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We derive exact expressions for the scalar and electromagnetic self-forces and self-torques acting on
arbitrary static extended bodies in arbitrary static spacetimes with any number of dimensions. Non-
perturbatively, our results are identical in all dimensions. Meaningful point particle limits are quite different
in different dimensions, however. These limits are defined and evaluated, resulting in simple “regularization
algorithms” which can be used in concrete calculations. In these limits, self-interaction is shown to be
progressively less important in higher numbers of dimensions; it generically competes in magnitude with
increasingly high-order extended-body effects. Conversely, we show that self-interaction effects can be
relatively large in 1þ 1 and 2þ 1 dimensions. Our motivations for this work are twofold: First, no
previous derivation of the self-force has been provided in arbitrary dimensions, and heuristic arguments
presented by different authors have resulted in conflicting conclusions. Second, the static self-force
problem in arbitrary dimensions provides a valuable test bed with which to continue the development of
general, nonperturbative methods in the theory of motion. Several new insights are obtained in this
direction, including a significantly improved understanding of the renormalization process. We also show
that there is considerable freedom to use different “effective fields” in the laws of motion—a freedom
which can be exploited to optimally simplify specific problems. Different choices give rise to different
inertias, gravitational forces, and electromagnetic or scalar self-forces, but there is a sense in which none of
these quantities are individually accessible to experiment. Certain combinations are observable, however,
and these remain invariant under all possible field redefinitions.
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I. INTRODUCTION AND SUMMARY

Originally prompted by the discovery of the electron
[1–3], the past century has seen considerable effort devoted
to understanding how the motions of charged particles
might be affected by “their own” fields: What, for example,
are the radiation-reaction forces? In what sense does self-
interaction impart an effective inertia? While much has
been learned over the years, “self-force problems” such as
these have been notoriously subtle, and work on them
continues to the present day.
Current interest has largely shifted to the gravitational

variant of the self-force problem: How do the metric
perturbations sourced by small masses affect their motion
in general relativity? This is relevant for the anticipated
observation of gravitational waves generated by extreme-
mass-ratio inspirals—neutron stars or stellar-mass black
holes orbiting and then falling into supermassive black
holes [4,5]. The gravitational self-force is also relevant
more broadly in gravitational wave astronomy in that it
provides checks of, and inputs to, the post-Newtonian and
effective-one-body approximation schemes [6,7].
Motivated by these developments, theoretical under-

standing of the self-force has improved enormously in

the past two decades, and not only in gravitational contexts.
In four spacetime dimensions, it is now understood how to
rigorously formulate point particle limits, and what the
equations of motion are in those limits [8–12].
Nonperturbative results are available as well, describing
motion and self-interaction for extended bodies in very
general settings [12]. All of this has been accomplished in
generic spacetimes and for objects coupled to gravitational,
electromagnetic, or scalar fields. Considerable effort has
also been devoted to developing practical computational
schemes with which to evaluate the physical consequences
of the derived laws of motion [10,13], particularly for small
(uncharged) masses in orbit around nearly Kerr black holes.
For spacetime dimensions not equal to four, the self-

force program is considerably less mature. Absent any
rigorous derivations, a number of ad hoc methods have
been suggested to compute (mostly higher-dimensional)
self-forces in various contexts [14–21]. Although it is not
possible to compare all of these methods directly, it is
known that at least some of them are inequivalent. For
example, the work of Beach, Poisson, and Nickel [15]
suggested that the self-force on a charged particle in five
spacetime dimensions might depend in an essential way on
the details of that particle’s internal structure, even if it were
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spherically symmetric. An analysis of the same system by
Taylor and Flanagan [14] utilized a different method and
found conflicting results. Unexplained ambiguities arose in
both cases, although these had very different characters. If
the ambiguities in either approach were in some sense
correct, they would represent surprising departures from the
known behavior of the four-dimensional self-force. One
motivation for this paper is to clarify these issues, and more
generally to determine if the self-force depends in any
essential way on dimensionality.
Besides matters of principle such as these, a more direct

reason for considering nonstandard numbers of dimensions
is in connection with holographic dualities; it has been
claimed in this context that the 4þ 1 dimensional self-force
problem can be used to understand jet quenching in 3þ 1
dimensional quark-gluon plasmas [17,22].
Separately, lower-dimensional self-force effects might be

directly accessible to experiment: There are, for example,
systems where liquid droplets bouncing on an oil bath
generate surface waves, and those waves in turn affect the
horizontal motion of the droplet [23]. This is at least
qualitatively a self-force problem in two spatial dimensions.
There are also a variety of condensed matter systems which
act as though they are confined to one or two spatial
dimensions (see e.g., [24,25]), and if this type of confinement
could be arranged for something analogous to an isolated
charge—as has recently been suggested for deformed gra-
phene [26]—it might be relatively straightforward to mea-
sure self-interaction effects in a wide variety of geometries.
Different spatial metrics and topologies could be explored by
varying the confining surface, and external accelerations
might be used to introduce nontrivial lapse functions.
We do not attempt to model any such systems here, but

instead consider as a first step a “standard” self-force
system in arbitrary dimensions: isolated extended bodies
coupled to scalar or electromagnetic fields in fixed back-
ground spacetimes. Our treatment is exact except for the
neglect of gravitational backreaction. We also assume that
both the spacetime and the body of interest are static.
Although the staticity constraint might appear to be

overly restrictive, it already allows for a number of
interesting statements. The aforementioned disagreements
in the existing literature [14,15] appear, for example, in the
static regime. Focusing attention on the static problem can
also highlight interesting features which are not otherwise
apparent—even in cases where the dynamical equations are
already known. Lastly, static systems provide a simple
testing ground with which to develop new insights into
more general self-interaction problems.
Before describing our results in these directions, we first

remark on the status of the dynamical self-force problem in
nonstandard dimensions: Although it was alluded to briefly
in [12], it does not appear to have been emphasized before
that much of the existing nonperturbative work developed
to describe the 3þ 1 dimensional self-force [27–31] gen-
eralizes immediately to other dimensions. One of its

implications is that a result known as the Detweiler-
Whiting prescription1 [9,12,32] generalizes and remains
exact for fully dynamical extended bodies in all even-
dimensional spacetimes. A problem arises, however, if the
number of spacetime dimensions is odd; a construction
known as the Detweiler-Whiting Green function appears
not to exist. While this does not appear to be a fundamental
obstacle, it does imply that known results require some
modification before being extended to the odd-dimensional
dynamical setting. A possible solution to this problem is
briefly discussed in VIII, although it is not our main theme.
We instead focus on the static self-force problem, in both

odd- and even-dimensional spacetimes. Our approach uses
and builds upon the aforementioned nonperturbative tech-
niques developed by Harte [27–31], which themselves were
inspired by thework ofMathisson [33] and especially Dixon
[34–37]. These techniques allow the bulk properties of
extended bodies to be understood exactly in generic space-
times, and automatically provide, e.g., precise definitions for
all quantities which appear in the resulting laws of motion.
One convenient feature of this approach is that a body’s linear
and angular momenta are treated as two aspects of a single
mathematical structure, and consequently, the self-torque
emerges “for free” with the self-force.
It is much more common in the self-force literature to

employ perturbative methods (see e.g., [8,11,38]), which
are perhaps more familiar. While these methods could also
be applied in the present context, they typically require
calculations which must be repeated almost from scratch in
each new dimension, and the complexity of those calcu-
lations grows rapidly with the number of dimensions. No
such problems arise for the nonperturbative approach
adopted here. Our methods are almost completely agnostic
to the number of dimensions, and are simpler than the
perturbative approach even in 3þ 1 dimensions.
The essential difficulty of the self-force problem is that

the net force exerted on an object depends on the fields
inside of it, but these fields can be almost arbitrarily
complicated. In particular, the internal fields vary at least
on length scales comparable to the body’s size (and perhaps
on much smaller scales as well). This makes it difficult to
transform integral expressions for the net force—whose
evaluation might appear to require detailed knowledge of
an object’s interior—into simple expressions which can be
used without that knowledge.
The main points can be illustrated even in Newtonian

gravity [12,28,36], although they are so simple in that case
as to rarely be emphasized. Very briefly, consider a
compact extended body in three-dimensional Euclidean

1The Detweiler-Whiting prescription originally arose as a
regularization procedure which succinctly describes the motions
of point particles in four spacetime dimensions. It was later
shown to be the limit of an exact, nonsingular identity which
holds for generic extended bodies. Both the identity and its limit
generalize to all even-dimensional spacetimes.
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space. If this body has mass density ρm, the Newtonian
gravitational potential ϕg satisfies ∇2ϕg ¼ 4πρm and the
net gravitational force is

F ¼ −
Z

ρmðxÞ∇ϕgðxÞd3x: ð1:1Þ

The integrand here can be arbitrarily complicated, and one
might naively expect that the force depends in an essential
way on these complications. That this is not the case
follows from the observation that for any translation-
invariant “propagator” Gðx;x0Þ, the net force F is invariant
under all field replacements ϕg → ϕ̂g with the form

ϕ̂gðxÞ≡ ϕgðxÞ −
Z

ρmðx0ÞGðx;x0Þd3x0: ð1:2Þ

In practice, this result is typically applied in the special
case where Gðx;x0Þ ¼ −1=jx − x0j, which satisfies
∇2Gðx;x0Þ ¼ 4πδ3ðx − x0Þ and is therefore a Green func-
tion for the Newtonian field equation. Considering that
case, ϕ̂g satisfies the vacuum field equation in a neighbor-
hood of the body and may thus be interpreted as an
effective “external field.” This is useful because external
fields typically behave much more simply than physical
ones: If all distances to other masses are sufficiently large,
∇ϕ̂g varies only slightly in the force integral (1.1), and may
therefore be pulled out of it to yield

F ¼ −m∇ϕ̂g: ð1:3Þ

This is the foundation for most of Newtonian celestial
mechanics. For our purposes, it is important to emphasize
that it is the “effective field” ϕ̂g which appears in simple
expressions for the force, not the physical field ϕg. Except
in special cases such as spherical symmetry, it is not correct
to replace the right-hand side of (1.3) by −m∇ϕg. In a point
particle limit, the map ϕg ↦ ϕ̂g becomes a type of
regularization procedure; the “force on a point particle”
can be described as the monopole force due to a point
particle field which has been regularized in a particular
way. This result should not be viewed as “fundamental,” but
rather as a corollary to the ϕg → ϕ̂g invariance of F.
Such comments suggest that it can be essential also in

more complicated theories to express force laws in terms of
fields which are distinct from the physical ones. Moreover,
those fields should remain regular even in point particle
limits (as long as such limits exist). The steps outlined
above which provide the appropriate prescription in the
Newtonian context also provide an outline for this paper:
We (i) generalize (1.1) for static, charged bodies in curved
spacetimes with arbitrary dimension, (ii) derive a result
analogous to the ϕg → ϕ̂g invariance of Newtonian theory,
and (iii) show that for appropriate choices of effective field,

the associated force integrals admit simple approximations
similar to (1.3). The result is a concrete prescription for
computing self-interaction effects in arbitrary dimensions.
There are, of course, considerable differences between

our problem and the Newtonian one. Perhaps the most
significant of these is that forces do not necessarily remain
fixed when replacing physical fields by effective fields. We
nevertheless show that if the class of effective fields is
chosen appropriately, the resulting changes have a special
form which allows them to be absorbed into finite renorm-
alizations of a body’s stress-energy tensor. The Newtonian
statement that forces remain invariant under replacements
ϕg → ϕ̂g is therefore replaced by a statement that relativ-
istic forces are preserved by simultaneous replacements
involving both long-range fields and stress-energy tensors
(but not, e.g., charge distributions). This considerably
generalizes the mass renormalization effect which has been
discussed since the earliest work on electromagnetic self-
interaction [1–3].
Although the result that stress-energy tensors are renor-

malized by self-interaction has been recognized before
[12,30], we obtain several new features of this effect. In
prior work on the dynamical self-force problem, two
mechanisms were identified by which renormalizations
could occur. One of these depended on a kind of “temporal
boundary term,” and affected only a body’s linear and
angular momenta—essentially the monopole and dipole
moments of its stress-energy tensor [28]. Although we find
that monopole and dipole moments are also renormalized
in the static problem, the mathematical mechanism by
which this occurs is different and is identified here for the
first time.
In dynamical settings, the quadrupole and higher multi-

pole moments of a body’s stress-energy tensor—but not its
monopole and dipole—had previously been found to be
renormalized via the dependence of a particular propagator
on the background geometry [30]. We show that this same
mechanism also plays a role in static problems, but make it
more precise by providing the first explicit, nonperturbative
formulas for its effects.
Although the two renormalization mechanisms at work

here appear to affect different quantities and to have
different origins, we show that they are nevertheless
“compatible” in the sense that a single nonperturbative
formula can be obtained for a renormalized stress-energy
tensor T̂ab

B . All stress-energy moments which appear in the
laws of motion, including the momenta, then follow from
Dixon’s integral definitions [35] applied to T̂ab

B (instead of
their usual application to a body’s “bare” stress-energy
tensor Tab

B ). We also show that the difference between T̂ab
B

and Tab
B depends only on a body’s charge density and

functional derivatives of an appropriate propagator with
respect to the geometric fields. Even though this difference
at least roughly describes “the stress-energy of the self-
field,” it is interesting to note that its support cannot extend
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significantly beyond that of Tab
B . Characteristic magnitudes

of the effective moments can therefore be estimated
in the usual ways using only a body’s size and effective
mass.
These kinds of stress-energy renormalizations arise when

replacing the true scalar or electromagnetic fields by
effective equivalents which are related by equations similar
to the Newtonian ϕg ↦ ϕ̂g map (1.2). Given, e.g., a
relativistic scalar field ϕ, an appropriate propagator G
may be introduced and used to construct an effective field
ϕ̂. While the class of allowed propagators is strongly
constrained, it is far from unique. It is neither necessary
nor sufficient, for example, that G be a Green function. In
general, each allowable propagator applied to the same
physical system implies a different ϕ̂ and a different T̂ab

B .
As a consequence, individual terms which one might want
to identity as the self-force or the gravitational force involve
some degree of choice—a fact which seems to have been
missed in the existing literature (even in four spacetime
dimensions2). A key insight of this paper is that in general,
scalar or electromagnetic self-forces cannot be divorced
from inertial forces or gravitational extended-body effects;
it is only particular combinations of these quantities which
are physically unambiguous. While these remarks imply
that additional care can be required when interpreting
self-force results, the freedom to choose different propa-
gators also opens up new possibilities for practical com-
putations: One can choose whichever propagator is
simplest for the problem at hand. We illustrate the useful-
ness of this explicitly in Rindler spacetimes, where differ-
ent propagator choices result in very different levels of
computation.
Our conclusions on the general nature of the static self-

force may be stated as follows: Except for the methods used
in certain existence results presented in Appendix B, all of
our nonperturbative arguments are independent of dimen-
sion. The dimension of spacetime is therefore irrelevant to
any foundational aspects of the problem. In particular, there
is no more dependence on a body’s internal structure in
higher dimensions than there is in four spacetime dimen-
sions. Nevertheless, there is a sense in which dependence
on internal structure does arise, in both four spacetime
dimensions and in higher and lower dimensions, via
renormalization of body parameters. This issue is discussed
in detail in Sec. VII B.
Additionally, we find no obstacle to constructing well-

behaved point particle limits. Dimension does, however,
affect the details of the point particle limits which can be
meaningfully considered. This can be understood by noting
that the self-energy of a charge distribution depends on its

size in a dimension-dependent way. Noting that a body’s
self-energy cannot significantly exceed its mass without
violating positive-energy conditions, dimension-dependent
bounds may be obtained which relate the relative magni-
tudes of different types of forces. We show more specifi-
cally that the leading-order electric or scalar self-force in an
nþ 1 dimensional spacetime can at most be comparable in
size to extended-body effects which involve a body’s
2ðn−2Þ-pole moments (for n ≥ 2). In the usual n ¼ 3 case,
it follows that the self-force is at most comparable to
ordinary dipole effects. For larger n, quadrupole or higher
moments must be taken into account as well. In lower
dimensions, the self-force can instead compete even with
leading-order test-body effects.
This paper is organized as follows: Section II describes

the overall setup for the problems we consider, including
the “holding field” which we take to be a primary
observable. Our core nonperturbative results are derived
in Sec. III, which defines generalized momenta for
extended bodies and obtains the associated forces. A class
of identities is derived there which allows self-interaction
to be taken into account in relatively simple ways.
Renormalization effects are derived as well. Next,
Sec. IV describes how to convert integral expressions for
the generalized force into series involving a body’s multi-
pole moments. A center of mass is defined, as well as a split
of the generalized momentum into linear and angular
components. Forces and torques necessary to hold an
object fixed are obtained to all multipole orders.
Approximations are first considered in Sec. V, which
discusses what could be meant by a point particle limit.
These limits are subsequently defined and an associated
algorithm is derived which can be used to compute the
limiting force and torque. Renormalization of a body’s
mass and stress-energy quadrupole in the point particle
limit are explicitly computed in Sec. VI. Section VII
compares the approach used here to others in the literature,
and applies our ideas explicitly by giving examples of
calculations in Rindler and Schwarzschild-Tangherlini
spacetimes. Lastly, Sec. VIII speculates on how to general-
ize this work to dynamical settings.
Several additional results have been placed in

Appendices. Notations and conventions used throughout
this paper are explained in Appendix A. Appendix B
discusses Hadamard Green functions and parametrices,
and shows that the latter are explicit examples of the type of
propagator whose existence we require. Appendix C shows
that in even spacetime dimensions where the Detweiler-
Whiting prescription is valid for dynamical charges, spe-
cializing it to static systems results in a prescription which
is consistent with our a priori static results derived in
Sec. III. Appendix D supplements Sec. VII A by providing
an alternative derivation of the self-force in Rindler
spacetime. Finally, Appendix E computes the variational
derivatives of the Hadamard parametrix, for use in the
renormalization computations of Sec. VI.

2The dominant effect in the point particle limit in four
spacetime dimensions is a degeneracy between the inertia term
(mass times acceleration), and the piece of the self-force which is
proportional to acceleration.
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II. THE SETTING: STATIC EXTENDED
BODIES IN STATIC SPACETIMES

The systems we consider consist of a spatially compact
body B embedded in a static, nþ 1 dimensional spacetime
(with n ≥ 1). Rather than releasing this object and letting it
fall freely, we instead imagine that it is held in place and is
internally stationary: There must exist a timelike vector field
τa such that the spacetime metric gab and the body’s stress-
energy tensor Tab

B satisfy

Lτgab ¼ LτTab
B ¼ 0; ð2:1Þ

where Lτ denotes the Lie derivative with respect to τa. This
generically requires the imposition of external forces and
torques, and it is these quantities which represent the main
physical unknowns.

A. General description of the goal

Forces exerted via direct mechanical contact with other
objects are difficult to describe generically, so we instead
suppose that B is endowed with some kind of charge, and
that forces can be imposed by applying external holding
fields which interact with that charge. The required holding
force can then be translated into a required holding field. A
central aim of this paper is to determine those holding fields
which are consistent with3 the staticity assumption (2.1).
This type of computation is very simple if B is small and

its self-fields are weak: A precise limit may then be found
in which the worldtube of such a body can be replaced by a
single worldline. Staticity implies that the unit velocity of
this worldline is ua ¼ τa=N, where τa is the static Killing
field and

N ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
−τaτa

p
: ð2:2Þ

Differentiating ua using Killing’s equation, the body’s
acceleration is seen to be

ub∇bua ¼ ∇a lnN; ð2:3Þ

which suggests that lnN is in some ways analogous to an
ordinary Newtonian potential. Applying the Lorentz force
law for a body with mass m and electric charge Q finally
shows that such an acceleration can be maintained by
imposing an electromagnetic holding field Fhold

ab which
satisfies

QFhold
ab ub ¼ m∇a lnN: ð2:4Þ

Our aim is to generalize this equation. In particular, we
would like to understand what happens when a body’s self-
field can no longer be neglected. One complication which
then arises is that the Lorentz force law cannot be applied as
it was in (2.4). That would make sense only if the field were
approximately constant throughout B, which would be an
unreasonably severe restriction.
Another potential obstacle to understanding self-inter-

action is that it can strongly affect internal stresses while
producing very little net force; interesting effects can thus
depend on delicate cancellations. Moreover, if the net self-
force is small—as it is in many applications—it can be
understood only in combination with other similarly small
effects. Indeed, we shall see in Sec. V that generalizing
(2.4) to allow for nontrivial self-fields generically
requires that we also generalize it to allow for finite-size
effects.
Our approach exactly describes the forces and torques

acting on arbitrarily structured extended bodies, so all such
effects are automatically taken into account. It is only at the
end of our discussion where specific approximations are
adopted and the relative magnitudes of different terms can
be examined.

B. Spacetime geometry

Before proceeding, it is useful to more precisely describe
the geometry of our setup and to briefly collect some of its
properties: The background spacetime is assumed to have
the form ðΣ × I; gabÞ, where Σ is an n-dimensional mani-
fold and I ⊆ R an open interval. In all regions of interest,
the timelike Killing field τa is assumed to be static in the
sense that it satisfies the Frobenius condition τ½a∇bτc� ¼ 0.
Contracting this with τa while using (2.2) provides the
useful identity

∇aτb ¼ −2τ½a∇b� lnN: ð2:5Þ

We define a time coordinate t via τa ¼ ∂=∂t, so the
constant-t hypersurfaces Σt are orthogonal to τa and
diffeomorphic to Σ. If τa is used to evolve between these
hypersurfaces, the associated shift vector vanishes and N is
the lapse. The intrinsic geometry on each Σt is described by
the spatial metric

hab ≡ gab þ τaτb=N2; ð2:6Þ

and the spatial Ricci tensor R⊥
ab can be related to the

spacetime Ricci tensor Rab via

Rabτ
aτb ¼ ND2N; Rbchbaτc ¼ 0; ð2:7aÞ

hcahdbRcd ¼ R⊥
ab − N−1DaDbN; ð2:7bÞ

3No externally imposed field can imply stationarity without a
precise specification for a body’s internal composition. Even in
elementary Newtonian mechanics, it is only the behavior of
certain bulk degrees of freedom which can be described generi-
cally. We nevertheless specialize to those cases where the internal
degrees of freedom are stationary whenever the bulk is stationary.
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where Da denotes the covariant derivative associated with
hab and D2 ≡ habDaDb is the associated Laplacian. We
shall also have occasion to use a directed surface element
on Σt, which can be written as

dSa ¼ −N−1τadV⊥ ð2:8Þ

in terms of the n-dimensional volume element dV⊥
associated with hab. If n spatial coordinates x are intro-
duced in addition to the time coordinate t, the coordinate
components of the metric take the form

gμνdxμdxν ¼ −N2ðxÞdt2 þ hijðxÞdxidxj; ð2:9Þ

in terms of xμ ¼ ðt;xÞ.
Lastly, note the overall scale of τa, and therefore t, is at

least locally irrelevant. Physical quantities must therefore
be invariant under all rescalings

t → αt; N → α−1N ð2:10Þ

by positive constants α.

