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We obtain the electric field and scalar field for a static point charge in closed form in the 5D
Schwarzschild-Tangherlini black hole spacetime. We then compute the static self-force in each of these
cases by assuming that the appropriate singular field is a 4D Hadamard Green’s function on the constant
time Riemannian slice. It is well-known that the Hadamard representation of a Green’s function involves an
arbitrary regular biscalar W0ðx; x0Þ, whose coincidence limit wðxÞ appears in the expression for the self-
force. We develop an axiomatic approach to reduce this arbitrary function to a single arbitrary
dimensionless coefficient. We show that in the context of this approach to regularization, the self-force
does not depend on any undetermined length scale and need not depend on the internal structure of the
charge.

DOI: 10.1103/PhysRevD.92.084032 PACS numbers: 04.50.Gh, 04.25.Nx, 04.40.Nr, 04.70.Bw

I. INTRODUCTION

The problem of motion in general relativity is extremely
complicated owing to the nonlinearity of Einstein’s equa-
tions. However, when there is a natural separation of scales,
for example an extreme mass ratio binary black hole
system, the problem is amenable to a perturbative analysis.
To zeroth order in such a perturbative scheme, the small
body is described by a point particle moving on a geodesic.
Going beyond the geodesic approximation by including
higher order corrections in the perturbative analysis can be
interpreted as arising from the self-interaction of the point
particle with its own field; this is the so-called self-force
problem. In four dimensions, the self-force has enjoyed a
long and fruitful history and is very well understood both at
a formal level and at a practical computational level (see
Ref. [1] for a comprehensive review of the self-force
problem and Ref. [2] for a review of computational
approaches). Much of the attention in the literature is
devoted to the development of a regularization prescription
for curing the divergences that inevitably arise when
working in the point-particle limit. Curing this kind of
pathology is standard fare in quantum field theory where
the infinities are absorbed into a renormalization of the
constants which are then determined by observation. The
difficulty in the classical theory is constructing the unique,
finite self-force that corresponds to the self-force on a
finite-size body in the point-particle limit. There are a
number of equivalent ways to regularize the self-force in
curved spacetime dating back to the seminal paper of
DeWitt and Brehme [3] who computed the formal expres-
sion for the regularized electromagnetic self-force, which

was later corrected by Hobbs [4]. Their approach relied
heavily on the covariant decomposition of the Green’s
function for the electromagnetic vector potential into a
“direct” and “tail” piece. The direct part, which they take to
be the average of the advanced and retarded field, is
singular and has support only on the light cone while
the tail part is regular with support only inside the
light cone.
The most transparent derivation of the self-force is

furnished by the method of matched asymptotic expansions
which was utilized by Mino, Sasaki and Tanaka [5] to
formally derive the self-force for a point mass in curved
spacetime (see also Refs. [1,6]). A complementary deri-
vation of the gravitational self-force was offered by Quinn
and Wald [7] which was based on a simple set of physically
motivated axioms. Hence, the equations of motion includ-
ing first-order self-force effects are commonly referred to as
the “MiSaTaQuWa” equations. In the same paper, Quinn
and Wald also derive the electromagnetic self-force and
their result agreed with that of DeWitt and Brehme [3]
(taking into account the correction by Hobbs [4]). This
simple axiomatic approach was later extended to the scalar
self-force by Quinn [8]. Each of the aforementioned
calculations adopted the regularization scheme of DeWitt
and Brehme [3]. An alternative regularization prescription
was offered by Detweiler and Whiting [9] who instead
decomposed the physical field into a “singular” and
“regular” field and showed that the regular field is a
solution to the homogeneous (source-free) wave equation
and hence is smooth at the particle’s location. This
decomposition leads to a more natural interpretation of
the self-force in terms of a particle’s interaction with an
external source-free field. Moreover, an axiomatic con-
struction of the Detweiler-Whiting singular field was
developed in Ref. [1] by demanding that the singular
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Green’s function is a symmetric, inhomogeneous solution
to the wave equation with zero support inside the
light cone.
The gravitational self-force was given its most rigorous

treatment by Gralla and Wald [10] who considered a one-
parameter family of metrics describing an extended body
that is scaled down to zero size and mass in an asymp-
totically self-similar manner. This derivation is essentially
a more rigorous version of the matched asymptotic deri-
vation given by Mino, Sasaki and Tanaka [5]. A rigorous
derivation of the electromagnetic self-force was later given
by Gralla, Harte and Wald [11].
The self-force itself is not directly observable; instead the

quantity of interest is the gravitational waveform produced
by the emitted gravitational waves, for example by a
particle inspiralling into a black hole. Computing the
waveform itself requires solving the coupled problem of
particle motion and radiation generation. If one uses
straightforward black hole perturbation theory, geodesic
particle motion is associated with (i.e. arises at the same
order as) first-order metric perturbations. Accelerated
particle motion and the first-order self force are associated
with second-order metric perturbations. This perturbation
theory can self-consistently describe accelerated particle
motion and the associated waveforms that are generated,
but only over times short compared to the dephasing time
(the timescale over which a geodesic orbit and the true orbit
become out of phase by ∼1 cycle). Thus, computing
waveforms that are accurate over a radiation reaction
timescale requires going beyond this kind of perturbation
theory. Two complementary approaches for achieving this
are the self-consistent worldline approach of Pound [12]
and the two timescale expansion technique of Hinderer and
Flanagan [13].
Despite the comprehensive work and progress in the self-

force problem in four dimensions, the situation remains
underdeveloped in higher dimensions. Obviously the
intense endeavor over the last few decades has been driven
by modeling extreme-mass-ratio inspirals and hence the
self-force in a more abstract context has received little
attention. Moreover, there is as yet no known general
prescription or expression for self-forces in higher dimen-
sions. Despite the lack of formal underpinning, there has
been considerable recent interest in the self-force in higher
dimensions [14–17] yielding some very unexpected results
in odd dimensions. In particular, Beach, Poisson and Nickel
[14] calculated the self-force on a static scalar and electric
charge in a 5D black hole spacetime and found that the
result depended on the radius of a sphere centered at the
charge, which they interpret as the radius of the particle.
Moreover, Frolov and Zelnikov [15] calculated the self-
force on a uniformly accelerating charge in Minkowski
spacetime (or equivalently a static charge in Rindler
spacetime) and their result depends on an undetermined
infrared cutoff length scale which the authors postulate

could be the scale over which the homogeneous gravita-
tional field approximation is valid.
In this paper, we will revisit the calculation of a static

electric and scalar charge in a 5D black hole spacetime. We
derive closed-form representations of the electrostatic field
and the static scalar field. In the absence of a rigorous
derivation of the self-force in five dimensions, we attempt
to use the Hadamard regularization prescription to compute
a locally constructed singular field to subtract from the self-
field. For a static charge in a static 5D spacetime, the field
equations reduce to an elliptic wave equation on a 4D
Riemannian manifold. It is well-known that the Hadamard
form of the Green’s function for this wave equation
involves an arbitrary biscalar W0ðx; x0Þ that is undeter-
mined by the local Hadamard expansion. For the physical
field, this arbitrariness is a failure of a local expansion to
encode global information such as boundary conditions or
information about the quantum state in the quantum theory.
For the singular field, we develop a set of axioms for
constraining the coincidence limit of this biscalar, valid
for static charges in an arbitrary static 5D spacetime.
Remarkably, our axioms reduce a functions worth of
arbitrariness down to a single arbitrary dimensionless
coefficient. Using our closed-form expression for the
physical field and our axiomatic construction of the
singular field allows us to calculate simple closed-form
expressions for the self-force in terms of this arbitrary
coefficient. Our regularization scheme yields a self-force
that does not depend on any undetermined length scale
such as an infrared cutoff, unlike the calculation of
Ref. [15], nor does it depend on some particular model
for the point particle, contrary to the result of Ref. [14].

