry and the well-known values

of the Gegenbauer polynomials when the argument is unity,
we can express the vacuum polarization as

hϕ̂2iHH ¼ κ

2π

X∞
l¼0

ð2lþ 2μÞ
Ωd−2

�
2μþ l − 1

l

��
g0lðrÞ − gS0lðrÞ

þ 2
X∞
n¼1

ðgnlðrÞ − gSnlðrÞÞ
�

gSnlðrÞ ¼
Γðd

2
− 1Þ

2ð2πÞd=2
�Xd−12

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði; jjrÞ

þ
Xd−12
i¼1

Xi

j¼1

Dð−Þ
ij ðrÞΨ

½d�ð−Þ
nl ði; jjrÞ

�
; ð36Þ

in the odd dimensional case and
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hϕ̂2iHH¼
κ

2π

X∞
l¼0

ð2lþ2μÞ
Ωd−2

�
2μþ l−1

l

��
g0lðrÞ−gS0lðrÞ

þ2
X∞
n¼1

ðgnlðrÞ−gSnlðrÞÞ
�
þ Γðd

2
−1Þ

2ð2πÞd=2D
ð−Þ
d
2
−1;d

2
−1ðrÞ

gSnlðrÞ¼
Γðd

2
−1Þ

2ð2πÞd=2
�Xd

2

i¼0

Xi

j¼0

DðþÞ
ij ðrÞΨ

½d�ðþÞ
nl ði;jjrÞ

þ
Xd

2

i¼1

Xmin½i;d
2
−2�

j¼1

Dð−Þ
ij ðrÞΨ

½d�ð−Þ
nl ði;jjrÞ

�

þT ðrÞ
10Ψ

½d�ð−Þ
nl

�
d
2
;
d
2
−2jr

�
þ
X2
i¼0

Xi

j¼0

T ðlÞ
ij χ

½d�
nlði;jjrÞ

�
;

ð37Þ

in the even-dimensional case.
Each of these mode-sum expressions for hϕ̂2iHH are

rapidly convergent and can be truncated at a modest finite
frequency and multipole cutoff yielding very accurate results
for the vacuum polarization. In the plots shown and
discussed below, we truncated the frequency sum at nmax ¼
10 and the multipole sum at lmax ¼ 70. This enables hϕ̂2iHH
to be calculated on a standard laptop in a reasonably short
time, less than 2 hours for d ¼ 4 for example. Our answers
are accurate to at least 7 decimal places everywhere on the
exterior of the black hole. Since it is only the relative sizes of
the AdS length scale L compared with the black hole length
scale M that is relevant, we fix the AdS length scale to be
unity in all the results that follow. We further fix the arbitrary
length scale that appears in the Hadamard parametrix to be
unity so that L ¼ l ¼ 1.

FIG. 1. Plots of the vacuum polarization as a function of the field mass m and distance from the black hole for a scalar field in SAdS
spacetime in d ¼ 4 and d ¼ 5 dimensions, and with coupling constant ξ ¼ 0 and ξ ¼ 1=6. The black hole mass parameter ϖd has been
set to twice the AdS length scale so that ϖd ¼ 2L ¼ 2l ¼ 2.
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C. Results and discussion

1. Varying m

The first set of results we discuss are those for which we
fix all the parameters except the field mass and examine
how the vacuum polarization for a scalar field depends on
varying the field mass. We consider field coupling strengths
ξ ¼ 0 and ξ ¼ 1=6 for spacetime dimensions d ¼ 4 and
d ¼ 5. We set the mass parameter ϖd of the black hole to
be twice the AdS length scale, ϖd ¼ 2L ¼ 2. For d ¼ 4,
this corresponds to choosing M ¼ L ¼ 1. With these
choices, we compute the vacuum polarization using the
method described above for several values of the field
mass. The results are plotted in Figs. 1 and 2. In Fig. 1, we
show a three-dimensional plot of the vacuum polarization
as a function of field mass m and distance from the black
hole; the four distinct plots represent different values of
coupling and spacetime dimension. Figure 2 is also
comprised of four plots, each of which represent the
vacuum polarization as a function of radius only for various
values of the field mass. By inspecting these figures, we see