C. Stress energy conservation and the
field equations

Embedded in the static spacetime ðΣ × I; gabÞ is a body
B whose stress-energy tensor Tab

B is static in the sense of
(2.1), and is also contained in a worldtube whose spatial
sections have compact support. The gravitational influence
of B is ignored in the sense that no relation is imposed
between gab and Tab

B . It is also assumed that B is locally
isolated, meaning that there are neighborhoods of it in
which the total stress-energy tensor Tab

tot can be split into
three parts:

Tab
tot ¼ Tab

B þ Tab
fld þ Tab

bkg: ð2:11Þ

Tab
fld denotes the stress-energy tensor associated

with any nongravitational fields—either scalar or electro-
magnetic—which couple to B, while the “background”
stress-energy Tab

bkg is assumed to be noninteracting in the
sense that ∇bTab

bkg ¼ 0. The background stress energy is
included here for reasons of generality, but plays no
further role in our discussion (except perhaps to act
implicitly as a source for gab). Forces and torques on B
are instead derived using local stress-energy conservation
in the form

∇bTab
tot ¼ ∇bðTab

B þ Tab
fldÞ ¼ 0: ð2:12Þ

We specialize to cases where B generates an electro-
magnetic field sourced by a current density Ja, or a
massless linear scalar field sourced by a charge density
ρ. These densities are assumed to be smooth and stationary,

and also to have supports bounded by that of Tab
B . The

scalar fields we consider explicitly satisfy the wave
equation4

∇a∇aϕ ¼ −ωnρ ð2:13Þ

in a neighborhood of B, where ωn is the convenient
constant

ωn ≡ 2π
n
2

Γðn
2
Þ ; ð2:14Þ

equal to the area of a unit sphere in n-dimensional
Euclidean space. If ϕ is stationary in the sense that
Lτϕ ¼ 0, the hyperbolic equation (2.13) reduces to the
elliptic field equation

DaðNDaϕÞ ¼ −ωnρN: ð2:15Þ

The left-hand side here is equal to N∇a∇aϕ acting
on a static field; the overall factor of N is used to
obtain a differential operator which is spatially self-
adjoint—a property which is crucial for our later
development.
An equation very similar to (2.15) can also be derived for

static electromagnetic fields Fab. Consider a vector poten-
tial Aa which satisfies Fab ¼ 2∇½aAb�, and suppose that
there are some static fields J and Φ such that

Ja ¼ Jτa; Aa ¼ N−2Φτa: ð2:16Þ

Although they can be weakened, these assumptions auto-
matically exclude, e.g., current loops and external magnetic
fields. They nevertheless encompass most physical systems
which are commonly considered, and also provide a simple
link between the electromagnetic and scalar problems.
Assuming them, local charge conservation ∇aJa ¼ 0
follows automatically from the stationarity of J.
The Maxwell equation ∇bFab ¼ ωnJa also reduces in this
case to

DaðN−1DaΦÞ ¼ −ωnJN; ð2:17Þ

and it is easily verified that the resulting Aa satisfies the
Lorenz gauge condition ∇aAa ¼ 0. Comparing (2.15) and
(2.17) shows that in this static context, the electric potential
Φ and the scalar potential ϕ satisfy field equations whose
differential operators differ only in the substitution
N → N−1.

4Our derivation easily generalizes for nonzero field masses and
curvature couplings. We omit these possibilities for brevity and
also to minimize differences between the scalar and electromag-
netic problems.
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Allowing for the presence of both scalar and electro-
magnetic charge, the stress-energy conservation equa-
tion (2.12) reduces to5

∇bTab
B ¼ ρ∇aϕ − J∇aΦ: ð2:18Þ

The scalar field and charge density remain invariant under
the time rescalings (2.10), while the electromagnetic
quantities instead rescale via

Φ → α−1Φ; J → αJ: ð2:19Þ

D. Self-fields and holding fields

As stated above, one of the main goals of this paper is to
generalize (2.4), thus obtaining those external fields which
hold B fixed. This is ambiguous, however, in the absence of
certain additional specifications. In the scalar case, we
require a functional which maps charge densities ρ onto
“self-fields” ϕself ½ρ�. These can reasonably be called self-
fields only if

DaðNDaϕself ½ρ�Þ ¼ −ωnρN ð2:20Þ

in a neighborhood of the body, and also if ϕself ½0� ¼ 0.
Physically, ϕself ½ρ� represents the field which arises when B
is added to the system. In many applications, it is most
naturally described by supplementing (2.20) with physi-
cally appropriate boundary conditions—for example decay
at infinity. More explicitly, there will usually be some time-
independent Green function Gselfðx; x0Þ for which

ϕself ½ρ�ðxÞ ¼
Z
Σt

ρðx0ÞNðx0ÞGselfðx; x0ÞdV 0⊥: ð2:21Þ

Regardless, all that is needed at this point is that some
choice has been made for ϕself ½ρ�.
The “holding field” ϕhold is now defined to be everything

which is not contained in the self-field,

ϕhold ≡ ϕ − ϕself ½ρ�; ð2:22Þ

and it is this quantity that our derivation eventually
constrains. It follows from (2.15) and (2.20) that
DaðNDaϕholdÞ ¼ 0 in a neighborhood of B. An
analogous splitting and choice of self-field is also assumed
to have been made for the electromagnetic field: Φ ¼
Φself ½J� þ Φhold.

III. MOMENTUM AND FORCE

Following standard practice in, e.g., Newtonian celestial
mechanics, we consider only the “bulk” degrees of freedom
associated with B—namely its “linear and angular
momenta.” The body’s remaining aspects are to be ignored
as much as possible. The particular notion of momentum
employed here is originally due to Dixon6 [34–37], who
obtained it as a part of a comprehensive theory of multipole
moments for extended bodies in general relativity. It was
found in [27] and subsequent work [12,28–30,39] to be
useful to reexpress Dixon’s linear and angular momenta in
terms of a single “generalized momentum” which lives in a
particular abstract vector space (and not a tangent space
anywhere in spacetime).
For the systems considered in this paper, it is convenient

to define the generalized momentum at time t by

PtðξÞ≡
Z
Σt

Tab
B ξadSb; ð3:1Þ

where the ξa are vector fields drawn from a particular vector
space KG of “generalized Killing fields” with dimension

dimKG ¼ 1

2
ðnþ 1Þðnþ 2Þ: ð3:2Þ

For each t, the generalized momentum Ptð·Þ is a linear
operator on KG, and can therefore be interpreted as a vector
in the dual space K�

G. It follows from (3.2) that this vector
has 1

2
ðnþ 1Þðnþ 2Þ components, physically correspond-

ing to nþ 1 components of linear momentum and
1
2
nðnþ 1Þ components of angular momentum. Explicit

decompositions into linear and angular momenta are
described in Sec. IV C, although significant conceptual
and calculational simplifications result by delaying this for
as long as possible.
The particular space of generalized Killing fields con-

sidered here is not immediately important. Indeed, it plays
no role in our discussion until Sec. IV, and even there, only
a few of its properties are needed: First, KG includes all
Killing vectors which may exist, and is equal to the space of
Killing vector fields in maximally symmetric spacetimes.
More generally, KG also includes vector fields which are
not Killing. In those cases, it requires as part of its
specification a “frame.” This consists of a timelike world-
line Z and a foliation of the spacetime—really only a
foliation of a sufficiently large neighborhood of Z—into a
family of hypersurfaces. All ξa ∈ KG are then Killing onZ,

5Our normalization convention for the scalar and electromag-
netic fields is such that the Lagrangian density is ρϕþ JaAa−
ð∇ϕÞ2=ð2ωnÞ − FabFab=ð4ωnÞ þ ðmatter termsÞ.

6More precisely, Dixon considered extended objects poten-
tially coupled to electromagnetic fields in curved, four-
dimensional spacetimes. The linear and angular momenta used
here correspond to his in a purely gravitational setting (and
generalized for arbitrary n). Including the missing electromag-
netic terms is straightforward, but omitted for simplicity.
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LξgabjZ ¼ ∇aLξgbcjZ ¼ 0; ð3:3Þ

and this implies that the Killing transport equation

½τc∇cð∇aξbÞ ¼ −Rabc
dτcξd�Z ð3:4Þ

is satisfied on Z. It is natural in the static systems
considered here to let the foliation coincide with the Σt,
and also to let Z be an orbit of τa. Precisely which orbit is
not immediately important, although a particularly useful
choice is discussed in Sec. IV C wherein Z is identified
with the body’s “center-of-mass worldline.”
The final property of the generalized Killing fields which

we require is that they “preserve separations from Z.”
Making this precise requires the concept of a separation
vector Xaðx; x0Þ between two events x and x0, which is
naturally defined via the exponential map7:

expxXaðx; x0Þ ¼ x0: ð3:5Þ

Letting zt ≡ Z ∩ Σt and choosing any x0 ∈ Σt which is not
too far from zt, it can now be shown [27] that

LξXaðzt; x0Þ ¼ 0 ð3:6Þ

for all ξa ∈ KG, where the Lie derivative is understood to
act separately on both arguments: LξXa ¼ ξb∇bXa−
Xb∇bξ

a þ ξb
0∇b0Xa. This provides a sense in which the

generalized Killing fields preserve separations from Z.
Further details may be found in [12,27,39].
Now that the generalized momentum Pt has been

defined, our next task is to compute its time derivative.
This is most easily obtained by first considering the
difference in momentum between two discrete times t
and t0. If t0 > t, it follows from (3.1), Gauss’ theorem, and
the compact spatial support of Tab

B that

Pt0 ðξÞ − PtðξÞ ¼
I
∂Ωðt;t0Þ

Tab
B ξadSb

¼
Z
Ωðt;t0Þ

∇bðTab
B ξaÞdV

¼
Z

t0

t
dT

�Z
ΣT

∇bðTab
B ξaÞNdV⊥

�
; ð3:7Þ

where dV is the spacetime volume element associated with
gab and Ωðt; t0Þ denotes a worldtube which encloses the
body between Σt and Σt0 . Applying stress-energy conser-
vation (2.18) while taking the limit t0 → t finally shows that

dPtðξÞ
dt

¼
Z
Σt

�
1

2
Tab
B Lξgab þ ρLξϕ − JLξΦ

�
NdV⊥:

ð3:8Þ
This describes the rate of change of generalized momen-
tum, and may therefore be interpreted as a “generalized
force.” The term involving Lξgab encodes gravitational
forces and torques, while those involving Lξϕ and LξΦ
respectively encode scalar and electromagnetic forces and
torques. Although it is common to ignore the gravitational
component of this equation (which first appears at quadru-
pole order8) when n ¼ 3, its relative importance can change
significantly in different numbers of dimensions.
One result which may be deduced immediately from

(3.8) is that changes in PtðξÞ measure the degree to which
ξa generates symmetries. In the static cases considered
here, τa generates an exact symmetry, and like any Killing
field, it is also an element of KG. Hence,

E≡ −PtðτÞ ð3:9Þ
must be independent of t. It is naturally interpreted as the
body’s total energy as seen by static observers. Similar
conservation laws hold for every other Killing field Ξa

which may exist where LΞϕ ¼ LΞΦ ¼ 0. More generally
though, PtðξÞ is not necessarily constant. Although the
physical system is assumed to be static, time dependence
can arise in the momentum via time dependence in ξa; even
in flat spacetime, boost-type Killing fields depend on t.
Regardless of symmetry, the generalized force (3.8)

simplifies significantly if B is a small test body in the
sense that all fields gab, ϕ, and Φ vary slowly throughout
each of its spatial cross sections. This assumption results in
multipole expansions for the force and torque in the sense
obtained by Dixon [34–36] (see also [12] and Sec. IV
below). If self-interaction is significant, however, fields
vary rapidly inside B and additional techniques must be
applied. We suppose in particular that the gravitational self-
interaction is negligible while the scalar and electromag-
netic self-interaction is not. The latter two cases are nearly
identical, so the relevant steps are described in Sec. III A by
temporarily assuming that J ¼ 0. Those changes which are
required to understand the electromagnetic problem are
then explained in Sec. III B.

A. Scalar forces

Understanding self-interaction associated with ϕ is
equivalent to approximating the scalar portionZ

Σt

ρNLξϕdV⊥ ð3:10Þ
7Note that Xaðx; x0Þ ¼ −∇aXðx; x0Þ, where Xðx; x0Þ is the

world function on ðΣ × I; gabÞ, a biscalar equal to one half of
the squared geodesic distance between x and x0 as computed by
gab [9,40,41]. We reserve the more conventional symbol σðx; x0Þ
for the spatial world function associated with ðΣ; habÞ.

8Gravitational dipole effects are kinematical, arising via the
translation fromgeneralizedmomenta toordinary linear and angular
momenta expressed as tensors on spacetime. See Sec. IV C.
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of the total force (3.8). The immediate difficulty with
simplifying this integral is that ρ could be arbitrarily
complicated, and the field equation (2.15) implies that ϕ
necessarily inherits any such complications. The approach
we take is to identify a specific field ϕS which (i) includes
most of the difficult, small-scale structure which might be
present in ϕ, and (ii) exerts a force which can be computed
directly and then subtracted out. We refer to the result as an
S-field.9 The class of possible S-fields adopted below
suggests that they are a kind of self-field, and in some
cases, ϕS can indeed be equal to the ϕself introduced in
Sec. II D. In other cases, however, the two fields may be
very different. The S-field should be viewed more generally
as a computational tool, while the self-field is instead a
physical object.
The first step to defining ϕS is to demand that it be a sum

of “elementary self-fields” associated with each infinitesi-
mal charge element in B. Mathematically, this idea is
expressed by introducing a two-point propagator Gðx; x0Þ
on Σ × Σ which generates the S-field

ϕSðxÞ≡
Z
Σ
ρðx0ÞNðx0ÞGðx; x0ÞdV 0⊥: ð3:11Þ

While this prescribes ϕS only on the spatial manifold Σ, we
shall often use its natural (time-independent) extension to
the spacetime manifold Σ × I. When convenient, similar
extensions are also used for the propagator. Physically,
Gðx; x0Þ might describe what could be meant by “the field
at x as generated by charge at x0.”Most potential choices for
this propagator are not beneficial, however; they do not
generate S-fields which simplify the force integral (3.10).
In order to find propagators which do simplify this

integral, we first demand that ϕS satisfy a reciprocity
relation in the sense that

Gðx; x0Þ ¼ Gðx0; xÞ: ð3:12Þ

This implies that the total force “exerted by” ϕS can be
written as

Z
Σt

ρNLξϕSdV⊥ ¼ 1

2

Z
Σt

dV⊥
Z
Σt

dV 0⊥ðρNÞðρ0N0ÞLξG:

ð3:13Þ

The benefit of this expression is that it relates the
generalized force exerted by ϕS to the symmetries of G,
and these can be controlled independently of any specific

properties of B. Note in particular that if LΞG vanishes for
some Ξa ∈ KG, the Ξa-component of the generalized force
due to ϕS must also vanish. This observation can be used to
immediately see, e.g., that the spatial forces and torques
exerted by ordinary Newtonian self-fields must vanish in
Euclidean space [12,28]:G in that context is conventionally
chosen to be a Green function which is invariant under all
translations and rotations.
Much less obviously, the generalized force due to ϕS can

be simplified even in generic cases where LξG ≠ 0. This
occurs, for example, if G ¼ G½N; hab� is restricted to be a
bidistribution which depends only on the spacetime geom-
etry on Σ, and if this dependence is quasilocal in the sense
that for fixed x and x0, the functional derivatives10

δGðx; x0Þ=δNðx00Þ and δGðx; x0Þ=δha00b00 ðx00Þ have compact
support in x00. The invariance of ϕS under time rescalings
with the form (2.10) then implies that

G → αG ð3:14Þ

when N → α−1N.
More substantially, the definitions of the Lie and func-

tional derivatives together with diffeomorphism invariance
imply that

LψGðx; x0Þ ¼
Z
Σ
dV 00⊥

�
δGðx; x0Þ
δha00b00 ðx00Þ

Lψha00b00 ðx00Þ

þ δGðx; x0Þ
δNðx00Þ LψNðx00Þ

�
ð3:15Þ

for any vector field ψa on Σ. In this equation all quantities
are tensor fields on Σ, and in particular the indices a00, b00
are spatial. However, the result (3.15) may be used to
compute Lie derivatives of G on spacetime with respect to
arbitrary spacetime vector fields ξa, as follows. If x and x0
are points on Σ × I which lie on a single hypersurface Σt,
the time independence of the spacetime extension of the
propagator implies that LξGðx; x0Þ ¼ LψGðx; x0Þ, where
ψa ¼ habξbjΣt

can be translated into a vector field on Σ.
Hence LξGðx; x0Þ is given by the right-hand side of (3.15)
with this ψ . We now reinterpret this right-hand side in terms
of tensor fields on spacetime. First, N and hab can be
extended to tensor fields on spacetime in the natural way by
demanding that LτN ¼ Lτhab ¼ 0 and habτa ¼ 0. We
similarly extend the functional derivatives, so that

δGðx; x0Þ
δha00b00 ðx00Þ

τb00 ðx00Þ ¼ 0: ð3:16Þ

9This terminology is inspired by Detweiler and Whiting [32],
who introduced what they called a “singular field” for point
particles. Our ϕS plays a similar role both physically and
mathematically, although it is not singular for the extended
objects considered here. We therefore compromise by referring
to it as an S-field, where the S no longer stands for “singular.”

10Functional derivatives are sometimes defined with respect to
particular coordinates xi so that, e.g., the variation of some
functional F½N� is δF ¼ R ðδF=δN0ÞδN0dnx0. The definition
adopted here is slightly different, avoiding coordinates by
demanding a similar integral but with dnx0 replaced by dV 0⊥.
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With these conventions, the n-dimensional Lie derivatives
with respect to ψa coincide with nþ 1-dimensional Lie
derivatives with respect to ξa, evaluated on Σt. The final
result is

LξGðx; x0Þ ¼
Z
Σt

dV 00⊥
�
δGðx; x0Þ
δha00b00 ðx00Þ

Lξha00b00 ðx00Þ

þ δGðx; x0Þ
δNðx00Þ LξNðx00Þ

�
ð3:17Þ

for arbitrary vector fields ξa and for all x, x0 ∈ Σt. Here all
quantities are tensors on spacetime, and a00, b00 are
spacetime indices. This is the result we need to interpret
the generalized force exerted by ϕS.
Although it is clear from (3.13) and (3.17) that this force

cannot vanish in general, there is a sense in which it is
nevertheless “ignorable.” It can be removed by appropri-
ately redefining—or renormalizing—our description of B.
To see this, first note that Lie derivatives of N and hab can
be translated in part into Lie derivatives of gab. Using

NLξN ¼ −
1

2
τaτbLξgab þ

d
dt

ðξaτaÞ ð3:18Þ

and (3.16), we obtain

LξG ¼
Z
Σt

dV 00⊥
�

δG
δha00b00

−
τa

00
τb

00

2N00
δG
δN00

�
Lξga00b00

−
d
dt

Z
Σt

dSa00ξa
00 δG
δN00 : ð3:19Þ

The force due to ϕS therefore splits into two distinct
components. One of these is linear in Lξgab, and recalling
that the gravitational force in (3.8) is also linear in Lξgab,
that portion of the scalar force can be interpreted as just
another component of the gravitational force; it acts to
renormalize Tab

B . Physically, this might be interpreted as a
consequence of the “gravitational mass distribution” of the
S-field.
The remaining portion of the force due to ϕS is a total

time derivative. Noting that the generalized force is itself a
total time derivative of the generalized momentum, time
derivatives which are linear in ξa but otherwise independent
of t can always be “removed” by renormalizing Pt. This
physically accounts for the inertia of the body’s self-field,
but via a different mathematical mechanism from the one
[12,28] which arises in dynamical contexts.
Together, these observations imply that the generalized

force due to ϕS can be entirely eliminated by changing the
definitions of Pt and Tab

B . Doing so results in a generalized
force in which the S-field does not explicitly appear:

dP̂t

dt
¼

Z
Σt

�
1

2
T̂ab
B Lξgab þ ρLξϕ̂

�
NdV⊥: ð3:20Þ

This is identical in form to our original expression (3.8),
although the momentum, stress-energy tensor, and scalar
field have all been shifted from their original definitions.
The physical scalar field ϕ has been replaced by

ϕ̂≡ ϕ − ϕS; ð3:21Þ
and to compensate, a self-field contribution has been added
to the momentum

P̂t ≡ Pt þ
1

2

Z
Σt

dSaξa

×

�Z
Σt

dV 0⊥
Z
Σt

dV 00⊥ðρ0N0Þðρ00N00Þ δG
δN

�
; ð3:22Þ

and also to the stress-energy tensor

T̂ab
B ≡ Tab

B þ 1

N

Z
Σt

dV 0⊥
Z
Σt

dV 00⊥ðρ0N0Þðρ00N00Þ

×
�

δG
δhab

−
τaτb

2N
δG
δN

�
: ð3:23Þ

An approximate version of this renormalized stress-energy
tensor is computed explicitly in Sec. VI. Regardless, using
(3.1) and (3.16), the renormalized momentum can be
written exactly as

P̂t ¼
Z
Σt

T̂ab
B ξadSb; ð3:24Þ

which is identical to the definition (3.1) for Pt except for
the replacement Tab

B → T̂ab
B . The same renormalized stress

energy therefore controls both the effective inertia and the
effective gravitational force. Also note that the quasilocality
of the functional derivatives implies that T̂ab

B has compact
support even though the stress-energy tensor associated
with ϕS does not.
These results are exact. They represent a class of

identities which hold for any S-fields ϕS which have been
generated via (3.11) using geometrically constructed,
symmetric propagators G which satisfy (3.14). These
constraints on the propagator are very weak—and may
be weakened even further—so many possibilities exist. The
problem is now to find useful examples. In particular, the
mapping ϕ ↦ ϕ̂ should remove those field variations
which had initially made (3.10) so difficult to approximate.
Once an example with this property is identified, simple
point particle limits follow directly.11

11Some effort is still required to convert expressions involving
generalized momenta into ordinary multipole approximations for
the force and torque. These same steps arise, however, even in
test-body limits. The benefit of (3.20) is that it allows the well-
understood manipulations associated with the test-body regime to
be immediately generalized.
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Our selection criterion for G is that the associated ϕ̂
should be easy to compute and largely independent of the
body’s internal structure. One way to enforce this is to
demand that ϕ̂ satisfy the vacuum field equation in a
neighborhood of B, which follows if G is a Green function.
Letting

DaðNDaGÞ ¼ −ωnδΣðx; x0Þ; ð3:25Þ

it is implied by (2.15), (3.11), and (3.21) that

DaðNDaϕ̂Þ ¼ 0; ð3:26Þ

where the Dirac distribution here is understood to be the
natural one on ðΣ; habÞ. The utility of this choice can be
motivated by considering point particles. Although point
particles properly arise only as limits of extended objects,
and are discussed more fully in Sec. V, it suffices here to
naively consider fields ϕ which are sourced by pointlike,
distributional charge densities. No matter how singular
such fields might be, it follows from the general theory of
elliptic partial differential equations—see the remark fol-
lowing theorem 6.6 in [42]—that any ϕ̂ satisfying (3.26) is
everywhere smooth as long as NðxÞ and hijðxÞ are
themselves smooth with respect to some spatial coordinates
x. Variations in ϕ̂ therefore occur over much larger scales
than those associated with B, and all force integrals
simplify as they do for small test bodies.
The elliptic regularity result used to motivate (3.25)

may be generalized to obtain a somewhat larger class of
useful propagators: It is known that if a smooth elliptic
differential operator acting on a field results in a smooth
(but not necessarily vanishing) source, that field must still
be smooth [42]. Furthermore, convolving a singular
distribution with something smooth results in something
else which is also smooth. This suggests that point
particle limits remain simple if S-fields are defined more
generally in terms of parametrices—bidistributions G
which satisfy

DaðNDaGÞ ¼ −ωnδΣðx; x0Þ þ Sðx; x0Þ ð3:27Þ

for some smooth S. The renormalized field ϕ̂ which
appears in (3.20) then satisfies

DaðNDaϕ̂Þ ¼ −
Z
Σt

ρðx0ÞNðx0ÞSðx; x0ÞdV 0⊥; ð3:28Þ

the right-hand side of which is smooth even in a point
particle limit. The Green functions considered above now
correspond to special parametrices for which S ¼ 0. It is
useful, however, to allow S ≠ 0 in general; there are

important cases for which such propagators are signifi-
cantly simpler to construct.
To summarize, we have shown that the generalized

force acting on a static, extended scalar charge satisfies
(3.20), where T̂ab

B is determined by (3.23), P̂t by (3.24),
and ϕ̂ by (3.11) and (3.21). Each of these definitions
depends on a choice of propagator. This is not fixed
uniquely, but is instead constrained to have the following
properties:
(1) The propagatorG½N; hab�ðx; x0Þ is a bidistribution on

Σ × Σ which depends functionally only on the lapse
and the spatial metric.