II. THE ELECTROSTATIC FIELD

A. The wave equation

The ðnþ 2Þ-dimensional analogue of the Schwarzschild
black hole, known as the Schwarzschild-Tangherlini metric
[18], is given by

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2

n; ð2:1Þ

where fðrÞ ¼ 1 − ðrH=rÞn−1 with rH the horizon radius and
dΩ2

n is the line element on a unit n-sphere which may be
defined inductively by

dΩ2
n ¼ ΩABdxAdxB ¼ dθ1 þ sin2 θ1dΩ2

n−1: ð2:2Þ

The angular variables are xA ¼ fθ1;…; θn−1;ϕg with θ ∈
½0; πÞ and ϕ ∈ ½0; 2πÞ. We can rewrite the metric in terms of
a lapse function and a Euclidean metric on a constant time
hypersurface by

ds2 ¼ gabdxadxb ¼ −N2dt2 þ hαβdxαdxβ; ð2:3Þ
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where Latin indices a; b ¼ 0;…; nþ 1 are used for space-
time components and Greek indices α; β ¼ 1;…; nþ 1
refer to tensor components on the constant time
Riemannian slice. We are interested in computing the
self-force on a static electric charge in this spacetime.
The only nontrivial component of the vector potential is
Φ≔Φt and Maxwell’s equations reduce to the (nþ 1)-
dimensional Helmholtz equation on the Euclidean
metric hαβ

f∇2 − Aα∂αgΦðxÞ ¼ Ωnfjt; ð2:4Þ

where

Aα ¼
1

2f
∂αf; Ωn ¼

2πðnþ1Þ=2

Γðnþ1
2
Þ ; ð2:5Þ

and ∇2 is the Laplace operator on the metric hαβ. The
charge density for the point charge e at position x0 is given
by the Dirac delta distribution

jt ¼ e
rn0

δðr − r0ÞδðΩ;Ω0Þ; ð2:6Þ

where δðΩ;Ω0Þ ¼ δnðxA − xA0 Þ=
ffiffiffiffiffiffiffiffiffiffiffijΩABj

p
is the invariant

Dirac delta distribution on an n-sphere. For a static particle
in a static, spherically, symmetric spacetime the only
nonvanishing component of the self-force is in the radial
direction and is formally given by

Fr ¼ e
ffiffiffiffiffi
f0

p ∂rΦðx0Þ; ð2:7Þ

where f0 ¼ fðr0Þ. This expression is meaningless as it
stands since the field diverges at the position of the charge
owing to the distributional nature of the point-particle
source. Hence the gradient of the field must be regularized
before evaluating at the position of the charge, which we
discuss further in Sec. IVA.
Now, for the particular spacetime under consideration,

the Green’s function for the wave equation is

f∇2 − Aα∂αgGðx; x0Þ ¼ −Ωn

ffiffiffiffiffiffiffiffiffiffi
fðr0Þp
r0n

δðr − r0ÞδðΩ;Ω0Þ;
ð2:8Þ

which can be recast as

�
r2

∂2

∂r2 þ nr
∂
∂rþ

1

f
D2

n

�
Gðx; x0Þ ¼ −Ωn

δðr − r0ÞδðΩ;Ω0Þ
r0n−2

ffiffiffiffiffiffiffiffiffiffi
fðr0Þp
ð2:9Þ

with D2
n the Laplace operator on the n-sphere whose

eigenfunctions are the generalized spherical harmonics
[19] Yl;jðΩÞ with eigenvalues lðlþ n − 1Þ. For a given l,
there are

Λðl; nÞ ¼ ð2lþ n − 1Þ
ðn − 1Þ!

ðlþ n − 2Þ!
l!

ð2:10Þ

linearly independent harmonics and the angular Dirac delta
distribution may be decomposed in this basis as

δðΩ;Ω0Þ ¼
X∞
l¼0

XΛðl;nÞ−1

j¼0

Yl;jðΩÞȲl;jðΩ0Þ: ð2:11Þ

This suggests the following mode decomposition for the
Green’s function

Gðx; x0Þ ¼ Ωn

X∞
l¼0

XΛðl;nÞ−1

j¼0

Yl;jðΩÞȲl;jðΩ0Þglðr; r0Þ: ð2:12Þ

Since the spacetime is spherically symmetric, the radial
Green’s function glðr; r0Þ is independent of the mode
number j and hence we can apply the addition theorem

Plðcos γnÞ ¼
Ωn

Λðl; nÞ
XΛðl;nÞ−1

j¼0

Yl;jðΩÞȲl;jðΩ0Þ; ð2:13Þ

where γn is the geodesic distance between two points on Sn

and Pl is the generalized Legendre polynomial which is a
solution to the differential equation

�
d2

dγ2n
þ cot γn

d
dγn

þ lðlþ n − 1Þ
�
Plðcos γnÞ ¼ 0; ð2:14Þ

normalized so that

Z
π

0

Plðcos γnÞPl0 ðcos γnÞsinn−1γndγn ¼
Ωn

Ωn−1

δll0

Λðl; nÞ :

ð2:15Þ

The electrostatic Green’s function now assumes the form

Gðx; x0Þ ¼
X∞
l¼0

Λðl; nÞPlðcos γnÞglðr; r0Þ; ð2:16Þ

which upon substitution into the wave equation gives the
following inhomogeneous ordinary differential equation
satisfied by glðr; r0Þ,
�
r2

d2

dr2
þ nr

d
dr

−
lðlþ n − 1Þ

f

�
glðr; r0Þ ¼ −

δðr − r0Þ
r0n−2

ffiffiffiffiffiffiffiffiffiffi
fðr0Þp :

ð2:17Þ

Rewriting this equation in terms of the dimensionless
radius
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ξ ¼ 2ðr=rHÞn−1 − 1; ð2:18Þ

leads to

�
d
dξ

�
ðξþ 1Þ2 d

dξ

�
−
lðlþ n − 1Þ
ðn − 1Þ2

ξþ 1

ξ − 1

�
glðξ; ξ0Þ

¼ −
2

ðn − 1Þrn−1H

δðξ − ξ0Þffiffiffiffiffiffiffiffiffiffi
fðξ0Þp : ð2:19Þ

Following standard techniques (see [20] for example), we
can construct a solution to this inhomogeneous equation as
a normalized product of homogeneous solutions,

glðξ; ξ0Þ ¼
2

ðn − 1Þrn−1H

ffiffiffiffiffiffiffiffiffiffi
fðξ0Þp Ψð1Þ

l ðξ<ÞΨð2Þ
l ðξ>Þ

Cl
; ð2:20Þ

whereΨð1Þ
l ðξÞ andΨð2Þ

l ðξÞ are linearly independent solutions
to the homogeneous equation satisfying regularity on the
horizon and at infinity, respectively, and Cl is determined by
the Wronskian of these solutions. We have adopted the
notation ξ< ¼ minfξ; ξ0g and ξ> ¼ maxfξ; ξ0g. The linearly
independent solutions of the homogeneous equation areffiffiffi
f

p
P−1
l=ðn−1ÞðξÞ and

ffiffiffi
f

p
Q1

l=ðn−1ÞðξÞ where Pμ
νðzÞ and Qμ

νðzÞ

are the associated Legendre functions of the first and second
kind, respectively. The former is the solution regular on the
horizon while the latter is regular at infinity, i.e.,

Ψð1Þ
l ðξÞ ¼

ffiffiffi
f

p
P−1
λ ðξÞ;

Ψð2Þ
l ðξÞ ¼

ffiffiffi
f

p
Q1

λðξÞ; ð2:21Þ
where λ ¼ l=ðn − 1Þ.
However, for l ¼ 0, these regularity conditions do not fix

the solutions since both are everywhere regular and the
choice is determined by enforcing the total charge as
measured by an observer at infinity to be the charge of
the point particle. This ambiguity is well-known [21,22]
and the appropriate choice of solutions is a constant for the
inner solution and 1=ðξþ 1Þ for the outer solution. We
prefer to express these in terms of associated Legendre
functions, i.e.,

Ψð1Þ
0 ðξÞ ¼

ffiffiffi
f

p
P−1
0 ðξÞ − 2

ffiffiffi
f

p
Q1

0ðξÞ;
Ψð2Þ

0 ðξÞ ¼
ffiffiffi
f

p
Q1

0ðξÞ: ð2:22Þ
Noting that the normalization constant is simply Cl ¼ −1
for all l, our mode-sum representation of the Green’s
function is

Gðx; x0Þ ¼ −
2

ffiffiffi
f

p
ðn − 1Þrn−1H

X∞
l¼0

Λðl; nÞPlðcos γnÞP−1
λ ðξ<ÞQ1

λðξ>Þ þ
4

ffiffiffi
f

p
ðn − 1Þrn−1H

Q1
0ðξÞQ1

0ðξ0Þ: ð2:23Þ

Finally, the convolution of the Green’s function with the
source term appearing in Eq. (2.4) yields

ΦðxÞ ¼ −e
ffiffiffiffiffi
f0

p
Gðx; x0Þ; ð2:24Þ

which results in the mode-sum representation of the
electrostatic potential

ΦðxÞ ¼ 2e
ffiffiffi
f

p ffiffiffiffiffi
f0

p
ðn − 1Þrn−1H

X∞
l¼0

Λðl; nÞPlðcos γnÞP−1
λ ðξ<ÞQ1

λðξ>Þ

−
4e

ðn − 1Þrn−1H

1

ðξþ 1Þðξ0 þ 1Þ ; ð2:25Þ

where we have used the fact that f ¼ ðξ − 1Þ=ðξþ 1Þ and
Q1

0ðξÞ ¼ −1=
ffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − 1

p
. In the four-dimensional Schwarzs-

child spacetime, we can sum these modes to retrieve the
Copson-Linet [22,23] closed-form electrostatic field.

B. Closed form static field in five dimensions

In this section, we specialize to the case of five
dimensions (n ¼ 3). We will derive the closed-form rep-
resentation of the electrostatic field by summing the mode-
sum representation derived in the previous section.