that the vacuum polarization is a very slowly varying
function of mass near m ¼ 0, e.g., in Fig. 2, we see that
increasing the mass from m ¼ 0 to m ¼ 1=100 makes no
perceptible difference to the value of the vacuum polari-
zation (at all calculated points the difference is of the order
of the accuracy our method). This suggests that a massless
field approximation is reasonable when the fields present
have small but nonzero mass. Moving away from m ≈ 0,
increasing the field mass to m ¼ 1=10 does significantly
affect the vacuum polarization, the vacuum polarization
clearly increases compared to the massless case for ξ ¼ 0
for both d ¼ 4 and d ¼ 5 as well as for ξ ¼ 1=6, d ¼ 5
(although the increase is much less pronounced for this
case) and decreases for ξ ¼ 1=6, d ¼ 4. Moreover, the
difference between the massive and massless case is not
uniform in r, rather the difference increases with r until the
graphs asymptote to the m-dependent pure AdS values.
Increasing the field mass even further, we see from Fig. 1
that the vacuum polarization becomes a rapidly increasing
function of field mass for large mass, which is about m≳ 1
(in the d ¼ 4; ξ ¼ 1=6 case it firstly reaches a minimum

FIG. 2. Plots of the vacuum polarization as a function of the distance from the black hole for various mass parameters in the range
0 ≤ m ≤ 1=10. The plots show graphs in this range of mass parameters for ξ ¼ 0 and ξ ¼ 1=6 in d ¼ 4 and d ¼ 5. The black hole mass
parameter ϖd has been set to twice the AdS length scale for each d.
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values in the region of m ¼ 1 at all radial points). Indeed,
this growth appears to be unbounded as m increases. This
result is in stark contrast to the analogous result for an
asymptotically flat black hole spacetime, where the vacuum
polarization decreases as the field mass increases, see for
instance [23]. Given that this large-mass divergence is also
a feature of the vacuum polarization for quantum fields in
pure AdS spacetime [24], we can attribute this behavior to
the asymptotic structure of the geometry. As we will see
later, this large-mass behavior has serious implications for
the validity of the DeWitt-Schwinger approximation for the
vacuum polarization.

2. Varying ξ

The next set of results we present are those for which the
parameters of the background geometry are fixed as before,
the field is massless, and we examine the dependence of the
vacuum polarization on the coupling of the field to the

background curvature. These results are presented in
Figs. 3 and 4. In Fig. 3, we show three-dimensional plots
of the vacuum polarization as a function of the coupling and
the distance from the black hole for d ¼ 4, d ¼ 5 d ¼ 6 and
d ¼ 7 In Fig. 4, we also present additional plots of the
vacuum polarization as a function of the distance from
the black hole for various values of ξ in the d ¼ 6 and
d ¼ 7 cases.
In the d ¼ 4 case, we see from Fig. 3 that hϕ̂2iHH has a

minimum for a small positive ξ-value. For d ¼ 5, we see
hϕ̂2iHH again has a minimum value, this time it occurs in
the region of ξ ¼ 1=6. hϕ̂2iHH then increases slightly as
ξ → ξu ¼ 1=5. We note that for the coupling’s maximum
allowed value ξu, hϕ̂2iHH → 0 as r → ∞, as is the case for a
massless field in odd-dimensional pure AdS [24].
For d ¼ 6, the dependence of hϕ̂2iHH has two turning

points in ξ. The vacuum polarization firstly increases with
increasing ξ, reaching a local r-dependent maximum [this

