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The self-force problem—which asks how self-interaction affects a body’s motion—has been poorly
studied for spacetime dimensions d ≠ 4. We remedy this for all d ≥ 3 by nonperturbatively constructing
momenta such that forces and torques acting on extended, self-interacting electromagnetic charges have the
same functional forms as their test body counterparts. The electromagnetic field which appears in the
resulting laws of motion is not however the physical one, but a certain effective surrogate which we derive.
For even d ≥ 4, explicit momenta are identified such that this surrogate field satisfies the source-free
Maxwell equations; laws of motion in these cases can be obtained similarly to those in the well-known
four-dimensional Detweiler-Whiting prescription. For odd d, no analog of the Detweiler-Whiting
prescription exists. Nevertheless, we derive its replacement. These general results are used to obtain
explicit point-particle self-forces and self-torques in Minkowski spacetimes with various dimensions.
Among various characteristics of the resulting equations, perhaps the most arresting is that an initially
stationary charge which is briefly kicked in 2þ 1 dimensions asymptotically returns to rest.
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I. INTRODUCTION

The motion of small bodies is central to some of the most
enduring problems in physics. If such a body is coupled to
an electromagnetic, gravitational, or other long-range field,
it may be subject to net forces exerted by its own
contributions to that field. This “self-force” strongly
influences, for example, charged particles circulating in
particle accelerators and the shrinking orbits of black hole
binaries due to the emission of gravitational radiation.
However, the apparent simplicity of the statement of the
self-force problem belies a number of physical and math-
ematical subtleties. This has led to more than a century of
literature on the subject; see [1–10] for some electromag-
netic examples.
While motivations for working on the self-force problem

have varied considerably over the years, the past two
decades have seen a concerted effort—motivated largely
by gravitational wave astronomy—to understand the gravi-
tational self-force problem in general relativity. This has led
to a number of theoretical and computational advances
which considerably improve our understanding of classical
self-interaction, in both the gravitational and electromag-
netic contexts [11–14]. Separately, new aspects of the
electromagnetic self-force are beginning to be accessible
to investigation via high-power laser experiments [15,16].
In this paper, we move beyond the existing literature,

which almost exclusively focuses on four spacetime
dimensions, to rigorously study self-interaction in all

dimensions d ≥ 3. There are several reasons for this:
First, considerations in different numbers of dimensions
refine our understanding of precisely what is important and
what is not; lessons learned in this way may significantly
inform future considerations even in four dimensions,
particularly in more complicated theories which have not
yet been understood. Second, considerations of theories in
nonphysical numbers of dimensions can, via holographic
dualities, be related to ordinary four-dimensional systems;
for example, the five-dimensional self-force might be used
to understand jet quenching in four-dimensional quark-
gluon plasmas [17]. Third, self-forces in odd numbers of
spacetime dimensions are qualitatively very different from
those in even dimensions. In particular, one crucial ingre-
dient of the self-force framework is the derivation of an
appropriate map from the physical field to an effective
surrogate in which, e.g., the Lorentz force law is preserved
despite the possible presence of radiation reaction and
similar effects; this map had not been previously under-
stood in odd dimensions and differs considerably from its
even-dimensional counterpart. Despite these differences, a
significant portion of this paper is devoted to developing a
unified formalism which applies for any parity of dimen-
sion. Our results subsume the Detweiler-Whiting scheme
which was originally given in four dimensions [11,12,18].
Our final reason for considering different numbers

of dimensions is that the self-force in three spacetime
dimensions may be proportionally stronger than in four
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dimensions, both in terms of instantaneous magnitude [19]
and—as argued below—in the particularly slow decay of
fields in this context. The latter property implies that self-
interaction encodes a strong “memory” of a system’s past.
Moreover, systems in which this is relevant may be
accessible to experiment. For example, “pilot wave hydro-
dynamics” involves a number of striking phenomena
observed to be associated with oil droplets bouncing on
a vibrating bath [20]. Each bounce generates surface waves
on the bath, but these waves also affect the horizontal
motion of the droplet. This type of feedback with a long-
range field (the surface waves) is reminiscent of a self-force
problem in two spatial dimensions. There are also a variety
of condensed matter systems which act as though they are
confined to one or two spatial dimensions [21,22], and
some of our considerations may be relevant there as well.
We do not consider any particular fluid or condensed