For n ¼ 3, the generalized Legendre function has the
simple trigonometric representation

Plðcos γ3Þ ¼
sinðlþ 1Þγ3
ðlþ 1Þ sin γ3

; ð2:26Þ

which is easily verified by substituting into Eq. (2.14).
Henceforth, we shall drop the subscript on γ3 for typo-
graphical convenience. The mode-sum representation of
the field is now given by

ΦðxÞ ¼ e
ffiffiffi
f

p ffiffiffiffiffi
f0

p
r2H sin γ

X∞
l¼0

ðlþ 1Þ sinðlþ 1ÞγP−1
l=2ðξ<ÞQ1

l=2ðξ>Þ

−
er2H
2r2r20

: ð2:27Þ

Now consider the standard Legendre addition
formula [24]

Qνðξξ0 − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨÞ

¼
X∞
k¼−∞

e−ikπP−k
ν ðξ<ÞQk

νðξ>Þ cos kΨ ð2:28Þ
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valid for all ν ≠ −1;−2;−3;…, and taking the Fourier
inverse allows us to express a product of associated
Legendre functions in terms of a single Legendre function,

e−ikπP−k
ν ðξ<ÞQk

νðξ>Þ ¼
1

2π

Z
2π

0

cos kΨ

×Qνðξξ0 − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨÞdΨ: ð2:29Þ

Employing this identity in our expression for the field
above yields

ΦðxÞ ¼ −
e

ffiffiffi
f

p ffiffiffiffiffi
f0

p
2πr2H sin γ

Z
2π

0

cosΨ
X∞
l¼0

ðlþ 1Þ sinðlþ 1Þγ

×Ql=2ðξξ0 − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨÞdΨ −
er2H
2r2r20

:

ð2:30Þ

In Ref. [25], we find the summation formula

X∞
l¼0

cosðlþ 1ÞγQl=2ðzÞ

¼ 1

ð2z − 2 cos 2γÞ1=2
�
π

2
þ arctan

2 cos γ

ð2z − 2 cos 2γÞ1=2
�
:

ð2:31Þ

Differentiating with respect to γ gives

X∞
l¼0

ðlþ 1Þ sinðlþ 1ÞγQl=2ðzÞ

¼ sin γ
ðz − cos 2γÞ þ

π sin γ cos γffiffiffi
2

p ðz − cos 2γÞ3=2

þ
ffiffiffi
2

p
sin γ cos γ arctanð 2 cos γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2z−2 cos 2γ
p Þ

ðz − cos 2γÞ3=2 ; ð2:32Þ

which permits us to sum the modes in our electrostatic
potential to obtain the integral representation

ΦðxÞ ¼ −
e

ffiffiffi
f

p ffiffiffiffiffi
f0

p
2πr2H

Z
2π

0

�
1

ρ
þ

ffiffiffi
2

p
π cos γ

ρ3=2

−
ffiffiffi
2

p
cos γ

ρ3=2
arctan

� ffiffiffiffiffi
2ρ

p
2 cos γ

��
cosΨdΨ −

er2H
2r2r20

;

ð2:33Þ

where

ρ ¼ ξξ0 − cos 2γ − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨ: ð2:34Þ

In arriving at (2.33), we have restricted attention to 0 ≤
γ ≤ π=2 and made use of the identity,

arctanðxÞ ¼ π

2
− arctanð1=xÞ; x > 0: ð2:35Þ

Defining

χ ¼ ξξ0 − cos 2γ

ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 ; ð2:36Þ

we can recast our integrals as

ΦðxÞ ¼ −
e

ffiffiffi
f

p ffiffiffiffiffi
f0

p
2πr2H

�
1

ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 I
ðeÞ
1

þ
ffiffiffi
2

p
π cos γ

ðξ2 − 1Þ3=4ðξ20 − 1Þ3=4 I
ðeÞ
2

−
ffiffiffi
2

p
cos γ

ðξ2 − 1Þ3=4ðξ20 − 1Þ3=4 I
ðeÞ
3

�
−

er2H
2r2r20

; ð2:37Þ

where

I ðeÞ
1 ¼

Z
2π

0

cosΨ
ðχ − cosΨÞ dΨ;

I ðeÞ
2 ¼

Z
2π

0

cosΨ

ðχ − cosΨÞ3=2 dΨ;

I ðeÞ
3 ¼

Z
2π

0

arctan½ðξ2−1Þ1=4ðξ20−1Þ1=4ffiffi
2

p
cos γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ − cosΨ

p � cosΨ
ðχ − cosΨÞ3=2 dΨ:

ð2:38Þ

The first two of these are straightforward to integrate;
introducing the notation

z� ¼ χ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
; ð2:39Þ

then we have

I ðeÞ
1 ¼ 2π

z−ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p ;

I ðeÞ
2 ¼ −2

d
dχ

Z
2π

0

cosΨ

ðχ − cosΨÞ1=2 dΨ

¼ −8
ffiffiffi
2

p d
dχ

�
Kðz−Þ − Eðz−Þffiffiffiffiffi

z−
p

�

¼ 4
ffiffiffi
2

p ffiffiffiffiffi
zþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
−Kðz−Þ þ

χffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðz−Þ
�
; ð2:40Þ

where EðzÞ, KðzÞ are the complete elliptic integral func-
tions of the first and second kind, respectively. In arriving at
the last line above, we made use of standard identities for
derivatives of elliptic integrals [24] and we also used the
fact that z− ¼ 1=zþ.
The third of these integrals seems troublesome at

first glance, but can be done by moving to the complex
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plane and treating the branch points with sufficient care. We
make the following transformation

z ¼ eiΨ ⇒ dΨ ¼ dz
iz

and cosΨ ¼ 1

2
ðzþ 1=zÞ:

ð2:41Þ

In terms of z, the integral goes around the unit circle in the
complex plane and may be written as

I ðeÞ
3 ¼ i

ffiffiffi
2

p I
fðzÞðz2 þ 1Þ

ðz − z−Þ2ðz − zþÞ2
dz; ð2:42Þ

where

fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z−Þðz − zþÞ

z

r
arctanh

�ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
2 cos γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − z−Þðz − zþÞ

z

r �
; ð2:43Þ

and z� are defined in Eq. (2.39). One can show that fðzÞ is
holomorphic in a neighborhood of z� but has branch points
at z ¼ 0 and at

~z� ¼ ~χ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~χ2 − 1

q
; ð2:44Þ

where

~χ ¼ ξξ0 þ 1

ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 : ð2:45Þ

We note that ~z− < z− and ~zþ > zþ and hence introducing
branch cuts on the real axis from ½0; ~z−� and ½~zþ;∞Þ yields
a single-valued holomorphic integrand except at isolated
simple poles at z�. Of these poles, only z− lies inside the
unit circle.
Now we consider the integral around the deformed

contour Γ which consists of (see Fig. 1):
(i) a circular arc Γ1 traced counterclockwise from

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
− iϵ to −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
þ iϵ,

(ii) a horizontal line segment I1 from −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
þ iϵ

to ~z− þ iϵ,
(iii) a semicircle Γϵ of radius ϵ centered at ~z− and traced

clockwise and

(iv) a horizontal line segment I2 from ~z− − iϵ
to −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
− iϵ.

Hence the integral around the contour Γ is given sche-
matically by

Z
Γ
¼

Z
Γ1

þ
Z
I1

þ
Z
Γϵ

þ
Z
I2

ð2:46Þ

which can be evaluated by the Cauchy Residue Theorem
yielding

Z
Γ
¼ −πi

ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
cos γ

χffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p : ð2:47Þ

In the limit as ϵ → 0 the integral around Γ1 tends to the
closed contour around the unit circle that we required and
so we obtain

I
¼ lim

ϵ→0

Z
Γ1

¼ −πi
ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4

cos γ
χffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p

− lim
ϵ→0

�Z
I1

þ
Z
Γϵ

þ
Z
I2

�
: ð2:48Þ

Following standard textbook techniques, it is straightfor-
ward to show that the integral around Γϵ vanishes as ϵ → 0.
Moreover, in this limit the line integrals I1 and I2 cancel in
the left-half complex plane since the integrand is single-
valued there, but we pick up a contribution from these line
integrals across the cut since the arctanh is discontinuous
across the cut and the difference above and below is iπ.
Therefore, we have

lim
ϵ→0

�Z
I1

þ
Z
I2

�
¼ lim

ϵ→0

�Z
~z−þiϵ

0þiϵ
þ
Z

0−iϵ

~z−−iϵ

�

¼ −iπ
Z

~z−

0

x2 þ 1ffiffiffi
x

p ðx2 − 2xχ þ 1Þ3=2 dx:

ð2:49Þ

This integral can be written in terms of elliptic integrals as
FIG. 1 (color online). Plot of the branch cuts and the contour of
integration for I ðeÞ

3 .
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Z
~z−

0

x2 þ 1ffiffiffi
x

p ðx2 − 2xχ þ 1Þ3=2 dx

¼ −
2

ffiffiffiffiffi
zþ

p
ðχ2 − 1Þ

�
χEðψ ; z−Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
Fðψ ; z−Þ

�

þ ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
cos γ

χðχ − ~z−Þ
χ2 − 1

; ð2:50Þ

where

ψ ¼ arcsinð
ffiffiffiffiffiffiffiffiffiffi
~z−zþ

p
Þ: ð2:51Þ

Combining Eqs. (2.48)–(2.50) with Eq. (2.42) yields

I ðeÞ
3 ¼ π

ffiffiffi
2

p

χ2 − 1

�
2

ffiffiffiffiffi
zþ

p �
χEðψ ; z−Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
Fðψ ; z−Þ

�

þ ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
cos γ

χð~z− − z−Þ
�
: ð2:52Þ

Finally, the electrostatic field is given by

ΦðxÞ ¼ −
e

r2Hðξþ 1Þðξ0 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
2χ2 − χ ~z− − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p

−
2

ffiffiffiffiffi
zþ

p
cos γ

ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4

×

�
2

�
Kðz−Þ −

χffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðz−Þ
�

−
�
Fðψ ; z−Þ −

χffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðψ ; z−Þ
���

; ð2:53Þ

where γ, ξ, χ, z�, ~z� and ψ are defined in Eqs. (2.13),
(2.18), (2.36), (2.39), (2.44) and (2.51), respectively. Now,
recall that, since we have employed the identity (2.35) to

compute I ðeÞ
3 , this expression is valid only for 0 ≤ γ ≤ π=2.