FIG. 3. Plots of the vacuum polarization for a massless scalar field in SAdS spacetime for d ¼ 4, d ¼ 5, d ¼ 6 and d ¼ 7 as a function
of the coupling constant ξ and distance from the black hole. The black hole mass parameter has been set to ϖd ¼ 2 for each d.
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maximum occurs in the region of ξ ¼ 1=8 near the black
hole or ξ ¼ 0 further away from the horizon; see Fig. 4(a)].
The vacuum polarization then decreases to a local mini-
mum value in the region of ξ ¼ 1=6 (the turning point here
appears to be approximately uniform in r) before increasing
again as ξ → ξu ¼ 5=24. We also see that the maximum
value of hϕ̂2iHH occurs for ξ ¼ ξu near the black hole and in
the vicinity of ξ ¼ 0 further away.
In the d ¼ 7 case, in the region of the black hole horizon,

hϕ̂2iHH increases monotonically with increasing ξ until it
reaches its maximum value at ξ ¼ ξu ¼ 3=14. The depend-
ence on ξ differs further from the horizon however, though
this is not easy to see from the three-dimensional plot, in
this region hϕ̂2iHH reaches a maximum value in the region
of ξ ¼ 1=6 before decreasing to its value at ξ ¼ ξu, which
again approaches 0 as r → ∞; see Fig. 4(b).
Interestingly, in all cases the vacuum polarization can

become arbitrarily large (in the positive direction for d ¼ 4,
5 and the negative direction for d ¼ 6, 7) by taking the
coupling constant to be increasingly negative, without any
obvious violations of the semiclassical approximation. This
mirrors the divergence of hϕ̂2iHH for large field mass. This
is not surprising since examination of Eq. (15) implies that
the Green function depends on m and ξ only through the
effective mass μξ, and this effective mass is degenerate with
distinct pairs of values for m and ξ. For example, a massive
minimally coupled field has the same effective mass as a
massless nonminimally coupled field so long as m2 ¼
−dðd − 3Þξ=L2, where m is the mass of the massive field
and ξ the coupling strength of the nonminimally coupled
massless field. We note that this implies that the vacuum
polarization should get increasingly negative for large
values of the field mass for d ¼ 6, d ¼ 7. Though we
have not presented any plots for large field mass in these
dimensions, we have checked that the vacuum polarization
does decrease without bound for increasing mass, as
expected.

That the vacuum polarization can become arbitrarily
large without violating any obvious assumption in the
semiclassical approximation is troubling since it could
ostensibly lead to large backreaction effects on the classical
geometry. Had we chosen different boundary conditions
other than the Dirichlet ones, we could have ruled out
arbitrarily negative couplings by appealing to the fact that
well-posedness of the Klein Gordon equation requires

−
1

4
< μξ <

3

4
; ð38Þ

for Neumann and Robin boundary conditions [25].
Translating this as an inequality for ξ implies

L2m2

dðd − 1Þ þ
ðd − 3Þðdþ 1Þ
4dðd − 1Þ < ξ <

L2m2

dðd − 1Þ þ
d − 1

4d
:

ð39Þ

However, in our case, well-posedness for Dirichlet boun-
dary conditions is guaranteed so long as the Breitenlohner-
Freedman (33) bound is satisfied [20,21] and there is no
obvious way to rule out arbitrarily negative values of the
coupling leading to potentially arbitrarily large backreac-
tion. Comparing the differences in the stress-energy tensors
and the backreaction on the SAdS background for the field
satisfying different boundary conditions may offer some
insights into this problem.

3. Varying M

In this subsection, we present plots for the vacuum
polarization keeping the field parameters fixed and varying
the black hole mass. It is easier to specify the mass in terms
of the parameter ϖd rather than M; they are related by (8).
In particular, Fig. 5 shows plots of hϕ̂2iHH for a massless
conformally-coupled field for both d ¼ 4 and d ¼ 5,
with black hole mass parameters ϖd ¼ 1=5, 2, 20, 200.

FIG. 4. Plots of the vacuum polarization as a function of distance from the black hole for a massless scalar field in SAdS spacetime for
d ¼ 6 and d ¼ 7 with different values of the coupling constant ξ. The black hole mass parameter is ϖd ¼ 2 in units where L ¼ 1.
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For d ¼ 4, these correspond to M ¼ 1=10, 1, 10, 100,
respectively. For d ¼ 5, these values correspond to black
hole mass M ¼ 3π=40, 3π=4, 15π=2, 75π, respectively.
Since the graph for ϖd ¼ 1=5 dominates the other
graphs, in Fig. 6 we plot hϕ̂2iHH for the other mass
parameters, excluding ϖd ¼ 1=5. Recall that this is in
units where the AdS length scale is L ¼ 1. We firstly
note that the asymptotic AdS value is independent of M
and so hϕ̂2iHH ought to approach the same asymptotic
value as r → ∞ for each M being considered. We can
see from Fig. 5 that this is indeed the case and that this
convergence occurs at a faster rate in d ¼ 5 than in
d ¼ 4, as one would expect from the form of the metric
function (7). In both the d ¼ 4 and d ¼ 5, the vacuum
polarization is a decreasing function of mass in the
vicinity of the black hole horizon, while further away
the dependence is more complicated. For example, in
the plots shown in Fig. 6, from around r ¼ rh þ 0.5
where the graphs approximately intersect, the vacuum
polarization appears to be an increasing function of M,
possibly changing again even further from the horizon