(2) It depends on N and hab only quasilocally in the
sense that for fixed x, x0 ∈ Σ, the functional deriv-
atives

δGðx; x0Þ
δNðx00Þ ;

δGðx; x0Þ
δha00b00 ðx00Þ

have compact support in x00.
(3) It transforms appropriately under time rescalings

generated by any constant α > 0 and any spatial
diffeomorphism φ∶ Σ → Σ,

G½α−1N; hab� ¼ αG½N; hab�;
G½φ�N;φ�hab� ¼ φ�G½N; hab�: ð3:29Þ

(4) The propagator is symmetric, Gðx; x0Þ ¼ Gðx0; xÞ.
(5) It is a parametrix for the field equation, meaning

that

DaðNDaGÞ þ ωnδΣðx; x0Þ

is a smooth function on Σ × Σ.
While it is not obvious that propagators satisfying these
assumptions exist at all, we show inAppendixB that they do,
and that one example is the well-known Hadamard para-
metrix. Other examples exist as well, and the physical
interpretation of the resulting ambiguities is discussed in
Sec. III C.
Before proceeding further, it is important to note that

these assumptions can be weakened considerably. The
simplest such modification is to remove the functional
dependence on N and hab, which is useful if, for example, a
particular parametrix is known in a given geometry, but not
in any nearby geometries. It is then sufficient to demand
that Gðx; x0Þ ¼ Gðx0; xÞ, and that

LψGðx; x0Þ ¼
Z
Σ
dV 00⊥½Ga00b00

ðhÞ ðx; x0; x00ÞLψha00b00 ðx00Þ

þ GðNÞðx; x0; x00ÞLψNðx00Þ� ð3:30Þ
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for all ψa on Σ, where the three-point coefficients12

Ga00b00
ðhÞ ðx; x0; x00Þ and GðNÞðx; x0; x00Þ have compact support

in x00 for fixed x and x0.
Although we do not exploit them in this paper, even

more general maps ϕ ↦ ϕ̂ can be considered. The two-
point propagators used to construct ϕS can easily be
replaced, for example, by symmetric, geometrically con-
structed p-point propagators for any p ≥ 2. The simple
subtraction (3.21) can also be replaced by certain nonlinear
maps which continuously “flow” from ϕ through some
family ϕ̂λ of effective potentials—thus inducing an asso-
ciated flow of multipole moments. Another possibility is to
consider propagators which depend on nongeometrical
fields. Allowing a two-point propagator to depend on N,
hab, and ϕwould, for example, result in renormalizations of
ρ as well as Tab

B . These types of generalizations are not
particularly interesting for the problem considered here, but
can be essential when discussing nonlinear theories or the
coupled gravitoscalar or gravitoelectromagnetic self-force
problems.

B. Electromagnetic forces

It is evident from the force (3.8) and the field equa-
tions (2.15) and (2.17) that the electromagnetic and scalar
interactions considered here are almost identical. All argu-
ments used in the scalar case may therefore be repeated
essentially verbatim. This results in an effective electro-
magnetic potential

Φ̂≡ Φ − ΦS; ð3:31aÞ

ΦSðxÞ≡
Z
Σ
Jðx0ÞNðx0ÞGðx; x0ÞdV 0⊥; ð3:31bÞ

where G½N; hab�ðx; x0Þ is a symmetric propagator on Σ × Σ
which scales as

G → α−1G ð3:32Þ

under the time reparametrizations (2.10). If this G depends
only quasilocally on N and hab, the appropriate modifica-
tion of (3.20) is

dP̂t

dt
¼

Z
Σt

�
1

2
T̂ab
B Lξgab − JLξΦ̂

�
NdV⊥; ð3:33Þ

where the effective momentum and stress energy are

P̂t ≡
Z
Σt

T̂ab
B ξadSb; ð3:34Þ

and

T̂ab
B ≡ Tab

B −
1

N

Z
Σt

dV 0⊥
Z
Σt

dV 00⊥ðJ0N0ÞðJ00N00Þ

×

�
δG
δhab

−
τaτb

2N
δG
δN

�
: ð3:35Þ

As in the scalar case, it can be convenient to narrow
down the class of propagators even further by demanding
that G be a parametrix for Maxwell’s equations in the sense
that [cf. (2.17)]

DaðN−1DaGÞ ¼ −ωnδΣðx; x0Þ þ Sðx; x0Þ ð3:36Þ
for some smooth Sðx; x0Þ. The effective electromagnetic
field

F̂ab ≡ 2∇½aÂb� ¼ 2∇½aðN−2Φ̂τb�Þ ð3:37Þ

then satisfies the vacuum Maxwell equation up to a smooth
source term:

DaðN−1DaΦ̂Þ ¼ −
Z
Σt

Jðx0ÞNðx0ÞSðx; x0ÞdV 0⊥: ð3:38Þ

We have thus far considered the scalar and electromag-
netic cases separately. This has been only for notational
simplicity, and there is no obstacle to allowing both ρ and J
to be simultaneously nonzero. Their effects merely add.

C. Measurable quantities are independent
of choice of propagator

The identities (3.20) and (3.33) allow scalar and electro-
magnetic forces to be computed using effective fields ϕ̂ and
Φ̂ which can be considerably simpler than their physical
counterparts. These fields are obtained from ϕ and Φ using
two-point propagators G and G which satisfy the five
assumptions listed at the end of Sec. III A [with minor
modifications in the electromagnetic case to be consistent
with (3.32) and (3.36)]. Many propagators can be written
down which satisfy these assumptions. They might be
Green functions or more general parametrices. In some
cases, assumption 5 can even be relaxed to allow something
else entirely. This lack of uniqueness provides an interest-
ing flexibility which does not appear to have been noted in
other self-force contexts: It can allow one’s computational
methods to be tailored to the details of whichever particular
problem might be at hand. We provide an example of this in
Sec. VII A and Appendix D, where the force on a uniformly
accelerated charge in flat spacetime is obtained using two
different propagators—one of which results in much less
computation than the other.
Although it can be useful to consider different definitions

for the effective fields, the physical interpretations of these
fields must be considered with care. In general, different
choices for the propagators G and G give rise to different

12If these coefficients exist, they are not unique. One possible
freedom is that divergence-free terms with compact support in x00

can always be added to Ga00b00
ðhÞ ðx; x0; x00Þ.
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momenta P̂t and different stress-energy tensors T̂
ab
B . Scalar,

electromagnetic, inertial, and gravitational forces also
individually depend on the choices for G and G. This
splitting of the force into components is associated with
unphysical aspects of our description, and may be inter-
preted as a kind of gauge freedom.13 While the details of a
particular problem sometimes provide selection principles
which can reduce this freedom “by convention,” it cannot
be avoided in general.
A natural question is then to ask for observable quantities

which remain invariant under all possible propagator
transformations. As noted in Sec. II D, a natural quantity
to consider here is the total force which is required to hold
B in place. We assume for simplicity that the space KG of
generalized Killing fields does not depend on propagator
transformations.14 Then, from (2.22), (3.21) and (3.20) and
their electrostatic analogs, the generalized holding force is
explicitly

F hold ≡
Z
Σt

ðρLξϕhold − JLξΦholdÞNdV⊥

¼ dP̂t

dt
−
Z
Σt

�
1

2
T̂ab
B Lξgab þ ρLξϕ̂self

− JLξΦ̂self

�
NdV⊥: ð3:39Þ

Here

ϕ̂self ≡ ϕself − ϕS; Φ̂self ≡ Φself − ΦS ð3:40Þ

involve the self-fields introduced in Sec. II D. The first
equality in (3.39) shows that F hold cannot depend on G or
G. The second equality shows that the holding force can
nevertheless be written in terms of quantities which do
(individually) depend on these propagators. It is sometimes
convenient to discuss these latter quantities on their own, in
which case we call, e.g.,

Z
Σt

ρNLξϕ̂selfdV⊥ ð3:41Þ

the scalar self-force, and

1

2

Z
Σt

T̂ab
B NLξgabdV⊥ ð3:42Þ

the gravitational force. We emphasize that such expressions
are unique only in connection with specific propagators, a
lack of recognition of which has led to some confusion in
the literature—see Sec. VII.

IV. MULTIPOLE EXPANSIONS

In the typical contexts where problems of motion are
considered, charge distributions and stress-energy tensors
are not known in detail. Nevertheless, our final expression
(3.39) for the generalized holding force F hold is an integral
involving precisely these quantities. Following standard
practice in Newtonian gravity or elementary electrostatics,
progress is made by introducing multipole moments. If, for
example, the renormalized field ϕ̂ varies sufficiently slowly
throughout the body B, the force (3.41) can be accurately
approximated using only a finite number of multipole
moments qa1���ap . Retaining these moments is significantly
simpler than retaining the infinite number of degrees of
freedom associated with the complete charge density ρ.
Except in very special cases, this type of multipole

approximation cannot be applied directly to the bare force
(3.8)—ϕ and Φ inherit all length scales present in ρ and J,
and therefore do not vary slowly. If G and G are well
chosen, however, the same comments do not apply to the
effective fields ϕ̂ and Φ̂ appearing in (3.20) and (3.33). We
assume from now on that these hatted fields can be
approximated throughout B using an appropriately defined
low-order Taylor series.

A. Covariant Taylor series

The type of Taylor series adopted here is easily
explained: If some quantity is to be expanded about an
origin zt, use gab to construct Riemann normal coordinates
about zt, and then compute an elementary Taylor expansion
in these coordinates. With some additional work, equiv-
alent constructions can also be described without any
explicit reference to coordinates [12,30]. Adopting the
second viewpoint, scalar fields have expansions with the
form15

ϕ̂ðx0Þ ¼
X∞
p¼0

1

p!
Xa1 � � �Xapϕ̂;a1���apðztÞ; ð4:1Þ

where Xa ¼ Xaðzt; x0Þ is the separation vector between x0

and zt defined by (3.5). The coefficients ϕ̂;a1���akðztÞ are
tensor fields which reduce to partial derivatives in a

13There are two different components of this gauge freedom:
First, the choice of propagator in a given spacetime affects the
renormalized fields via (3.11) and (3.21), and thus the scalar and
electromagnetic self-forces. Second, the choice of propagator in
nearby spacetimes, as encoded in the variational derivatives in
(3.17), can affect the renormalizations (3.22) and (3.23) of the
stress-energy tensor and the generalized momentum.

14We relax this assumption slightly in Sec. IV C, where the
reference worldline Z used to construct KG is chosen to coincide
with the center-of-mass worldline determined by T̂ab

B .

15The equality sign and infinite upper limit here are formal.
The series does not necessarily converge in practice, and we shall
only ever use a finite number of terms.

SELF-FORCES ON STATIC BODIES IN ARBITRARY … PHYSICAL REVIEW D 93, 124054 (2016)

124054-13



Riemann normal coordinate system with origin zt, and are
known as tensor extensions [30,35,36] of ϕ̂. These exten-
sions can be defined explicitly via

ϕ̂;a1���apðyÞ≡
�∂pϕ̂ðexpyYbÞ
∂Ya1 � � � ∂Yap

�
Yc¼0

: ð4:2Þ

The first few examples are explicitly ϕ̂; ¼ ϕ̂ and

ϕ̂;a ¼ ∇aϕ̂; ϕ̂;ab ¼ ∇b∇aϕ̂; ð4:3aÞ

ϕ̂;abc ¼ ∇ða∇b∇cÞϕ̂: ð4:3bÞ

Higher-order extensions can be more complicated, involv-
ing Rabc

d and its derivatives contracted into derivatives of
ϕ̂. Regardless, it is clear from (4.2) that

ϕ̂;a1���ap ¼ ϕ̂;ða1���apÞ ð4:4Þ
for all p.
We also need an expansion for gab. Again demanding

that this reduce to an elementary Taylor expansion in
Riemann normal coordinates, it may be shown that [30]

ga0b0 ¼ ∇a0Xa∇b0Xb
X∞
p¼0

1

p!
Xc1 � � �Xcpgab;c1���cp : ð4:5Þ

Noting that frame components of Xa can be interpreted as
Riemann normal coordinate functions, ∇b0Xa reduces
(nonperturbatively) to the identity matrix δμν in those
coordinates. The appearance of this gradient in (4.5)
therefore “corrects” the naive coordinate expansion by
appropriately transporting lowered indices at zt to lowered
indices at x0. The metric extensions here require a similar
type of transport, but in the “opposite direction.” This is
accomplished by

Hb0
aðx0; ztÞ≡ ð∇b0XaÞ−1; ð4:6Þ

which also reduces to the identity in Riemann normal
coordinates. Using it, extensions of the metric can be
computed from

gab;c1���cp ≡
�∂pðHa0

aHb0
bga0b0 Þ

∂Yc1 � � � ∂Ycp

�
Yd¼0

: ð4:7Þ

The resulting tensors have the symmetries gab;c1���cp ¼
gðabÞ;c1���cp ¼ gab;ðc1���cpÞ and, for all p ≥ 1 [30],

gaðb;c1���cpÞ ¼ gðab;c1���cp−1Þcp ¼ 0: ð4:8Þ

The zeroth extension is the metric itself, gab; ¼ gab, and the
first extension vanishes: gab;c ¼ 0. All higher-order metric
extensions involve the curvature, which is evident from the
first nontrivial examples [12],

gab;c1c2 ¼
2

3
Raðc1c2Þb;

gab;c1c2c3 ¼ ∇ðc1Rjajc2c3Þb; ð4:9aÞ

gab;c1c2c3c4 ¼
6

5
∇ðc1c2Rjajc3c4Þb

þ 16

15
Raðc1c2

dRjbjc3c4Þd: ð4:9bÞ

Recalling that the holding force (3.39) does not involve ϕ̂
and gab on their own, but rather their Lie derivatives with
respect to elements ofKG, we now develop Taylor series for
these Lie derivatives.
If the origin zt about which a Taylor expansion is

performed lies on the worldline Z used to construct the
space KG of generalized Killing vectors, (3.6) and (4.1)
immediately imply that

Lξϕ̂ðx0Þ ¼
X∞
p¼0

1

p!
Xa1 � � �XapLξϕ̂;a1���apðztÞ ð4:10Þ

whenever x0 ∈ Σt. This is the first point in our discussion
where any properties of the generalized Killing fields have
been used.
An analogous expansion for the metric is significantly

more complicated to derive, but may be shown to be [30]

Lξga0b0 ¼
X∞
p¼2

1

p!
A
ðpÞ

ab
a0b0Xc1 � � �XcpLξgab;c1���cp ð4:11Þ

when ξa ∈ KG and zt ∈ Z. The p-dependent transport
operator which appears here is explicitly

A
ðpÞ

ab
a0b0 ≡∇ða0Xa∇b0ÞXb þ 2

p − 1
Θ
ðpÞ

ab
dfτ

dHða0f∇b0Þt;

ð4:12Þ

where

Θ
ðpÞ

abcd ≡ ðp − 1Þ
Z

1

0

sp−2∇f00Xa
s∇h00Xb

s

×∇f00X
ðc
s ∇h00X

dÞ
s ds: ð4:13Þ

The integrand in this last expression is to be evaluated
along an affinely parametrized geodesic γ00ðsÞ satisfying16
γ00ð0Þ ¼ zt and γ00ð1Þ ¼ x0, and the Xa

s are separation
vectors between zt and γ00ðsÞ. The integral is normalized
to match the notation in [35], and also so that its flat-
spacetime limit,

16Primes and double primes here are not derivatives with
respect to s, but instead are attached to indices associated with
different points in spacetime.
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Θ
ðpÞ

abcd → gaðcgdÞb; ð4:14Þ

is independent of p.
Although complicated, the details of these expressions

are rarely needed in practice. The important point to note in
(4.11) is that the Taylor expansion for the metric starts only
at p ¼ 2. This corresponds to quadrupole order when
evaluating a force, and follows from the fact (3.3) that
the generalized Killing fields can fail to be Killing only for
second and higher order deviations from zt. There is no
analogous symmetry which is guaranteed to hold for ϕ̂, so
the scalar field expansion (4.10) can be nontrivial even at
monopole order.

B. The multipole force

Multipole expansions for the generalized force now
follow immediately from the Taylor expansions just derived
and from the integral forces obtained in Sec. III. Using
(3.20) and (3.33) together with (4.10) and (4.11), we obtain

dP̂t

dt
¼

X∞
p¼0

1

p!
ðNqa1���apLξϕ̂;a1���ap −Qa1���apLξΦ̂;a1���apÞ

þ 1

2

X∞
p¼2

1

p!
NÎa1���apbcLξgbc;a1���ap ; ð4:15Þ

where the 2p-pole scalar and electromagnetic moments
which appear here are explicitly

qa1���ap ≡ 1

N

Z
Σt

Xa1 � � �Xapρ0N0dV 0⊥; ð4:16aÞ

Qa1���ap ≡
Z
Σt

Xa1 � � �XapJ0N0dV 0⊥: ð4:16bÞ

It is clear that these moments are purely spatial and also
symmetric in all indices. Their differing normalizations
guarantee that they remain invariant under time rescalings
with the form (2.10) [cf. (2.19)].
While a relatively simple expression for the 2p-pole

moments Îa1���apbc of T̂ab
B is easily suggested by comparing

(3.20), (4.11), and (4.15), additional consideration of the
index symmetries (4.8) associated with the metric exten-
sions shows that some components of that expression do
not couple to the force [30,35]. A less obvious definition
which takes this into account is obtained by first defining
the auxiliary 2p-pole moment

Ĵa1���apbc ≡ 1

N

Z
Σt

Xa1 � � �Xap−2X½ap−1X½b

× A
ðpÞ

ap�c�
a0b0 T̂

a0b0
B N0dV 0⊥; ð4:17Þ

where the notation indicates independent antisymmetriza-
tions on the index pairs ðap−1; apÞ and ðb; cÞ. The moments
appearing in (4.15) can then be defined by

Îa1���apbc ≡ 4

�
p − 1

pþ 1

�
Ĵða1���ap−1jbjapÞc: ð4:18Þ

These are separately symmetric in their first p and final two
indices, satisfy

Îða1���apbÞc ¼ 0 ð4:19Þ

for all p ≥ 2, and are partially spatial in the sense that

τa1 Î
a1���ap−2½ap−1½apb�c� ¼ 0 ð4:20Þ

for all p ≥ 3. Except for the substitution Tab
B → T̂ab

B and the
overall factor of 1=N inserted for convenience in (4.17),
these stress-energy moments are identical to those origi-
nally derived by Dixon [35].
For both the charge and stress-energy multipole

moments, there are important cases in which the given
definitions result in tensors which are still “more compli-
cated” than necessary; some of their components decouple
from dP̂t=dt for particular classes of fields. For example, it
follows from (3.3) and (4.9) that if the vacuum Einstein
equation Rab ¼ 0 holds, traces of Îa1���apbc decouple at least
for p ¼ 2, 3. The stress-energy quadrupole and octupole
moments can therefore be replaced, in vacuum back-
grounds, by their trace-free counterparts. It follows from
(4.3) that similar comments also apply to qab and qabc

whenever ∇a∇aϕ̂ ¼ 0. It is not clear, however, if these
types of simplifications can be continued to higher multi-
pole orders.

C. Center of mass

The multipole expansion (4.15) for the generalized force
is useful only if it can be adequately approximated by low-
order truncations of the infinite sums which appear there.
Whether or not this is possible depends not only on the
nature of the physical system and the choice of propagators,
but also on the worldline Z about which our expansions
have been performed. If a useful truncation is obtained for
one particular Z, the same cannot necessarily be said for
worldlines which differ by distances comparable to any
length scales associated with gab or ϕ̂. It is therefore
essential that Z be appropriately “centered” on B so that
the higher multipole moments remain as small as possible.
The interpretation we adopt is more specifically that Z
should be a “center-of-mass worldline” for B.
Even for freely falling, uncharged test bodies in special

relativity, the center of mass is a nontrivial concept. The
typical approach has the following flavor: First, an anti-
symmetric angular momentum tensor SabðztÞ is defined
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with respect to an arbitrary origin zt. Space-space compo-
nents of this tensor contain information physically asso-
ciated with an object’s “spin” and “orbital” angular
momentum, while time-space components instead describe
the “mass dipole vector.” A center of mass can then be
defined roughly as that worldline for which the dipole
moment vanishes. Part of the subtlety with this definition
in generic (not necessarily static) contexts is that it is
unclear which frame should be used to split the angular
momentum tensor into spacelike and timelike components.
Different possibilities—sometimes interpreted as different
“observers” for whom the dipole moment appears to vanish
—result in different worldlines. These choices are often
referred to as “spin supplementary conditions.”While some
have nicer properties than others, it is mainly a matter of
convenience which particular worldline is used to represent
an extended worldtube. It is important, however, that all
possibilities be confined to a sufficiently small region. This
has indeed been established in very simple cases [43,44],
and recent progress has been made on extending it [45],
although a general result using the definitions given here is
not known. We nevertheless adopt a center-of-mass defi-
nition which broadly follows this tradition and assume that
the resulting Z remains near B in a suitable sense.
The first step in carrying out this procedure is to define

an angular momentum tensor. From the perspective of the
formalism discussed in Sec. III, this is naturally associated
with certain components of the generalized momentum P̂t.
More precisely, an angular momentum17 Sab ¼ S½ab� and a
linear momentum pa may be introduced implicitly at zt by
demanding that

P̂tðξÞ ¼ paðtÞξaðztÞ þ
1

2
SabðtÞ∇aξbðztÞ ð4:21Þ

for all ξa ∈ KG. The linear momenta are therefore those
components which are associated with generalized Killing
fields which appear to be purely translational at zt, meaning
that ∇aξbðztÞ ¼ 0. The remaining angular components are
instead associated with those vector fields which appear to
generate pure Lorentz transformations at zt, in the sense
that ξaðztÞ ¼ 0.
The left-hand side of (4.21) is well defined because any

ξa ∈ KG is uniquely determined by ξaðztÞ and ∇aξb ¼
∇½aξb�ðztÞ for any zt ∈ Z [27]. More explicitly, the Xa and
Ha0

a defined by (3.5) and (4.6) may be used to show that

ξa
0 ¼ Ha0

bð−∇aXbξa þ Xa∇aξ
bÞ ð4:22Þ

for any x0 ∈ Σt. This determines a generalized Killing field
for each 1-form ξaðztÞ and each 2-form ∇aξbðztÞ. Varying

over all such possibilities while using (3.24) and (4.21)
shows that the linear and angular momenta are explicitly

pa ¼ −
Z
Σt

ðHa0b∇aXbÞT̂a0b0
B dSb0 ; ð4:23aÞ

Sab ¼ 2

Z
Σt

ðX½aHa0
b�ÞT̂a0b0

B dSb0 : ð4:23bÞ

These coincide with Dixon’s momenta [34,35] up to the
replacement Tab

B → T̂ab
B . As in all other parts of our

discussion, explicit integrals such as (4.23) are included
for completeness but play no role in what follows.
The next step is to understand how pa and Sab evolve in

time. One way to accomplish this is to deduce from the
assumed stationarity of the system that Lτpa ¼ LτSab ¼ 0,
or equivalently

Dpa

dt
¼ pb∇bτ

a;
DSab

dt
¼ −2Sc½a∇cτ

b�: ð4:24Þ

The momenta can therefore be computed for all time given
only their initial values and ∇aτ

b. These are not, however,
the interesting observables. As explained in Secs. II D and
III C, we instead seek those holding fields which must be
applied in order to maintain (4.24).
Appropriate holding fields can be obtained by deriving

alternative evolution equations for the momenta in terms of
the previously derived evolution equation (4.15) for P̂t.
Recalling that generalized Killing fields satisfy the Killing
transport equation (3.4) on Z, direct differentiation of
(4.21) yields

Dpa

dt
¼ 1

2
Rbcd

aSbcτd þ Fa;

DSab

dt
¼ 2p½aτb� þ Nab; ð4:25Þ

where the force Fa and torque Nab ¼ N½ab� are defined
implicitly via

d
dt

P̂tðξÞ ¼ Faξ
a þ 1

2
Nab∇aξb: ð4:26Þ

Note that if dP̂t=dt is negligible, (4.25) reduces to the well-
known Mathisson-Papapetrou equations traditionally used
to describe spinning particles in curved spacetimes. One
feature of the formalism described here is that the
Mathisson-Papapetrou terms 1

2
Rbcd

aSbcτd and 2p½aτb� have
a clear geometrical origin: They arise because the decom-
position ofKG into “generators of Lorentz transformations”
⊕ “generators of translations” is meaningful only with
respect to a preferred point. Applying a time derivative
varies the relevant point (in time), and vector fields which
appear purely translational at, e.g., zt do not necessarily

17Even after a spin supplementary condition has been applied
so Sab is purely spatial, it is only when n ¼ 3 that angular
momentum can be equivalently described as a vector quantity.
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have the same character at ztþdt. This change results in a
mixing of the linear and angular momenta over time.18

Following [36], the force Fa and torque Nab defined here
exclude kinematic effects such as these. They depend only
on the dynamics of the generalized momentum.
Combining (4.15) with (4.26) while varying over all

generalized Killing fields now results in explicit multipole
series for the force and torque. We find it useful below to
split these series into “gravitational,” “holding,” and “self”
components in the sense that

Fa ¼ Fgrav
a þ Fself

a þ Fhold
a ; ð4:27aÞ

Nab ¼ Nab
grav þ Nab

self þ Nab
hold: ð4:27bÞ

The gravitational force and torque which appear here are
explicitly

Fgrav
a ≡ 1

2

X∞
p¼2

N
p!