We can analytically continue the elliptic integral functions

that appear in our expression for I ðeÞ
3 which results in the

following representation for the field, valid over the entire
range 0 ≤ γ ≤ π,

ΦðxÞ ¼ −
e

r2Hðξþ 1Þðξ0 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
2χ2 − χ ~z− − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p

−
2

ffiffiffiffiffi
zþ

p
cos γ

ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
�
2Θðcos γÞ

�
Kðz−Þ

−
χffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p Eðz−Þ

�
− ð2Θðcos γÞ − 1Þ

�
Fðψ ; z−Þ

−
χffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p Eðψ ; z−Þ

���
; ð2:54Þ

where ΘðzÞ is the Heaviside step function. We have
checked that this field does indeed satisfy the wave

equation and that it agrees numerically with its correspond-
ing mode-sum representation.

III. THE SCALAR FIELD

In this section, we apply the previous analysis to a static
scalar charge. The calculation is much the same as the
electrostatic case and so we proceed with less details than
before.

A. The wave equation

A static scalar particle with charge q at position x0 in a
static, spherically symmetric ðnþ 2Þ-dimensional space-
time satisfies the ðnþ 1Þ-dimensional Helmholtz equation

f∇2 þ Aα∂αgφðxÞ ¼ −Ωnμ; ð3:1Þ

where

μ ¼ q

ffiffiffiffiffi
f0

p
rn0

δðr − r0ÞδðΩ;Ω0Þ: ð3:2Þ

The vector field Aα appearing in the potential is the same as
in the electrostatic case (2.5) but note that the potential has
the opposite sign. The scalar self-force arising from the
static scalar charge interacting with its own field has only a
component in the radial direction and is formally given by

Fr ¼ qf0∂rφðx0Þ: ð3:3Þ

As before, we need to regularize the gradient of the field
before evaluating at the location of the charge. The
corresponding Green’s function for the static scalar wave
equation is

f∇2 þ Aα∂αgGðx; x0Þ ¼ −Ωn

ffiffiffiffiffiffiffiffiffiffi
fðr0Þp
r0n

δðr − r0ÞδðΩ;Ω0Þ
ð3:4Þ

which is precisely Eq. (2.8) with the transformation
Aα → −Aα. For the Schwarzschild-Tangherlini spacetime,
this yields

�
r2

∂2

∂r2 þ r

�
nþ rf0

f

� ∂
∂rþ

1

f
D2

n

�
Gðx; x0Þ

¼ −
Ωn

r0n−2
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp δðr − r0ÞδðΩ;Ω0Þ: ð3:5Þ

The Green’s function is again decomposed in a basis of
generalized spherical harmonics as in Eq. (2.16), where
now the radial part glðr; r0Þ satisfies
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�
r2

d2

dr2
þ r

�
nþ rf0

f

�
d
dr

−
lðlþ n − 1Þ

f

�
glðr; r0Þ

¼ −
δðr − r0Þ

r0n−2
ffiffiffiffiffiffiffiffiffiffi
fðr0Þp : ð3:6Þ

In terms of the dimensionless radius ξ defined in Eq. (2.18),
this is

�
d
dξ

�
ðξ2 − 1Þ d

dξ

�
−
lðlþ n − 1Þ
ðn − 1Þ2

�
glðξ; ξ0Þ

¼ −
2

ffiffiffiffiffiffiffiffiffiffi
fðξ0Þp

ðn − 1Þrn−1H
δðξ − ξ0Þ: ð3:7Þ

The solutions of the corresponding homogeneous equation
are Legendre functions of degree λ ¼ l=ðn − 1Þ. We choose
the Legendre function of the first kind PλðξÞ to be the inner
solution regular at the horizon and the Legendre function of
the second kind QλðξÞ to be the outer solution regular at
infinity. Unlike the electrostatic case, there is no monopole
ambiguity and so the mode-sum representation of the
Green’s function is

Gðx; x0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
fðξ0Þp

ðn− 1Þrn−1H

X∞
l¼0

Λðl; nÞPlðcos γnÞPλðξ<ÞQλðξ>Þ:

ð3:8Þ

To obtain the field at x due to a static charge at x0, we
convolve the Green’s function with the scalar source which
results in

φðxÞ ¼ 2q
ffiffiffiffiffi
f0

p
ðn − 1Þrn−1H

X∞
l¼0

Λðl; nÞPlðcos γnÞPλðξ<ÞQλðξ>Þ:

ð3:9Þ

B. Closed form static field in five dimensions

For n ¼ 3, we adopt the representation (2.26) for the
generalized Legendre function which leads to the mode-
sum representation of the static scalar field

φðxÞ ¼ q
ffiffiffiffiffi
f0

p
r2H sin γ

X∞
l¼0

ðlþ 1Þ sinðlþ 1ÞγPl=2ðξ<ÞQl=2ðξ>Þ:

ð3:10Þ

From Eq. (2.29), we have that

Pl=2ðξ<ÞQl=2ðξ>Þ

¼ 1

2π

Z
2π

0

Ql=2ðξξ0 − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨÞdΨ;

ð3:11Þ

which allows us to recast the mode-sum as

φðxÞ ¼ q
ffiffiffiffiffi
f0

p
2πr2H sin γ

Z
2π

0

X∞
l¼0

ðlþ 1Þ sinðlþ 1Þγ

×Ql=2ðξξ0 − ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 cosΨÞdΨ: ð3:12Þ

As in the electrostatic case, the sum can be performed
using Eq. (2.32) which results in the integral representation

φðxÞ ¼ q
ffiffiffiffiffi
f0

p
2πr2H

Z
2π

0

�
1

ρ
þ π

ffiffiffi
2

p
cos γ

ρ3=2

−

ffiffiffi
2

p
cos γ arctanð

ffiffiffiffi
2ρ

p
2 cos γÞ

ρ3=2

�
dΨ; ð3:13Þ

where ρ is defined by Eq. (2.34). We write these integrals in
terms of χ as

φðxÞ ¼ q
ffiffiffiffiffi
f0

p
2πr2H

�
1

ðξ2 − 1Þ1=2ðξ20 − 1Þ1=2 I
ðsÞ
1

þ π
ffiffiffi
2

p
cos γ

ðξ2 − 1Þ3=4ðξ20 − 1Þ3=4 I
ðsÞ
2

−
ffiffiffi
2

p
cos γ

ðξ2 − 1Þ3=4ðξ20 − 1Þ3=4 I
ðsÞ
3

�
; ð3:14Þ

where

I ðsÞ
1 ¼

Z
2π

0

1

ðχ − cosΨÞ dΨ;

I ðsÞ
2 ¼

Z
2π

0

1

ðχ − cosΨÞ3=2 dΨ;

I ðsÞ
3 ¼

Z
2π

0

arctan½ðξ2−1Þ1=4ðξ20−1Þ1=4ffiffi
2

p
cos γ

ðχ − cosΨÞ1=2�
ðχ − cosΨÞ3=2 dΨ:

ð3:15Þ

The first integral can be performed in terms of elementary
functions while the second results in a combination of
complete elliptic integral functions. Specifically, we have

I ðsÞ
1 ¼ 2πffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2 − 1
p

I ðsÞ
2 ¼ −4

ffiffiffi
2

p ffiffiffiffiffi
z−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
Kðz−Þ −

zþffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðz−Þ
�
;

ð3:16Þ

where z� are given by Eq. (2.39). The remaining integral

I ðsÞ
3 is done by taking the integral around the unit circle in

the complex plane
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I ðsÞ
3 ¼ i2

ffiffiffi
2

p I
zfðzÞ

ðz − zþÞ2ðz − z−Þ2
dz; ð3:17Þ

where fðzÞ is defined in Eq. (2.43). We consider the same
deformed contour as in the electrostatic case and again we
pick up a contribution only from the pole at z ¼ z− and a
contribution across the branch cut which lies along ½0; ~z−�.
The result is

