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We consider the problem of the renormalization of the vacuum polarization in a symmetry space-time

with axial but not spherical symmetry, Schwarzschild space-time threaded by an infinite straight cosmic

string. Unlike previous calculations, our framework to compute the renormalized vacuum polarization

does not rely on special properties of Legendre functions, but rather has been developed in a way that we

expect to be applicable to Kerr space-time.
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I. INTRODUCTION

In this paper we calculate the vacuum polarization of a
massless scalar field in the region exterior to the horizon
of a Schwarzschild black hole threaded by an infinite thin
cosmic string which reduces the spherical symmetry to
axial symmetry. We consider the scalar field in the
Hartle-Hawking vacuum state, corresponding to a black
hole of mass M in (unstable) thermal equilibrium with a
bath of blackbody radiation.

There is an extensive body of work on renormalization
of the vacuum polarization on black hole space-times
[1–5]. In all of these cases, the authors have considered
spherically symmetric black holes. The most astrophysi-
cally significant case, however, is the Kerr-Newman black
hole. The calculation of h’̂2iren in this case has proved
elusive (with the exception of its calculation on the pole of
the horizon where the effects of rotation are minimized
[6]). The principal reason for this is that the rotation of the
black hole means that it no longer possesses spherical
symmetry, but only axial symmetry. The existing calcula-
tions, referenced above, rely heavily on the Legendre
addition theorem and other well-known properties of the
special functions, as well as the Watson-Sommerfeld for-
mula. In the axial symmetric case, the Legendre addition
theorem does not apply and the Watson-Sommerfeld for-
mula is no longer useful as it is no longer possible to
perform the sum over the azimuthal quantum number.

In the case being considered in this paper, we are dealing
with a black hole where the symmetry is reduced from
spherical to axial but without the added complication of
rotation. This fact makes this case an ideal precursor to the
Kerr-Newman case. It presents the first calculation of the
renormalized vacuum polarization on the exterior region of
an axially symmetric black hole. It should be noted that
DeBenedictis [7] has calculated the vacuum polarization
on an axially symmetric metric, but in the case of a black
string, not a black hole. Most importantly, the method

presented in that paper is not applicable to the current
space-time or to the Kerr-Newman case.
The method we present here does not rely on specific

properties of the angular functions (such as addition theo-
rems); rather we obtain an expression involving complete
mode-by-mode subtractions (as opposed to the partial
mode-subtractions in the literature) for the renormalized
vacuum polarization. Furthermore, we elucidate some im-
portant points about the Christensen-DeWitt point-splitting
approach [8] to renormalization. In particular, we show
that the choice of point-separation direction is intimately
connected to the order of summation of the mode-sum.

II. THE MODE-SUM EXPRESSION FOR THE
GREEN’S FUNCTION

The cosmic string is modeled by introducing an azimu-
thal deficit parameter, �, into the standard Schwarzschild

metric. We may describe this in coordinates ðt; r; �; ~�Þ,
where ~� is periodic with period 2��, so we may take ~� 2
½0; 2��Þ, in which the line element is given by

ds2 ¼ �ð1� 2M=rÞdt2 þ ð1� 2M=rÞ�1dr2

þ r2d�2 þ r2sin2�d ~�2: (2.1)

For grand unified theory (GUT) scale cosmic strings � ¼
1� 4�, where� is the mass per unit length of the string so
we shall assume 0<� � 1. In Sec. V, we further limit
ourselves to the case 1=2<� � 1, which is physically
justifiable since � � 1. We can alternatively define a
new azimuthal coordinate by

~� ¼ ��; (2.2)

so that � is periodic with period 2� and we may take
� 2 ½0; 2�Þ. In coordinates ðt; r; �;�Þ, the line element is
given by

ds2 ¼ �ð1� 2M=rÞdt2 þ ð1� 2M=rÞ�1dr2

þ r2d�2 þ �2r2sin2�d�2: (2.3)

We shall consider a massless scalar field, ’, in the
Hartle-Hawking vacuum state. Since this is a thermal state,
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it is convenient to work with the Euclidean Green’s func-
tion, performing a Wick rotation of the temporal coordi-
nate t ! �i� and eliminating the conical singularity at
r ¼ 2M by making � periodic with period 2�=�, where
� ¼ 1=ð4MÞ is the surface gravity of the black hole. The
massless scalar field on a Ricci flat background metric
satisfies the homogenous equation

h’ð�; r; �; �Þ ¼ 0; (2.4)

which can be solved by a separation of variables by writing

’ð�; r; �; �Þ � ein��þim�Pð�ÞRðrÞ; (2.5)

where Pð�Þ is regular and satisfies

�
1

sin�

d

d�

�
sin�

d

d�

�
� m2

�2sin2�
þ �ð�þ 1Þ

�
Pð�Þ ¼ 0;

(2.6)

while RðrÞ satisfies
�
d

dr
ðr2 � 2MrÞ d

dr
� �ð�þ 1Þ � n2�2r4

r2 � 2Mr

�
RðrÞ ¼ 0:

(2.7)

The �ð�þ 1Þ term arises as the separation constant. The
choice of � is arbitrary for ’ to satisfy the wave equation
but requires a specific choice in order for the mode func-
tion Pð�Þ to satisfy the boundary conditions of regularity

on the poles. In the Schwarzschild case (no cosmic string,
� ¼ 1), regularity on the poles means that � ¼ l, i.e., the
separation constant is lðlþ 1Þ. In the cosmic string case,
the appropriate choice of � that guarantees regularity of the
angular functions on the poles is

� ¼ �ðl; mÞ ¼ l� jmj þ jmj=�: (2.8)

(We note here the dependence of � on l andm. However, to
avoid being typographically cumbersome, we will leave it
implicit in the remainder of this paper.) With this choice of
�, the angular function is the Legendre function of both
noninteger order and noninteger degree, viz.,

Pð�Þ ¼ P�jmj=�
� ðcos�Þ: (2.9)

It can be shown that these angular functions satisfy the
following normalization condition:

Z 1

�1
P�jmj=�
l�jmjþjmj=�ðcos�ÞP�jmj=�

l0�jmjþjmj=�ðcos�Þdðcos�Þ

¼ 2

ð2�þ 1Þ
�ð�� jmj=�þ 1Þ
�ð�þ jmj=�þ 1Þ	ll0 : (2.10)