matter system in this paper, but instead explore a standard
electromagnetic self-force problem in different numbers of
dimensions. To the best of our knowledge, the literature
does not contain any rigorous derivations of the self-force
other than in four dimensions, except for recent work
restricted to static bodies [19] (see however work on the
radiation reaction component of the self-force in effective
field theory [23,24]). The fully dynamical self-force con-
sidered here is considerably different and more rich than its
static counterpart. We choose to focus on the standard
electromagnetic self-force problem purely for clarity of
exposition; our results generalize to extended bodies
coupled to Klein-Gordon fields and to linearized gravita-
tional fields satisfying the Einstein equations. There are
also no conceptual obstacles to considering nontrivial
boundary conditions such as those appropriate for describ-
ing analogs of the pilot-wave hydrodynamics experiments
mentioned above.
A layout of the paper is as follows: In Sec. II, we briefly

review, and then apply and extend, a nonperturbative
formalism [10,12,25,26] which provides a general frame-
work for the problem of motion of strongly self-interacting
extended bodies. Not all of the intricate details of this
formalism are required to absorb the essential points of this
paper, although some of the most relevant aspects are
recounted here. We apply them to derive equations of
motion for an extended body coupled to an electromagnetic
field in arbitrary dimensions, including all self-interaction
effects. The resultant equations are structurally identical to
extended test-body equations, except that the physical field
in the test-body equations is mapped to an effective field
which encapsulates all self-force and self-torque effects.
The cost of this map is that the stress-energy tensor of the
body is renormalized as it appears in the laws of motion.
This renormalization is well-controlled, however, being
both finite and quasilocal (in a sense we make precise later).
Moreover, our laws of motion admit well-defined point-
particle limits. In Sec. III, we discuss these point-particle

limits with retarded boundary conditions in Minkowski
spacetimes with various dimensions, obtaining explicit
point-particle self-forces and self-torques in these cases.
In Sec. IV, we discuss some interesting phenomenology
that occurs in odd numbers of spacetime dimensions. Some
of the issues that arise here remain open problems which we
hope will inspire further interest. We particularly focus on
self-force phenomenology in d ¼ 3, where self-interaction
effects can be relatively large and where there is a very
strong history dependence. One particularly striking exam-
ple of the latter shows up in the case of a charge which is
initially stationary and is then given a kick by an externally
imposed force. Our analysis shows that the slowly decaying
fields in this case cause such a particle to return to rest
at late times, a phenomenon reminiscent of Aristotelian
physics.
Throughout this paper, units are chosen in which G ¼

c ¼ 1, the metric signature is positive, abstract indices are
denoted by a; b;…, spacetime coordinate indices by
μ; ν;…, and spatial coordinate indices by i; j;….

II. EXTENDED BODIES AND
NONPERTURBATIVE LAWS OF MOTION

Our strategy is not to obtain a “point particle self-force”
as any kind of fundamental concept, but instead to derive
laws of motion first for extended charge distributions and
then to evaluate point-particle limits of those laws.
Although we focus for concreteness on the electromagnetic
self-force problem, analogous results are easily obtained
for the scalar and (at least the first order) gravitational
self-force. The approach adopted here is based on a
nonperturbative formalism developed by one of us
[10,12,25,26], which provides a rigorous framework with
which to analyze problems of motion in a wide variety of
contexts. Crucially, most of this framework is agnostic to
the number of spacetime dimensions.

A. Preliminaries

In the electromagnetic context, a finite extended body in
a d-dimensional spacetime ðM; gabÞ is associated with a
nonsingular conserved current density Ja and a nonsingular

stress-energy tensor Tab
B ¼ TðabÞ

B . The support of Tab
B may

be identified with the body’s worldtubeW ⊂ M, and that of
Ja is assumed not to extend beyond W. Furthermore, we
suppose that the body’s worldtube is spatially compact and
that the electromagnetic field Fab satisfies Maxwell’s
equations

∇½aFbc� ¼ 0; ∇bFab ¼ ωd−1Ja; ð1Þ

in a neighborhood of W, where

ωd−1 ≡ 2π
1
2
ðd−1Þ

Γð1
2
ðd − 1ÞÞ ð2Þ
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is equal to the area of a unit sphere in Rd−1. The dynamical
evolution of such an extended body may be understood, at
least in part, via energy and momentum exchanges between
that body and the electromagnetic field. Such exchanges
are more precisely described by the conservation of the
system’s total stress-energy tensor Tab ¼ TðabÞ, in the sense
that