I ðsÞ
3 ¼ π

ffiffiffi
2

p

χ2 − 1

�
2

ffiffiffiffiffi
z−

p �
zþEðψ ; z−Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
Fðψ ; z−Þ

�

þ ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4
cos γ

ð~z− − z−Þ
�
; ð3:18Þ

where ψ is given by Eq. (2.51).
Finally, the static scalar field is given by

φðxÞ ¼ q
ffiffiffiffiffi
f0

p

r2Hðξ2 − 1Þ1=2ðξ20 − 1Þ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
χ − ~z−ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p

−
2 cos γ

ffiffiffiffiffi
z−

p
ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4

×

�
2

�
Kðz−Þ −

zþffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðz−Þ
�

−
�
Fðψ ; z−Þ −

zþffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðψ ; z−Þ
���

; ð3:19Þ

where γ, ξ, χ, z�, ~z� and ψ are defined in Eqs. (2.13),
(2.18), (2.36), (2.39), (2.44) and (2.51), respectively.
Again, this expression is valid only for 0 ≤ γ ≤ π=2 but
can be analytically continued as before, resulting in

φðxÞ ¼ q
ffiffiffiffiffi
f0

p

r2Hðξ2 − 1Þ1=2ðξ20 − 1Þ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
�
χ − ~z−ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p

−
2 cos γ

ffiffiffiffiffi
z−

p
ðξ2 − 1Þ1=4ðξ20 − 1Þ1=4

�
2Θðcos γÞ

�
Kðz−Þ

−
zþffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðz−Þ
�
− ð2Θðcos γÞ − 1Þ

�
Fðψ ; z−Þ

−
zþffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p Eðψ ; z−Þ
���

: ð3:20Þ

We have checked that this field satisfies the static scalar
wave equation and agrees numerically with its correspond-
ing mode-sum representation.

IV. THE SINGULAR FIELD FOR STATIC
CHARGES

A. Hadamard Green’s functions

The formal expression for the self-force on a point
charge involves taking the gradient of a field evaluated at

the location of the charge. This is clearly divergent as
implied by the delta distribution source and therefore
requires regularization. In four dimensions, the most
elegant regularization prescription that results in the correct
self-force is the Detweiler-Whiting [9] construction of the
singular field which yields, upon subtraction from the
retarded field, a regular homogeneous solution to the wave
equation. The Detweiler-Whiting Green’s function is

GDWðx; x0Þ ¼
1

2
ðΔ1=2ðx; x0ÞδðσÞ þ ΘðσÞVðx; x0ÞÞ; ð4:1Þ

where σðx; x0Þ is Synge’s [26] world function which is half
the square of the geodesic distance between x and x0, ΘðzÞ
is the step function, Δðx; x0Þ is the Van Vleck-Morette
determinant and Vðx; x0Þ is a regular, symmetric bisolution
of the homogeneous equation. In even dimensions, it is a
straightforward matter to construct the higher dimensional
analogue of the Detweiler-Whiting Green’s function,
namely,

GDWðx; x0Þ ¼
π

2

Ωd−2

ð2πÞd=2
�
ð−1Þd=2−2δðd=2−2ÞðσÞUðx; x0Þ

þ 1

Γðd
2
− 1ÞΘðσÞVðx; x

0Þ
�
: ð4:2Þ

This Green’s function can be constructed axiomatically [1]
by demanding that the appropriate parametrix satisfy
(1) ð□ − ξRÞGSðx; x0Þ ¼ −Ωd−2δðx; x0Þ,
(2) GSðx; x0Þ ¼ GSðx0; xÞ,
(3) GSðx; x0Þ ¼ 0, if σðx; x0Þ < 0.

In odd dimensions, by contrast, it seems likely that no
Green’s function satisfying these properties exists, even in
Minkowski spacetime; a variety of simple choices of ansatz
can be shown to not satisfy the properties above.
If we are only interested in a static charge in a static

spacetime, then the wave equation reduces to an elliptic
equation on a Riemannian manifold, which has a unique
solution subject to boundary conditions. Although the
Green’s function for the physical field is sensitive to global
properties such as boundary conditions, within some local
neighborhood all Green’s functions for all choices of
boundary conditions are described by the same universal
Hadamard form, which we define below. Each propagator
within this family of Hadamard Green’s functions is para-
metrized by a particular choice for some regular biscalar
W0ðx; x0Þ. It is the difference between this biscalar
W0ðx; x0Þ for the physical field and the singular field that
gives rise to the self-force. We assume that our singular
field constructed from a Hadamard Green’s function [for
some judicious choice of W0ðx; x0Þ] does not exert a force
on the charge and hence subtracting from the physical field
and taking the gradient leads to the correct self-force. This
assumption can be partially justified on the basis of Harte’s
formalism [27–30] for self-fields on extended bodies
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wherein it is proved that the self-force contribution from a
singular field obtained from a geometrically constructed
symmetric two-point function acts only to renormalize the
moments of the body. Hence our results for the self-force
ought to be correct up to such renormalizations.
In his seminal lectures, Hadamard [31] constructed a

local solution to an arbitrary second-order linear partial
differential equation by assuming the solution has a series
expansion in Synge’s world function σðx; x0Þ. The expan-
sion is only valid in a neighborhood where x and x0 are
connected by a unique geodesic, the so-called normal
convex neighborhood. We present only a brief overview
here, and we refer the reader to the detailed description of
Hadamard renormalization in arbitrary dimensions given
in Ref. [32].
In d odd dimensions, the universal Hadamard form for a

Green’s function takes the form

GHðx; x0Þ ∼
Uðx; x0Þ
σd=2−1

þWðx; x0Þ; ð4:3Þ

where Uðx; x0Þ and Wðx; x0Þ are regular biscalars and U
satisfies coincidence boundary condition ½U� ¼ 1 (we have
adopted square brackets around a bitensor to denote the
coincidence limit x → x0). Substituting the ansatz

Uðx; x0Þ ¼
X∞
k¼0

Ukðx; x0Þσk

Wðx; x0Þ ¼
X∞
k¼0

Wkðx; x0Þσk ð4:4Þ

into the wave equation yields a set of recursive transport
equations for the coefficients Uk and Wk. The recursion
relations completely determine all of the Uk coefficients
and also determine all of the Wk coefficients except forW0

which remains arbitrary. This implies that the Hadamard
representation of a Green’s function is not completely
determined by a local expansion. For the physical field,W0

encodes global information such as boundary conditions. In
quantum field theory, for the Hadamard representation of
the two-point function, W0 encodes the information about
the quantum state of the system.
In d even dimensions, the Hadamard form is given by

GHðx; x0Þ ∼
Uðx; x0Þ
σd=2−1

þ Vðx; x0Þ log σ þWðx; x0Þ; ð4:5Þ

where Uðx; x0Þ, Vðx; x0Þ and Wðx; x0Þ are regular biscalars.
One can make the log term explicitly dimensionless by
introducing a length scale s, and writing it as V log σ=s2 but
this length scale can be absorbed into a redefinition of
Wðx; x0Þ. The biscalar Uðx; x0Þ again satisfies the boundary
condition ½U� ¼ 1, but unlike the odd-dimensional case
now possesses a finite series expansion

Uðx; x0Þ ¼
Xd=2−2
k¼0

Ukðx; x0Þσk: ð4:6Þ

Assuming the series expansions

Vðx; x0Þ ¼
X∞
k¼0

Vkðx; x0Þσk;

Wðx; x0Þ ¼
X∞
k¼0

Wkðx; x0Þσk; ð4:7Þ

and substituting into the wave equation determines the Uk
and Vk completely. As before, this determines all of theWk
coefficients except for W0.
If the wave equation is self-adjoint, say,

f∇2 − PðxÞgGHðx; x0Þ ¼ −Ωd−2δðx; x0Þ; ð4:8Þ

where PðxÞ is a potential that does not contain any
derivative operators, then Uðx; x0Þ, Vðx; x0Þ and Wðx; x0Þ
are symmetric biscalars. The biscalar Wðx; x0Þ is then a
bisolution of the homogeneous wave equation in odd
dimensions while Vðx; x0Þ is a bisolution of the homo-
geneous wave equation in even dimensions. Furthermore,
we have that (see, for example, [33,34])

U0ðx; x0Þ ¼ Δ1=2ðx; x0Þ ¼ 1þ 1

12
Rα0β0σ

;α0σ;β
0

−
1

24
Rα0β0;γ0σ

;α0σ;β
0
σ;γ

0 þ Oðσ2Þ ð4:9Þ

while V0 and W0 possess covariant Taylor expansions of
the form

V0ðx; x0Þ ¼ vðx0Þ − 1

2
v;a0 ðx0Þσ;a0 þ OðσÞ;

W0ðx; x0Þ ¼ wðx0Þ − 1

2
w;a0 ðx0Þσ;a0 þ OðσÞ; ð4:10Þ

where vðx0Þ ¼ ½Vðx; x0Þ� and wðx0Þ ¼ ½Wðx; x0Þ�. Explicit
expressions for vðx0Þ are obtained by taking coincidence
limits of its transport equation, for example, for d ¼ 4 we
have vðx0Þ ¼ 1