The periodicity of the Green’s function with respect to
(�� �0) and (���0) with periodicity 2�=� and 2�,
respectively, combined with Eq. (2.10) allow us to write
the mode-sum expression for the Green’s function as

Gðx; x0Þ ¼ T

4�

X1
n¼�1

ein�ð���0Þ X1
m¼�1

eimð���0Þ X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1ÞP

�jmj=�
� ðcos�ÞP�jmj=�

� ðcos�0Þ
n�ðr; r0Þ;

(2.11)

where 
n�ðr; r0Þ satisfies the inhomogeneous equation

�
d

dr
ðr2 � 2MrÞ d

dr
� �ð�þ 1Þ � n2�2r4

r2 � 2Mr

�

n�ðr; r0Þ

¼ � 1

�
	ðr� r0Þ: (2.12)

It is convenient to write the radial equation in terms of a
new radial variable � ¼ r=M� 1; the radial equation then
reads

�
d

d�

�
ð�2 � 1Þ d

d�

�
� �ð�þ 1Þ � n2ð1þ �Þ4

16ð�2 � 1Þ
�

n�ð�;�0Þ

¼ � 1

�M
	ð�� �0Þ; (2.13)

where we have used the fact that � ¼ 1=ð4MÞ. For n ¼ 0,
the two solutions of the homogeneous equation are
the Legendre functions of the first and second kind. For
n � 0, the homogeneous equation cannot be solved in
terms of known functions and must be solved numerically.
We denote the two solutions that are regular on the horizon

and infinity (or some outer boundary) by pn�ð�Þ and
qn�ð�Þ, respectively. A near-horizon Frobenius analysis
for n � 0 shows that the indicial exponent is �jnj=2,
and so we have the following asymptotic forms:

pn�ð�Þ � ð�� 1Þjnj=2 � ! 1

qn�ð�Þ � ð�� 1Þ�jnj=2 � ! 1:
(2.14)

Defining the normalizations by these asymptotic forms and
using the Wronskian conditions one can obtain the appro-
priate normalization of the Green’s function,


n�ð�;�0Þ ¼
� 1
�M P�ð�<ÞQ�ð�>Þ n ¼ 0

1
2jnj�M pn�ð�<Þqn�ð�>Þ n � 0:

(2.15)

III. CHOOSING A SEPARATION DIRECTION

In order to renormalize h’̂2i, we subtract, in a mean-
ingful way, the geometrical Christensen-DeWitt renormal-
ization terms from the Green’s function. This approach
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rests on the fact that all Green’s functions will possess the
same short distance behavior encapsulated in the
Hadamard parametrix. On the other hand the full Green’s
function must reflect the relevant boundary conditions of
the global problem, for example, periodicity with particu-
lar period in � and �, and this is most easily expressed
by a mode decomposition. In order to perform the renor-
malization it is first necessary to perform a regularization
of the Green’s function and the natural regularization
in the Christensen-DeWitt approach is to consider the
Green’s function with the two points separated. The
geometrical singularity may then be removed prior to
bringing the two points together to give h’̂2iren. The
geometrical nature of the subtraction means that we
obtain the same result whichever direction we separate
in, although there is a surprising twist in the tale des-
cribed below.

As we are free to choose the direction of separation, we
may do so in a way that makes the calculation as straight-
forward as possible. In almost all black hole calculations in
the literature, e.g. [2–5,9], the authors have preferred to
separate in the temporal direction, except for on-horizon
calculations. The principal reason for this is that the metric
components do not depend on �, making the renormaliza-
tion terms somewhat easier. (The same could be said for
separating in �, however, making it an equally suitable
candidate.) For on-horizon calculations, it is typically most
convenient to separate in the radial direction (see [1] for
example). In fact, we have calculated elsewhere [10] ex-
pressions for h’̂2iren and the renormalized stress tensor

hT̂�
� iren for a massless, arbitrarily coupled scalar field on

the horizon of the Schwarzschild black hole threaded by an
infinite cosmic string by separating radially and using a
summation formula we have derived in that paper.

Since we have calculated the vacuum polarization
on the horizon in another paper, we shall concentrate
here on the calculation of off-horizon values. The question
we must address is what is the most convenient separation
when we no longer have spherical symmetry. To answer
this we start by analyzing the approach taken in the litera-
ture in the spherically symmetric case. In this case, one can
sum overm to obtain expression for h’̂2iren that involves an
inner sum over l-modes and an outer sum over n-modes.
One then converts the l-sum into an integral using the
Watson-Sommerfeld formula and sums the n-modes di-
rectly. (This is, of course, only a sketch of the method and
several other tricks and techniques are used to do the
calculation, none of which are important to the choice of
separation.)

In the cosmic string case, the axial symmetry means that
converting an l-sum to an integral results in numerical
integrals over the square of Legendre functions; this is
neither convenient nor useful. The most practical way to
proceed with the calculation is to convert the n-sum to an
integral and sum the l, m-modes directly, since the angular

part of the Green’s function does not depend on the
n-modes. In fact, this proves to be a very fruitful approach
to these calculations, both in the axially symmetric and the
spherically symmetric case. There is a caveat, however,
which relates to the order in which we perform the mode-
sums which is intimately related to the distributional nature
of the expressions we are dealing with.
At a four-dimensional level we have a sum over a

complete set of mode functions and the expression

Gðx; x0Þ ¼ X
i

uiðxÞuiðx0Þ
�i

is understood in the sense of smearing with smooth func-
tions of compact support in the four-dimensional space.
In moving to a point separated expression with just one
coordinate different we must consider the 	 convergent
limits in three of our coordinate directions. In particular
as @=@� and @=@� are commuting Killing vectors we
may associate with them independent quantum numbers n
and m. Also correspondingly, when we derive our Green’s
function, it matters not whether we separate out the �
dependence or the � dependence first. However, when
we limit our test functions to three-dimensional delta
functions the corresponding sum must remain until last,
i.e., the outer sum must be that which corresponds to the
direction in which we have separated. More specifically,
separating in the temporal direction corresponds to an
inner l, m-sum and an outer n-sum, and separating in the
azimuthal direction corresponds to an inner n-sum and an
outer l, m-sum.
We have two strong arguments in support of the