∇bTab ¼ 0: ð3Þ

Although various arguments can be made for how to “most
naturally” split Tab into electromagnetic and material
components inside of a body, particularly if that body
possesses nontrivial dielectric or related properties [27], we
pragmatically extend the vacuum expression

Tab
EM ≡ 1

ωd−1

�
Fa

cFbc −
1

4
gabFcdFcd

�
ð4Þ

for the electromagnetic stress-energy tensor into the interior
of W: Tab ¼ Tab

B þ Tab
EM everywhere of interest. This sum

may in fact be viewed as a definition for Tab
B in terms of Tab

and Fab. Adopting it, (1) and (3) imply that

∇bTab
B ¼ Fa

bJb: ð5Þ

Every portion of an extended charge is thus acted upon by
the Lorentz force density FabJb.
The question we now ask is how this force density

“integrates up” to affect a body’s overall motion. One
difficulty is that Maxwell’s equations imply that FabJb

depends nonlinearly and nonlocally on Ja, and can be
almost arbitrarily complicated. Despite this, experience
suggests that there are physically interesting regimes in
which the (appropriately defined) net force is not compli-
cated at all: Laws of motion arise in which net forces
involve a body’s internal structure only via its first non-
vanishing multipole moments. That these laws do not
depend on finer details of Ja lends them a certain degree
of “universality.” Deriving this universality and making it
precise is the essence of the self-force problem.
We emphasize that it is only certain “bulk” features of an

extended body which can be described as universal.
Individual objects may develop internal oscillations, tur-
bulent flows, or other fine details which strongly depend on
material composition, thermodynamic effects, and other
characteristics which are difficult both to specify and to
model. As in Newtonian celestial mechanics, our goal here
is to ignore as many of these details as possible, and to
instead identify certain features of Tab

B and Ja which
(i) describe a body’s behavior “as a whole,” and (ii) whose
evolution is only weakly coupled to a body’s internal
details. In Newtonian celestial mechanics, these two
properties are well-known to hold for the linear and angular
momenta associated with each celestial body. We now

generalize the concept of momentum to describe relativistic
extended bodies coupled to electromagnetic fields in d-
dimensional spacetimes.

B. Momentum

Although there is a strong physical expectation that some
momentum-like quantity can be defined for extended,
relativistic charge distributions, nonpathological definitions
are not so easily written down. The problem is particularly
acute for bodies with significant self-fields, essentially
because, (i) those self-fields carry energy and momentum,
(ii) they rearrange themselves to adjust to any motions
associated with W, and (iii) self-fields may extend far
outside a body’s material boundaries. The first and second
of these points suggest that a body’s self-field contributes,
e.g., to its inertia—a fact already recognized by the end of
the 19th century [1]. Indeed, four-dimensional electromag-
netic self-fields are now known to contribute to (or
“renormalize”) not only a body’s apparent mass, but all
of its stress-energy tensor [10,12,28].
While there must be some sense in which these effects

generalize to any number of dimensions, they are nontrivial
to compute even when d ¼ 4. Fundamentally, this is
because it is difficult to guess a suitable definition for
the momentum which treats a body’s material and self-field
components as one. Consider, for example, a “renormalized
body momentum” defined by appropriately integrating
Tab
B þ Tab

self , where T
ab
self is an electromagnetic stress-energy

tensor which is quadratic in a suitably defined self-field.
Any “mass” associated with such a definition would clearly
depend on properties of the self-field at arbitrarily large
distances, and hence on the state of system over arbitrarily
long times. It would not describe a body’s instantaneous
resistance to applied forces, and would thus be a poor
definition of mass. Indeed, the degree of nonlocality
associated with naive momentum definitions such as this
renders them physically unacceptable, at least in a non-
perturbative context. While the problem is considerably
alleviated at low orders in the perturbative expansions
commonly associated with point-particle limits [9,29], it is
difficult to extend the methods employed in those contexts
to higher orders in perturbation theory, or even to apply
them at low orders when Huygens’ principle is violated.
The nonperturbative formalism [12] employed here