2
ðPðx0Þ − 1

6
Rðx0ÞÞ.

B. Constraining wðxÞ for a static charge in a 5D
static spacetime

For a static charge located at x0 in a 4D static spacetime,
it has been shown [35] that the Detweiler-Whiting Green’s
function is equivalent to the three-dimensional Hadamard
Green’s function on a constant time slice with wðx0Þ ¼ 0, at
least up to the order required for the computation of the
self-force [assuming the singular field is derived from a
symmetric Hadamard Green’s function, then only wðx0Þ
and its derivative appear in the self-force]. For ultrastatic

PETER TAYLOR and ÉANNA É. FLANAGAN PHYSICAL REVIEW D 92, 084032 (2015)

084032-10



spacetimes (gtt ¼ −1), they are equivalent up to all orders
with Wðx; x0Þ ¼ 0. In these cases, it is possible to deter-
mine wðxÞ by direct comparison with the known Detweiler-
Whiting field. In this section, we address whether we can
determine wðxÞ without knowing the corresponding
Detweiler-Whiting field. We note that in Ref. [14], the
authors adopt a definition for the self-force that involves a
spherical averaging procedure and the smooth part of the
Green’s function does not contribute to the self-force after
this averaging is performed. Thus, their analysis effectively
corresponds to choosing the singular field for which
W0ðx; x0Þ ¼ 0. However, such a spherical averaging results
in a self-force that depends on the details of the model
charge. For example, one can model the point particle as a
sphere of constant proper radius centered at the charge’s
location or alternatively as a sphere of constant proper
volume centered at the charge’s location; the resultant self-
force is different for each model. Moreover, the self-force
diverges as the radius of this sphere shrinks to zero.
Consider now a static electric charge in a d-dimensional

static spacetime. We decompose the metric into a lapse
function N and a ðd − 1Þ-dimensional Riemannian metric
hαβ. The only nontrivial component of the vector potential
is the time component Φt ¼ Φ which satisfies

f∇2 − Aα∂αgΦðxÞ ¼ Ωd−2N2jt; ð4:11Þ

where ∇2 ¼ hαβ∇α∇β and

Aα ¼
1

N
∂αN; jt ¼ eN−1

0 δd−1ðx; x0Þ: ð4:12Þ

We wish to rewrite this wave equation in self-adjoint form.
This ensures that the corresponding Green’s function will
be symmetric in its arguments and hence our singular field
will exert no force on the charge, but acts only to renorm-
alize the moments of the body [27]. We can express the
electrostatic wave equation as

1

N
ffiffiffi
h

p ∂
∂xα

� ffiffiffi
h

p
hαβ

N
∂Φ
∂xβ

�
¼ Ωd−2jt; ð4:13Þ

which suggests that electrostatic potential satisfies a
Poisson equation on a conformally related metric with a
rescaled charge. To see this, we choose our conformal
metric ~hαβ to satisfy

ffiffiffi
~h

p
~hαβ ¼

ffiffiffi
h

p
hαβ

N
; ð4:14Þ

which in turn implies

~hαβ ¼ N−2=ðd−3Þhαβ; ð4:15Þ

whence Eq. (4.13) may be recast into the Poisson form

~∇2Φ ¼ eΩd−2 ~δd−1ðx; x0Þ; ð4:16Þ

where ~∇2 is the D’Alembertian operator with respect to the

conformal metric ~hαβ and ~δðx; x0Þ ¼ δðx − x0Þ=
ffiffiffi
~h

p
.

Restricting attention to a static charge in a 5D spacetime,
then ~hαβ ¼ N−1hαβ and the Hadamard Green’s function
corresponding to the operator ~∇2 has the form

~GHðx; x0Þ ¼
1

4

�
~Δ1=2ðx; x0Þ

~σ
þ ~Vðx; x0Þ log ~σ þ ~Wðx; x0Þ

�
;

ð4:17Þ

where all biscalars appearing here are with respect to ~hαβ. In
light of the expansions (4.9)–(4.10), we have that

~Δ1=2ðx; x0Þ ¼ 1þ 1

12
~Rα0β0 ~σ

;α0 ~σ;β
0 −

1

24
~Rα0β0;γ0 ~σ

;α0 ~σ;β
0
~σ;γ

0

þ Oð ~σ2Þ
~V0ðx; x0Þ ¼ −

1

12
~Rðx0Þ þ 1

24
~R;a0 ðx0Þ ~σ;a0 þ Oð ~σÞ;

~W0ðx; x0Þ ¼ ~wðx0Þ − 1

2
~w;a0 ðx0Þ ~σ;a0 þ Oð ~σÞ: ð4:18Þ

The singular field can be obtained by a trivial convolution
of this conformal Green’s function ~GH against the source
term in (4.16),

ΦSðxÞ ¼ −e ~GHðx; x0Þ

¼ −
e
4

�
~Δ1=2ðx; x0Þ

~σ
þ ~Vðx; x0Þ log ~σ þ ~Wðx; x0Þ

�
:

ð4:19Þ
Now computing the self-force requires evaluating the

gradient of the regular field ΦR ¼ Φ − ΦS before taking the
coincident limit x → x0. Hence only ~wðx0Þ ¼ ~w0 and its
derivative appear in the expression for the self-force.
Notwithstanding the arbitrariness of this function which
is necessary to encode different boundary conditions in the
physical field, one still expects the singular field to be
insensitive to such boundary conditions and hence ~wðxÞ for
the singular Green’s function ought to be locally con-
structed. We postulate the following axioms on ~w:
(1) ~w must transform appropriately under length re-

scalings. Explicitly, under a change of units of
length by a factor l, we have that ~σ → l2 ~σ, ~V →
l−2 ~V and ~GH → l−2 ~GH and hence by Eq. (4.17)

~w → l−2ð ~w − ~v log l2Þ: ð4:20Þ

This implies that ~w assumes the form

~w ¼ ~v log jQ1j þQ2; ð4:21Þ

STATIC SELF-FORCES IN A FIVE-DIMENSIONAL … PHYSICAL REVIEW D 92, 084032 (2015)

084032-11



where Q1 and Q2 are scalars with dimensions
inverse length squared ½L�−2.

(2) ~w must be constructed only from local geometrical
quantities. This is completely reasonable since the
singular field should only be sensitive to the local
physics near the particle. Since the singular field
satisfies the Poisson equation (4.16), the only geo-
metric scalars in the theory are curvature invariants
of ~hαβ. Since, the only curvature invariant with

dimensions ½L�−2 is the Ricci scalar on ~hαβ, the
possible terms appearing in Q1 and Q2 are of the
form FðKÞ ~R, where K is a dimensionless ratio of
curvature scalars, e.g., ~Rab

~Rab= ~R2, and F is an
arbitrary dimensionless function of such ratios.

(3) Finally, we assume that ~w does not depend on ratios
of curvature scalars. Unlike the previous two
axioms, this is a strong assumption. Obviously we
want our prescription to be valid for arbitrary static
spacetimes and the most straightforward way to
achieve this is to rule out such curvature ratios. The
more conservative way to achieve this would be to
impose analyticity in K in some complex neighbor-
hood of the positive real axis (see, for example, [36]
for a discussion in the context of quantum field
theory). It turns out that this restriction is not strong
enough to give any predictive power since there is
still an infinite space of functions that satisfy this
analyticity criterion [37], for example, FðKÞ ¼
K2=ð1þ K4Þ and FðKÞ ¼ K2 expð−K2Þ are smooth
functions satisfying FðKÞ → 0 as K → 0 and as
K → ∞. This axiom implies that

Q1;2 ¼ α1;2 ~R; ð4:22Þ
where α1;2 are arbitrary dimensionless constants.

Now consideration of the above axioms necessitates that

~w ¼ ~v log α1j ~Rj þ α2 ~R; α1 > 0: ð4:23Þ
There is still some redundancy in this construction. We note
from Eq. (4.18) that ~vðxÞ ¼ ~V0ðx; xÞ ¼ − 1

12
~RðxÞ, and

hence we can redefine our constants such that

~w ¼ ~v log α1j ~vj þ α2 ~v; α1 > 0: ð4:24Þ
Finally, we can absorb α1 into a redefinition of α2, for
example, defining α2 ¼ α − log α1 results in

~w ¼ ~v log j ~vj þ α~v: ð4:25Þ

The crux of this analysis is that we have reduced the
arbitrariness contained in the function ~wðxÞ down to a
single arbitrary dimensionless constant for an arbitrary
static 5D spacetime. The constant does not depend on the
particular spacetime.

The previous analysis applies almost verbatim for a
minimally coupled scalar field (or a nonminimally coupled
field in a vacuum spacetime) so we omit much of the
details. The field equation for a static scalar charge in a
static 5D spacetime can be recast into a Poisson equation

~∇2φðxÞ ¼ qN0
~δðx; x0Þ; ð4:26Þ

where now the wave operator is with respect to the metric

~hαβ ¼ Nhαβ: ð4:27Þ

The singular field has the form

φSðxÞ ¼
q
4
N0

�
~Δ1=2ðx; x0Þ

~σ
þ ~Vðx; x0Þ log ~σ þ ~Wðx; x0Þ

�
;

ð4:28Þ

where all quantities are functions of the metric (4.27). The
axioms we applied to the electrostatic case in order to reduce
the arbitrariness of the coincidence limit of ~W0ðx; x0Þ apply
also to the scalar case. Hence, ~wðxÞ has precisely the same
form as in the electrostatic case (4.25) but with

~v ¼ −
1

12
~R; ð4:29Þ

where ~R is now the Ricci scalar of the metric (4.27).