above statement. First, one can show analytically, in the
Schwarzschild case, that the finite difference between
summing in the different orders is precisely the analytic
difference between the regular parts of the Christensen
subtraction terms for temporal and azimuthal separation.
In other words, separating in the temporal direction and
doing the n-sum first gives a finite but wrong answer! An
alternative way of understanding this is that the renormal-
ization procedure adopted by Candelas-Howard and the
alternative procedure of this paper results in a double
mode-sum that is convergent, but not absolutely conver-
gent. As a result the order of summation matters.
The second supporting argument is that we have an

unambiguous answer on the horizon in both the
Schwarzschild black hole with a cosmic string [10] and
without a string [1]. Clearly the correct off-horizon answer
must match up with the horizon value as the horizon is
approached and this is only true when we sum according to
the rules laid out above.
It is natural for us to separate in the azimuthal direction

for the cosmic string case and so in light of the previous
arguments, the appropriate mode-sum form for our un-
renormalized Green’s function is
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Gðr; �;��Þ ¼ T

4��

X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2 X1

n¼�1

n�ð�;�Þ; (3.1)

taking �� ¼ ���0.

IV. RENORMALIZATION

For a massless scalar field in a Ricci-flat space-time, the
only Christensen-DeWitt subtraction term required for the
calculation of h’̂2iren is

Gdivðx; x0Þ ¼ 1

8�2ðx; x0Þ ; (4.1)

where 2ðx; x0Þ is the square of the geodesic distance
between x and x0 [8]. For an azimuthal splitting this
becomes

Gdivðr;�;��Þ ¼ 1

4�2

�
1

g����
2
þgab�

a
���

b
��

12g2��

þOð��Þ
�

¼ 1

4�2M2

�
1

ð�þ 1Þ2sin2��2��2

þ 1

12

1

ð�þ 1Þ2sin2��
1

6

1

ð�þ 1Þ3

þOð��Þ
�
: (4.2)

One is now faced with the challenge of subtracting this
geometrical expression from the mode-sum Eq. (3.1) in
such a way that the limit may be performed. The approach
in the literature, e.g. [2–5], is to bring the divergent term
inside the outer sum (in this case the m-sum; in the tem-
poral splitting case the n-sum) using an identity from
distribution theory,

1

��2 ¼ � X1
m¼1

meim�� � 1

12
þOð��Þ2 (4.3)

or its equivalent expression for temporal separation. The
success of this approach in the spherically symmetric case
relies heavily on the applicability of the Legendre addition
theorem and the Watson-Sommerfeld formula. This is not
possible in the general case. Instead we would like to be
able to write the divergent term in Gdiv as a triple mode-
sum over m, l, n so that a full mode-by-mode subtraction
may be performed.

It turns out that there is a natural and general way to
approach this problem. There are a whole gamut of sum-

mation formulas that can be derived simply by equating
different but equivalent expressions for the same Green’s
function. This requires little knowledge of the special
functions being summed, only that they are solutions to
the homogeneous wave equation being considered. Indeed,
this approach is one of the standard ways of proving the
Legendre addition theorem. The universality of the geo-
metrical singularity structure provided by the Hadamard
form then ensures that, with appropriate parameterization,
we can match the required coordinate divergence to an
appropriate mode-sum.
Ideally, we equate a mode-sum expression for a Green’s

function to a closed-form or quasiclosed-form expression.
The most effective way of deriving such summation for-
mulas is by considering appropriate Green’s functions on
Minkowski space-time, where the Green’s function is usu-
ally known in closed form or quasiclosed form. In the next
section, we will derive the appropriate summation formula
for the current problem by considering the thermal Green’s
function on Minkowski space-time threaded by an infinite
cosmic string.

V. THERMAL GREEN’S FUNCTION
ON MINKOWSKI SPACE-TIME

WITH A COSMIC STRING

We consider a massless scalar field at nonzero tempera-
ture T propagating in Minkowski space-time with an
infinite cosmic string running along the polar axis. The
Euclideanized metric is given by

ds2 ¼ d�2 þ d�2 þ �2d�2 þ �2�2sin2�d�2; (5.1)

where � and � are the usual polar coordinates on the 2-
sphere and � is an arbitrary radial variable. The periodic
(thermal) Euclidean Green’s function G�ð��;�xÞ can be

written as an image sum over the zero temperature Green’s
function Gð��;�x0Þ as

G�ð��;�xÞ ¼
X1

k¼�1
Gð��þ k�;�xÞ; (5.2)

where � ¼ 1=T is the inverse temperature. A mode-sum
expression for the scalar field Green’s function at zero
temperature is easily found to be

Gð��;�xÞ ¼ 1

8�2�

Z 1

0
ei!��d!

X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1ÞP

�jmj=�
� ðcos�ÞP�jmj=�

� ðcos�0Þ

� 1

ð��0Þ1=2 I�þ1=2ð!�<ÞK�þ1=2ð!�>Þ; (5.3)
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where I and K are the modified Bessel functions [11] of the first and second kind, respectively. Now, using the Fourier
transform of a Comb function,

X1
k¼�1

ei!k� ¼ 2�

�

X1
n¼�1

	ð!� n2�=�Þ; (5.4)

we arrive at an appropriate expression for the thermal Green’s function,

G�ðx;x0Þ ¼ T

4��

X1
n¼�1

ein���
X1

m¼�1
eim��

X1
l¼jmj

ð2�þ 1Þ�ð�þjmj=�þ 1Þ
�ð��jmj=�þ 1ÞP

�jmj=�
� ðcos�ÞP�jmj=�

� ðcos�0Þ

� 1

ð��0Þ1=2 I�þ1=2ðn��<ÞK�þ1=2ðn��>Þ; (5.5)

where � ¼ 2�T, and the n ¼ 0 term is understood in
the sense

lim
n!0

ð��0Þ�1=2I�þ1=2ðn��<ÞK�þ1=2ðn��>Þ

¼
�
�<

�>

�
� 1

�>ð2�þ 1Þ : (5.6)

In particular, for azimuthal separation, we have (taking into
account that we must choose the appropriate order of
summation)

G�ðr; �;��Þ ¼ T

4��

X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ

� �ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

� X1
n¼�1

1

�
I�þ1=2ðn��ÞK�þ1=2ðn��Þ: (5.7)

Note that, with the exception of the radial functions, this is
completely equivalent to the Green’s function Eq. (3.1).