as suggested by the intersection of the d ¼ 5 graphs in
Fig. 6 at about r ¼ rh þ 3.
There is a marked difference in the functional depend-

ence of the temperature on the mass in the SAdS black hole
compared to the Schwarzschild black hole, the latter being
a decreasing function of mass. In the SAdS black hole
spacetime, however, the black hole temperature (as a
function of M for fixed L) has a minimum. For d ¼ 4,
this occurs at Mmin ¼ 2L=ð3 ffiffiffi

3
p Þ, or equivalently ϖmin

4 ¼
4L=ð3 ffiffiffi

3
p Þ, while for d ¼ 5 we have Mmin ¼ 9πL2=32, or

equivalentlyϖmin
5 ¼ 3L2=4. Moreover, the temperature is a

rapidly decreasing function near M ¼ 0, and a very slowly
increasing function of mass for M > Mmin. Since the
temperature is due to the vacuum polarization, this depend-
ence of the temperature on the mass ought to be reflected in
the vacuum polarization plots for varying mass. This can
indeed be seen by the fact that the vacuum polarization for
distinct M > Mmin are nearly indistinguishable from each
other (and from the constant AdS value) except very close
to the horizon, while for small M there is a pronounced
increase in the vacuum polarization as expected.

FIG. 6. Plots of the vacuum polarization for a massless scalar field in SAdS spacetime for d ¼ 4 and d ¼ 5 with values of the black
hole mass parameter ϖd ¼ 2, 20, 200. The coupling is ξ ¼ 1=6.

FIG. 5. Plots of the vacuum polarization for a massless scalar field in SAdS spacetime for d ¼ 4 and d ¼ 5 with different values of the
black hole mass parameter ϖd. The scalar coupling constant is ξ ¼ 1=6.
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4. Varying d

In Fig. 7, we present individual plots for each spacetime
dimension under consideration (d ¼ 4…9). We also
include the constant pure AdS values for comparison in
this plot. We see that, in both the even and the odd d case,
the magnitude of hϕ̂2iHH in the vicinity of the black hole
horizon increases with increasing d. Moreover, the rate of

change seems to be greater and the turning point closer to
the horizon as the number of dimensions is increased.
These graphs are qualitatively similar to those in the
asymptotically flat Schwarzschild case [7,8], except
that the graphs asymptote to the constant vacuum polari-
zation for a scalar field in AdS rather than Minkowski
spacetime.

FIG. 7. Individual plots of the vacuum polarization for a scalar field in SAdS spacetime for d ¼ 4 to d ¼ 9 inclusive, with parameter
valuesϖd ¼ 2,m ¼ 0 and ξ ¼ 1=6. In each of these plots, the dashed line represents the value of the vacuum polarization for a massless
scalar field in pure AdS spacetime with ξ ¼ 1=6. In each case, we see that the vacuum polarization approaches the AdS value as r → ∞.
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5. Asymptotic and horizon values

As mentioned above, the vacuum polarization for SAdS
ought to asymptote to the pure AdS value for r → ∞, and
the rate of convergence to this value should be faster in
higher numbers of dimensions as a result of the metric
function Eq. (7). In particular, for the quantum field in the
Hartle-Hawking state in SAdS, given that the local mea-
sured temperature in SAdS vanishes as r → ∞ [26], the
vacuum polarization should asymptote to the vacuum
polarization for the natural vacuum state in AdS. We have
explicitly verified this by checking our results against the
explicit calculation of the vacuum polarization for a scalar
field in the natural (zero temperature) vacuum state in AdS
in Ref. [24]. Moreover, it is clear that the rate at which
hϕ̂2iHH approaches this asymptotic AdS value increases
with d, as expected.
Finally as an additional check of our method in the d ¼ 4

case, we may use the expression for hϕ̂2iHH for a scalar
field on the event horizon of any static spherically sym-
metric black hole spacetime derived in [27], and we find
that for each set of parameters, our numerically calculated
value just off the horizon matches up smoothly with the
known horizon value.