C. Singular field for a static charge in 5D
Schwarzschild-Tangherlini spacetime

We will now derive coordinate expansions for the
singular field of a static electric and scalar charge in the
5D Schwarzschild-Tangherlini spacetime. For an electric
charge, the singular field is given by Eq. (4.19) where the
biscalars therein possess expansions of the form (4.18) and
~wðxÞ is given by Eq. (4.25). Moreover, the metric that
induces the Poisson form of the electrostatic wave equation
is ~hαβ ¼ f−1=2hαβ where we recall that f ¼ 1 − r2H=r

2 and
the Ricci tensor and Ricci scalar on this metric are

~Rαβ ¼ diag

�
−

3r2H
2r4f2

ð3f þ 1Þ; r
2
H

r2f
ð3f − 1ÞΩAB

�
;

~R ¼ −
9

2

r4H
r6

ffiffiffi
f

p ; ð4:30Þ

where ΩAB is the metric on the 3-sphere. Combining
Eqs. (4.18), (4.19), (4.25) and (4.30) with a coordinate
expansion for ~σ yields a coordinate expansion for the
singular field. If we specialize to the situation where the
field point x and charge location x0 are separated only in
the radial direction, then defining Δr ¼ r − r0 and expand-
ing the expression (4.19) in powers of Δr gives
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ΦSðrÞ ¼ −
e
2

f3=20

Δr2
þ 3e
4rH

y3=20 f1=20

Δr
þ e
32r2H

y20
f1=20

�
32 − ð29þ 3αÞy0 − 3y0 log

�
3y30Δr2

16r2Hf
2
0

��

þ e
64r3H

y5=20 Δr
f3=20

�
80 − 6ð26þ 3αÞy0 þ ð71þ 15αÞy20 − 3y0ð6 − 5y0Þ log

�
3y30Δr2

16r2Hf
2
0

��
þ OðΔr2Þ; ð4:31Þ

where f0 ¼ fðr0Þ and we have expressed our expansion in
terms of an inverse dimensionless radius

y0 ¼
r2H
r20

: ð4:32Þ

For the static scalar charge in a 5D Schwarzschild-
Tangherlini spacetime, the singular field is given by
Eq. (4.28) with N0 ¼

ffiffiffiffiffi
f0

p
. The metric that induces the

Poisson form of the static scalar wave equation is

~hαβ ¼ f1=2hαβ for which the Ricci tensor and Ricci scalar
are

~Rαβ ¼ diag

�
3r4H
2r6f2

; 0; 0; 0

�
; ~R ¼ 3r4H

2r6f3=2
: ð4:33Þ

As in the electrostatic case, we combine Eqs. (4.18), (4.28),
(4.25) and (4.33) with a coordinate expansion for ~σ to
obtain a coordinate expansion for the singular field, which
for radial separation yields

φSðrÞ ¼
q
2

f0
Δr2

−
q
4rH

y3=20

Δr
−

q
96r2H

y20
f0

�
24 − ð19 − 3αÞy0 þ 3y0 log

�
y30Δr2

16r2Hf
2
0

��

−
q

64r3H

y5=20 Δr
f20

�
16 − 2ð10 − 3αÞy0 þ 3ð3 − αÞy20 þ 3y0ð2 − y0Þ log

�
y30Δr2

16r2Hf
2
0

��
þ OðΔr2Þ: ð4:34Þ

V. ELECTROSTATIC SELF-FORCE

In order to compute the self-force, we replace the field
gradient in the formal definition (2.7) with the regularized
field gradient before evaluating at the charge’s location,

Fr ¼ e
ffiffiffiffiffi
f0

p ∂rΦRðx0Þ ¼ e
ffiffiffiffiffi
f0

p
½∂rΦ − ∂rΦS�r¼r0 : ð5:1Þ

Rather than working with the coordinate-dependent self-
force, let us introduce the invariant

F ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabFaFb

q
¼ f−1=20 Fr ¼ e½∂rΦ − ∂rΦS�r¼r0 ; ð5:2Þ

which represents the magnitude of the force measured by
an observer at the charge’s location. The sign was chosen to
coincide with the sign of Fr. To compute F requires a
coordinate expansion for the electrostatic field which we
derived in closed form in Sec. II B. Taking the angular
coincidence limit γ ¼ 0 in Eq. (2.54) and expanding in
powers of Δr yields

ΦðrÞ ¼ −
e
2

f3=20

Δr2
þ 3e
4rH

y3=20 f1=20

Δr
−

e
32r2H

y0
f1=20

�
−4 − 28y0 þ 35y20 þ

ffiffiffiffiffi
f0

p
ð4þ 6y0Þ

þ 6y20 log

�
y0ð1þ

ffiffiffiffiffi
f0

p Þ
8

ffiffiffiffiffi
f0

p
�
þ 3y20 log

Δr2

r2Hf0

�
þ e
64r3H

y3=20 Δr
f3=20

�
8þ 60y0 − 180y20 þ 101y30

−
ffiffiffiffiffi
f0

p
ð8þ 16y0 − 30y20Þ − 6y20ð6 − 5y0Þ log

�
y0ð1þ

ffiffiffiffiffi
f0

p Þ
8

ffiffiffiffiffi
f0

p
�
− 3y20ð6 − 5y0Þ log

Δr2

r2Hf0

�
þ OðΔr2Þ; ð5:3Þ

where we have again expressed our series coefficients in
terms of y0 ¼ r2H=r

2
0. Adopting the expansions (4.31) and

(5.3) in the definition (5.2) results in the closed-form
expression for the force invariant (where for convenience,
we now drop the zero subscript and refer to the particle’s
coordinate location as r)

F ¼ e2

64r3H

y3=2

f3=2

	
−8þ 20yþ 6ð4 − 3α − 3 log 12Þy2

− 15ð2 − α − log 12Þy3 þ 2
ffiffiffi
f

p
ð4þ 8y − 15y2Þ

þ 6y2ð6 − 5yÞarctanh
ffiffiffi
f

p 

; ð5:4Þ
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where y ¼ r2H=r
2. We can simplify the form of this

expression by redefining the arbitrary coefficient

α → α − logð12Þ ð5:5Þ

whence the self-force assumes the form

F ¼ e2

64r3H

y3=2

f3=2
ð−8þ 20yþ 6ð4 − 3αÞy2 − 15ð2 − αÞy3

þ 2
ffiffiffi
f

p
ð4þ 8y − 15y2Þ þ 6y2ð6 − 5yÞarctanh

ffiffiffi
f

p
Þ:

ð5:6Þ

Evidently, the self-force depends on the arbitrary coeffi-
cient α, which was inherited from the arbitrariness of
W0ðx; x0Þ in the Hadamard regularization prescription.
This coefficient is dimensionless and so there are no
unresolved length scales in our expression for the self-
force, contrary to the results of Ref. [15]. Moreover, our
expression for the self-force does not depend on any simple
model for the electric charge and is regular for all r > rH,
contrary to the calculation of Ref. [14]. However, our
calculation does not inform us whether the first-order self-
force in 5D depends on internal structure, since there are
dimensionless parameters that characterize properties of a
body, and it is conceivable that our variable α could depend
on such parameters. For example, in 5D flat spacetime one
such dimensionless parameter is

1

e2

Z
d4xjtðxÞΦtðxÞjxj2; ð5:7Þ

which arises from the trace part of the quadrupole coupling
of the self-energy density of the body with an external
gravitational field. Moreover, such dependence on internal
structure for spherically symmetric bodies arises in the
second-order electromagnetic self force in four dimensions
in flat spacetime [38]. A hint that it may arise in the first-
order self-force in five dimensions is provided by the
perspective of effective field theory (see Refs. [39–41]
for the effective field theory approach to the self-force
problem). When one writes down all the possible terms in
an action for a charged point particle, one term that is
allowed is

c0e2
Z

~a2dτ; ð5:8Þ

where ~a is the covariant acceleration, τ is proper time and e
is the charge. (This term will give rise to higher-derivative
equations of motion but a second-order in time equation of
motion can be obtained by the usual reduction of order
technique). In four dimensions, the parameter c0 has
dimensions of length (in units with c ¼ 1), and so the
operator is an irrelevant operator: its effect becomes

negligible for very small bodies. In particular c0 would
be expected to be of order the size of the body. However, in
five dimensions, c0 is dimensionless, and so the operator is
marginal, and should give a nonvanishing contribution to
the equations of motion in the limit of small bodies. The
coefficient c0 may be a universal constant, independent of
body structure, or it may depend on the body’s internal
structure. In an upcoming paper [42], we will apply Harte’s
formalism [27–30] to address whether the self-force on
static bodies in arbitrary dimensions depends on internal
structure and further elucidate the connection between the
ambiguity in the choice of the singular field and renorm-
alizations of the body’s multipole moments.
The asymptotic form of F at infinity (y → 0) is

F ¼ e2r2H
2r5

þ Oðr−6Þ; ð5:9Þ

while near the horizon (y ¼ 1) we have

F ¼ e2

128
ffiffiffi
2

p
r3=2H

�
2 − α

ðr − rHÞ3=2
þ 158 − 63α

4rHðr − rHÞ1=2
þ 128

ffiffiffi
2

p

r3=2H

�

þ Oððr − rHÞ1=2Þ: ð5:10Þ

It is clear that for any choice of α, the force invariant
diverges as we approach the horizon which is in agreement
with the near-horizon behavior found in Ref. [14]. We note
that the leading order pathology can be removed by
choosing α ¼ 2 but the subleading divergence survives.
Moreover, the force is everywhere repulsive for α ≤ 2 but

FIG. 2 (color online). Plot of the self-force invariant on a static
electric charge in a 5D black hole spacetime. We have plotted the
force as a function of the inverse dimensionless radius y ¼ r2H=r

2

for a set of α values. We see that the force diverges for all values
of α as the static charge is placed on the horizon y → 1. However,
for one particular value, αcrit ¼ 2, the leading order divergence
vanishes, and we have a milder singularity on the horizon. We
also see that the force is repulsive for α < αcrit, while for α > αcrit
the force becomes attractive within some radius that depends
on α.