affords a different approach, allowing us to derive—rather
than postulate—physically acceptable definitions for the
linear and angular momenta of a charged extended body.
Our results do not depend on any limiting process, and are
nonlocal only in the sense that they depend on the state of
the system over spatial and temporal scales comparable to a
suitably defined diameter for W. No smaller degree of
nonlocality could reasonably be expected, even for a body
with no self-field whatsoever. Schematically, we obtain
this definition by first proposing a “bare momentum,”
essentially a guess which need not take into account any
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self-field effects, and then deriving a correction to that
definition which maintains locality while also decoupling
forces and torques from a body’s internal details.
Our momenta depend on a choice of origin, which we

take to be a timelike worldline parametrized by γðτÞ. Such
origins are required even in Newtonian mechanics at least
to define the angular momentum, and it is only the global
parallelism of Euclidean space which prevents them from
also being necessary to define the Newtonian linear
momentum. Global parallelism cannot be assumed here,
so an origin is needed for both our linear and angular
momenta. We additionally need to specify a family of
spacelike hypersurfaces Bτ ∋ γðτÞ which foliate W, thus
fixing a notion of time inside a body’s worldtube. Specific
worldlines and specific hypersurfaces may be fixed using
spin supplementary and similar conditions; see Sec. II E. At
this stage, however, we assume only that some prescription
has been given. Its details do not matter. Next, we define the
bare “generalized momentum” Pτ½·� at time τ via

Pτ½ξa�≡
Z
Bτ

dSa

�
Tab
B ðxÞξbðxÞ þ JaðxÞ

Z
1

0

duu−1

×∇b0σðy0ðuÞ; γðτÞÞFb0c0 ðy0ðuÞÞξc0 ðy0ðuÞÞ
�
; ð6Þ

where σðx; x0Þ denotes Synge’s world function, defined to
equal one half of the squared geodesic distance between its
arguments, y0ðuÞ is an affinely parametrized geodesic for
which y0ð0Þ ¼ γðτÞ and y0ð1Þ ¼ x, and ξaðxÞ is any vector
field drawn from a certain finite-dimensional vector space
referred to as the space of generalized Killing fields
(GKFs). The GKFs are defined more precisely in
[12,30], and coincide with the space of all ordinary
Killing vector fields in maximally symmetric spacetimes.
More generally, the GKFs always form a vector space with
dimension 1

2
dðdþ 1Þ. The generalized momentum at fixed

time is a linear operator on this space, and may therefore be
viewed as a 1

2
dðdþ 1Þ-dimensional vector in the vector

space dual to the space of GKFs. It simultaneously encodes
both the linear and angular momentum of an extended
body. Just as electric and magnetic fields are best thought of
as two aspects of a single electromagnetic field, a body’s
linear and angular momenta are two aspects of a single
more fundamental structure: the generalized momentum.
More precisely, a bare linear momentum paðτÞ and a

bare angular momentum Sab ¼ S½ab�ðτÞ may be implicitly
defined by combining (6) with

Pτ½ξa�≡ paðτÞξaðγðτÞÞ þ
1

2
SabðτÞ∇aξbðγðτÞÞ: ð7Þ

Pτ½ξa� thus returns a linear combination of the linear and
angular momenta. The particular choice of ξa controls
which linear combination is obtained. If ψa is, e.g., a
translational Killing field in flat spacetime, Pτ½ψa� returns

the component of linear momentum associated with that
translation. Regardless, varying over all possible GKFs
results in integral formulae for pa and Sab which involve
Tab
B , Ja, and Fab. These formulas coincide with definitions

originally proposed by Dixon [31–33], who sought multi-
pole moments for Tab

B in which stress-energy conservation
implies differential constraints only on the monopole and
dipole moments. That goal was achieved, meaning that
there is a sense in which ordinary differential equations
with the form _pa ¼ ð…Þ and _Sab ¼ ð…Þ are fully equiv-
alent to the partial differential equation (5). Regardless,
these definitions for the momenta reduce to textbook ones
[34] in flat spacetime and with vanishing electromagnetic
fields. They also give rise, more generally, to simple
conservation laws whenever there exists a Killing vector
field which is also a symmetry of Fab [12,32]. We note that
this last property would fail to hold if the (less familiar)
electromagnetic terms in (6) were omitted.
Now that a bare momentum has been proposed, its

evolution may be understood by differentiating (6) with
respect to τ while applying (5). The resulting rate of change
may be interpreted as encoding bare forces and bare
torques, which can again be written as integrals over a
body’s interior:

d
dτ

Pτ½ξa� ¼ FG
τ ½Tab

B ; ξc� þ FEM
τ ½Fab; Jc; ξd�; ð8Þ

where the gravitational generalized force is given by the
bilinear functional

FG
τ ½Tab

B ; ξc� ¼
1

2

Z
Bτ

dSTab
B Lξgab; ð9Þ

and the electromagnetic generalized force by the trilinear
functional

FEM
τ ½Fab; Jc; ξd�

¼
Z
Bτ

dSJb
�
ξaFab þ∇b

Z
1

0

duu−1

×∇b0σðy0ðuÞ; γðτÞÞFb0c0 ðy0ðuÞÞξc0 ðy0ðuÞÞ
�
: ð10Þ

The ξa here again denote GKFs and the Lξ are Lie
derivatives. Any particular GKF which is substituted into
these equations may be viewed as selecting the correspond-
ing component of the generalized gravitational and electro-
magnetic force vectors.
If one has full knowledge of Tab

B and Fab, and
hence Ja ¼ ω−1

d−1∇bFab, electromagnetic forces and tor-
ques can be computed by directly evaluating the integral
FEM

τ ½Fab; Jc; ξd� for all possible GKFs. However, there is
little point to such descriptions if the system is already
understood in full detail. Momenta and related concepts are
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most valuable precisely when a system’s details are only
partially specified, or alternatively, if one would like to
understand a class of distinct systems which nevertheless
share some bulk features.
With this context in mind, forces and torques associated

with the definition (6) may be shown to have certain
undesirable characteristics. First, unless self-fields are
negligible, the functionals FEM

τ ½Fab; Jc; ξd� are difficult
to approximate as-is. In particular, it is not clear how to
evaluate them if, e.g., only the first few multipole moments
of Ja are known. More precisely, it is the actual self-field
which must be negligible in order to make reasonable
approximations, and not only some suitable integral of that
self-field. There are very few realistic settings in which
such an approximation can be justified, particularly if
smallness is also demanded for the derivatives of a body’s
self-field. In some cases, this difficulty is merely a question
of calculational practicality. In others, it is essential: There
are important examples in which bare forces and torques
may be directly shown to depend on the detailed nature of
Ja. When this occurs, the laws of motion associated with pa
and Sab cannot be deemed universal. Nevertheless, we find
closely related momenta which do obey universal laws of
motion.
The formalism we employ accomplishes this by provid-

ing a set of tools which allow one to easily establish
identities with the form

FEM
τ ½Fab; Jc; ξd� ¼ FEM

τ ½F̂ab; Jc; ξd� −
d
dτ

δPτ½Ja; ξb�
þ FG

τ ½δTab
B ½Jc�; ξd�; ð11Þ

for a wide variety of nonlocal field transformations
Fab ↦ F̂ab. The nature of this field transformation deter-
mines specific forms for the functionals δTab

B ½Ja� and
δPτ½Ja; ξb�, both of which are nonlinear in Ja. The point
of (11) is to describe how electromagnetic forces and
torques exerted on a charge distribution Ja by a field Fab
can be computed in terms of forces and torques exerted by a
potentially simpler “effective field” F̂ab½Fcd�. Substituting
(11) into (8) suggests the definition

P̂τ½ξa�≡ Pτ½ξa� þ δPτ½Ja; ξb� ð12Þ

for the renormalized momentum, which is seen to satisfy

d
dτ

P̂τ½ξa� ¼ FG
τ ½T̂ab

B ; ξc� þ FEM
τ ½F̂ab; Jc; ξd�: ð13Þ

Here, T̂ab
B ≡ Tab

B þ δTab
B and the dependence of P̂τ on Tab

B
and Ja has been suppressed. It follows that if the map
Fab ↦ F̂ab satisfies appropriate conditions—to be dis-
cussed in more detail below—electromagnetic forces
and torques appear to be exerted not by the physical field
Fab, but by a particular surrogate F̂ab. The cost for this

replacement is effectively a renormalization of the body’s
apparent stress-energy tensor, which affects its apparent
momenta and the couplings which appear in gravitational
forces and torques. Both of these effects can be physically
interpreted as contributions due to the body’s self-field.
Note that although Tab