Îb1���bpcd∇agcd;b1���bp ; ð4:28aÞ

Nab
grav ≡

X∞
p¼2

2N
p!

ðÎc1���cpd½agb�d;c1���cp

þ p
2
Îc1���cp−1½ajdhjgdh;c1���cp−1

b�Þ; ð4:28bÞ

while the holding forces and torques are

Fhold
a ≡X∞

p¼0

1

p!
ðNqb1���bp∇aϕ

hold
;b1���bp −Qb1���bp∇aΦhold

;b1���bpÞ;

ð4:29aÞ

Nab
hold ≡

X∞
p¼1

2

ðp − 1Þ! ðNqc1���cp−1½aϕhold
;c1���cp−1

b�

−Qc1���cp−1½aΦhold
;c1���cp−1

b�Þ: ð4:29bÞ

The self-force Fself
a and self-torque Nab

self are identical in
form to the holding force and holding torque except
for the substitutions ϕhold

;b1���bp → ϕ̂self
;b1���bp and Φhold

;b1���bp →

Φ̂self
;b1���bp [where ϕ̂self and Φ̂self are defined by (3.40)].

Each of these expressions scales like

F…
a → α−1F…

a ; Nab
… → α−1Nab

… ð4:30Þ

under time reparametrizations with the form (2.10).

Equation (4.26) and the conservation of the renormalized
energy Ê≡ −P̂tðτÞ [cf. (3.9)] imply that at least one
component of these equations always vanishes:

Faτ
a þ 1

2
Nab∇aτb ¼ 0: ð4:31Þ

If any additional symmetries are present, similar constraints
may be associated with them as well.
We now have two independent sets of evolution equa-

tions for pa and Sab, namely (4.24) and (4.25). Equating
them results in the consistency conditions

Fa ¼ pb∇bτ
a −

1

2
Rbcd

aSbcτd; ð4:32aÞ

Nab ¼ −2ðp½aτb� þ Sc½a∇cτ
b�Þ: ð4:32bÞ

Contracting the second of these equations with τb further
shows that the momentum must be related to the unit
velocity ua ≡ τa=N via

pa ¼ ð−pbubÞua þ
1

N
ðubSbc∇cτ

a þ Na
bubÞ

þ Sab∇b lnN; ð4:33Þ

thus implying that pa need not be parallel to ua. If these two
vectors are indeed nonparallel, B is said to possess a
“hidden momentum” [39,45].
The momentum-velocity relation (4.33) holds for any Z

which is an orbit of τa; we have not yet imposed a center-
of-mass condition which would single out one particular
orbit. A common spin supplementary condition may
nevertheless be imposed which does single out a particular
worldline while also removing one component of the
hidden momentum: Let the “mass dipole moment” vanish
for static observers in the sense that

SabðztÞτbðztÞ ¼ 0: ð4:34Þ

We call those points Z ¼ ∪tzt which are consistent with
this constraint the center-of-mass worldline. Applying it
from now on, the momentum and velocity are seen to be
related via

pa ¼ mua þ SabDb lnN þ 1

N
Na

bub; ð4:35Þ

where we have introduced the mass

m≡ −paua: ð4:36Þ

The consistency equations (4.32) can now be simplified
significantly. First note from (2.5) that

Rbcd
aτd ¼ −2∇½b∇c�τa ¼ −2u½b∇c�∇aN; ð4:37Þ

18This interpretation of the Mathisson-Papapetrou terms is
only minimally related to the definition of KG, and applies also in
maximally symmetric spacetimes where all relevant vector fields
are genuinely Killing. It extends even to some nonrelativistic
settings [12].
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so the Mathisson-Papapetrou “force” 1
2
Rbcd

aSbcτd vanishes
on account of (4.34). Use of (4.35) also shows that

pb∇bτa ¼ mDaN − uaubNb
cDc lnN; ð4:38Þ

so (4.32a) reduces to

Fa ¼ mDaN − uaubNb
cDc lnN: ð4:39Þ

The mixing here between forces and torques can be
eliminated by recalling (4.31), which finally results in

hbaFb ¼ mDaN: ð4:40Þ

Our consistency condition for the body’s translational
degrees of freedom therefore reduces to the simple state-
ment that the total spatial force is what one would expect
for an uncharged monopole test particle with worldline Z.
The torque balance equation (4.32b) simplifies similarly;
using (2.5), (4.34), and (4.35), it reduces to

hcahdbNcd ¼ 0: ð4:41Þ

That the spatial components of the net torque must vanish is
again what might have been expected on elementary
grounds. Such simplicity in exact equations might be
viewed as additional evidence that the definitions for Fa
and Nab are “physically appropriate.” Note in particular
that even though the spin can cause pa to differ frommua, it
plays no explicit role in (4.40) or (4.41).

D. Holding forces

We have emphasized in Secs. II A and III C that the
primary observable here is the generalized holding force
F hold, as defined by (3.39). Moreover, F hold can be
decomposed into an (ordinary) holding force Fhold

a and a
holding torque Nab

hold using an equation analogous to (4.26).
Doing so results in the multipole expansions (4.29), which
relate these quantities to ϕhold and Φhold. Equations (4.40)
and (4.41) further show that consistency with the staticity
assumption is maintained only if

hbaFhold
b ¼ mDaN − hbaðFgrav

b þ Fself
b Þ; ð4:42aÞ

hcahdbNhold
cd ¼ −hcahdbðNgrav

cd þ Nself
cd Þ: ð4:42bÞ

Multipole expansions for the gravitational force and torque
which appear here are given by (4.28), while the self-force
and self-torque are obtained by the replacements ϕhold

;b1���bp →

ϕ̂self
;b1���bp and Φ

hold
;b1���bp → Φ̂self

;b1���bp in (4.29). These are some of

our main results. They apply for essentially all static,
extended charge distributions in which the center-of-mass
condition (4.34) has been applied.

E. Monopole approximation

As a simple example of these equations, consider a purely
electric charge (so ρ ¼ 0) in an approximation where all
forces and torques are ignored except for thosewhich couple
to the monopole moments m and Q. It then follows from
(4.28) and (4.29) that all of Nab is negligible and (4.42b) is
trivially satisfied. The balance of forces associated with
(4.42a) ismore interesting, implying that the electromagnetic
holding field Fhold

ab ¼ 2∇½aðτb�N−2ΦholdÞ must be related to
the body’s location and its effective self-field F̂self

ab ¼ Fself
ab −

FS
ab via

1

N
Fhold
a ¼ QFhold

ab ub ¼ mDa lnN −QF̂self
ab u

b: ð4:43Þ

This generalizes the elementary result (2.4) to allow for
nontrivial self-interaction. Recall that even ifFself

ab is the self-
field of a point charge,19 its hatted counterpart F̂self

ab remains
smooth at the charge’s location—at least when the G used to
compute it is a parametrix (and also satisfies the electro-
magnetic analogs of the remaining properties summarized at
the end of Sec. III A). Incidentally, (4.35) implies that the
momentum and velocity satisfy the elementary relation
pa ¼ mua when the dipole and higher-order moments are
neglected.
The simple truncation used to obtain (4.43) is instructive,

but is not necessarily physically appropriate. We next
discuss more carefully what a “point particle limit” might
mean and what its implications are. It is only at this stage in
our discussion where the number of dimensions starts to
play any explicit role.20 The neglect of gravitational multi-
pole couplings in (4.43) will be seen, e.g., to be generically
consistent only for n < 4. Similarly, neglecting the electro-
magnetic dipole moment is generically consistent only
for n < 3.

V. POINT PARTICLE LIMITS

The equations derived above are very general. In many
practical applications, however, one would like to special-
ize them to cases where the body B is sufficiently small that
its internal structure—or equivalently its higher multipole
moments—can be effectively ignored. Making this state-
ment precise requires an approximation which strongly
depends on the number of spatial dimensions n. In fact we
shall see that in higher dimensions, forces associated with

19As with any consistent discussion of Maxwell theory, the
formalism here does not make sense for charges which are “truly”
pointlike. Distributional charge distributions nevertheless arise as
limits of smooth charge distributions. See Sec. V.

20The number of dimensions has appeared implicitly via our
demonstration in Appendix B that there exist propagators which
satisfy the constraints of Sec. III. The final conclusion of that
argument—that appropriate propagators do indeed exist—is
nevertheless independent of n.
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higher multipole moments can scale in the same way as the
leading-order self-force and therefore cannot be ignored
(even for “spherically symmetric” bodies).
In this section, we describe a set of assumptions on a

one-parameter family of bodies Bλ which has the inter-
pretation that the limit λ → 0þ is a “point particle” limit.
These assumptions are detailed in Sec. VA and some of
their consequences are derived in Sec. V B.

A. Motivating and defining an appropriate
one-parameter family

Fixing a particular static spacetime and a particular
center-of-mass worldline Z, a family of bodies Bλ can
describe a point particle limit if the spatial support of each
member “shrinks down” to Z as λ → 0þ. Physically, the
overall linear dimensions of Bλ are assumed to be propor-
tional to λ at least when this parameter is sufficiently small.
More precisely, fix coordinates ðt;xÞ so that the metric

components have the explicitly static form (2.9) with NðxÞ
and hijðxÞ both smooth. We then assume that

ρðx; λÞ ¼ λβ ~ρð½x − z�=λ; λÞ; ð5:1aÞ

Jðx; λÞ ¼ λβ ~Jð½x − z�=λ; λÞ; ð5:1bÞ

Tμν
B ðx; λÞ ¼ λγ ~Tμν

B ð½x − z�=λ; λÞ; ð5:1cÞ

where z is the coordinate location of Z (for all t). The
constants β and γ are to be fixed below, while the functions
~ρ, ~J, and ~Tμν

B are assumed to have compact support in their
first argument and to be smooth in both arguments. Also
suppose that ~ρð ~x; 0Þ, ~Jð ~x; 0Þ, and ~Tμν

B ð ~x; 0Þ exist and are
nonzero at least for some ~x ≠ 0. More specifically, denote
the largest j ~xj for which they are nonvanishing by ~R > 0. It
then follows that Bλ is contained in the ball jx − zj <
R≡ λ ~R as λ → 0þ, thus providing a sense in which—as
claimed—the family shrinks linearly towards z. It can be
shown that if assumptions like these are valid in one static
coordinate system with the form (2.9), they are also valid in
all other smoothly related static coordinate systems [38].
The nontrivial issue is now to choose the scaling

parameters β and γ associated via (5.1) with the charge
densities and the stress-energy tensor. We can constrain
these parameters by imposing three physical requirements
as λ → 0þ:
(1) The self-energy does not exceed the total mass.
(2) The mass density remains finite.
(3) The electromagnetic or scalar self-interactions are

more significant than the gravitational self-interaction.
The first two of these assumptions are very mild, while the
last specializes our discussion to a particular physical
regime.
More specifically, the requirement 1 is inspired by the

need to exclude negative energy densities and similar

pathologies. If a body’s dominant electric multipole
moment is its total charge Q, its self-energy is expected
to be of order Q2=Rn−2 [see, e.g., (6.6) at least for n > 2].
The scalings (5.1) then imply that21

Q2

mRn−2 ∼ λ2ðβþ1Þ−γ; ð5:2Þ

which remains finite as λ → 0þ only if

γ ≤ 2ðβ þ 1Þ: ð5:3Þ

Requirement 2 additionally implies that m=Rn ∼ λγ cannot
diverge, so

γ ≥ 0; β ≥ −1; ð5:4Þ

where the second of these inequalities results from com-
bining the first with (5.3). Lastly, the ratio of the gravita-
tional and electric self-energies is typically of order
ðm=QÞ2 ∼ λ2ðγ−βÞ, which tends to zero as λ → 0þ when

γ > β: ð5:5Þ
Although relations (5.3), (5.4) and (5.5) donot determineβ

and γ uniquely, they do imply that the importance of the self-
force relative to multipolar forces diminisheswith increasing
n. To see this, first note that the inertial force mDaN
appearing in (4.42a) scales like λγþn. In many cases, it is
this which the leading-order holding force must balance. If
not, the leading-order holding force instead counteracts the
self-force, which scales like Q2 ∼ λ2ðβþnÞ. Hence,

∇Φhold ∼ λminðγ−β;βþnÞ: ð5:6Þ
If β þ n < γ − β for some n, the inequality must reverse in
higher dimensions—implying that the self-force is subdomi-
nant for sufficiently large n. In the latter cases, the
2p-pole gravitational force as well as the 2p-pole scalar
and electromagnetic holding forces are expected to generi-
cally scale like

ð2p-pole force or torqueÞ ∼ λγþnþp: ð5:7Þ

These effects are large compared to the leading-order self-
force for all multipole orders

p < pSF ≡ nþ 2β − γ: ð5:8Þ
From (5.3) it follows that the critical multipole order satisfies
pSF ≥ n − 2. If n ¼ 2, the monopole holding force and the
self-force can therefore appear at the same order; the latter is
not necessarily small. Ifn ¼ 3, the self-force canno longer be
quite this large, but is at most comparable to the dipole

21This scaling law and others discussed in this section are valid
up to possible factors of ln λ.
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holding force. Moving to n ¼ 4, the leading-order self-force
can be as large as ordinary quadrupole effects, but no larger.22

Similar comments also apply to the self-torque. This first
arises from a monopole-dipole coupling, and therefore
scales like Q2R ∼ λ2ðβþnÞþ1. Spatial components of self-
torques can consequently be comparable to ordinary
2ðpSFþ1Þ-pole torques.
If a particular observable—say the holding force—is to be

understood up to some given accuracy, it follows from (5.8)
that the self-force can be ignored for sufficiently large n. If,
however, the self-force is considered “interesting”on its own,
its effects can be meaningfully interpreted only in combi-
nation with all extended-body terms up to order pSF. These
statements are actually independent of conditions 2 and
3 above.
We now specialize the discussion further by considering

those families whose mass densities do not vary appreci-
ably as λ → 0þ. This can be motivated by noting the
density of solid matter does not change very much except
under severe conditions, and we do not want our limit to
implicitly impose those conditions or to strongly vary the
underlying material. Thus setting γ ¼ 0, it follows from
(5.3) and (5.5) that β ∈ ½−1; 0Þ. It is convenient for the
development of simple Taylor expansions that the scaling
exponents be integers, so consider

β ¼ −1; γ ¼ 0: ð5:9Þ
Fractional self-energies then have finite limits as λ → 0þ. If
n ≥ 2, holding fields scale like λ1, 2p-pole forces scale like
λnþp, scalar and electromagnetic self-forces are of order
λ2ðn−1Þ, and gravitational self-forces are of order λ2n. The
self-interaction is also “as large as possible” in the sense
that

pSF ¼ n − 2: ð5:10Þ
The minimum exponent in (5.6) reverses if n ¼ 1, in which
case the leading-order holding force and self-force both
scale like λ0.
We note that our scaling exponents (5.9) differ (in the

comparable n ¼ 3 case) from those considered in [38];
their choices violate our conditions 2 and 3.

B. Evaluating the point particle limit

Assuming a one-parameter family of bodies Bλ which
satisfy (5.1) and (5.9), holding fields can be determined by
appropriate truncations of the multipole series (4.28),

(4.29), and (4.42). Self-force effects first arise at the scaling
order λ2ðn−1Þ, which corresponds when n ≠ 1 to the multi-
pole order pSF ¼ n − 2. It follows, e.g., that the monopole
approximation is all that is needed when n ¼ 2, in which
case (4.43) holds for purely electric charges up to error
terms of order λ3. Similarly, the first influence of the electric
self-torque in 2þ 1 dimensions occurs via

Q½aðFhold
b�c þ F̂self

b�c Þuc þOðλ4Þ ¼ 0; ð5:11Þ

which provides one algebraically independent constraint on
Fhold
ab . Analogous expressions for larger n are easily

obtained from the general multipole series, and involve
additional multipole moments of the body’s charge dis-
tribution. If n ≥ 4, the stress-energy multipole moments
Îc1���cpab must be taken into account as well as the charge
moments when including leading-order self-force effects.
Understanding the leading-order self-torque generically
requires the consideration of quadrupole or higher stress-
energy moments for all n ≥ 3.
One complication which remains when evaluating a

holding force or holding torque is the computation of
the effective self-fields ϕ̂self and Φ̂self . These are related via
(3.40) to the physical self-fields discussed in Sec. II D, so
computing them requires knowledge of the S-fields defined
by (3.11) and (3.31). These S-fields in turn depend on
spatial bidistributions G and G which must satisfy proper-
ties 1–5 listed at the end of Sec. III A (or their electro-
magnetic analogs). Whatever these propagators are—the
Hadamard parametrices described in Appendix B provide
one possibility—suppose that they are fixed. If λ is
sufficiently small that x ≠ z lies outside of Bλ, it then
follows from (3.11) and (4.16) that the scalar S-field is

ϕSðx; λÞ ¼ qNðzÞGðx; zÞ þOðλnÞ; ð5:12Þ
where the net charge satisfies

q ¼ λn−1 ~qþOðλnÞ ð5:13Þ

for some λ-independent ~q. If the physical self-field ϕself is
associated with a Green function Gself as in (2.21), it also
follows that

ϕ̂selfðx; λÞ ¼ λn−1f ~qNðzÞ½Gselfðx; zÞ − Gðx; zÞ�g þOðλnÞ:
ð5:14Þ

Similarly, the effective electromagnetic self-field is

Φ̂selfðx; λÞ ¼ λn−1f ~Q½Gselfðx; zÞ − Gðx; zÞ�g þOðλnÞ:
ð5:15Þ

Recalling that G and G are parametrices, the elliptic
regularity results discussed in Sec. III A imply that

22These conclusions can also be motivated using the language
of effective field theory: Consider for example the quadrupole
coupling of an object moving in a generic spacetime. The action
can then contain a term

R
dτcabcdRabcd, where Rabcd is the

Riemann tensor and cabcd are body parameters. Self-field effects
will renormalize cabcd by a term proportional toR4−nq2, where q
is the charge andR the size of the body, by dimensional analysis.
This term remains important as R → 0 for n ≥ 4.
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ϕ̂selfðx; λÞ and Φ̂selfðx; λÞ are smooth even in the point
particle limit, and even at the body’s limiting location.
More precisely, the quantities in braces in (5.14) and (5.15)
smoothly extend to x ¼ z, and their derivatives do so as
well. It is these fields which determine the “point particle
self-force.”
Our discussion thus far in this paper has considered

generic extended bodies, certain families of extended
bodies, and finally the forces and torques which apply to
members of those families whose sizes tend to zero. The
results of this final type may be summarized in terms of an
algorithm which can be applied to understand self-inter-
action for “effective point particles”: Compute point
particle self-fields in the usual way and then regularize
them by subtracting off S-fields generated by appropriate
propagators—say the Hadamard parametrices described in
Appendix B. The resulting regularized fields evaluated at
the particle’s location then determine forces and torques via
ordinary test particle expressions. An infinite regularization
therefore emerges as the limit of exact and finite results
obeyed by nonsingular extended bodies.
To illustrate how this general prescription works, we next

discuss the details of a specific example. Further examples
are given in Sec. VII.
For an electric charge in 2þ 1 dimensions, the limiting

holding force is given by (4.43), where the field F̂self
ab ¼

2∇½aðτb�N−2Φ̂selfÞ depends on the potential Φ̂self . This
potential is in turn given by the expression (5.15) as the
difference between a particular Green function Gself and an
appropriate bidistribution G. The Green function Gself is a
solution to (3.36) with S ¼ 0 and G replaced by Gself, with
physically relevant boundary conditions. It describes the
“physical” self-field for an effective point charge, and may
be computed by a variety of well-known techniques. The
bidistribution G is not determined uniquely, but for defi-
niteness, it may be chosen to be the Hadamard parametrix
GH obtained via Eqs. (B20), (B21), and the various trans-
port equations of Appendix B. Those equations determine
the van Vleck determinant Δ and the biscalar
Vem ¼ P∞

p¼0 V
em
p σp. However, high order terms in this

series provide vanishing contributions both to Φ̂selfðx; λÞ
and to its gradient as x → z. Such high order terms may
therefore be ignored in practice, so one can use a truncated
version of the Hadamard series. In this n ¼ 2 example, the
truncation can be taken at zeroth order and so it is sufficient
to use