We have an equivalent expression for this Green’s
function given by Linet [12], valid for 1=2<� � 1,
in which the author writes the Green’s function as the
singular part plus a regular integral part, G�ðx; x0Þ ¼
Gsingðx; x0Þ þGintðx; x0Þ. The integral part Gint is given by

Gintðx; x0Þ ¼ �fð��þ �=�Þ þ fð��� �=�Þ; (5.8)

where

fð�Þ ¼ T sinð�Þ
8�2�

Z 1

0

sinhð�RðuÞÞ
RðuÞ½coshð�RðuÞÞ � cos����

� 1

ðcoshðu=�Þ � cosð�ÞÞdu (5.9)

and

RðuÞ ¼ ½�2 þ �02 � 2��0 cos� cos�0

þ 2��0 sin� sin�0 coshu�1=2: (5.10)

The singular part is

Gsingðx; x0Þ ¼ T

4�

sinh��

�½cosh��� cos���� ; (5.11)

where

� ¼ ½�2 þ �02 � 2��0 cos� cos�0

� 2��0 sin� sin�0 cosð���Þ�1=2:

In particular, for azimuthal point separation, we have

G�ð�;�;��Þ ¼ 1

4�2�2�2sin2���2
þ 1

48�2�2sin2�

þT2

12
þGintð�;�;��ÞþOð��Þ2: (5.12)

Finally, equating Eqs. (5.7) and (5.12), we arrive at the
very useful identity

1

4�2

1

�2sin2���2
¼ T

4��

� X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2 X1

n¼�1
�I�þ1=2ðn��ÞK�þ1=2ðn��Þg

� 1

48�2sin2�
� T2�2

12
� �2Gintð�;�;��Þ þOð��Þ2: (5.13)

It is important to emphasize that this equation is true for any T and for all �. For our purposes, the obvious choice for T is
the temperature of the Schwarzschild black hole so that � is now the Schwarzschild surface gravity � ¼ 1=ð4MÞ. In the
next section we show that there is a prescription to assign � in terms of the Schwarzschild radial variable� in such a way as
to guarantee the convergence of the mode-sum.
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VI. MODE-BY-MODE SUBTRACTION

We now return to the Schwarzschild cosmic string case. From Eq. (3.1) and Eq. (4.2), we have the following expression
for the renormalized vacuum polarization:

h’̂2iren ¼ lim
��!0

½Gðr; �;��Þ �Gdivðr; �;��Þ�

¼ lim
��!0

�
T

4��

X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2 X1

n¼�1

n�ð�;�Þ

� 1

4�2M2

1

ð�þ 1Þ2�2��2sin2�
� 1

48�2M2

1

ð�þ 1Þ2sin2�þ 1

48�2M2

2

ð�þ 1Þ3 þOð��2Þ� (6.1)

Now our identity, Eq. (5.13), is of precisely the correct form to allow us to convert the 1=��2 term into an appropriate
triple mode-sum. On dividing Eq. (5.13) by M2ð�þ 1Þ2 and substituting into Eq. (6.1), we obtain

h’̂2iren ¼ lim
��!0

�
T

4��

X1
m¼�1

eim��
X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

� X1
n¼�1

�

n�ðr; rÞ � �

M2ð�þ 1Þ2 I�þ1=2ðn��ÞK�þ1=2ðn��Þ
�
þ T2

12

�2

M2ð�þ 1Þ2

þ 1

48�2M2

2

ð�þ 1Þ3 þ
�2

M2ð�þ 1Þ2 Gintð�; �;��Þ þOð��2Þ
�
: (6.2)

We can now take the limit inside the sum to get

h’̂2iren ¼ h’̂2isum þ h’̂2iint þ h’̂2ianalytic; (6.3)

where

h’̂2isum ¼ T

2��

X1
m¼�1

X1
l¼jmj

ð2�þ 1Þ�ð�þjmj=�þ 1Þ
�ð��jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�X1
n¼1

�
pn�ð�Þqn�ð�Þ

2jnjM ��I�þ1=2ðn��ÞK�þ1=2ðn��Þ
M2ð�þ 1Þ2

�

þ 1

2

�
1

M
P�ð�ÞQ�ð�Þ� �

M2ð�þ 1Þ2ð2�þ 1Þ
��

(6.4)

h’̂2iint ¼ �T sinð�=�Þ
4�2M2�

�2

ð�þ 1Þ2
Z 1

0

sinhð�RðuÞÞ
RðuÞðcoshð�RðuÞÞ � 1Þðcoshðu=�Þ � cosð�=�ÞÞ du (6.5)

h’̂2ianalytic ¼ T2

12

�2

M2ð�þ 1Þ2 þ
1

48�2M2

2

ð�þ 1Þ3 ; (6.6)

where RðuÞ ¼ ð2�2sin2�ð1þ coshuÞÞ1=2. We have
used Eqs. (5.8) and (5.9) to obtain the expression
for h’̂2iint. We have also explicitly separated out the
n ¼ 0 term.

A key feature of our approach is that since we have a
triple mode-by-mode subtraction, with the correct choice
of �, we can ensure the convergence of the triple sum, thus
making redundant the removing of the ‘‘superficial’’ diver-
gence discussed by some authors ([3,5]). Specifically, we
choose �, such that, for a given n, the l, m mode-sum is
regular. We can do this by associating the l, m mode-sum
with a particular three-dimensional Green’s function by a
technique known as dimensional reduction [5], and then
we examine the Hadamard singularity structure of this

Green’s function. In the Appendix, we show that the con-
dition of regularity of the l, m sum can be achieved by
taking � to be

� ¼ M
ð�þ 1Þ2

ð�2 � 1Þ1=2 : (6.7)

The mode-sum now converges for this choice of �, as we
discuss in detail in the following section.