D. Approximations

Although the method we presented in this paper is
extremely efficient compared with other prescriptions for
computing the vacuum polarization, it is nevertheless a
difficult calculation because of the need to regularize the
two-point function and because, in general, the modes
must be calculated numerically. As a result, it is often
useful to have approximations for the vacuum polariza-
tion and stress-energy tensor. An oft-used approximation
for massive fields is the DeWitt-Schwinger approximation
(see, e.g., [28,29]). Based on heat kernel methods for
expanding the singular field, it is a purely local approxi-
mation independent of the quantum state. For d ¼ 4, the
DeWitt Schwinger approximation is

hϕ̂2iDS ¼
1

16π2m2

	
1

2

�
ξ −

1

6

�
2

R2 −
1

6

�
ξ −

1

5

�
□R

þ 1

180
ðRabcdRabcd − RabRabÞ



ð40Þ

while for d ¼ 5, we have

hϕ̂2iDS ¼
1

32π2m

	
1

2

�
ξ −

1

6

�
2

R2 −
1

6

�
ξ −

1

5

�
□R

þ 1

180
ðRabcdRabcd − RabRabÞ



ð41Þ

where Rabcd is the Riemann tensor and Rab is the Ricci
tensor [28,29]. The approximation (40) has been shown

to be very accurate in the region of the black hole event
horizon for mM ≥ 2 in asymptotically flat black hole
spacetimes [23]. However, as is immediately obvious
from inspection of (40) this approximation tends to 0 as
m → ∞ in stark contrast to the large mass behavior
observed in the exact numerical calculation discussed in
Sec. III C 1. Hence, (40) completely fails as an approxi-
mation for the vacuum polarization in SAdS spacetime. A
new approximation is required, which we will now
derive.
As the large mass behavior appears to be a consequence

of the fact that the spacetime is asymptotically AdS, a
natural starting point for a large mass approximation would
be the closed form expressions for the vacuum polarization
in a pure AdS spacetime obtained in [24], which for d ¼ 4
and d ¼ 5 are given by

hϕ̂2iAdS ¼ 1

8π2L2

	
μξ

�
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
μξ þ

1

4

r
þ 1

2

�
þ γ

− log ð2L=lÞ
�
−
μξ
2
−
1

6



ð42Þ

and

hϕ̂2iAdS ¼ 1

24π2L3

�ð4μξ − 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μξ þ 1

p
8

�
; ð43Þ

respectively. In the expression for d ¼ 4, ψðzÞ is the
digamma function and the parameter l is again an
arbitrary length scale needed to make the log term
dimensionless. Here μξ is the effective dimensionless mass
defined by (32).
Starting with the d ¼ 4 case, we wish to add to (42)

terms that incorporate a dependence on the black hole
mass. We note that the DeWitt-Schwinger approximation
would contribute terms that depend on L, which we assume
have already been accounted for by the AdS term (42), and
also a term like

M2

60π2m2r6
: ð44Þ

Rather than simply adding this expression, we recall that
the vacuum polarization depends not on the mass but on the
effective mass μξ. Moreover, an approximation in terms of
μξ would be valid for massless fields. So we substitute
m2 → ðμξ þ αÞ=L2, for some dimensionless α which we
determine by comparing with the numerical results. It turns
out that for (almost) all values of the field mass and
coupling constant that we checked, α ¼ 3 yields an
extremely accurate approximation over the entire exterior
black hole spacetime. Interestingly, this choice of α
corresponds to the replacement m2 → μξ=L2 − Λ. Hence,
we have for d ¼ 4,
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hϕ̂2iHH ≈
1