Gðx; zÞ ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðx; zÞNðxÞNðzÞ

p
ln½σðx; zÞ=l2�; ð5:16Þ

where l is an arbitrary constant. The difference between
this expression and Gselfðx; zÞ, as well as the gradient of that
difference, is finite as x → z, and yields the self-force.
Difference-type regularization methods for point par-

ticles that are similar to our prescription derived above have

been considered in the n ¼ 3 self-force literature at least
since the work of Dirac [46]. These methods eventually
culminated in the Detweiler-Whiting scheme heuristically
proposed in [32] and later derived and generalized in
[28,29,31]. We have provided a derivation—and not merely
an assertion—for the static analog of this type of scheme,
shown that it is valid in arbitrary dimensions, extended it to
allow for more general propagators, and provided precise
definitions for all relevant parameters in terms of a body’s
internal properties. Our results are also valid to all multi-
pole orders.
It is worth noting, however, that a superficially distinct

type of regularization has often been considered in the prior
literature on the point particle self-force: Instead of sub-
tracting off an appropriate field from the physical one, a
type of averaging procedure is instead applied directly to
the gradient of the physical field. In practice, most such
schemes have actually been hybrids involving both sub-
tractions and surface averages. The clearest example of
this type is due to Quinn and Wald [47,48], although see
also, e.g., [9,15]. It does not appear to be widely known that
there are in fact correct regularizations which involve only
averages, and that these are completely equivalent to the
difference-type regularizations discussed above. We now
derive such a scheme for static charges in arbitrary
dimensions.
The notion of average considered here is that of an

appropriate integral over a closed n − 1 dimensional sur-
face which surrounds the body of interest. Consider again a
finite extended body B with nonsingular charge density ρ.
Our basic starting point is a generalization of the Kirchhoff
representation [9] for ϕself : Using (3.12) and (3.27) to
integrate ½DaðNDaϕselfÞ þ ωnρN�G ¼ 0 by parts over an
n-volume B ⊂ Σwhich encompasses a spatial section of B,

ϕself ¼
1

ωn

I
∂B
ðGDa0ϕself − ϕ0

selfDa0GÞN0dSa0⊥

þ 1

ωn

Z
B
ðωnρ

0N0Gþ ϕ0
selfSÞdV 0⊥; ð5:17Þ

where dSa⊥ denotes the natural n − 1 dimensional surface
element on ∂B. Now applying (3.11) and (3.40), the
effective self-field is seen to satisfy

ϕ̂self ¼
1

ωn

I
∂B
½GDa0ϕself − ϕ0

selfDa0G�N0dSa0⊥

þ 1

ωn

Z
B
ϕ0
selfSdV

0⊥: ð5:18Þ

This is exact for all B, all propagators satisfying the
conditions summarized at the end of Sec. III A, and for
all extended objects. IfG is a Green function and not a more
general parametrix, S ¼ 0 and the effective field reduces
purely to an integral involving ϕself and Daϕself on the
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surrounding surface ∂B. It is therefore a kind of averaging
map ϕself ↦ ϕ̂self .
Now specializing to leading-order effects in the point

particle limit, a similar average holds even if S ≠ 0. This
follows because (5.13) and the discussion in Appendix B
imply that for ~q ≠ 0, the interior self-field is of order λ if
n ≠ 2 or of order λ ln λ otherwise. The smoothness of S
therefore implies that the contribution of the body’s interior
to the volume integral in (5.18) scales like λnþ1 or λnþ1 ln λ.
Contributions to the volume integral arising from the
exterior of Bλ can be kept to a similar magnitude if the
radius of ∂B scales like λ. In practice, it is useful to impose
a somewhat slower tendency to zero so that ∂B is both very
large compared to Bλ and very small as seen by exterior
observers whose scales do not change with λ. Regardless,
these arguments imply that the volume integral can con-
tribute only at orders higher than the dominant terms in
ϕ̂self . Self-forces and self-torques can therefore be com-
puted using

ϕ̂self ¼
1

ωn
lim∂B→0

I
∂B
ðGDa0ϕ

0
self − ϕ0

selfDa0GÞN0dSa0⊥ ð5:19Þ

through leading order, where ϕself is a point particle self-
field and the limit implies that ∂B is an n − 1 sphere whose
radius is sent to zero. This is entirely equivalent to (3.40),
and therefore returns a nonsingular result. Analogous
expressions for the electromagnetic potential are obtained
by the obvious replacements ϕ̂self → Φ̂self and G → G.
It is possible to obtain more explicit averaging integrals

for specific propagator choices—perhaps written in terms
of Riemann normal coordinates—although this can be
computationally challenging. Simplifications can some-
times be found by choosing ∂B to have special properties,
although the complexity of (5.19) still grows rapidly with
increasing n. We therefore omit any such calculations here.

VI. EXPLICIT RENORMALIZATIONS
OF BODY PARAMETERS

It is shown in Sec. III that the stress-energy tensor which
appears in the expressions for the holding force and holding
torque is not the usual stress-energy tensor Tab

B , but is
instead the renormalized T̂ab

B . This renormalization can
affect a body’s effective mass m, its effective stress-energy
quadrupole Ĵabcd, and so on. In this section, we compute
the leading-order renormalizations of the mass and quadru-
pole moment in the point particle limit, extending previous
renormalization computations for n ¼ 3 which were given
in [30]. We assume that n > 2 and specialize to the scalar
case for concreteness. We also choose the propagator G to
be the Hadamard parametrix GH defined in Appendix B
and summarized by (E1).
The explicit computations in this section have two

purposes. First, the detailed results serve to illustrate and

make concrete the rather formal theoretical framework
developed in this paper. Second, as discussed in Sec. III C,
different choices for the propagator G give rise to different
scalar forces, different gravitational forces, and so on—it is
only appropriate sums which remain invariant. The quadru-
pole renormalization computed here gives an explicit
illustration of this degeneracy. As noted above, quadrupole
forces can first be competitive with the “ordinary” self-
force when n ¼ 4, and in this number of dimensions, one
simple type of propagator freedom can be parametrized by
the arbitrary length scale l which is used to construct the
Hadamard parametrix (E1). This l is associated with a
nonuniqueness of the gravitational force which exactly
cancels similar l-dependencies in the scalar self-force and
in the inertial force.
We assume a one-parameter family Bλ of matter con-

figurations satisfying the point particle scaling assumptions
(5.1) and (5.9). For any well-behaved spatial coordinates x
such that the bodies’ mass centers are located at x ¼ 0, it
follows that

ρðx; λÞ ¼ λ−1 ~ρðx=λ; λÞ ð6:1aÞ

Tμν
B ðx; λÞ ¼ ~Tμν

B ðx=λ; λÞ ð6:1bÞ

for some smooth ~ρ and ~Tμν
B . We suppose in particular that

ðt;xÞ are appropriately centered Fermi normal coordinates,
so Nð0Þ ¼ 1 and hijð0Þ ¼ δij. It is convenient to introduce
rescaled coordinates

~x≡ x=λ; ð6:2Þ

so that, for example, the function λρ is a smooth function of
~x and λ (but not necessarily of x and λ).
The renormalizations we compute depend linearly on the

renormalized stress-energy tensor, which may be expanded
in two parts:

T̂μν
B ðx; λÞ ¼ ~Tμν

B ðx=λ; λÞ þ δ ~Tμν
B ðx=λ; λÞ: ð6:3Þ

The first term here is the bare (unrenormalized) body stress-
energy tensor which appears in the scaling assumption
(6.1b), while δ ~Tμν

B instead quantifies the stress-energy
renormalization due to a body’s S-field. We call the mass
and quadrupole components arising from δ ~Tμν

B the mass and
quadrupole renormalizations. Note that although ~Tαβ

B is
smooth in its arguments, by assumption, we will find below
that δ ~Tαβ

B can depend logarithmically on λ for fixed x=λ.
We can derive an expression for the stress-energy renorm-

alization δ ~Tαβ
B by writing the renormalization prescription

(3.23) in the Fermi normal coordinates ðt;xÞ, changing to the
rescaled radial coordinates (6.2), and using the scaling
assumption (6.1) and dV⊥ ¼ ffiffiffi

h
p

dnx. The result is
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δ ~Tμν
B ð ~x; λÞ ¼ λ2n−2

Nðλ ~xÞ
Z

dn ~v
ffiffiffiffiffiffiffiffiffiffiffi
hðλ~vÞ

p Z
dn ~w

ffiffiffiffiffiffiffiffiffiffiffiffi
hðλ ~wÞ

p
× Nðλ~vÞNðλ ~wÞ~ρð~v; λÞ~ρð ~w; λÞ

×

�
δGHðλ~v; λ ~wÞ
δhμνðλ ~xÞ

−
uμuν

2Nðλ ~xÞ
δGHðλ~v; λ ~wÞ

δNðλ ~xÞ
�
:

ð6:4Þ

Note that in this expression, the indices μ, ν refer to
components with respect to the original Fermi coordinates
ðt;xÞ, not to the rescaled coordinates ðt; ~xÞ. To leading
order23 in λ, the expression (6.4) can be simplified: we can
replace ~ρð~v; λÞ and ~ρð ~w; λÞ by their λ → 0 limits, which we
write simply as ~ρð~vÞ and ~ρð ~wÞ. Similarly we can replace the
instances of h and N with hð0Þ ¼ 1 and Nð0Þ ¼ 1.
The evaluation of the variational derivativeswhich appear

on the third line of (6.4) is discussed inAppendixE.We show
there that the variational derivatives formally consist of
infinite series of line integrals of derivatives of Dirac delta
distributions, of successively higher derivative orders.
Evaluating δ ~Tμν

B pointwise is therefore impractical.24

Nevertheless, we are primarily interested in the lowest
moments of the stress-energy tensor, rather than its point-
wisevalues. For this purpose, truncated versions of the series
suffice. We argue in Appendix E that it suffices to compute
δGH=δhμν and δGH=δN only through terms involving
second and fewer derivatives of Dirac distributions. We also
ignore all terms which enter at subleading orders in λ. Those
terms which remain are given in (E9) and (E10).
The associated components of δ ~Tμν

B ð ~x; λÞ are found to
scale25 like λ0 if n ≠ 4 and like ln λ if n ¼ 4. The
logarithmic terms which appear at leading order in four
spatial dimensions can be written as two total derivatives of
a quantity with compact support, and therefore affect the
quadrupole renormalization but not, e.g., the mass renorm-
alization. Although logarithmic terms affect the quadrupole
renormalization for all even n, their effects are subleading
when n > 4. We emphasize, however, that four spatial
dimensions are not special except with regards to the
quadrupole moment. Logarithmic terms can appear at
leading order in the renormalizations of other multipole
moments in other numbers of dimensions.

A. Mass renormalization

The effective or renormalized mass m of a body is given
by, from (2.8), (4.23a) and (4.36),

m ¼ −
Z
Σt

Ha0b∇aXbuaub0 T̂
a0b0
B dV 0⊥: ð6:5Þ

This can now be split via m ¼ m0 þ δm, where m0 denotes
the “bare” mass computed using Tab

B instead of T̂ab
B . The

mass renormalization δm then arises only from δ ~Tab
B . Using

(6.3), (6.4), and (E10) for the renormalized stress-energy
tensor, and noting that∇aXb ¼ −δba þOðλ2Þ and ubHa0

b ¼
ua

0 þOðλ2Þ, the mass shift is therefore

δm ¼ λn

2ðn − 2Þ
Z

dn ~v
Z

dn ~w

�
~ρð~vÞ~ρð ~wÞ
~rn−2

�
; ð6:6Þ

where ~r ¼ ~v − ~w, ~r ¼ jrj, and higher-order terms in λ have
been omitted. It follows from (3.35) and (E11) that the
same formula also applies in the electromagnetic case with
the replacement ~ρ → ~J. The familiar formula26 for the
electrostatic self-energy is therefore recovered when n ¼ 3.

B. Stress-energy quadrupole renormalization

It follows from (4.9), (4.15), and (4.18) that the gener-
alized gravitational quadrupole force is in general

F quad ¼ −
1

6
NĴabcdLξRabcd: ð6:7Þ

The renormalized stress-energy quadrupole Ĵabcd is given
by (4.17) specialized to p ¼ 2. To compute this, first note
from (4.12) that

A
ð2Þ

aba0b0 ¼ Hc
a0H

d
b0 ½3uaubucud − 4uðahbÞðcudÞ þ haðchdÞb�

ð6:8Þ
to leading order in λ. In terms of the rescaled coordinates ~x,
the spatial components of the quadrupole moment are thus

Ĵiklj ¼ −λnþ2

Z
~x½kð ~Ti�½j

B þ δ ~Ti�½j
B Þ~xl�dn ~x; ð6:9Þ

where (6.3) has been used and terms which are higher order
in λ have again been dropped. The portion δJiklj of this
which is due to δ ~Tab

B now follows from (6.4) and (E9), after
integrating over ~x and then over s. If n ≠ 4, we find through
leading nontrivial order that

δJiklj ¼ λnþ2

4ðn − 2Þ
Z

dn ~v
Z

dn ~w

�
~ρð~vÞ~ρð ~wÞ

~rn

�
× ½2ðn − 2Þ ~v½i ~wk� ~v½j ~wl� − ~r2ð ~v½iδk�½l ~wj�

þ ~w½iδk�½l ~vj�Þ − gn ~r4δ½i½jδk�l��; ð6:10Þ23Note that the leading-order contributions to T̂ab
B − Tab

B are
not necessarily sufficient to determine all corrections which
might be comparable to or larger than self-force effects.

24No such problems appear if G is identified with a propagator
obtained by truncating the Hadamard series at a sufficiently high
finite order. Indeed, this is often more practical than attempting to
use the full Hadamard parametrix.

25This scaling is not pointwise, but is instead associated with the
action of δ ~Tμν

B on λ-independent test functions; see Appendix E.

26Our mass shift (6.6) has the “conventional” self-energy sign
in the electrostatic case, and the opposite sign to the conventional
one in the scalar case. Our definition for δm can in the simplest
settings be written as an integral of the stress-energy tensor due to
ϕS orΦS. Therefore it cannot be negative, and it does not coincide
with some other definitions of self-energy.
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where gn is defined by (E7) and δ½i½jδk�l� denotes separate
antisymmetrizations on the index pairs ði; kÞ and ðj; lÞ. If
n ¼ 4, we have instead that

δJiklj ¼ −
1

8
λ6 ln λ ~q2δ½i½jδk�l� þOðλ6Þ; ð6:11Þ

where

~q ¼
Z

~ρð ~xÞd4 ~x ð6:12Þ

describes the leading-order scaling of the total charge
q ¼ λ3 ~qþOðλ4Þ; cf. (5.13).
A similar calculation shows that the leading-order mixed

components of the quadrupole moment are

Ĵtijt ¼ −
3

4
λnþ2

Z
~xi ~xjð ~Ttt

B þ δ ~Ttt
BÞdn ~x: ð6:13Þ

Combining this with (6.4) and (E10) gives

δJtijt ¼ −
3λnþ2

8ðn − 2Þ
Z

dn ~v
Z

dn ~w

�
~ρð~vÞ~ρð ~wÞ
~rn−2

�

×

�
~wi ~wj −

1

2
gn ~r2δij

�
ð6:14Þ

when n ≠ 4 and

δJtijt ¼ 3

32
λ6 ln λ ~q2δij þOðλ6Þ ð6:15Þ

otherwise.
Note that these expressions could not be obtained by

naively computing a quadrupole moment associated with
the stress-energy tensor of ϕS. Such attempts would
generically result in divergent integrals, and would also
depend on properties of the scalar field (and the geometry)
at large distances. None of these undesirable properties are
shared by the quadrupole shift δJabcd which appears
naturally in our formalism.
We also note that our leading-order quadrupole renorm-

alizations enter the laws of motion at the same order as
subleading corrections to the mass, which we have not
computed explicitly.

1. Vacuum regions of spacetime

If the background spacetime satisfies the vacuum
Einstein equation Rab ¼ 0, only the “trace-free compo-
nents” of Ĵabcd can affect the quadrupole force F quad. To be
more precise, note that the quadrupole moment has the
same algebraic symmetries as the Riemann tensor, and can
therefore be decomposed into trace parts and trace-free
components just as Rabcd may be decomposed into its Weyl
and Ricci components. The analogous decomposition
results in

Ĵabcd ¼ ĴabcdTF þ 2

n − 1
ðga½cĴd�b − gb½cĴd�aÞ

−
2ga½cgd�b

nðn − 1Þ ðg
efĴefÞ; ð6:16Þ

where Ĵac ≡ gbdĴabcd and ĴabcdTF is trace-free on all pairs of
indices. In vacuum regions, it follows from (3.3) that if
Cabcd denotes the spacetime Weyl tensor, the quadrupolar
gravitational force (6.7) reduces to

F quad ¼ −
N
6
ðJabcdTF þ δJabcdTF ÞLξCabcd: ð6:17Þ

The piece of the quadrupole shift which dominates in the
Newtonian limit is the piece which couples to the electric
component of the Weyl tensor. Explicitly, this component
of δJabcdTF is

δJtijtTF ¼ 1

n − 1
½ðn − 2ÞδJtijt þ δklδJiklj�TF; ð6:18Þ

where “TF” denotes the trace-free component of the
quantity in brackets. Using (6.10) and (6.14), it explicitly
evaluates to

δJtijtTF ¼ −
λnþ2

8ðn − 1Þ
Z

dn ~v
Z

dn ~w

�
~ρð~vÞ~ρð ~wÞ

~rn

�
× ð2j~vj2 ~rði ~wjÞ þ 3~r2 ~wi ~wjÞTF ð6:19Þ

when n ≠ 4. If n ¼ 4, we have instead that δJtijtTF ¼ 0

through leadingOðλ6 ln λÞ order. Indeed, all components of
δJabcdTF vanish at this order in four spatial dimensions.

2. Dependence on length scale l in propagator

As we have mentioned, the Hadamard parametrix
generically involves the arbitrary length scale l for all
even n; see (E1). Changing l implicitly changes the
definition of the quadrupole moment, and in particular
the quadrupole shift δJabcd. Although this effect occurs at
subleading order, it is easily computed using our existing
expressions when n ¼ 4: These shifts may be obtained
merely by replacing the ln λ in the quadrupole shifts (6.11)
and (6.15) by − lnl. To leading nontrivial order, a change
l → eϖl in length scale is therefore accompanied by the
quadrupole shifts

δJtijt → δJtijt −
3

32
λ6δij ~q2ϖ; ð6:20aÞ

δJiklj → δJiklj þ 1

8
λ6δ½i½jδk�l� ~q2ϖ: ð6:20bÞ

Now the gravitational force associated with the quadrupole
moment δJabcd is given by (6.7). Shifting l (in a not-
necessarily vacuum n ¼ 4 spacetime) therefore shifts the
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quadrupole force via

F quad → F quad þ
N
48

λ6ϖ ~q2ðLξR − uaubLξRabÞ

¼ F quad þ
N
48

λ6ϖ ~q2LξðR⊥ − 3N−1D2NÞ ð6:21Þ

to leading order, where R and Rab are the five-dimensional
(spacetime) Ricci scalar and tensor, R⊥ is the four-
dimensional spatial Ricci scalar, and we have used (2.7)
in the second line. This shift vanishes in vacuum but
not in general,27 is canceled by similar l-dependencies
in the scalar self-force and in the subleading mass
renormalization.
Superficially similar dependencies of the self-force on a

choice of length scale in a logarithm were previously
encountered in the computations of Beach, Poisson, and
Nickel [15] and of Taylor and Flanagan [14] [although
those computations were specialized to vacuum spacetimes
for which the force shift (6.21) vanishes]. The physical
relevance of those dependencies is clarified by the results of
this paper: No physically measurable quantities depend on
the arbitrary choice of length scale l, because of the
renormalization of body parameters. However, that renorm-
alization also implies that there is a sense in which the total
force acting on the body for n ¼ 4, at the order at which the
self-force first appears, does indeed depend on the internal
structure of the body, even for spherically symmetric
bodies, as originally suggested by Beach, Poisson, and
Nickel [15]. See Sec. VII B below for further discussion of
these issues.

VII. COMPARISON WITH PREVIOUS WORK AND
APPLICATIONS TO SPECIFIC SPACETIMES

This paper provides the first rigorous understanding of
the self-force in dimensions n ≠ 3. We are not the first,
however, to comment on this subject; see [14–21]. Previous
work has approached it heuristically, restricting to point
particle contexts where the self-force is asserted to be qϕreg

a

for some regularization ∇aϕself ↦ ϕreg
a . We have shown in

Sec. V that appropriate point particle regularizations have
the form ϕreg

a ¼ ∇aϕ̂self , where ϕ̂self is given by (5.14).
Various other procedures have nevertheless been proposed.
Unlike ours, these were not obtained from first principles.
The reasoning used in much of the prior literature is stated
only in passing (if at all), so it is difficult for us to provide
detailed comments on all approaches.
Nevertheless, one persistent theme is the inordinate

attention which has been paid to the detailed structure of
the point particle self-field. It has been common to argue

that certain terms in the gradients of these fields should be
discarded or “smoothed out” based largely on the way they
diverge. Even though the existence of an appropriate
regularization is perhaps necessary if a well-behaved point
particle limit is expected to exist, removing all singularities
is far from sufficient: Given one regularization, it is trivial
to build others which “predict” any finite answer what-
soever. Although this is widely acknowledged, it is often
expected to be irrelevant in practice; appropriate selection
principles might be expected to arise from physical
reasoning or analogies with other, better-understood sys-
tems. What has actually occurred, however, is that different
authors have drawn different conclusions from known
cases, and thus suggested inequivalent regularizations.
We now provide more detailed comments on prior work

by considering in detail two static problems which have
been discussed in the literature: point charges in
Schwarzschild-Tangherlini [14,15] and Rindler [16] space-
times. We apply the formalism developed in this paper to
these problems and then contrast with earlier analyses. This
also serves to illustrate how our formalism can be applied
using concrete examples.
Separately, there has also been prior work on the non-

static self-force problem in various numbers of dimensions
[17–21]. We do not attempt to discuss this in any detail,
although see Sec. VIII for other comments on the dynami-
cal problem.