VII. WKB APPROXIMATIONS

In order to analyze the convergence of the mode-sum
of Eq. (6.4), we consider the WKB approximations of both
the radial part of the Green’s function and the subtraction
terms. We have adapted the WKB prescription given by
Howard [2,5], valid for large n and l. Employing a second-
order WKB approximation, we have
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1

2jnjMpn�ð�Þqn�ð�Þ � �ð0Þ
n� þ �ð1Þ

n� þ �ð2Þ
n�; (7.1)

where �ð0Þ
n�, �

ð1Þ
n�, and �ð2Þ

n� are the zeroth, first-, and second-order approximants, respectively. Each term is written in
successive powers of �n�ð�Þ�1, where

�n� ¼ ððð�þ 1=2Þ2ð�2 � 1Þ þ!2
nÞ1=2 (7.2)

and !n ¼ ðn=4Þð�þ 1Þ2. In terms of �n�, the approximants are

�ð0Þ
n� ¼

1

2M�n�

;

�ð1Þ
n� ¼

1

16M�3
n�

� !2
n

8M�5
n�

ð2�2�6�þ7Þþ 5!4
n

16M�7
n�

ð��2Þ2;

�ð2Þ
n� ¼

11þ16�2

256M�5
n�

þ !2
n

64M�7
n�

ð�171þ70��88�2þ60�3�16�2Þþ 7!4
n

128M�9
n�

ð666�1020�þ773�2�320�3þ56�4Þ

� 231!6
n

64M�11
n�

ð��2Þ2ð7�6�þ2�2Þþ 1155!8
n

256M�13
n�

ð��2Þ4: (7.3)

We also require the WKB approximation to the subtraction term,

�

M2ð�þ 1Þ2 I�þ1=2ðn��ÞK�þ1=2ðn��Þ��ð0Þ
n� þ�ð1Þ

n� þ�ð2Þ
n�; (7.4)

where

�ð0Þ
n� ¼

1

2M�n�

;

�ð1Þ
n� ¼� 1

4M

!2
n

�5
n�

ð�2�1Þþ 5

16M

!4
n

�7
n�

ð�2�1Þ;

�ð2Þ
n� ¼� 1

4M

!2
n

�7
n�

ð�2�1Þ2þ 49

16M

!4
n

�9
n�

ð�2�1Þ2� 231

32M

!6
n

�11
n�

ð�2�1Þ2þ 1155

256M

!8
n

�13
n�

ð�2�1Þ2: (7.5)

Immediately, we see that the zeroth order terms are equal
and therefore the slowest order term in the mode-sum is
proportional to ��3

n� . From Eq. (7.2), this implies that for
large l and n, the summand is Oðl=ðl2 þ n2Þ3=2Þ, since the
angular functions scale linearly with l. Thus, it is now clear
from the cancellation of the zeroth order approximations
that the mode-sum converges. This proof of convergence is
considerably simpler than analogous proofs in the standard
approach (e.g. [2,5]). However, though we have shown that
the mode-sum converges, the convergence is extremely
slow (as is usually the case with such calculations) and is
not absolute as discussed in Sec. III.

A standard trick for speeding the convergence in order to
make the mode-sum calculation amenable is to subtract

and add the second-order WKB approximations [2]. For
the n ¼ 0 terms, the subtraction term is exactly the zeroth
order approximant to the radial Green’s function and so we

need only subtract and add �ð1Þ
0� and �ð2Þ

0� terms in this case.

We now have the following expression for the mode-sum:

h’̂2isum ¼ T

2��
ð�þ�Þ; (7.6)

where � is the slowly converging part of the mode-sum.
We further write

� ¼ �1 � �2 þ 1=2�3; (7.7)

where
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�1 ¼
X1
n¼1

X1
l¼0

Xl
m¼�l

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�
pn�ð�Þqn�ð�Þ

2jnjM � �ð0Þ
n� � �ð1Þ

n� � �ð2Þ
n�

�

�2 ¼
X1
n¼1

X1
l¼0

Xl
m¼�l

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�
�I�þ1=2ðn��ÞK�þ1=2ðn��Þ

M2ð�þ 1Þ2 � �ð0Þ
n� � �ð1Þ

n� � �ð2Þ
n�

�

�3 ¼
X1
l¼0

Xl
m¼�l

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�
P�ð�ÞQ�ð�Þ

M
� �ð0Þ

0� � �ð1Þ
0� � �ð2Þ

0�

�
:

(7.8)

We have rewritten the l, m sum and swapped the order of summation with the n-sum which presents no problem for these
sums since they are all rapidly and absolutely convergent. In fact, the summands of �1 and �2 are Oðl=ðl2 þ n2Þ7=2Þ for
large l and n. The summand of �3 is Oðl�6Þ for large l.

The slowly convergent term, �, is given by

�¼X1
l¼0

Xl
m¼�l

ð2�þ1Þ�ð�þjmj=�þ1Þ
�ð��jmj=�þ1Þ ½P

�jmj=�
� ðcos�Þ�2

�
�ð1Þ

0�

2
þ�ð2Þ

0�

2
þX1

n¼1

ð�ð1Þ
n���ð1Þ

n�þ�ð2Þ
n���ð2Þ

n�Þ
�
: (7.9)

In order to speed the convergence of this sum, we can
convert the n-sum here to an integral using a modified
version of the Plana-Abel sum formula.

VIII. MODIFIED PLANA-ABEL SUM FORMULA

We begin by rewriting the difference of the WKB
approximants of order i (i ¼ 1; 2,) as [13]

�ðiÞ
n� � �ðiÞ

n� ¼ X2i
j¼0

42iþ1Cijð�Þ
ð�þ 1Þ4iþ2

n2j

½�2 þ n2�iþjþ1=2
; (8.1)

where � is given by

� ¼ 4ð�þ 1=2Þð�2 � 1Þ1=2
ð�þ 1Þ2 (8.2)

and the coefficients Cijð�Þ are tabulated in Table I.