B is renormalized here, Ja is not,
essentially because Maxwell’s equations are linear.
Equation (13) has an advantage over (8) when F̂ab

behaves more simply inside a body than Fab. More
specifically, there should be a wider variety of circum-
stances in which a well-chosen F̂ab varies slowly through-
out each Bτ. Whenever this occurs, useful multipole
expansions may be found for FEM

τ ½F̂ab; Jc; ξd�, resulting
in electromagnetic forces and torques which are identical in
form to standard test body expressions, but with all fields in
those expressions equal to F̂ab. Similarly, a multipole
expansion for FG

τ ½T̂ab
B ; ξd� results in standard expressions

for the gravitational forces and torques acting on an
extended test body, but with stress-energy multipole
moments which are somewhat different from those which
might have been computed using Tab

B alone. These gravi-
tational effects involve only quadrupole and higher order
moments, and vanish entirely in maximally symmetric
spacetimes.

C. Effective test bodies and effective fields

Laws of motion which are structurally identical to those
satisfied by test bodies moving in an effective fictitious
field are used today to organize essentially all known d ¼ 4
self-force results—whether in electromagnetism, scalar
field theory, or general relativity [11,12,18]. Such princi-
ples have also been employed to understand static scalar
and electromagnetic self-interaction for more general val-
ues of d [19]. Indeed, we may view the motion of a self-
interacting body moving in a certain physical field as
“equivalent” to the motion of an “effective test body” in an
appropriate effective field.
It is instructive to note that a particularly simple principle

of this sort holds even in Newtonian gravity [12,25], where
it provides the foundation for celestial mechanics. Using
standard definitions for the linear and angular momenta of a
Newtonian extended body with mass density ρ coupled to a
gravitational potential ϕ, the Newtonian generalized force
at time τ may be shown to be

d
dτ

PN
τ ½ξa� ¼ FN

τ ½ϕ; ρ; ξa�

¼ −
Z
Bτ

ρðx; τÞLξϕðx; τÞd3x; ð14Þ

where Bτ ⊂ R3 denotes the body’s location at time τ, ξa is
any Euclidean Killing vector field, and Lξ again denotes
the Lie derivative with respect to ξa. As in electromagnet-
ism, this generalized force is a trilinear functional of the
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potential, its source, and a vector field. Now, it is straight-
forward to show that if Gðx; x0Þ ¼ Gðx0; xÞ and
LξGðx; x0Þ ¼ 0 for all Killing vector fields ξa, and if

ϕ̂ðx; τÞ≡ ϕðx; τÞ −
Z
Bτ

ρðx0; τÞGðx; x0Þd3x0; ð15Þ

forces and torques computed using ϕ must be identical to
those computed using ϕ̂:

FN
τ ½ϕ; ρ; ξa� ¼ FN

τ ½ϕ̂; ρ; ξa�: ð16Þ

This result is directly analogous to (11). Although the
language used here is unconventional, the conclusion is
not; it is standard to apply a result equivalent to (16)
specialized so that Gðx; x0Þ ¼ −jx − x0j−1. In that context,
Gðx; x0Þ is a Green function for the Laplace equation and ϕ̂
satisfies the source-free field equation ∇2ϕ̂ ¼ 0. Indeed,
the effective field here is just the external potential. Given
(15) and the Newtonian field equation ρ ¼ ∇2ϕ=4π, the
external potential may be viewed as a nonlocal linear
functional of the physical potential ϕ.
The freedom to compute forces using ϕ̂ instead of ϕ is

essential for the development of useful approximations. For
example, if FN

τ ½ϕ̂; ρ; ξa� is evaluated for a body in which ϕ̂
does not vary too much throughoutBτ, it is straightforward
to recover the usual gravitational force −m∇aϕ̂ known to
act on a massive body in Newtonian mechanics. The
superficially similar expression −m∇aϕ would arise if ϕ
varied slowly as well, although this is rarely the case.
Indeed, the former approximation for the force is valid
much more generally than the latter. This difference is most
striking in a point-particle limit, wherein −m∇aϕ̂ remains a
valid approximation while −m∇aϕ is not even computable.
This type of improvement persists also at higher multipole
orders, and the usual laws of motion in Newtonian celestial
mechanics are written as laws of motion associated with
(possibly extended) test bodies moving in the external
potential, not the physical one; even in Newtonian gravity,
the effects of self-fields must be properly understood before
obtaining useful laws of motion.
Our goal here is to extend these ideas to fully dynamical