A. Rindler spacetime

Let τa be a boost-type Killing field in flat spacetime with
n ≥ 2. Introducing Minkowski coordinates ðT;X1;…;XnÞ
and a constant a > 0 with dimensions of inverse length,
suppose that τa describes a boost in the Xn direction so

τa ¼ a

�
Xn ∂

∂Tþ T
∂

∂Xn

�
: ð7:1Þ

Restricting to the wedge Xn > jTj then recovers the nþ 1
dimensional Rindler spacetime together with the every-
where-static Killing field τa. We introduce Rindler coor-
dinates ðt;xÞ on this wedge such that Xi ¼ xi for i ≠ n and

T ¼ y sinh at; Xn ¼ y cosh at; ð7:2Þ

where y≡ xn > 0. Then τa ¼ ∂=∂t, so the lapse and spatial
metric are explicitly

N ¼ ay; hij ¼ δij: ð7:3Þ

It follows from (2.3) that the acceleration of a (static)
worldline at fixed x is y−1∂=∂y.
Now consider the fields which must be imposed so that a

charged object does not evolve with t. We suppose for
simplicity that it is only scalar, and not electric, charge
which is involved. The self-field ϕself which is described in

27A gravitational coupling via the trace of the quadrupole is
familiar from Newtonian physics, for example it occurs for a star
moving in a cloud of noninteracting dark matter of nonuniform
density.
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Sec. II D is then given by (2.21) for some Green function
Gself which satisfies DaðNDaGselfÞ ¼ −ωnδΣ. The particu-
lar Green function which is used depends on which
boundary conditions are physically appropriate. One pos-
sibility has been computed by Frolov and Zelnikov [16],
and is adopted here:

Gself ¼
ffiffiffi
π

p
Γðn−1

2
Þ

aΓðn
2
Þ

P1
2
ðn−3Þðcoth ηÞ

ð2yy0 sinh ηÞ12ðn−1Þ : ð7:4Þ

Here P1
2
ðn−3Þ is a Legendre function of the first kind and η is

defined to satisfy

cosh η ¼ 1þ jx − x0j2
2yy0

: ð7:5Þ

With this choice and any compact (not necessarily point-
like) charge density ρðxÞ, the self-field goes to zero as
jxj → ∞ and is finite on the y ¼ 0 boundary of the
Rindler wedge.
Computing a self-force now requires an appropriate

propagator G with which to compute ϕS and ϕ̂self ¼
ϕself − ϕS. We let

G ¼ Gself ; ð7:6Þ

a choice which satisfies the generalized version of our
propagator assumptions discussed immediately after
assumption 5 in Sec. III A. Those generalized assumptions
allow the consideration of a single propagator G in a single
geometry—which is the case of interest here—rather than a
family of propagators which are specified functionals of N
and hab. It is then required only that G be a parametrix, that
it be symmetric in its arguments, and that there exist some
quasilocal three-point functions for which all Lie deriva-
tives take the form (3.30). That Gself is a Green function
immediately implies that it is also a parametrix. That it is
also symmetric in its arguments follows immediately from
inspection of (7.4) and (7.5). Noting that Gself depends
only on NN0 ¼ a2yy0 and the spatial world function
σðx;x0Þ ¼ 1

2
jx − x0j2, it follows that LψGself has the

appropriate form for all spatial vector fields ψa. The choice
(7.6) is therefore justified.28

Using it, (2.21), (3.11), and (3.40) immediately imply that

ϕ̂self ¼ 0: ð7:7Þ

Self-forces and self-torques determined by (3.41) therefore
vanish to all orders and for all n ≥ 2. This statement is true
for any compact and static extended charge in Rindler

spacetime; it holds even without imposing a point par-
ticle limit.
As we have emphasized in Sec. III C, this self-force is

not particularly interesting on its own. What is much more
relevant is the external force which must be imposed in
order to hold a body “fixed”—which in the Rindler context
corresponds to a uniform acceleration. Rindler spacetime is
flat, so the generalized Killing fields ξa ∈ KG are all
genuine Killing fields and Lξgab ¼ 0. Gravitational forces
and torques determined by (3.42) therefore vanish identi-
cally.29 The only remaining effects which must be consid-
ered are those associated with the holding field ϕhold. It
follows from (4.29a) and (4.40) that the force exerted by
this field must be

Fhold
a ¼ ma∇ay

¼
X∞
p¼0

ay
p!

qb1���bp∇a∇b1 � � �∇bpϕhold: ð7:8Þ

Similarly, (4.29a) and (4.41) show that a body’s rotational
degrees of freedom are constrained by

Nhold
ab ¼ 0

¼
X∞
p¼1

2ay
ðp − 1Þ! q

c1���cp−1 ½a∇b�∇c1 � � �∇cp−1ϕhold: ð7:9Þ

These relations are exact even without applying a point
particle limit. In the monopole approximation, they yield
that the gradient of the holding field is

∇aϕhold ¼
m
q
∇a ln y ð7:10Þ

if q ≠ 0.
The simplicity of the results (7.8) and (7.9) stems largely

from our ability to use the propagator freedom outlined in
Sec. III C to impose (7.6). We have emphasized, however,
that other choices forG are nevertheless possible. Although
such transformations can result in nontrivial self-forces,
these are implicitly compensated by differing values for m;
the propagator freedom in this case corresponds to a
physically irrelevant degeneracy between what one might
label inertial versus self-interaction effects. Appendix D
considers an explicit example of this degeneracy by
choosing G to be the Hadamard parametrix described in
Appendix B (instead of Gself ). The resulting calculation is
considerably more complicated in that case, underlining
how the flexibility in our choice of propagator may be
leveraged to simplify calculations.

28Analogous identifications are not always possible. Depend-
ing on boundary conditions and other factors, Gself might not
satisfy all conditions required of G.

29Alternatively, the gravitational force and torque depend on
the metric extensions gab;c1���cp for all p ≥ 2, but these vanish in
flat spacetime.
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We now compare our results in Rindler spacetime with
those of Frolov and Zelnikov [16], who discussed the self-
force acting on static scalar and electric charges in Rindler
spacetimes with spatial dimensions ranging from n ¼ 3 to 8.
The specific procedure which they advocated was motivated
by Lagrangian considerations30 and analogies to quantum
field theory. A force was eventually obtained by computing
detailed point particle self-fields, dropping some singular
terms, absorbing others into the mass, and also introducing
an infrared cutoff. Their final result was that the self-force
depends on the logarithm of the cutoff parameter. Their
suggested explanation for this divergence was that the cutoff
might describe the scale over which the eternal acceleration
of the Rindler model breaks down.
It is difficult to compare the methods of Frolov and

Zelnikov directly to our own. Their calculation nevertheless
results in a verydifferent answer; in our approach, one natural
definition for the self-force vanishes and no auxiliary
parameters appear. Other definitions are consistent, however.

B. Schwarzschild-Tangherlini spacetime

In a recent article, Beach, Poisson, and Nickel [15]
discussed pointlike scalar and electric charges held fixed
outside a five-dimensional Schwarzschild-Tangherlini
black hole. They found a logarithmic dependence of the
self-force on a cutoff parameter, which they interpreted as a
dependence on the charge’s internal structure.
The primary assumption underlying their calculation was

that the total force can be computed using a two-step
regularization: First, focusing on the scalar case for
concreteness, the ill-defined gradient of the point particle
field is replaced by its surface average h∇μϕir over a sphere
of radius r in Riemann normal coordinates xμ centered on
the particle. The result is not finite as r → 0, but some
diverging terms31 were shown to be proportional to the
acceleration and were absorbed into the mass. This was said
to result in a “regularized average” h∇aϕiregr from which the
force was claimed to follow. The result still diverged,
however, like ln r as r → 0.
The use of an average by Beach, Poisson, and Nickel [15]

was motivated by appealing to the Quinn-Wald axioms
[47,48]. These axioms provide a somewhat different pre-
scription, however. Although it was not mentioned explicitly
in [15], the use of an average is sometimes also motivated by
the claim that it is (“mostly”) equivalent to computing the
force on a small spherical shell [9]. We make two main
comments: The first is that while surface averaging can be

used to compute forces—see the end of Sec. V B—the
version described in [15] has not been justified. In particular,
simple averaging of point particle fields does not generically
correspond to the force on a shell. Second, it was not realized
that the self-force should renormalize not just the mass, but
also the stress-energy quadrupole moment for point particles
in four spatial dimensions.
Taylor and Flanagan [14] again considered the

Schwarzschild-Tangherlini spacetime, but using different
methods. They did not employ a cutoff, but instead consid-
ered a one-parameter family of regularizations. Each of these
resulted in a different (but finite) force. The regularizations
used were special cases of the ones derived in this paper:
Green functionswere obtained and used to defineϕS andΦS,
and these were subtracted away from ϕ and Φ, respectively,
to compute a force. The Green functions used satisfied the
assumptions of this paper, and so the self-forces thus
obtained fit within the framework of this paper.
However, the interpretation of the results given by Taylor

and Flanagan was incomplete. Different choices for the G
and G which were considered there were noted to result in
different self-forces, and the reason for this was not
understood.32 The discussion of this paper shows that
nonuniqueness of the self-force is related to an incomplete
accounting of the forces involved. The self-force is only
one component, and the inertial and gravitational quadru-
pole forces must be taken into account as well. Different
choices for G and G result in different effective quadrupole
moments—an example of which is illustrated explicitly in
Sec. VI B above—and also different masses.
To see this explicitly we now discuss this example in

more detail. The body is coupled only to an electrostatic
field in a five-dimensional (n ¼ 4) vacuum spacetime, and
we assume the one-parameter families (5.1) with scaling
exponents given by (5.9). Then an appropriate point
particle limit of Eq. (4.42a) leads to

Fhold
a ¼ mDaN −

1

6
NJbcdeTF ∇aCdbce þQ∇aΦ̂

self

þ Oðλ7 log λÞ; ð7:11Þ

where m is the renormalized mass computed through
Oðλ6 log λÞ. Note that it is the bare quadrupole that appears
in this equation since it was shown in Sec. VI B 1 that the
renormalization of the quadrupole is subdominant for
vacuum regions in n ¼ 4 spatial dimensions. The last term
appearing in Eq. (7.11) is the regularized point-particle
field, obtained by solving the field equations for a point-
particle source with appropriate boundary conditions and
subtracting a suitably chosen singular field satisfying the
constraints of Sec. III A. This term is precisely the term that
Taylor and Flanagan [14] compute in closed form [see their

30A point particle action was postulated, but as usual for such
methods, the corresponding Euler-Lagrange equations have no
solutions. Such arguments are therefore formal.

31It does not appear to havebeennoticed in [15] that alldivergent
terms in h∇μϕir were proportional to the acceleration. Indeed, no
other direction is possible given the symmetries of the problem. It is
likely, however, that some divergent terms would not be propor-
tional to the acceleration in more complicated spacetimes.

32It was incorrectly assumed that a more detailed analysis would
reveal the existence of a preferred, correct choice of propagator.
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Eq. (5.6)], by deriving a closed-form expression for the
self-field and adopting a one-parameter family of
Hadamard parametrices to construct the singular field,
yielding a one-parameter family of self-forces. Since the
left-hand side of Eq. (7.11) does not depend on the singular
propagator, and neither does the quadrupole term appearing
on the right-hand side, it is clear that the propagator
dependence of the self-force is degenerate with a corre-
sponding propagator dependence of subleading renormal-
izations of the mass. This is the crucial point that was
missed in [14].
Finally, we comment on the suggestion of Beach,

Poisson, and Nickel that the point particle self-force
depends on internal structure when n ¼ 4 [15]. This is
not the case for what we are calling the scalar self-force.
However, it is the case for the sum of the scalar self-force
and the S-field renormalization of the gravitational multi-
pole couplings (which one might call a total self-force). In
this sense Beach, Poisson, and Nickel were correct. On the
other hand, an analogous result is true even in flat space and
even when n ¼ 3. In that context, the self-interaction
contribution to the mass depends on the details of a
body’s internal structure. This dependence is usually not
considered to be physically significant since the final
equation of motion depends only on the renormalized
mass and the bare mass is typically impractical to measure.
Similarly, when n ¼ 4, the final equation of motion
depends only on the renormalized mass and the renormal-
ized quadrupole, and these are not easily separated from the
bare equivalents.

VIII. GENERALIZATION TO DYNAMICAL
BODIES AND SPACETIMES

In this section,wediscuss howour results on static systems
can be generalized to dynamical bodies and dynamical
spacetimes. The general strategy used above, where self-
forces are obtained from identities analogous to (3.20), can
also be adopted in the dynamical case; seeHarte [12] for such
an analysis when n ¼ 3. We first note that those 3þ 1
dimensional results generalize immediately for all odd n,
resulting in S-fields generated by generalizations of the
Detweiler-Whiting Green function. For even n, Detweiler-
Whiting Green functions do not appear to exist.
Modifications are therefore needed, and we conjecture what
those might be. Our discussion is restricted for simplicity to
scalar self-interaction.

A. Odd number of spatial dimensions:
The Detweiler-Whiting prescription

In the usual case with four spacetime dimensions, it is
known that the self-force can generically—even in dynami-
cal cases—be found by following what has come to be
known as the Detweiler-Whiting prescription. Generalizing
early ideas due to Dirac [46], Detweiler and Whiting

proposed [32] that the physical field ϕ around a point
particle could be regularized via

ϕ̂ðxÞ ¼ ϕðxÞ −
Z

GDWðx; x0Þρðx0ÞdV 0; ð8:1Þ

in which case comparison with previously obtained expres-
sions [47–50] showed that the force on a point charge
reduces to q∇aϕ̂ (plus perhaps test-body–type dipole terms
[29,38]). The spacetime bidistribution GDW which appears
in this prescription is known as the (S-type) Detweiler-
Whiting Green function, and is uniquely characterized [9]
by the three properties:
(1) ∇a∇aGDWðx; x0Þ ¼ −4πδðx; x0Þ,
(2) GDWðx; x0Þ ¼ GDWðx0; xÞ,
(3) GDWðx; x0Þ ¼ 0 if x; x0 are timelike separated.
That self-forces can be computed in this way was later

derived directly from first principles, and also generalized
to hold nonperturbatively for arbitrary extended bodies
[12,28–31]. Moreover, it was shown to hold for torques as
well as forces, and to remain valid to all multipole orders.
The methods used to establish these results are the same as
those used in this paper, so it is straightforward to compare
results even at the nonperturbative level. Without going into
details, it was shown that a fully dynamical extended body
with scalar charge in n ¼ 3 spatial dimensions admits a
renormalized momentum P̂t and a renormalized stress-
energy T̂ab

B such that

dP̂t

dt
¼

Z
Σt

�
1

2
T̂ab
B Lξgab þ ρLξϕ̂

�
tadSa; ð8:2Þ

where ta is a time evolution vector field for a family Σt of
hypersurfaces which have been chosen to foliate the body’s
worldtube. The field ϕ̂which appears here is given by (8.1).
As briefly hinted at in [12], the derivation of the force law

(8.2) generalizes trivially to spacetimes with arbitrary n, at
least if a GDW satisfying the above axioms is assumed to
exist (with the obvious rescaling 4π → ωn on the right-hand
side of the field equation in property 1). It follows that the
Detweiler-Whiting prescription is valid for all dimensions in
which there exists a Detweiler-Whiting Green function.
Such Green functions do indeed exist for all odd n, and

so the Detweiler-Whiting prescription remains valid in all
such cases. Explicitly, GDW has the form

GDW ¼ Uδð12ðn−3ÞÞðXÞ þ VΘðXÞ ð8:3Þ

for odd n ≥ 3, where U and V are well-defined smooth
bitensors and X is Synge’s world function on spacetime. If
n ¼ 1, it is instead GDW ¼ UΘðXÞ.
The renormalized force law (8.2) is very similar to our

static result (3.20), the only differences being that P̂t, T̂
ab
B ,

and ϕ̂ are defined somewhat differently. Comparing the last
of these quantities, for example, (3.11), (3.21), and (8.1)
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imply that all differences lie in the underlying propagators as
well as a time integral in the dynamical setting. This suggests
that in a static spacetime, a time integral of the Detweiler-
Whiting Green function should result in a spatial propagator
which is of the type considered in Sec. III. It is shown in
Appendix C that this is indeed the case; the time integral of
GDW is a symmetric, geometrically constructed Green
function for the static problem. The Detweiler-Whiting
construction is therefore consistent with the general frame-
work we have derived to understand the static self-force.
Indeed, the time integral of GDW has more specifically

been shown by Casals, Poisson, and Vega [51] to coincide
with the Hadamard parametrix GH discussed in
Appendix B, at least for ultrastatic 3þ 1 dimensional
spacetimes. They also give evidence that it holds more
generally in this number of dimensions, and we suspect that
it is true in general static spacetimes with odd n.
Before moving to cases with even n, recall that we have

emphasized in this paper that different propagators can
reasonably be chosen in the static regime. This remains true
in the dynamical setting—with a somewhat reduced space of
possibilities—so the Detweiler-Whiting prescription is but
one of many possibilities when n is odd. It is nevertheless
useful.

B. Even number of spatial dimensions

Detweiler-Whiting Green functions do not appear to exist
whenn is even. Progressmaynevertheless bemade bynoting
that the renormalized force law (8.2) remains valid for awide
variety of propagators other than GDW. Excluding integral
convergence issues which can sometimes arise, it holds for
any bidistribution which is symmetric in its arguments and is
quasilocally constructed only from gab.
The simplest such example is the sum of the retarded and

advanced Green functions: Considering scalar charges in
Minkowski spacetime for simplicity,

1

2
ðGret þ GadvÞ ∝

Θð−XÞ
ð−XÞ12ðn−1Þ : ð8:4Þ

This is indeed symmetric and geometrically constructed. It
is also a Green function. It does not, however, vanish when
its arguments are timelike separated. Applying the renor-
malized force law with this propagator would result in
“effective momenta” which depend on an object’s entire
past and future—a clearly unphysical situation.33

One might initially suspect that the problem could be
resolved by substituting X → −X, thus producing the
symmetric propagator ΘðXÞ=X1

2
ðn−1Þ which does vanish

when its arguments are timelike separated. Unfortunately,
the result is no longer a Green function; worse, it is

homogeneous, ∇a∇a½ΘðXÞ=X1
2
ðn−1Þ� ¼ 0 [52]. Although

(8.2) is again valid in this case, it is again unhelpful;
computing an associated S-field results in ϕS ¼ ðconstantÞ
for static point charges, so ϕ̂ ¼ ϕ − ϕS fails to admit a
regular point particle limit.
Having rejected these two possibilities, we demand that

an acceptable propagator be symmetric and geometrically
constructed, that it vanish when its arguments are timelike
separated, and also that the associated ϕ̂ remain smooth
even when ρ is not. It is only the last of these constraints
which is nontrivial to verify, and we conjecture that

Gdyn ≡ dn

�
lnðX=l2Þ
X

1
2
ðn−1Þ

�
ΘðXÞ ð8:5Þ

is an appropriate choice in flat spacetime, where dn is a
normalization constant and l is arbitrary. This is not a
Green function for ∇a∇a, nor even a parametrix.
Nevertheless, it is compatible with the renormalized force
law and vanishes when its arguments are timelike sepa-
rated. Integrating Gdyn against a Minkowski time coordi-
nate may be shown (for appropriate dn) to recover ordinary
static Green functions. Indeed, this statement generalizes
also to the Rindler context. Well-behaved point particle
limits therefore result at least for uniformly accelerated
charges in flat spacetime.
It is unclear whether or not point particle limits associated

withGdyn remain regularmore generally.While this question
could be decided by directly computing the relevant point
particle fields, it would be far less tedious to instead find a
general principle which directly guaranteed the desired
result. Recall that the appropriate principle in the static
regimewas elliptic regularity. This immediately implied that
for propagators which were parametrices, the relevant
effective fields must be well behaved for all ρ. For odd n
where GDW exists, dynamical effective fields instead satisfy
the hyperbolic equation∇a∇aϕ̂ ¼ 0. Elliptic regularity does
not apply in this case, and indeed, singular solutions do
exist—impulsive waves, for example. General theorems on
the propagation of singularities [53] may nevertheless be
used to show that any singularities which might be present
can propagate only in null directions. They may therefore be
viewed as ignorable peculiarities which quickly pass through
a body’s timelike worldtube. For even n where dynamical
effective fields are generated by Gdyn, we do not know of an
analogous statement. Finding one would likely be critical to
constructing a curved spacetimegeneralization, andwe leave
both of these issues for future work.
Incidentally, Gdyn can be generated by performing the

X → −X substitution in Gret þGadv and then adding a
multiple of this to its derivative with respect to n. The
variation with respect to dimension suggests that using
Gdyn in a point particle limit might be equivalent to a kind
of dimensional regularization. We do not attempt, however,
to make this precise.

33This dependence is not unphysical in static systems, which
explains in part why we have had no difficulty finding useful
static propagators for even n.
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IX. DISCUSSION

An overview of some results of this paper is given in
Table I, which summarizes some of the propagators
considered in this paper and elsewhere, their properties
and interrelationships, and how they are used here.
Our main objective has been to understand static extended

charges in static spacetimes.While forces and torques can be
directly computed using the spacetime metric gab, the scalar
and electromagnetic potentials ϕ and Φ, a body’s charge
densities ρ and Ja, and its stress-energy tensor Tab

B , complete
knowledge of these quantities is often unavailable. One
might instead have access only to a body’s mass, net charge,
and perhaps a handful of additional multipole moments. It is
well known that these parameters can accurately describe the
forces and torqueswhich act on sufficiently small test bodies,
and a similar resultmight be expected to holdmore generally.
We show that this is indeed the case: Multipole expansions
for the force and torque are derived for strongly self-
interacting charges, and these are shown to be formally
identical to expansions which had previously been known
for extended test bodies. Our expressions differ, however, in
that the definitions for the various multipole moments and
fields are renormalized with respect to their test-body
counterparts.
These results follow from the identities (3.20) and (3.33),

which show that generalized forces can be computed not
only from the physical fields ϕ and Φ, but also from
appropriately defined “effective fields” ϕ̂ and Φ̂. In many
cases of physical interest—point particle limits, for exam-
ple—the effective fields are simpler; forces due to them can
admit simple multipole expansions even when those
involving the physical fields do not. We use this to show
that the force and torque necessary to hold a body fixed
must satisfy (4.28), (4.29), (4.40), (4.41), and (4.42),
expressions which are valid through all multipole orders
and in all dimensions.
More precisely, our expressions involve certain two-

point propagators which determine, via (3.11) and (3.31),
the differences between the physical and effective fields.
Although the forces due to these fields are not necessarily
identical, all disagreements are of a special form which can
be absorbed into an effective shift Tab

B → T̂ab
B in a body’s

stress-energy tensor—shown explicitly by (3.23) and (3.35)
to depend on functional derivatives of the propagators with
respect to the lapse N and the spatial metric hab. A body’s
linear and angular momenta are thus renormalized, as well
as its quadrupole and higher couplings to the spacetime
curvature. This mixes effects which might be labeled as
“gravitational,” “inertial,” “scalar,” or “electromagnetic.”
Such mixings are particularly relevant in light of our

result that the propagators are not unique. Our formalism
applies for all G and G which satisfy the five properties
summarized at the end of Sec. III A (or their electromag-
netic analogs), and we have emphasized that many pos-
sibilities exist. Different choices generically result in

different effective fields, different self-forces, different
gravitational forces, and so on. While these ambiguities
could be “removed” by convention, perhaps by restricting
only to Hadamard parametrices—Table I summarizes these
and other propagators—we stress the importance of observ-
ables which remain invariant under all allowable trans-
formations. In the static systems considered here, the
natural observables are the forces and torques which must
be supplied to maintain staticity.
Specializing our results to “point particles” corresponds

to considering appropriate one-parameter families of
extended charges. The properties of such a family depend
on the number of spatial dimensions n, and on a scaling
parameter λ. The point particle limit then corresponds to
taking this parameter to zero, in which case sizes scale like
λ, charges like λn−1, and masses like λn. Expanding our
expressions in powers of λ shows that the leading-order
self-force scales like λ2ðn−1Þ, which is comparable for all
n ≥ 2 to test-body forces which involve a body’s 2ðn−2Þ-
pole moments. In this sense, the relative magnitude of the
self-interaction becomes progressively smaller as the num-
ber of dimensions increases; if one is interested in self-force
effects in higher dimensions, extended body effects must
also be taken into account. In lower dimensions, the self-
force can instead be comparable to the monopole test-body
interaction, and it would be interesting to understand if this
type of enhancement could have experimental conse-
quences in lower-dimensional condensed matter or fluid
systems.
Another possible direction for future work is to move

beyond the static regime, considering dynamical self-force
problems in different numbers of dimensions. We remark in
Sec. VIII that prior results in the literature immediately
generalize to describe fully generic self-interaction effects
in all even-dimensional spacetimes. In particular, the
Detweiler-Whiting scheme remains valid in those cases.
The situation is less clear in odd-dimensional spacetimes,
in which case there does not appear to exist any “Detweiler-
Whiting” Green function (or parametrix) which is sym-
metric, geometrically constructed, and quasilocal. Progress
may nevertheless be made by noting that our results
allowing forces to be computed using effective instead
of physical fields apply even if some of these constraints are
weakened. The parametrix constraint in particular may be
dropped, and we conjecture that the propagator (8.5)
provides a useful self-force prescription for dynamical
bodies in all flat, odd-dimensional spacetimes. We note
that the force law (8.2) remains valid in this context, and
also that the expected results—including well-behaved
point particle limits—are recovered in the static limit.
What remains to be shown is whether this choice guaran-
tees well-behaved point particle limits for arbitrarily
accelerated bodies, and also how it can be generalized to
curved spacetimes. We hope to address these issues in a
future article.
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APPENDIX A: NOTATION
AND CONVENTIONS

Throughout this paper, units are chosen in which
G ¼ c ¼ 1, the metric signature is positive, abstract indices
are denoted by a; b;…, spacetime coordinate indices by
μ; ν;…, and spatial coordinate indices by i; j;…. Covariant
derivatives on the spacetime ðΣ × I; gabÞ are denoted by∇a,
and on its spatial sections ðΣ; habÞ by Da. Riemann tensors
on spacetime and on space are Rabc

d and R⊥
abc

d respec-
tively, with similar conventions for Ricci tensors and Ricci
scalars. Signs are such that Rab ¼ Racb

c, and Rabc
dωd ¼

2∇½a∇b�ωc for arbitrary 1-forms ωa.
We assume wherever necessary that for every pair of

points in appropriate regions, there exists exactly one
geodesic which passes through that pair. Although this is
generically false on large scales, we require it only in finite
regions, typically the interior of the body of interest.
Throughout, hatted symbols denote renormalized versions
of unhatted quantities (e.g., ϕ̂ is the renormalized scalar
field). Certain renormalized quantities such as the mass are
nevertheless written without hats for brevity.
Various propagators are used in this paper and summa-

rized in Table I. For any propagator, a tilde above the
symbol, as in ~G, indicates a version obtained by multiply-
ing by powers of the lapse function, as in (B1) and (B2). To
aid the reader, we list other symbols that occur throughout
the paper in Table II.