We now convert the n-sum above to an integral using a
modification of the Plana-Abel sum formula [13,14]. In our
particular case, we have

X1
n¼1

n2j

½�2 þ n2�iþjþ1=2

¼ � 	j0

2�2iþ1
þ

Z 1

0

n2j

½�2 þ n2�iþjþ1=2
dn

þ 2ð�1Þiþj

ffiffiffiffi
�

p
�ðiþ jþ 1=2Þ

Z 1

�

hðiþjÞðsÞ
ðs��Þ1=2 ds; (8.3)

where

hðsÞ ¼ ðsei�=2Þ2j
ðsþ�Þiþjþ1=2

1

e2�s � 1
: (8.4)

Furthermore, the n-integration of Eq. (8.3) can be done
explicitly using

Z 1

0

n2j

½�2 þ n2�iþjþ1=2
dn ¼ 1

�2i

�ðiÞ�ðjþ 1=2Þ
2�ðiþ jþ 1=2Þ : (8.5)

Substituting Eq. (8.5) into Eq. (8.3), we get

X1
n¼1

ð�ðiÞ
n� � �ðiÞ

n�Þ ¼ � 42iþ1Ci0ð�Þ
2ð�þ 1Þ4iþ2�2iþ1

þ 42iþ1

ð�þ 1Þ4iþ2

X1
j¼0

Cijð�Þ
�2i

�ðiÞ�ðjþ 1=2Þ
2�ðiþ jþ 1=2Þ

þ 42iþ1

ð�þ 1Þ4iþ2

X2i
j¼0

2Cijð�Þð�1Þiþj
ffiffiffiffi
�

p
�ðiþ jþ 1=2Þ

Z 1

�

hðiþjÞðsÞ
ðs��Þ1=2 ds: (8.6)

Using the coefficients of Table I, the first term here is conveniently just ��0�=2, while the second term here vanishes for
i ¼ 1; 2, that is,

TABLE I. The coefficients Cijð�Þ of the difference of the WKB approximants.

Cijð�Þ 0 1 2 3 4

1 1
16M

3
8M ð2�� 3Þ �5

16M ð4�� 5Þ
2 1

256M ð16�2 þ 11Þ 5
16M ð12�3 � 24�2

þ14�� 31Þ
�35
128M ð64�3 � 177�2

þ204�� 122Þ
231
64M ð14�3 � 43�2

þ52�� 26Þ
�1155
256M ð8�3 � 26�2

þ32�� 15Þ
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X2i
j¼0

Cijð�Þ�ðjþ 1=2Þ
�ðiþ jþ 1=2Þ ¼ 0 for i ¼ 1; 2: (8.7)

Finally, we arrive at the following expression for the n-sum of the difference of the WKB approximants of ith order:

X1
n¼1

ð�ðiÞ
n� � �ðiÞ

n�Þ ¼ ��ðiÞ
0�

2
þ 42iþ1

ð�þ 1Þ4iþ2

X2i
j¼0

2Cijð�Þð�1Þiþj
ffiffiffiffi
�

p
�ðiþ jþ 1=2Þ

Z 1

�

hðiþjÞðsÞ
ðs��Þ1=2 ds: (8.8)

Returning now to our expression for �, we substitute (8.8) into (7.9). Remarkably, the n ¼ 0 terms cancel, leaving only
the rapidly convergent integrals of Eq. (8.8), viz.,

� ¼ X1
m¼�1

X1
l¼jmj

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�X2
i¼1

X2i
j¼0

42iþ1

ð�þ 1Þ4iþ2

2Cijð�Þð�1Þiþj
ffiffiffiffi
�

p
�ðiþ jþ 1=2Þ

Z 1

�

hðiþjÞðsÞ
ðs��Þ1=2 ds

�
:

(8.9)

IX. NUMERICAL EVALUATION OF h’̂2iren
We have shown that we can write the renormalized

vacuum polarization outside the horizon as an analytic
part [Eq. (6.6)], a regular integral part [Eq. (6.5)] and a
contribution coming from the mode-sum [Eqs. (7.6), (7.7),
(7.8), and (8.9)]. In addition, we have calculated elsewhere
[10] the vacuum polarization as an analytic expression on
the horizon,

h’̂2ihorizonren ¼ 1

192�2M2

�
1þ ð1� �2Þ

�2sin2�

�
: (9.1)

Combining these results gives the renormalized vacuum
polarization on the entire space-time region of interest.

We now turn to a specific example. Thus far, we
have described the calculation of h’̂2iren on the exterior
of the Schwarzschild space-time threaded by a cosmic
string from the horizon out to infinity. The results we
shall show, however, are for a Schwarzschild black hole
threaded by an infinite cosmic string inside a spherical box.
The reasons for this are twofold: First, it is numerically
easier. Rather than evaluating numerical radial modes over
the entire radial range, we are now limited to a finite range
between the horizon and the boundary. Second, this calcu-
lation is motivated by the analogous Kerr renormalization.
In this case, one cannot define a Hartle-Hawking vacuum
everywhere on the exterior of the black hole. However, in
order to determine the vacuum polarization on a state that
possesses the defining features of a Hartle-Hawking vac-
uum, one must put in a spherical mirror inside the speed of
light surface [15]. In any case, as a check of our method,
we have also run the calculation where we take the bound-
ary out to a very large radius, which yields the Candelas-
Howard result [2] in the � ! 1 limit.

For the results shown, we have taken units where the
mass M ¼ 1 and the azimuthal deficit � ¼ 0:95. The
mirror boundary imposes Dirichlet boundary conditions
at�b ¼ 3 (or rb ¼ 4M). We take an ðr; �Þ grid that consists

of 50 radial points and 70 angular points. This boundary
condition requires that the Green’s function vanish on the
mirror, implying that the outer radial function becomes

qðbÞn�ð�Þ ¼ qn�ð�Þ � qn�ð�bÞ
pn�ð�bÞpn�ð�Þ: (9.2)

On the horizon, we now have

h’̂2ihorizon;boxren ¼ 1

192�2M2

�
1þ ð1� �2Þ

�2sin2�

�
� 1

32�2M2�

�X1
l¼0

Xl
m¼�l

ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ

� ½P�jmj=�
� ðcos�Þ�2 Q�ð�bÞ

P�ð�bÞ : (9.3)