electromagnetically interacting systems in all dimensions
d ≥ 3. Much of the content of the general principle that
self-interacting bodies move like effective test bodies is
embedded in the precise specifications for the renormalized
momenta and the effective fields for which the statement is
true, so this perspective suggests that the problem of motion
can be solved by finding “appropriate” momenta and
effective fields. Doing so turns out to be possible much
more generally and simply than the older, more-explicit
approach to the self-force problem, where forces were
directly computed using some specific definition for the

momentum, some specific approximation scheme, specific
boundary conditions, and so on.
We now search for a nonlocal transformation Fab ↦

F̂ab½Fcd� such that (i) Eq. (11) holds, (ii) all renormaliza-
tions implicit in that equation are physically acceptable,
and (iii) the transformed field has an “external character”
similar to that of the Newtonian external field. We do so by
first using the Newtonian field transformation (15) as a
model and defining the effective electromagnetic field via

F̂abðxÞ≡ FabðxÞ − 2

Z
∇½aGa�a0 ðx; x0ÞJa0 ðx0ÞdV 0; ð17Þ

in terms of some as-yet unspecified two-point “propagator”
Gaa0 ðx; x0Þ. This ansatz reduces our problem to the search
for a propagator whose properties imply our requirements.
We find that very different propagators arise depending on
the parity of d.
For later convenience, it will be convenient to denote

the integral portion of (17) as being generated, via FS
ab ≡

2∇½aAS
b�, by the vector potential

AS
a ≡

Z
Gaa0 ðx; x0ÞJa0 ðx0ÞdV 0: ð18Þ

The “S” here has historically been short for “singular” [18],
as AS

a is indeed singular for pointlike sources, at least when
using the Detweiler-Whiting propagator described below.
Here, we are not considering point particle sources, so AS

a is
not typically singular. It is more appropriate to instead
interpret this as a (propagator-dependent) definition for the
“bound portion” of a body’s self-field. It generalizes what
is sometimes referred to as the “Coulomb portion” of
the field.

D. Choosing a propagator

When d ¼ 4, well-behaved effective fields are known
[10,12] to be generated by a certain propagator GDW

aa0 ,
referred to as the Detweiler-Whiting Green function [18].
Setting Gaa0 ¼ GDW

aa0 in (17) fixes a precise, physically
reasonable definition for the momentum and its corre-
sponding laws of motion—laws which admit a well-defined
point particle limit, well-controlled multipole expansions to
all orders for the force and torque, and other desirable
properties. Although we discuss Detweiler-Whiting Green
functions more explicitly in Sec. II D 2 below, it is
convenient at this stage to characterize them implicitly,
via three of their properties:
(1) GDW

aa0 ðx; x0Þ ¼ 0 for all timelike-separated x, x0,

(2) GDW
aa0 ðx; x0Þ ¼ GDW

a0a ðx0; xÞ,
(3) GDW

aa0 ðx; x0Þ is a Green function for the Lorenz-gauge
vector potential AaðxÞ.

Although these are sometimes referred to as the Detweiler-
Whiting axioms, they were originally found by Poisson
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[11]. Any propagator which satisfies them induces a field
transformation Fab ↦ F̂ab that can be shown [10] to imply
the identity (11). There is a precise sense in which they
imply laws of motion derivable from (13), implying that
self-interacting charges act like effective test charges in the
field F̂ab. Moreover, since GDW

ab is a Green function, the
associated effective field is source-free in a neighborhood
of W, just like the external Newtonian potential ϕ̂.
It was noted in [19] that the arguments used to establish

these results in four dimensions trivially generalize to any
number of dimensions, at least if a propagator satisfying the
above axioms does indeed exist. Such a propagator does
exist, at least in finite regions, for all even d ≥ 4. However,
existence appears to fail when d is odd.
We resolve this by finding an appropriate generalization

of the above axioms—valid for all d ≥ 3, both even and
odd—and then constructing explicit propagators which
satisfy those axioms. Note that throughout, although we
refer to certain statements as axioms, these are to be
understood merely as vehicles with which to organize
and interpret our results. They are not axioms in the sense
of being unproven assumptions. All of our results are
derived from first principles.