PETER TAYLOR and ÉANNA É. FLANAGAN PHYSICAL REVIEW D 92, 084032 (2015)

084032-14



for α > 2, the force remains repulsive far from the black
hole but is attractive within some critical radius that
depends on α (see Fig. 2).
That the self-force diverges as the horizon is approached

seems intuitive since a particle requires infinite acceleration
to remain static on the horizon. For example, the self-
force on a static scalar charge diverges on the ergosphere in
the Kerr spacetime [43] since it requires infinite acceler-
ation to hold the charge fixed there. On the other hand,
this “intuition” fails in certain cases, for example, the
electrostatic self-force invariant in Schwarzschild space-
time is F ¼ e2M=r3 [44], which is everywhere regular.
Presumably, the regularity of the force on the horizon is a
coincidence of the Schwarzschild geometry in four dimen-
sions and there appears to be no reason to expect this to be
true in general.

VI. STATIC SCALAR SELF-FORCE

The scalar self-force is defined by

Fr ¼ qf0∂rφRðx0Þ ¼ qf0½∂rφ − ∂rφS�r¼r0 : ð6:1Þ

The force invariant F is defined by

F ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gabFaFb

q
¼ f−1=20 Fr ¼ q

ffiffiffiffiffi
f0

p
½∂rφ − ∂rφS�r¼r0 :

ð6:2Þ

The radially separated coordinate expansion for the scalar
field is obtained by expanding the closed-form representa-
tion (3.20) in Δr yielding

φðrÞ ¼ q
2

f0
Δr2

−
q
4rH

y3=20

Δr
þ q
32r2H

y0
f0

�
−4 − 4y0 þ 3y20 þ

ffiffiffiffiffi
f0

p
ð4 − 2y0Þ

− 2y20 log

�
y0ð1þ

ffiffiffiffiffi
f0

p Þ
8

ffiffiffiffiffi
f0

p
�
− y20 log

Δr2

r2Hf0

�
þ q
64r3H

y3=20 Δr
f20

�
−8 − 4y0 − 4y20 þ y30

þ
ffiffiffiffiffi
f0

p
ð8 − 8y0 þ 6y20Þ þ 6y20ðy0 − 2Þ log

�
y0ð1þ

ffiffiffiffiffi
f0

p Þ
8

ffiffiffiffiffi
f0

p
�
þ 3y20ðy0 − 2Þ log Δr2

r2Hf0

�
þ OðΔr2Þ: ð6:3Þ

Substituting Eqs. (4.34) and (6.3) into the definition (6.2)
yields (again dropping the subscript 0 for typographical
convenience)

F ¼ q2

64r3H

y3=2

f3=2
ð8 − 12yþ 6ð4 − α − log 4Þy2

− ð10 − 3α − 3 log 4Þy3 −
ffiffiffi
f

p
ð8 − 8yþ 6y2Þ

þ 6y2ð2 − yÞarctanh
ffiffiffi
f

p
Þ: ð6:4Þ

Redefining α by

α → α − log 4; ð6:5Þ

produces a more simple form,

F ¼ q2

64r3H

y3=2

f3=2
ð8 − 12yþ 6ð4 − αÞy2 − ð10 − 3αÞy3

−
ffiffiffi
f

p
ð8 − 8yþ 6y2Þ þ 6y2ð2 − yÞarctanh

ffiffiffi
f

p
Þ:

ð6:6Þ

As for the electrostatic self-force, the scalar self-force does
not have any undetermined length scales and need not
depend on the internal structure of the charge.

For large r, the force invariant behaves as

F ¼ 3q2r4H
16r7

logð2r=rHÞ þ Oðr−7Þ: ð6:7Þ

Hence, we find the scalar self-force to be repulsive at large
r which disagrees with the results of Ref. [14], though the
scaling with r agrees. For the static charge near the horizon,
we obtain

F ¼ q2

128
ffiffiffi
2

p
r3=2H

�
10 − 3α

ðr − rHÞ3=2
−

78 − 33α

4rHðr − rHÞ1=2
�

þ Oððr − rHÞ1=2Þ: ð6:8Þ

As for the electrostatic case, the force blows up as the
static charge is placed closer and closer to the horizon
for every choice of the dimensionless coefficient α.
However, for α ¼ 10=3 the leading order singularity
vanishes and this value delimits the choices for which
the force is everywhere repulsive, corresponding to
α ≤ 10=3, from those for which the force turns over
and becomes attractive as we move towards the
horizon, corresponding to parameter values α > 10=3
(see Fig. 3).
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VII. CONCLUSIONS AND DISCUSSION

In this paper, we have computed closed-form expres-
sions for the self-force on static electric and scalar charges
in the 5D Schwarzschild-Tangherlini spacetime. The cal-
culation was facilitated by two results: First, we derived
closed-form representations of the electrostatic and scalar
static fields. Second, we developed an axiomatic approach
to constraining the possible forms of the singular field,
reducing the arbitrariness of the Hadamard form to a single
arbitrary dimensionless coefficient. From our closed-form
expressions for the self-force, Eqs. (5.6) and (6.6), we
immediately deduce that the self-force does not depend on
any unresolved length scales, such as the radius of a sphere
centered at the charge’s location, nor does our calculation
necessitate a dependence of the self-force on the internal
structure of the charge. We note that our regularization
scheme is quite robust, valid for static charges in arbitrary
static 5D spacetimes and easily generalizes to higher
dimensional static spacetimes. It relies on three axioms,
two of which are quite innocuous assumptions that the
singular Green’s function scales appropriately under a
rescaling of length and is constructed entirely from local
geometrical quantities. The third axiom is a strong con-
straint that rules out ratios of curvature scalars appearing in
the singular Green’s function, but it would be surprising if

the correct expression for the self-force obtained by a
matched asymptotics expansion involved such ratios
appearing in some special combination that is regular for
every static spacetime.
The strong dependence of the self-force on the parity of

spacetime dimension is intriguing. It seems intuitive that
the singular Green’s function should only be sensitive to the
local physics in the vicinity of the charge and that it must be
symmetric, and yet there is no obvious analog of a
Detweiler-Whiting Green’s function in odd dimensions
satisfying these criteria. Indeed, there are strong indications
that such a Green’s function does not exist. This raises the
very interesting question as to how to regularize the self-
force in odd dimensions. Moreover, it remains to be proven
whether or not the first-order self-force depends on the
internal structure of the charge. For static configurations,
we address these questions in an upcoming paper [42]. In
the general dynamical case however, it may be that
resolving some of these issues will require a derivation
of the self-force using matched asymptotic expansions, or
equivalently, by the method of Gralla, Harte and Wald [11].
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Note added.—Recently, we were made aware of a different
derivation by Frolov and Zelnikov of the closed form
Green’s functions presented here [45–47]. Their derivation
does not rely on summing the modes as we have done but
rather relates the static Green’s function on the black hole
spacetime to the static Green’s function on the Bertotti-
Robinson spacetime by a simultaneous rescaling of the
induced metric and the lapse. Their method is valid for the
d-dimensional Schwarzschild-Tangherlini or Reissner-
Nördstrom spacetimes and in general yields a double
integral expression for the static Green’s function. For
d ¼ 5, the integrals can be written in terms of elliptic
integral functions, and we have explicitly checked that our
derivation agrees.

FIG. 3 (color online). Plot of the self-force invariant on a static
scalar charge in a 5D black hole spacetime. We have plotted the
force as a function of the inverse dimensionless radius y ¼ r2H=r

2

for a series of α values. As in the electrostatic case, the force
diverges for all values of α as the static charge is placed on the
horizon y → 1, but the divergence is milder for αcrit ¼ 10=3. The
force is repulsive for α < αcrit, while for α > αcrit, there is a radius
which depends on α within which the charge feels an attractive
self-force.
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