The sum here converges rapidly (about 12 decimal places
after only 20 l-modes).
With the exception of the boundary terms above, the

calculation inside a spherical box remains unchanged. The
calculation of h’̂2ianalytic is trivial and requires no discus-

sion. Similarly, the calculation of h’̂2iint is numerically
evaluated over the grid without difficulty. As we have

mentioned the sums of � [Eq. (7.8)] are Oðl=ðn2 þ
l2Þ7=2Þ and are therefore rapidly convergent. Close to the
horizon and the boundary, however, this behavior does not
become apparent in �1 and �3 until the higher l and
n-modes, compared with the interior region of interest.
For this reason, after 100 l-modes and 20 n-modes, we
see convergence to about 6 decimal places near the horizon
and the boundary and about 10 decimal places in the
interior for �1 and �2. We see convergence to at least 10
decimal places everywhere for �2 for 100 l-modes and 20
n-modes. The expression � [Eq. (8.9)] is exponentially
convergent. Again, this convergence does not become
apparent until the higher l-modes near the horizon. We
observe convergence to at least 10 decimal places every-
where in the region of interest by taking 30 l-modes near
the horizon and 10 l-modes away from the horizon.
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We see from the graphs that the Casimir effect, arising
from the presence of the boundary at �b ¼ 3, actually
dominates when the boundary is this close to the horizon
and becomes divergent as we approach the boundary. We
also note that the vacuum polarization increases (becomes
more positive) as we get closer to the poles. Again, we
would expect this since there is a curvature singularity on
the poles due to the cosmic string. In this particular case,
since the azimuthal deficit is so small, the effect of the
cosmic string is almost negligible until we get very close to
the poles, responsible for the sharp divergence in Fig. 1.
This graph would be more rounded and smooth for smaller
values of � (corresponding to larger azimuthal deficits).
We see from Fig. 2 that the cosmic string has little effect on
the vacuum polarization when we are not close to the poles.
The � dependence diminishes the further we are from the
horizon, i.e., when we are not close to the pole of the black
hole, the effect of the cosmic string diminishes as we move
further from the horizon. This is evident by comparing
Figs. 3 and 4, since we can see the merging of the graphs
as we move away from the horizon. The Casimir diver-
gence due to the boundary is also clear from Fig. 4.

The dominance of the Casimir effect serves to obscure
the behavior one would expect to see in the absence
of a boundary. However, we may subtract the Casimir
divergence by doing a DeWitt expansion of the heat kernel

about the boundary [16]. For our particular geometry of
space-time and surface, we find that the expected diver-
gence from the curved boundary is given by

h’̂2iCasimir
div ¼ � 1

32�2M2

�
1

ð�b � �Þ2 þ
1

12ð�b � �Þ
�
:

(9.4)

Subtracting these divergent terms provides a clear picture
(modulo finite boundary effects) of h’̂2iren in the absence
of a boundary without evaluating the mode-sum over the
entire exterior region of the black hole. In particular, Fig. 5
possesses the general features of the renormalized vacuum
polarization without a boundary. This is very evident from
Fig. 6 where we have plotted h’̂2iren for the Schwarzschild

1.1 1.2 1.3 1.4

0.8

0.6

0.4

0.2

8 M 2 2
ren

cos 0.96

cos 0.9

cos 0.6

cos 0.45

cos 0

FIG. 2 (color online). Plot of ð8�MÞ2h’̂2iren for particular
values of cos�. We observe that the effect of the string only
becomes important very close to the string. This is due to �
being close to 1.

1.2 1.4 1.6 1.8

1.4

1.2

1.0

0.8

0.6

0.4

0.2

8 M 2 2
ren

cos 0.96

cos 0.9

cos 0.6

cos 0.45

cos 0

FIG. 3 (color online). Plot of ð8�MÞ2h’̂2iren for particular
values of cos�.

1.5 2 2.5

8

6

4

2

8 M 2 2
ren

cos 0.96

cos 0.9

cos 0.6

cos 0.45

cos 0

FIG. 4 (color online). Plot of ð8�MÞ2h’̂2iren for particular
values of cos�.

1.0 1.2 1.4 1.6 1.8

η
− 1.0− 0.50.00.51.0

Cosθ

− 1

0

1

<φ2> ren

FIG. 1 (color online). Plot of ð8�MÞ2h’̂2iren. It is clear from
the figure that the vacuum polarization diverges at the poles, as
we would expect since there is a curvature singularity there.
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FIG. 5 (color online). Plot of ð8�MÞ2ðh’̂2iren � h’̂2iCasimir
div Þ.
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case (� ! 1, i.e., no cosmic string) using the data tabulated
by Candelas and Howard [2] with the plot of h’̂2iren �
h’̂2iCasimir

div on the equatorial plane. The profiles are clearly

identical, differing only by a constant finite amount, though
this finite difference is constant only in the equatorial case.
Nevertheless, it is clear that the essential features have
been captured without the computationally intensive evalu-
ation of the mode-sum out to ‘‘infinity,’’ or in reality, some
radius very far from the horizon.

X. CONCLUSIONS

With the exception of Minkowski space-time threaded
by a cosmic string, explicit calculation of physically im-
portant renormalized expectation values in the axially
symmetric geometry has proved elusive, though it is worth
mentioning that Davies and Sahni [17] have calculated the
vacuum polarization on the horizon of a Schwarzschild
black hole threaded by a cosmic string for the restricted
range ð1=�Þ an integer, a result which we generalized to all
� in [10]. Our calculation in this paper represents the first
renormalization of the vacuum polarization on the exterior
region of an axially symmetric black hole space-time. Most
importantly, we have renormalized without using proper-
ties of the special functions, (such as addition theorems for
the Legendre functions, for example), but rather we have
obtained useful summation formulas over the required
mode functions that express geometrical singularities as
nonconvergent mode-sums. Moreover, we have appealed
to the Hadamard singularity structure on a dimensionally
reduced space-time in order to guarantee the convergence
of our renormalized expectation value. Our resultant ex-
pressions were rapidly convergent and relatively easy to
compute numerically. This approach makes this method
attractive in the renormalization process on the Kerr
black hole, where we do not have the luxury of addition
theorems.