APPENDIX B: EXISTENCE OF AN
APPROPRIATE PROPAGATOR

It is convenient to have a two-point distribution
G½N; hab�ðx; x0Þ on Σ × Σ which satisfies properties 1–5
summarized at the end of Sec. III A. This Appendix shows
that one possibility is to use the Hadamard parametrix
[41,54]. We first review what this is, and then show that it
possesses all required properties. Constructing Hadamard
parametrices is algorithmic, and therefore conceptually (but
not necessarily calculationally) straightforward.
As a matter of notation, all quantities in this Appendix

are purely spatial. Events x; x0;… are to be interpreted as
elements of Σ, and all indices may be viewed as referring to
n-dimensional tangent or cotangent spaces in this manifold.
For example, much of this Appendix uses a spatial version
of Synge’s world function σðx; x0Þ ¼ σðx0; xÞ [9,40,41],

which returns one half of the squared geodesic distance
between its arguments as computed in ðΣ; habÞ.

1. The Hadamard construction in general

Before describing the Hadamard parametrix, it is con-
venient to first apply a transformation which places the
scalar and electromagnetic problems on the same footing.
This is accomplished by defining the rescaled propagator

~Gðx; x0Þ≡ ½NðxÞNðx0Þ�1=2Gðx; x0Þ ðB1Þ

in the scalar case, and

~Gðx; x0Þ≡ ½NðxÞNðx0Þ�−1=2Gðx; x0Þ ðB2Þ

in the electromagnetic case. Substituting the first of these
definitions into (3.27) shows that if G is a parametrix, ~G
must satisfy

Lsc
~Gðx; x0Þ ¼ −ωnδΣðx; x0Þ þ Sscðx; x0Þ; ðB3Þ

where

Lsc ≡D2 − Λsc; Λsc ≡ N−1=2D2N1=2 ðB4Þ

and Ssc ≡ ðN0=NÞ1=2S. The rescaled electromagnetic
propagator ~G satisfies analogous equations with
Lem ¼ D2 − Λem, although the potential is then

Λem ≡ N1=2D2N−1=2: ðB5Þ

For the purposes of this section, parametrices with the form
(B3) are considered with general potentials, so there is no
need to distinguish between the scalar and electromagnetic
cases. We use sans serif font for the general case, so, e.g.,
~Gðx; x0Þ is a parametrix of L≡D2 − Λ.
The first step in building a Hadamard parametrix is to

isolate the most singular components of ~Gðx; x0Þ in terms of
the distance between its arguments, as represented by the
world function σðx; x0Þ. Introducing convenient constants cn
and l together with certain nonsingular biscalars34 Δðx; x0Þ,
Uðx; x0Þ, Vðx; x0Þ, and Wðx; x0Þ, it may be shown that35

~Gðx; x0Þ ¼ cnΔ1=2

�
U

σ
1
2
n−1

þ V ln ðσ=l2Þ þW
�
: ðB6Þ

34We denote the scalar and electromagnetic versions of these
scalars by Usc, Vsc, Wsc and Uem, Vem and Wem.

35The inverse powers of σ appearing here are not necessarily
classically integrable, and must therefore be defined properly as
distributions. The prescription we adopt may be described by
starting with the (unique) distribution which corresponds to an
integrable power of σ, and then reducing this power by iteratively
applying the coordinate Laplacian δij∂i∂j [52] as a distributional
operator in Riemann normal coordinates.
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The first of the biscalars appearing here is known as the van
Vleck-Morette determinant, and is defined by

Δðx; x0Þ≡ det½−ha0aðx; x0ÞDbDa0σðx; x0Þ�; ðB7Þ

where ha
0
a denotes the parallel propagator on Σ. It is

included here to simplify the remaining terms, and
has a simple geometric interpretation in terms of the
focusing of geodesic congruences [9]. This determinant

TABLE I. A key role in our analysis is played by propagators, by which we mean bidistributions on spacetime or on spatial slices that
can be integrated against charge densities to produce various kinds of self-fields. This table lists some of the propagators we discuss,
where in the paper they are located, their properties, and interrelationships. There is some dependence on the parity of the number n of
spatial dimensions.

Odd number of spatial dimensions Even number of spatial dimensions

Symbol Section Description Symbol Section Description

St
at
ic

Gself II D Green function used to compute a
body’s self-field. Can be, e.g.,
the time integral of the retarded
Green function.

Gself II D Same as for odd n

G III A Generic propagator used to
compute scalar S-fields in static
spacetimes. Affects the self-
force, effective momenta, and
effective stress-energy moments.
Appropriate choices must satisfy
the five assumptions listed at the
end of Sec. III A: They are
geometrically and quasilocally
constructed, symmetric, and
parametrices.

G III A Same as for odd n

G III B Same as G but for electrostatic
fields.

G III B Same as for odd n

GH VI
Appendix B
Appendix E

Scalar Hadamard parametrix. A
specific bidistribution obtained
from Hadamard’s procedure
which satisfies all properties
required of G. Detailed form
differs for odd and even n.

GH ¼ cn
ffiffiffiffiffiffiffi
Δ

NN0

q
Usc

σ
n
2
−1 .

GH VI
Appendix B
Appendix E

Scalar Hadamard parametrix

GH ¼ cn
ffiffiffiffiffiffiffi
Δ

NN0

q
½ Usc

σ
n
2
−1 þ Vsc lnð σl2Þ�

GH Appendix B Same as GH but for electrostatic
fields.

GH Appendix B Same as GH but for electrostatic fields

R
GDW VIII,

Appendix C
Time integral of Detweiler-
Whiting Green function (see
below). Satisfies our five
assumptions for G, coincides
with GH at least for ultrastatic
spacetimes when n ¼ 3 [51],
and conjectured to coincide with
GH for general static spacetimes
with odd n.

R
Gdyn VIII Time integral of our conjectured spacetime

propagator Gdyn in flat spacetime (see
below). Coincides withGH at least for static
charges in Minkowski and Rindler
spacetimes.

D
yn
am

ic
al

GDW VIII Detweiler-Whiting Green function.
For all odd n ≥ 3,

GDW ¼ Uδð12ðn−3ÞÞðXÞ þ VΘðXÞ

Gdyn VIII Conjectured replacement for GDW
when n is even. Useful at least
for uniform acceleration in flat
spacetime; the general case
requires further analysis.

Gdyn ¼ dn½lnðX=l
2Þ

X
1
2
ðn−1Þ �ΘðXÞ
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can be shown to be symmetric in its arguments:
Δðx; x0Þ ¼ Δðx0; xÞ.
The remaining biscalars which appear in (B6) cannot

typically be written in terms of any simple, closed-form
expressions involving σ and ha

0
a. The Hadamard procedure

instead supposes that

Uðx; x0Þ ¼
X∞
p¼0

Upðx; x0Þσpðx; x0Þ; ðB8Þ

along with similar ansätze for V and W. Note that the
“Hadamard coefficients” Up appearing here are not

constants, but can themselves be nontrivial biscalars.
Hadamard’s construction demands that they be determined
by substituting (B6) into (B3), equating explicit powers of
σ, and demanding regularity.
The result of this procedure is that each Hadamard

coefficient must satisfy an ordinary differential equation (or
“transport equation”) between its arguments. These equa-
tions have the general form

ðσaDa þ κÞf ¼ F; ðB9Þ

TABLE II. In this table, for the aid of the reader, we list some commonly occurring symbols that appear in the paper. We do not list
symbols whose meaning is very conventional, or symbols which are used only in the immediate vicinity of where they are introduced.
For each item listed, we give a brief description, and also a reference to the equation in the text where the symbol is defined, or after
which the symbol is first introduced. We do not include propagators (which are listed separately in Table I).

Symbol Meaning Relevant equations

NðxÞ; habðxÞ The lapse function and the spatial metric. (2.2), (2.6)
dV, dV⊥ Volume elements with respect to the spacetime and spatial metrics. (2.8)
Tab
B ðxÞ, T̂ab

B ðxÞ A body’s bare and renormalized stress-energy tensors. (3.23), (3.35)
ϕðxÞ, ϕselfðxÞ,
ϕholdðxÞ

Total (physical) scalar field, scalar self-field, and the scalar holding
field required to maintain staticity; related by ϕ ¼ ϕself þ ϕhold.
Electrostatic equivalents are denoted by Φ���.

(2.15), (2.20), (2.22)

ϕSðxÞ, ϕ̂ðxÞ,
ϕ̂selfðxÞ

The scalar S-field and the effective (or renormalized) physical and self-fields,
related by ϕ̂ ¼ ϕ − ϕS and ϕ̂self ¼ ϕself − ϕS. Electrostatic equivalents are
again denoted by Φ���.

(3.11), (3.21), (3.40),

ρðxÞ, JðxÞ Scalar and electrostatic charge densities, respectively. (2.15), (2.16)
ξaðxÞ, ψaðxÞ A generalized Killing vector field on spacetime and an arbitrary spatial

vector field, respectively. (Sometimes ψa ¼ habξb is a projection of a
generalized Killing field.)

(3.3), (3.4), (3.6)

Z, zt Timelike worldline used to construct the generalized Killing fields and a
point on that worldline at time t. Sometimes chosen to be a body’s
center of mass.

(3.3), (4.34)

PtðξÞ, P̂tðξÞ Bare and renormalized generalized momenta. (3.1), (3.22)
paðtÞ, SabðtÞ Linear and angular momenta, defined to be components of the renormalized

generalized momentum.
(4.21)

FaðtÞ, NabðtÞ Net force and torque, defined to be components of the generalized force. (4.26)
Xðx; x0Þ, σðx; x0Þ Synge’s world function with respect to gab and hab, respectively.
Xaðx; x0Þ Spacetime separation vector defined via the exponential map. Also related

to X via Xa ¼ −∇aX (note the unconventional minus sign).
(3.5)

gab;c1���cpðxÞ,
ϕ̂;a1���apðxÞ

Tensor extensions for the metric and the effective scalar field
(usually evaluated on the central worldline Z).

(4.2), (4.3), (4.4),
(4.7), (4.8), (4.9)

Ĵa1���apbcðztÞ,
Îa1���apbcðztÞ

Multipole moments of a body’s effective stress-energy tensor. These hold
equivalent information but have different index symmetries.

(4.17), (4.18)

Qa1���apðztÞ,
qa1���apðztÞ

Electrostatic and scalar multipole moments, respectively. (4.16)

λ Scaling parameter for one-parameter families used to define point particle limits. (5.1)
β, γ Scaling exponents for the one-parameter families of source densities and

stress-energy tensors used to define point particle limits.
(5.1), (5.9)

L, Lsc, Lem Differential operator for the static field equations corresponding to, respectively,
an arbitrary potential, the potential for the rescaled
static scalar field, and the potential for the rescaled electrostatic field.

(B3), (B4), (B5)

Uðx; x0Þ, Vðx; x0Þ,
Wðx; x0Þ

Spatial biscalars appearing in the Hadamard Green function associated
with L − Λ. When the potential Λ is the scalar or electrostatic one,
we use Usc, Uem, etc.

(B8), (B14), (B15),
(B16), (B17)

Δðx; x0Þ The spatial van Vleck-Morette determinant. (B7)
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where fðx; x0Þ denotes some Hadamard coefficient, Fðx; x0Þ
is a regular biscalar, κ ≥ 1=2 is a constant, and σa≡
Daσðx; x0Þ. That this is a transport equation may be seen
by considering the affinely parametrized (spatial) geodesic
γðsÞ with end points x0 ¼ γð0Þ and x ¼ γð1Þ. In terms of
this, the differential operator appearing in (B9) reduces to

σaðγðsÞ; x0ÞDafðγðsÞ; x0Þ ¼ s
d
ds

fðγðsÞ; x0Þ: ðB10Þ

It follows that the only solution to (B9) which is well
behaved as x → x0 is

fðx; x0Þ ¼
Z

1

0

sκ−1FðγðsÞ; x0Þds; ðB11Þ

showing explicitly that fðx; x0Þ depends on Fðx; x0Þ only
along the geodesic connecting x to x0.

a. Odd spatial dimensions

If a Green function is desired [so S ¼ 0 in (B3)] and
n ≥ 1 is odd, the right-hand side of (B6) is determined as
follows:

cn ¼
1

2
1
2
n−1ðn − 2Þ ; ðB12Þ

all Vp vanish, U0 ¼ 1, and

ðσaDa þ pþ 1ÞUpþ1 ¼ −
LðΔ1=2UpÞ

ð2pþ 4 − nÞΔ1=2 ðB13aÞ

�
σaDa þ pþ 1

2
n

�
Wpþ1 ¼ −

LðΔ1=2WpÞ
2ðpþ 1ÞΔ1=2 ðB13bÞ

for all p ≥ 0. These are transport equations with the form
(B10). Applying (B11), the appropriate solutions are
explicitly

Upþ1 ¼ −
Z

1

0

sp

2pþ 4 − n

�
LðΔ1=2UpÞ

Δ1=2

�
ds; ðB14aÞ

Wpþ1 ¼ −
Z

1

0

s
1
2
nþp−1

2ðpþ 1Þ
�
LðΔ1=2WpÞ

Δ1=2

�
ds: ðB14bÞ

U0 is given, so (B14a) can be iterated order by order to
obtain all Up. The same cannot be said for the Wp. These
coefficients depend on W0, which is not constrained by
Hadamard’s procedure. If a choice is made, however, all
higherWp can be computed by iteratively applying (B14b).
The freedom to chooseW0 corresponds to the many distinct
solutions which exist to L ~G ¼ −ωnδΣ (in the absence of
any boundary conditions or other constraints).
It is a particular characteristic of the odd-dimensional

case that the W term in (B6) is a linear functional of W0.

Moreover, W describes a homogeneous solution in the
sense that LðΔ1=2WÞ ¼ 0. Neither of these properties holds
when n is even.

b. Even spatial dimensions greater than three

Now suppose that ~G is a Green function and that n > 3 is
even. The constant cn in these cases is still given by (B12),
U0 ¼ 1, and the Up satisfy (B14a) for p ¼ 0;…; 1

2
n − 2.

Unlike when n is odd, however, Up ¼ 0 for all p > 1
2
n − 2.

Additionally, V ≠ 0 in general. Its first Hadamard coef-
ficient is

V0 ¼ −
1

2

Z
1

0

s
1
2
n−2

�LðΔ1=2U1
2
n−2Þ

Δ1=2

�
ds; ðB15Þ

while the remaining coefficients follow by iteratively
applying

Vpþ1 ¼ −
Z

1

0

s
1
2
nþp−1

2ðpþ 1Þ
�
LðΔ1=2VpÞ

Δ1=2

�
ds ðB16Þ

for all p ≥ 0. W0 is again arbitrary, while the higher-order
Wp satisfy

Wpþ1 ¼
Z

1

0

s
1
2
nþp−1

�
L½Δ1=2ðVp − ðpþ 1ÞWpÞ�

2ðpþ 1Þ2Δ1=2

− Vpþ1

�
ds ðB17Þ

for all p ≥ 0. Note that W is generically nonzero even
if W0 ¼ 0.

c. Two spatial dimensions

The case n ¼ 2 is slightly different from the other even-
dimensional possibilities: The power law portion of (B6)
vanishes and

~G ¼ −
1

2
Δ1=2½V lnðσ=l2Þ þW�: ðB18Þ

Here, V0 ¼ 1, the higher-order Vp are determined by
(B16), W0 remains arbitrary, and the higher-order Wp

satisfy (B17).

2. The Hadamard parametrix

The above discussion provides an algorithmic method to
construct Green functions for the differential operators Lsc
and Lem defined by (B4) and (B5). The construction is not
unique, however. Different choices for W0 lead to different
Green functions, and the majority of these do not satisfy the
properties demanded in Sec. III. In particular, it is difficult
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to choose W0 so that the symmetry condition (3.12) is
satisfied when n is even; simple choices such as W0 ¼ 0
generically fail. While conditions may be imposed which
perturbatively guarantee symmetry up to some given
order—see Sec. B 4—it is not clear how to accomplish
this more generally.
The simplest way to make progress36 is to ignore W

altogether. Removing it from (B6) defines the37 “Hadamard
parametrix” ~GH: It is explicitly

~GH ≡ cnΔ1=2

�
U

σ
1
2
n−1

þ V lnðσ=l2Þ
�

ðB19Þ

if n ≠ 2, and

~GH ≡ −
1

2
Δ1=2V lnðσ=l2Þ ðB20Þ

otherwise. All biscalars here are the same as in the Green
function case. That ~GH is indeed a parametrix follows from
noting that Δ1=2W is smooth and that it remains smooth
when acted on by L. If n is odd, LðΔ1=2WÞ ¼ 0 so ~GH is
actually a Green function in those cases.

3. Suitability of the Hadamard parametrix for
computing forces and torques

We now explain why the Hadamard parametrix is an
explicit example of a propagator which satisfies all con-
straints imposed in Sec. III. More precisely, we consider the
scalar and electromagnetic bidistributions

GH ¼ ðNN0Þ−1=2 ~GH; GH ¼ ðNN0Þ1=2 ~GH; ðB21Þ

where ~GH and ~GH are the Hadamard parametrices for Lsc ¼
D2 − Λsc and Lem ¼ D2 − Λem, respectively.
We first remark that these propagators depend only on N

and hab. That this is so is intuitively clear given that no
nongeometric choices have been made.38 It is also clear that
our propagators transform appropriately under spatial
diffeomorphisms. To see that they transform correctly

under time rescalings with the form (2.10), first note that
the differential operator L is independent of these scalings,
and that ~GH is as well. The required transformation laws
(3.14) and (3.32) are instead recovered by the factors of N
in (B21).
Next, we verify that our propagators are quasilocal in N

and hab. This follows from noting that the bitensors σ, Δ,
U, and V from which ~GHðx; x0Þ is constructed depend only
on quantities along the geodesic which connects x and x0:
The definition of σ in terms of geodesic distance implies
this immediately for the world function. The above inte-
grals for the Hadamard coefficients show that it is also true
for U and V. Similarly, the van Vleck-Morette determinant
satisfies the transport equation [9]

σaDa lnΔ ¼ ðn −D2σÞ; ðB22Þ

together with Δðx; xÞ ¼ 1, and can therefore be written as a
similar integral with similar dependencies.
Lastly, it follows immediately from (B1), (B2), and

(B21) that GH and GH are parametrices for DaðNDaÞ and
DaðN−1DaÞ, respectively. Properties 1–5 found at the end
of Sec. III A are therefore satisfied for propagators defined
in terms of Hadamard parametrices. This is true for both
odd and even n.
As discussed in the body of the paper, those five

properties are satisfied by many different choices of
propagator; the Hadamard parametrix is just one example.
Other examples are straightforward to obtain. For example,
in the scalar case for even n, one may consider

GH þ ζσn=2ðDaDa þDa0Da0 Þnσ; ðB23Þ

where ζ is a dimensionless constant. This example does not
work for odd n since the additional term is not smooth. For
odd n, an alternative propagator is

GH þ ζσðn−1Þ=2ðDaDa þDa0Da0 Þnσ; ðB24Þ

where ζ is now a constant with dimensions of length.
There do not seem to be any natural examples for odd n that
do not involve the specification of a dimensionful
parameter.

4. Constructing a symmetric Green function

While useful propagators can always be constructed
from Hadamard parametrices using (B21), other choices
are possible. In particular, it can sometimes be convenient
to consider Green functions instead of more general para-
metrices. This would, e.g., allow effective fields to be
computed exactly—and not only to leading order in the
point particle limit—using surface integrals exterior to the
body of interest [cf. (5.18)]. The Hadamard parametrix is

36Similar issues arise in quantum field theory in curved
spacetime in the point-splitting method of computing the re-
normalized expected stress-energy tensor [55]. There, as here,
one needs to find a locally constructed, bidistributional solution
to the field equation. In that context, one choosesW0 ¼ 0 since it
is possible to accommodate a nonsymmetric Green function.

37If V ≠ 0, the length scale l may be varied arbitrarily to
produce a one-parameter family of Hadamard parametrices. We
nevertheless refer to the Hadamard parametrix for simplicity.
Although employing different values of l to describe the same
system might lead to, e.g., different “self-forces,” observables
remain invariant as emphasized in Sec. III C.

38The length scale l is not determined by the geometry, but is a
constant and therefore does not affect our statement.
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already a Green function for odd n, but not in general for
even n, so we now describe how to systematically construct
appropriate Green functions in even spatial dimensions.
As alluded to at the beginning of Sec. B 2, the difficulty

when starting from the general Hadamard procedure is to
pick a W0 such that the resulting ~G is symmetric in its
arguments.39 We do not know how to do so nonperturba-
tively, but can derive appropriate constraints order by order
in a Taylor expansion. These constraints become increas-
ingly complicated at higher orders, so we illustrate the
procedure only in the simplest cases. Our method expands
on a calculation by Brown [56] which was in the context of
quantum field theory.
First, we note that Wðx; x0Þ is a regular biscalar and

suppose that it has a covariant Taylor expansion with the
form

Wðx; x0Þ ¼ wðxÞ þ
X∞
p¼1

1

p!
wa1���apðxÞσa1 � � � σap ; ðB25Þ

where wðxÞ ¼ Wðx; xÞ ¼ W0ðx; xÞ and the higher-order
coefficients are ordinary tensors at x. In the language of
Sec. IVA, these coefficients are, up to sign, tensor
extensions evaluated using hab: wa1���ap ¼ ð−1ÞpW;a1���ap .
They may be found by, e.g., differentiating both sides of
(B25) and applying the coincidence limit x0 → x. If we
requireWðx; x0Þ to be symmetric in its arguments, equating
its Taylor series to that of Wðx0; xÞ yields the constraints

½ð−1Þp − 1�wa1���ap ¼ Dða1 � � �DapÞw

þ
Xp−1
m¼1

�
p
m

�
Dða1 � � �Dap−mwap−mþ1���apÞ;

ðB26Þ

which determine all odd-order coefficients in terms of the
lower-order coefficients.
Since all of the Wp are fixed once W0 is specified, the

symmetry constraints on W can be translated into con-
straints on the Taylor coefficients of W0. If we require
symmetry only through second order in σa, choices with
the form

W0ðx; x0Þ ¼ wðxÞ − 1

2
DawðxÞσa þ

1

2
w0

abðxÞσaσb þ…

ðB27Þ

guarantee symmetry for any wðxÞ and any w0
abðxÞ. The

remaining propagator requirements are then satisfied if
these functions depend only on N and hab, and only

quasilocally. Although it is consistent here to simply let
both functions vanish, doing so can lead to inconsistencies
at third order in σa. Expanding through that order requires
the solution of a nontrivial constraint involving Daw0

bc
together withw and its first three derivatives [56]. Although
conceptually straightforward, some dedication is required
to find analogous constraints at higher orders. In most
cases, it is far more efficient to use the Hadamard para-
metrices described above.