8π2L2

	
μξ

�
ψ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
μξ þ
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þ γ
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�
−
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þ M2L2

60π2ðμξ þ 3Þr6 :

ð45Þ

Turning now to the d ¼ 5 case. Applying the same
arguments as before, we add to the pure AdS value the
M-dependent term from the DeWitt-Schwinger approxi-
mation, which in this case is

4M2

45π4mr8
: ð46Þ

Next we again make the replacement m2 → ðμξ þ αÞ=L2

and compare with the exact numerical plots to determine α.
In this case, we find that α ¼ 6 gives excellent agreement
which again corresponds to the replacement rule

m2 → μξ=L2 − Λ, since L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðd − 1Þðd − 2Þ=ð2ΛÞp

.
The result is that, for d ¼ 5, we have

hϕ̂2iHH ≈
1

24π2L3

�ð4μξ − 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μξ þ 1

p
8

�

þ 4M2L

45π4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μξ þ 6

p
r8
: ð47Þ

We conjecture then that in all numbers of dimensions, an
excellent approximation can be obtained by adding to the
AdS value for vacuum polarization the M-dependent term
from the leading-order DeWitt-Schwinger approximation
with the replacement rule m2 → μξ=L2 − Λ.
In Figs. 8 and 9, the comparison of our new approxi-

mation to our exact numerical results is presented. Even
though the M-dependent terms in our approximation were
derived from the large m limit, it can be seen to be an
excellent approximation to the exact numerical results for
almost all values of the mass and coupling constant over the

FIG. 8. Plots of the vacuum polarization alongside our approximation scheme, denoted by the dashed line, for a minimally coupled
scalar field in SAdS spacetime for d ¼ 4 and d ¼ 5 with field mass m ¼ 2 and m ¼ 3. We have fixed L ¼ l ¼ 1 and ϖd ¼ 2
(corresponding toM ¼ 1 andM ¼ 3π=4 for d ¼ 4 and d ¼ 5, respectively). In each plot, the constant function represents the pure AdS
vacuum polarization.
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entire exterior spacetime in both the d ¼ 4 and the d ¼ 5
cases, with maximum errors of less than 1%, even in the
massless (nonconformally coupled) case. It is clear from
the plots that the approximation is most accurate near the
horizon and for large r values, however the error in the
intermediary region is still extremely small. The accuracy
of the approximation increases with increasing μξ and
decreases significantly as μξ → 0 (massless, conformally
coupled case), with a max error in this case of ≈25%. We
note that one of the reasons that this approximation is so
successful is that it is not a local approximation, but rather a
global one in the sense that it depends on the quantum state
via the exact AdS values for vacuum polarization that we
used as our starting point for the approximation. Another
advantageous feature of the approximation is that it has the
correct renormalization ambiguity in even numbers of
dimensions, encoded in it the logðlÞ term. The coefficient
in front of this term is precisely v0, the coincidence limit of
the Hadamard biscalar Vðx; x0Þ. This corresponds to the
freedom to add to our singular Hadamard parametrix
homogeneous solutions of the wave equation.
As a final note in this section, we conjecture that the

approximation scheme we have outlined here can also
be applied to the renormalized expectation value of the
stress-energy tensor in SAdS spacetimes, given that exact
expressions for the stress energy tensor in AdS have also
been calculated in [24] for 3 ≤ d ≤ 11. Of course, in order
to test the validity of any such approximation, a full
numerical calculation for the renormalized expectation
value of the stress-energy tensor in an asymptotically
AdS higher dimensional black hole spacetime would be
required, we hope to report on this in the future.