In addition, we have elucidated some points on how the
direction in which we choose to point-split affects the order

of our summation. We showed that a temporal splitting
enforces an inner l, m-sum and that for azimuthal splitting
an inner n-sum is required. To the best of our knowledge,
this subtlety has not previously been noted, perhaps be-
cause it has most often been convenient to split in the
temporal direction in the spherically symmetric case; we
became aware of it having, without due care in this direc-
tion, obtained different results for the same expression
using azimuthal and temporal separation. Understanding
of such issues is of key importance to extend our results to
the Kerr space-time, since provisional calculations suggest
that it is more convenient in that case to split in the
azimuthal direction, as we have done in this paper.
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APPENDIX

In this appendix, we illustrate how to find the Hadamard
divergence of the l, m mode-sum of the Green’s function.
We first note that since we are only interested in the
divergent part, the order of summation is irrelevant since
different orders result in a finite discrepancy. Separating
out the temporal dependence by writing

Gðx; x0Þ ¼ T

4�

X1
n¼�1

ein�ð���0ÞGnðx;x0Þ; (A1)

and substituting into the wave equation, we find

�
@

@r
ðr2 � 2MrÞ @

@r
þ 1

sin�

@

@�
sin�

@

@�
þ 1

�2sin2�

@2

@�2

� n2�2r4

r2 � 2Mr

�
Gn ¼ �	ðx� x0Þ

� sin�
: (A2)

Multiplying across by ð1� 2M=rÞ�1, this equation is a
three-dimensional Laplace equation with potential

ðr2 � VÞGnðx;x0Þ ¼ �g�1=2
3 	ðx� x0Þ; (A3)

where r2 is the invariant Laplacian on the 3-metric

ds23 ¼ dr2 þ ðr2 � 2MrÞd�2 þ ðr2 � 2MrÞ�2sin2�d�2;

(A4)

where the potential is given by

V ¼ n2�2r6

ðr2 � 2MrÞ2 : (A5)
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FIG. 6 (color online). Plot of ð8�MÞ2ðh’̂2iren � h’̂2iCasimir
div Þ

and ð8�MÞ2h’̂2i�!1
ren .
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An important result from Hadamard [18] is that the
singularity structure of the Green’s function is independent
of the potential and depends only on the principal part
of the wave operator. In three dimensions, the Hadamard
form is

Gnðx;x0Þ � Uðx;x0Þ
ð2ðx;x0ÞÞ1=2 þWðx;x0Þ; (A6)

where 2 is the square of the geodesic distance on the
3-metric (A4) and Uðx;x0Þ, Wðx;x0Þ are regular biscalars.
One can expand U and W in terms of  [19], where to the
required order we have

Uðx;x0Þ ¼ 1þOðÞWðx;x0Þ ¼ Oð1Þ: (A7)

For azimuthal separation, we have

2 ¼ ðr2 � 2MrÞ�2sin2���2 þOð��Þ4; (A8)

so that the Green’s function for this point splitting is

Gnðr; �;��Þ ¼ 1

ðr2 � 2MrÞ1=2� sin���
þOð1Þ

¼ 1

Mð�2 � 1Þ1=2� sin���
þOð1Þ: (A9)

We also have the equivalent mode-sum expression for Gn,
obtained by comparing Eq. (A1) with Eq. (2.11). Equating
this mode-sum with expression (A9) gives

X1
l¼0

Xl
m¼�l

eim��ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ

� ½P�jmj=�
� ðcos�Þ�2
n�ð�;�Þ

¼ 1

Mð�2 � 1Þ1=2� sin���
þOð1Þ: (A10)

In addition, we have derived elsewhere [10] the following
result for these Legendre functions

1

½2ð1� cos��Þ�1=2 ¼
1

�

X1
l¼0

Xl
m¼�l

eim�� �ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1ÞP

�jmj=�
� ðcos�ÞP�jmj=�

� ðcos�0Þ

� 1

2��

Z 1

0

F�ðu;���0Þ
½2ð1� cos� cos�0 þ sin� sin�0 coshuÞ�1=2 du; (A11)

where

cos�� ¼ cos� cos�0 þ sin� sin�0 cos��� (A12)

and

F�ðu;�Þ ¼ sinð�� �=�Þ
coshðu=�Þ � cosð�� �=�Þ
� sinð�þ �=�Þ

coshðu=�Þ � cosð�þ �=�Þ : (A13)

This formula relates a geometrical Hadamard singularity to
a nonconvergent mode-sum over the Legendre functions,
valid for 1=2<� � 1. The integral term here is regular
everywhere (apart from the poles where there is a curvature
singularity) and vanishes for � ¼ 1. For small � separa-
tions, this becomes

1

� sin���
¼ 1

�

X1
l¼0

Xl
m¼�l

eim�� �ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ

� ½P�jmj=�
� ðcos�Þ�2 þOð1Þ: (A14)

Dividing across by Mð�2 � 1Þ1=2 and substituting into
Eq. (A10) yields

X1
l¼0

Xl
m¼�l

eim��ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

�
�

n�ð�;�Þ� 1

ð2�þ 1ÞMð�2 � 1Þ1=2
�
¼Oð1Þ: (A15)

Therefore, we have shown that the subtraction term here
captures the divergence of the three-dimensional Green’s
function Gn as a mode-sum.
In a completely analogous way, one can associate the

divergence of the l, m mode-sum in the subtraction terms
of Eq. (6.4) with the divergence of the three-dimensional
Green’s function with a particular potential. The key point
here is that this three-dimensional divergence structure is
captured entirely by the n ¼ 0 term since all n � 0 terms
differ only by a potential and so do not affect the singu-
larity [18]. Thus, for a given n, the singular part of the l, m
sum of Eq. (6.4) is captured by the n ¼ 0 term

X1
l¼0

Xl
m¼�l

eim��ð2�þ 1Þ�ð�þ jmj=�þ 1Þ
�ð�� jmj=�þ 1Þ ½P

�jmj=�
� ðcos�Þ�2

� �

M2ð�þ 1Þ2ð2�þ 1Þ : (A16)

Comparing this to the subtraction term of Eq. (A5) we see
that we can guarantee the regularity of the l, m sum for a
given n by choosing � according to:

� ¼ M
ð�þ 1Þ2

ð�2 � 1Þ1=2 : (A17)
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