APPENDIX C: TIME INTEGRAL OF
DETWEILER-WHITING GREEN FUNCTION

IS AN APPROPRIATE STATIC
PROPAGATOR

As discussed in Sec. VIII, in even spacetime dimensions,
there exists a Detweiler-Whiting Green function. In a static
system, the Detweiler-Whiting prescription would require
that scalar forces and torques be computed by removing the
S-field

ϕSðxÞ ¼
Z
I
dt0

Z
Σt

dV 0⊥ρðx0ÞNðx0ÞGDWðx; x0Þ ðC1Þ

from the physical one. This equation is equivalent to (3.11)
if the static propagatorG is identified with a time integral of
GDW. More precisely, we note that the Detweiler-Whiting
Green function depends only on gab and set

G½N; hab�ðx; x0Þ ¼
Z
I
GDW½hab − N2∇at∇bt�ðx; x0Þdt0

ðC2Þ

for all static metrics gab ¼ hab − N2∇at∇bt on the mani-
fold Σ × I. The time coordinate t is assumed to be fixed. We
now show that this propagator satisfies the five properties
summarized at the end of Sec. III A.
Our first task is to show thatG is spatial. To see this, note

that in all static spacetimes, the Detweiler-Whiting Green
function must satisfy LτGDWðx; x0Þ ¼ 0. It can therefore
depend on t and t0 only in the combination t − t0. For fixed
x and x0, it also vanishes for sufficiently large jt − t0j. As
long as t is not too close to a boundary of I, the time integral
in (C2) is independent of t and so the left-hand side can be
interpreted as a bidistribution on Σ × Σ.
The propagator G is manifestly well behaved under

spatial diffeomorphisms, and also transforms appropriately
under the time rescalings (2.10). That the Detweiler-
Whiting Green function is symmetric in its arguments
additionally implies the symmetry of G. Furthermore,
applying N∇a∇a to the left-hand side of (C2) shows that
G satisfies (3.25), and is therefore a parametrix—really a
Green function—for DaðNDaÞ.
Lastly, it is clear by construction that G is functionally

dependent only on N and hab. That this dependence is

39It is straightforward to find symmetric Green functions as
solutions to boundary-valueproblems, although it is difficult in those
contexts to enforce a quasilocal dependence only on N and hab.
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quasilocal follows from the fact that the GDWðx; x0Þ can be
expanded in a Hadamard series in a fashion analogous to
what was described in Appendix B, and arguments similar
to those used there show that it can depend on the geometry
only along the (spacetime) geodesic which connects x to x0.
It follows thatGðx;x0Þ can depend onN and hab only along
the spatial projections of all spacetime geodesics connect-
ing points ðt;xÞ to ðt0;xÞ which are not timelike separated.
For fixed x and x0, the set of all such paths has finite size, so
the dependence on the geometry is indeed quasilocal.

APPENDIX D: SELF-FORCE IN RINDLER
USING HADAMARD PARAMETRICES

We showed in Sec. VII A that in Rindler spacetime, the
Frolov-Zelnikov Green function (7.4) satisfies our criteria
to be a valid propagator with which to construct effective
self-fields. If the boundary conditions are such that this
Green function generates the physical self-field, it immedi-
ately followed that the associated self-forces and self-
torques must vanish. In this Appendix, we revisit the
problem of static scalar charges in Rindler spacetime using
a different G. For all n > 2, we identify this with the
Hadamard parametrix discussed in Appendix B. The
associated self-force no longer vanishes in this case,
although it is compensated by an appropriate shift in the
effective mass.
We first change the argument of the Legendre function in

(7.4) from coth η to cosh η, which, recalling that η is defined
by (7.5), provides a much simpler representation in terms of
σ ¼ 1

2
jx − x0j2 and yy0: Employing the Whipple trans-

formation for Legendre functions found in, e.g., 3.3(14)
of [57] shows that

Gself ¼
e−iπm

Γðmþ 1Þ ffiffiffiffiffiffiffiffiffi
NN0p

Qm
−1
2

ðcosh ηÞ
ð2yy0 sinh ηÞm ; ðD1Þ

where m≡ n=2 − 1 (which is not to be confused with
a mass).

1. Odd spatial dimensions

If n is odd, Gself can be written in the form of a
convergent series by noting that for ν − μ a negative integer,
Qμ

νðζÞ has the hypergeometric representation

e−iμπQμ
νðζÞ ¼ ΓðμÞ

2

�
ζ þ 1

ζ − 1

�μ
2

F

�
−ν; 1þ ν; 1 − μ;

1 − ζ

2

�
;

ðD2Þ

so

Gself ¼
cnffiffiffiffiffiffiffiffiffi
NN0p

X∞
p¼0

Γðpþ 1
2
Þ2Γðm − pÞ

πp!ΓðmÞð2yy0Þp σp−m; ðD3Þ

where cn is given by (B12).
Let us turn now to G, which we identify in this Appendix

with the Hadamard parametrix (B21). More precisely, we let
G ¼ ðNN0Þ−1=2 ~GH, where ~GH is the Hadamard parametrix
for the differential operator Lsc ¼ D2 þ 1=4y2. This has the
explicit form (B19), whereVsc vanishes for all odd n andUsc
is determined by the series (B8) in terms of the Hadamard
coefficients Usc

p . These coefficients in turn satisfy (B14),
which can be evaluated in closed form to yield

Usc
p ¼ Γðpþ 1

2
Þ2Γðm − pÞ

πp!ΓðmÞ
1

ð2yy0Þp : ðD4Þ

This results in a series for G which is identical to the series
(D3) for Gself. The Hadamard parametrix is therefore
identical to the Frolov-Zelnikov Green function we use to
generate the self-field, and the prescription adopted here is
identical to the one discussed in Sec. VII A.
Another potential approach to this problem could be to

identify G with the time integral of the Detweiler-Whiting
Green function GDW. A straightforward calculation shows
that this too recovers Gself ; the Detweiler-Whiting field for
a static charge in Rindler spacetime charge coincides with
the field obtained from our Hadamard Green function. As
remarked in Sec. VIII, we believe this agreement holds also
in more general spacetimes.

2. Even spatial dimensions

If n is even, m ¼ n=2 − 1 reduces to an integer. For
p ≥ m, the Usc

p coefficients vanish identically, while for
0 ≤ p ≤ m − 1, they are given by (D4). The Hadamard
function Vsc is nonzero in this context, and the associated
Hadamard coefficients Vsc

p are determined by the integrals
(B15) and (B16). Evaluating these integrals yields

Vsc
p ¼ ð−1Þpþ1Γðmþ pþ 1

2
Þ2

πp!ðm − 1Þ!ðmþ pÞ!
1

ð2yy0Þmþp ; ðD5Þ

which results in a Hadamard series for Vsc which can be
summed in closed form by comparing with the hypergeo-
metric series representation forPm

−1=2ðcoshηÞ=ð2yy0sinhηÞm.
This representation is identical, up to an overall constant, to
our Hadamard series for Vsc, and results in

Vsc ¼
ð−1Þm−12mPm

−1
2

ðcosh ηÞ
ðm − 1Þ!ð2yy0 sinh ηÞm : ðD6Þ

Combining these results finally shows that the Hadamard
parametrix in Rindler spacetime is explicitly
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G ¼ cnffiffiffiffiffiffiffiffiffi
NN0p

"Xm−1

p¼0

Γðpþ 1
2
Þ2ðm − p − 1Þ!

πp!ðm − 1Þ!
σp−m

ð2yy0Þp −
ð−1Þm2mPm

−1
2

ðcosh ηÞ
ðm − 1Þ!ð2yy0 sinh ηÞm ln ðσ=l2Þ

#
: ðD7Þ

We now use the fact that for m a non-negative integer, the associated Legendre function of the second kind can be
expressed as [cf. 3.6(11) in [57]]

Qm
−1
2

ðζÞ ¼ Pm
−1
2

ðζÞ
�
1

2
ln

�
ζ þ 1

ζ − 1

�
− γ − ψ

�
mþ 1

2

��
þ Γð1

2
þmÞ

Γð1
2
−mÞ

�
ζ − 1

ζ þ 1

�m
2
X∞
p¼0

ð−1ÞpΓðpþ 1
2
Þ2Hmþp

π2pþ1p!ðmþ pÞ! ðζ − 1Þp

þ
�
ζ þ 1

ζ − 1

�m
2

�Xm−1

p¼0

ð−1ÞmΓðpþ 1
2
Þ2ðm − p − 1Þ!

π2pþ1p!
ðζ − 1Þp þ

X∞
p¼1

ð−1ÞmþpΓðmþ pþ 1
2
Þ2Hp

π2mþpþ1p!ðmþ pÞ! ðζ − 1Þmþp

�
; ðD8Þ

which permits the representation

G ¼ Gself þ
cnffiffiffiffiffiffiffiffiffi
NN0p

��
ln
�
yy0

l2
ð2þ σ=yy0Þ

�
− 2γ − 2ψ

�
mþ 1

2

��
Vsc −

X∞
p¼1

Γðmþ pþ 1
2
Þ2Hp

πp!ðm − 1Þ!ðmþ pÞ!
ð−σÞp

ð2yy0Þpþm

−
X∞
p¼0

2mΓðmþ 1
2
Þ2Γðpþ 1

2
Þ2Hpþm

π2p!ðm − 1Þ!ðmþ pÞ!ð1þ σ=yy0Þm
ð−σÞp

ð2yy0Þpþm

�
: ðD9Þ

In these expressions, Vsc is given explicitly by (D6), γ is
Euler’s constant, ψðζÞ≡ Γ0ðζÞ=ΓðζÞ is the Digamma func-
tion, and Hp ≡Pp

j¼1 j
−1 is the pth Harmonic number. We

have also used (D1) for Gself. The effective self-field ϕ̂self is
now generated by the propagator Gself −G, which is
nonsingular throughout the interior of the Rindler wedge.
Recall that in the point particle limit, the self-force is

given by q∇aϕ̂self through leading nontrivial order. This
depends explicitly on Gself −G via (5.14), and is easily
computed using (D6) and (D9). The result is not particu-
larly enlightening, although we do note that it is nonzero in
general. Moreover, it depends logarithmically on the
arbitrary parameter l. The various parametrices defined
by different values of l (and the parametrixGself used forG
in Sec. VII A) are each associated with different definitions
for the mass, and the holding force remains invariant under
these transformations even while the self-force does not.
We also note that the results of Sec. VII A can be

nonperturbatively recovered from the perspective of the
Hadamard construction. This is simplest to see by allowing
for a nontrivial Wsc in (B6), which can be chosen in this
context so that the resulting Green function coincides with
Gself . That Wsc is symmetric in its arguments and quasi-
locally constructed from N and hab. It is not clear, however,
which Wsc

0 would be associated with it.

APPENDIX E: VARIATIONAL DERIVATIVES OF
THE HADAMARD PARAMETRIX

The renormalization of a body’s stress-energy tensor as
derived in Sec. III depends on the variational derivatives of
the propagator G½N; hab� with respect to the spatial metric

and the lapse function. In this Appendix, we compute those
variational derivatives within a certain approximation
which is sufficient to describe shifts in the mass and the
stress-energy quadrupole moment to leading order in a
point particle limit—shifts which are computed explicitly
in Sec. VI.
We specialize to the scalar case and to n > 2, and also set

the propagator to be the Hadamard parametrix described in
Appendix B; hence, G ¼ GH. Following (B1) and (B19),
the scalar Hadamard parametrix is explicitly

GH½N; hab� ¼ cn

ffiffiffiffiffiffiffiffiffi
Δ

NN0

r �
Usc

σ
n
2
−1 þ Vsc lnðσ=l2Þ

�
; ðE1Þ

where cn is the constant (B12), Δ½hab� is the spatial van
Vleck-Morette determinant (B7), σ½hab� the spatial world
function, Usc½N; hab� and Vsc½N; hab� are appropriate bis-
calars, and l is an arbitrary constant with dimensions of
length. Each choice of l technically defines a different
parametrix, and therefore a different renormalization.
We now compute the variational derivatives of the

propagator (E1) using two simplifications. First, we spe-
cialize to linear perturbations about a flat spatial geometry
with a trivial lapse function, and we specialize the coor-
dinates so that the background quantities are hij ¼ δij and
N ¼ 1. At the end of the Appendix we will discuss
variational derivatives about more general backgrounds,
and explain why the flat space, unaccelerated variational
derivatives are sufficient for our renormalization
computations.
The second simplification involves a truncation of the

Hadamard series: The biscalars Usc½N; hab� and Vsc½N; hab�
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in (E1) have been defined only via the Hadamard series
(B8), so the only clear way to compute their variational
derivatives is to vary the Hadamard coefficients Usc

p ½N; hab�
and Vsc

p ½N; hab�, and then to sum—or to approximate the
sum of—the resulting series. Attempting to formally carry
this out results in a series which involves arbitrarily many
derivatives of Dirac δ-distributions. We truncate this series
by omitting all terms which involve more than two
derivatives of Dirac distributions. The justification for this
is discussed at the end of the Appendix.
Using static Minkowski coordinates ðt;xÞ, we denote by

v and w the spatial coordinates of the two arguments of the
propagator (E1). Varying with respect to the spatial metric,
hij → δij þ δhij, shows that

δGHðv;wÞ ¼ cn

�
δðΔ1=2Þ
σ

n
2
−1 þ δUsc

σ
n
2
−1 −

ðn − 2Þδσ
2σ

n
2

þ δVsc lnðσ=l2Þ
�
; ðE2Þ

where we have used the fact that the unvaried biscalars are
Δ½δij� ¼ 1, Usc½1; δij� ¼ 1, and Vsc½1; δij� ¼ 0 in the flat,
unaccelerated background which has been assumed. We
now evaluate these terms one by one.
The second-to-last term in (E2) is the simplest to

compute. The variation of Synge’s world function is

δσ ¼ 1

2

Z
1

0

dsrirjδhijðxsÞ; ðE3Þ

where r≡ v − w and

xs ≡ w þ sr ðE4Þ

is the affinely parametrized geodesic joining the pointsw ¼
x0 and v ¼ x1 in the background space. Also note that the
unvaried world function is explicitly σðv;wÞ ¼ r2=2, where
r≡ jrj. The formula (E3) can be obtained by directly
varying the definition of σ given by Eq. (3.1) of Ref. [9], or
by varying the identity Daσ½hcd�Daσ½hcd� ¼ 2σ½hcd� [9] to
obtain a transport equation for δσ.
Similarly, from the definition (B7) of the van Vleck-

Morette determinant we obtain

δΔ ¼
Z

1

0

ds½δhðxsÞ þ ð2s − 1ÞrjDiδhijðxsÞ

−
1

2
sð1 − sÞrirjD2δhijðxsÞ� −

1

2
½δhðvÞ þ δhðwÞ�;

ðE5Þ

where D2 ¼ δij∂i∂j and δh≡ δijδhij.
Next we vary Usc with respect to the spatial metric.

Recalling (B14a) and our aforementioned criterion regard-
ing the retained derivatives of Dirac distributions, it follows

that only the zeroth and first-order terms in the Hadamard
series must be varied. The zeroth-order term is
Usc

0 ½N; hab� ¼ 1 for all N and all hab, so its variation
trivially vanishes. Using (B13a), the variation of the first-
order term is instead

δUsc
1 ¼ 1

2ðn − 4Þ
Z

1

0

dsD2δΔðxs;wÞ ðE6Þ

if n ≠ 4, where the Laplacian is understood to act on the
first argument of δΔ. If n ¼ 4 however,Usc

1 ½N; hab� ¼ 0 for
all metrics and so δUsc

1 ¼ 0. Defining

gn ¼
�
1=ð4 − nÞ if n ≠ 4;

0 if n ¼ 4;
ðE7Þ

it follows from (E5) and (E6) that

δUsc ¼
gnr2

16

Z
1

0

dsfs2ð1 − sÞ2rirjD4δhijðxsÞ

þ 4sð1 − sÞð1 − 2sÞriDjD2δhijðxsÞ
þ ½2 − 4sð1 − sÞ�D2δhðxsÞ
− 8sð1 − sÞDiDjδhijðxsÞg: ðE8Þ

Terms involving second and higher-order terms in the
Hadamard series have been omitted here.
If n ≠ 4, these expressions are all that are needed to

evaluate δGH=δhij in the approximation used in Sec. VI.
The variation of Vsc is important only if n ¼ 4, and
approximating it in that case by δVsc

0 , it follows from
(B15) that δVsc is proportional to a line integral of D2δΔ.
More precisely, it is given by the right-hand side of (E8)
with the gnr2 prefactor removed. Now inserting (B12),
(E3), (E5), and (E8) into (E2) shows that for all n > 2,

δGHðv;wÞ
δhijðxÞ

¼−
1

4ðn−2Þrn
�
r2δij½δΣðx;vÞþδΣðx;wÞ�

−2

Z
1

0

ds

�
r2δij−rirj

�
ðn−2Þþ1

2
sð1−sÞr2D2

x

�

−ð2s−1Þr2rðiDjÞ
x

�
δΣðx;wþsrÞ

þrn

4

�
2gn
rn−4

þδn;4 ln

�
r2

2l2

��Z
1

0

dsð4sð1−sÞDi
xD

j
x

þ½2sð1−sÞ−1�δijD2
xÞδΣðx;wþsrÞ

�
; ðE9Þ

where again, r ¼ v − w and third and higher derivatives of
Dirac distributions have been omitted.
Next we turn to the variational derivative of GH with

respect to the lapse function N, varied so that N → 1þ δN.
The Hadamard parametrix depends on the lapse through the
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explicit prefactors in (E1), and also through the potential
Λsc in (B4) that enters into the differential operator Lsc
which affects Usc½N; hab� and Vsc½N; hab� via (B14a) and
(B15). Taking this into account, a calculation similar to the
one for δGH=δhij gives

δGHðv;wÞ
δNðxÞ ¼ −

1

2ðn − 2Þrn−2
�
δΣðx; vÞ þ δΣðx;wÞ

−
rn−2

4

�
2gn
rn−4

þ δn;4 ln

�
r2

2l2

��

×
Z

1

0

dsD2
xδΣðx;w þ srÞ

�
; ðE10Þ

where higher-derivative terms have again been omitted.
Although these calculations have all been performed for

scalar fields, they are easily adapted to the electromagnetic
case: We note that the electromagnetic Hadamard para-
metrix GH½N; hab�, which is given by (B19) and (B21), can
be obtained from the scalar parametrix GH½N; hab� using
the substitution N → 1=N. It follows that the electromag-
netic variational derivatives in the flat, unaccelerated limit
are just

δGHðv;wÞ
δhijðxÞ

¼ δGHðv;wÞ
δhijðxÞ

;

δGHðv;wÞ
δNðxÞ ¼ −

δGHðv;wÞ
δNðxÞ : ðE11Þ

We now explain why the simplifications used in the
above computations—specialization to flat, unaccelerated
backgrounds and truncation at two derivatives—are suffi-
cient for the renormalization computations in the body of
the paper. For this explanation it is helpful to consider
variational derivatives about general backgrounds ðhij; NÞ.
For each integer p ≥ 0, we define the set Fp of functionals
F ¼ F½hij; N� that are symmetric bidistributions on Σ by
the requirement that the variation of F under
hij → hij þ δhij, N → N þ δN is given by

δFðx; x0Þ ¼
Xp
q¼0

Z
1

0

ds½HK00 ðx; x0; x00s ; sÞDK00δNðx00sÞ

þ ~Hi00j00K00 ðx; x0; x00s ; sÞDK00δhi00j00 ðx00s Þ�: ðE12Þ

Here K00 means the sequence of indices k001…k00q,
DK00 ¼ Dk00

1
…Dk00q , x

00
s for 0 ≤ s ≤ 1 is the affinely para-

metrized geodesic joining x to x0, and HK00 ðx; x0; x00; sÞ and
~Hi00j00K00 ðx; x0; x00; sÞ are some smooth tritensors on Σ. In
other words, functionals in Fp have variations which
consist of integrals along the geodesic joining x and x0
of derivatives of the variations δhij and δN up to pth order.
One can show that Fp is closed under simple algebraic
operations, and taking covariant derivatives with respect to

x or x0 mapsFp toFpþ1. Finally one can show that the type
of operation on functionals given in (B14), (B15), and
(B16) maps Fp to Fpþ2.
The variation of Synge’s world function is still given by

(E3) (with ri replaced by dxi=ds), and so σ is an element of
F 0. It follows using the definition (B7) that Δ is an element
of F 2, and we obtain from the Hadamard construction that
Usc

p lies in F 2pþ2 and Vsc
p lies in F 2pþ4.

Consider now the evaluation of stress-energy moments
using the expression (6.4) for the renormalization of the
stress-energy tensor. We wish to consider the limit λ → 0 of
such moments. Note that this involves a weak limit of the
distributional quantities which appear in the third line of
(6.4), not a pointwise limit. The explicit expression for a
renormalized stress-energy moment will be given by
inserting a variational derivative obtained from an expres-
sion of the form (E12) into (6.4) and then into (4.17). The
arguments of the tritensors HK00

and ~Hi00j00K00
in (E12) will

then contain explicit factors of λ. Therefore, by local
flatness and by smoothness of the background lapse
function, to leading order in λ (in a weak limit sense)
these tritensors can be replaced by their flat space,
unaccelerated limits. Similarly the geodesic x00s can be
replaced by its flat space version (E4). In other words,
one can use the flat space, unaccelerated variational
derivatives (E9) and (E10) computed above, to leading
order in λ, interpreting the coordinates ðt;xÞ in these
expressions to be the Fermi normal coordinates defined
after (6.1).
Finally, we can omit all terms in δGH=δhij or δGH=δN

which involve more than two derivatives of Dirac distri-
butions. This is because integrations by parts with respect
to ~x in multipole expressions obtained from (6.4) show that
such terms cannot contribute to renormalizations of the
quadrupole and lower-order moments.
As a final remark, we note that one might have naively

attempted to avoid Hadamard parametrices by instead
building a family G0½N; hab� of propagators using the
methods of perturbation theory. Suppose that G0½1; δij� ¼
cnσ½δij�1−n

2, so the usual propagator is recovered in a flat,
unaccelerated background. Also suppose that this family of
propagators is more generally a symmetric Green function in
the sense that it satisfies (3.25) for allN and hab. Varying this
equation with respect to N off of a background in which
N ¼ 1 and hij ¼ δij shows that D2δG0 ¼ ωnδΣðx; x0ÞδN−
DaδNDaG0. From the viewpoint of perturbation theory,
perhaps the most natural solution to this equation treats the
entire right-hand side as a source and integrates it against the
background G0½1; δij�. Using such a procedure to define
G0½1þ δN; δij�, it follows that

δG0ðv;wÞ
δNðxÞ ¼ −

1

ωn
δijDi

xG0ðv;xÞDj
xG0ðx;wÞ: ðE13Þ
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A similar expression may also be obtained for variations
with respect to hij. In either case, fixing v and w
results in variations which do not have compact support
in x. The family of propagators which is obtained
in this way therefore fails to satisfy the constraints

summarized at the end of Sec. III A, implying that the
boundary conditions implicit in such a construction
are inappropriate for our purposes. The Hadamard family
of propagators is different and does not share this
problem.
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