IV. CONCLUSIONS

In this paper, we have conducted a detailed study of the
dependence of quantum vacuum polarization effects due to

a scalar field on the parameters of the field mass and
coupling and on the parameters of the background black
hole spacetime. In particular, we examined the case of
scalar field in the Hartle-Hawking state on a SAdS black
hole spacetime. In contrast to the asymptotically flat case,
the lack of global hyperbolicity implies that no Unruh-like
states exist in the eternal SAdS black hole spacetime [22].
Most calculations of this type in the literature focus on a

single fixed set of parameters for the field and the back-
ground spacetime, due to the complexity and inefficiency
of the usual methods used to renormalize the vacuum
polarization. We adopt a very recent method, which we call
the extended coordinate method, for computing the vacuum
polarization in static spherically-symmetric spacetimes.
This method is extremely efficient and provides a rapidly
convergent mode-sum expression for the vacuum polari-
zation for arbitrary field parameters, arbitrary metric
function fðrÞ and arbitrary numbers of dimensions. The
robustness and efficiency of this method permits a detailed
analysis of the dependence of quantum effects on the
various parameters in the theory.
Of particular interest is the dependence on the field mass

and scalar coupling constant, which show features very
different from the vacuum polarization in asymptotically
flat black holes. Considering the dependence on the field
mass first, we found that the vacuum polarization depends
only weakly on the field mass for small values. Hence, it is
probably reasonable to consider a massless field approxi-
mation even when the field mass is small but nonzero.
When the field mass is large however we see that the
vacuum polarization can become arbitrarily positive for
d ¼ 4, 5 or arbitrarily negative for d ¼ 6, 7, a fact which
has serious implications for the validity of the usual
DeWitt-Schwinger approximation. This behavior is an
artefact of the asymptotic structure of the spacetime under
consideration, a fact which we exploited to develop a new

FIG. 9. Plots of the vacuum polarization alongside our approximation, denoted by the dashed line, for a massless scalar field in SAdS
spacetime for d ¼ 4 and d ¼ 5. The coupling constant is ξ ¼ −1=6. We have set L ¼ l ¼ 1 and ϖd ¼ 2. In each plot, the constant
function represents the AdS vacuum polarization.
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and extremely accurate approximation to the vacuum
polarization, valid for all values of the field mass. We
further conjectured an approximation method for the
renormalized stress-energy tensor. The dependence of
the vacuum polarization on the coupling constant and
the field mass is through an effective dimensionless mass
(32). This effective mass is degenerate for distinct pairs of
mass and coupling parameters. For example, the vacuum
polarization for a minimally coupled massive field can be
identical to that of a massless nonminimally coupled field.
In either case, the vacuum polarization can be arbitrarily
large for sufficiently negative values of the coupling, or
equivalently, for sufficiently large field mass, even without

violating any of the approximations underlying the semi-
classical picture. We showed that this behavior is an artefact
of the Dirichlet boundary conditions we have adopted. For
Neumann and Robin boundary conditions, well-posedness
of the wave equation constrains the effective mass to be
within −1=4 < μξ < 3=4 which provides both upper and
lower bounds for the coupling and field mass. This
presumably cures any potentially large backreaction effects
arising from large field mass or large negative couplings.
However, a detailed comparison of the renormalized stress-
energy tensor and backreaction on the SAdS background
for different boundary conditions would offer some insights
on this matter.

[1] B. S. DeWitt, Phys. Rep. 19, 295 (1975).
[2] S. M. Christensen, Phys. Rev. D 14, 2490 (1976).
[3] R. M. Wald, Commun. Math. Phys. 54, 1 (1977).
[4] A. Levi and A. Ori, Phys. Rev. Lett. 117, 231101 (2016).
[5] A. Levi, E. Eilon, A. Ori, and M. van de Meent, Phys. Rev.

Lett. 118, 141102 (2017).
[6] Black Hole Physics: Basic Concepts and New Develop-

ments, edited by V. P. Frolov and I. D. Novikov (Springer,
New York, 1998), Vol. 96.

[7] P. Taylor and C. Breen, Phys. Rev. D 94, 125024 (2016).
[8] P. Taylor and C. Breen, Phys. Rev. D 96, 105020 (2017).
[9] P. Candelas and K.W. Howard, Phys. Rev. D 29, 1618

(1984).
[10] T. Morley, P. Taylor, and E. Winstanley, arXiv:1808.04386.
[11] J. B. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960

(1983).
[12] R. M. Wald, Quantum Field Theory in Curved Space-Time

and Black Hole Thermodynamics, Chicago Lectures in
Physics (University of Chicago Press, Chicago, IL, 1995).
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