1. Generalizing the axioms

Of the three axioms stated above, it is the third which is
most easily modified. To be more precise, that axiom
requires that GDW

aa0 satisfy

∇b∇bGDW
aa0 − Ra

bGDW
ba0 ¼ −ωd−1gaa0δðx; x0Þ; ð19Þ

where RabðxÞ denotes the Ricci tensor and gaa0 ðx; x0Þ the
parallel propagator. The differential operator on the left-
hand of this equation is motivated by the Maxwell equation

∇b∇bAa − Ra
bAb ¼ −ωd−1Ja ð20Þ

for a Lorenz-gauge vector potential. Demanding that GDW
aa0

be a Green function in this sense is useful because it may be
shown to guarantee that under very general conditions, F̂ab
varies slowly inside each cross-section Bτ of a body’s
worldtube. It therefore ensures that the effective field
generated by GDW

aa0 is not only associated with the law of
motion (13), but also that generalized forces in that
equation admit the well-controlled multipole expansions
which are so essential to practical computations.
Multipole expansions such as these can be maintained by

supposing that Gaa0 is not necessarily a Green function, but
rather a more general type of parametrix [19]. The right-
hand side of (19) would then be replaced by

−ωd−1½gaa0δðx; x0Þ þ Saa0 ðx; x0Þ�; ð21Þ

where Saa0 ðx; x0Þ is sufficiently smooth and satisfies certain
other constraints required to maintain the validity of (11).
Such generalizations can be useful because (i) parametrices
are more easily computed than Green functions, and
(ii) there may be topological obstructions to constructing
Green functions, even when d ¼ 4. Nevertheless, allowing
for a nonzero Saa0 is still not sufficient to solve the odd-
dimensional self-force problem; a further generalization is
needed.
The generalization we choose is motivated by a desire to

demand only what is directly needed, namely that F̂ab
“vary slowly” throughout eachBτ. Although this statement
is imprecise as it stands, we note that in the limit that a
body’s size becomes arbitrarily small, a continuous field
cannot vary significantly in any single cross-section.
Smoothness in a point-particle limit may thus be used as
a proxy for slow variation in more general contexts.
We now replace the three axioms described above by

demanding the existence of a propagator Gaa0 ðx; x0Þ with
the four properties:
(1) Gaa0 ðx; x0Þ ¼ 0 for all timelike-separated x, x0.
(2) Gaa0 ðx; x0Þ ¼ Ga0aðx0; xÞ.
(3) Gaa0 ðx; x0Þ is constructed only from the geometry

and depends only quasilocally on the metric, in a
sense defined below.

(4) For any point charge moving on a smooth timelike
worldline, the source ω−1

d−1∇bF̂ab for the effective
field defined by (17) is itself smooth, at least in a
neighborhood of that worldline.

The first two of these axioms are unchanged from those
given by Poisson [11]. Axiom 3 is similar to one employed
in [19], while Axiom 4 is new. Axiom 3 demands more
precisely that for any vector field ψa, the Lie derivative
LψGaa0 ðx; x0Þ can be written as a functional which depends
only on the Lie derivative of the metric, and only in a
compact region determined by x and x0. If considerations
are restricted to a single flat spacetime, Axiom 3 may be
simplified by demanding simply that Gaa0 be Poincaré-
invariant.
Physically, Axiom 2 describes a type of reciprocity in the

self-field definition associated with Gaa0 [12]. It is essential
to the establishment of (11), and thus to the renormalized
laws of motion encoded in (13). Axioms 1 and 3 guarantee
that the renormalizations inherent in those laws of motion
involve only physically acceptable degrees of nonlocality.
As suggested above, our fourth axiom provides a sense

in which the renormalized laws of motion can admit
well-behaved multipole expansions. It suggests that the
FEM

τ ½F̂ab; Jc; ξd� appearing in (13) is generally simpler to
evaluate than its bare counterpart FEM

τ ½Fab; Jc; ξd�.
Although Axiom 4 refers only to point particles, these
should be interpreted as “elementary currents” whose
effects can be summed over—as is common in kinetic
theory—to yield an overall field for a nonsingular extended
charge distribution Ja. If the effective field associated
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with each elementary current is sufficiently smooth, the
short-distance behavior associated with any given Ja is
considerably suppressed by the appropriate convolution
integral. Indeed, there is no obstruction to replacing Axiom
4 by a statement which demands somewhat less regularity.
We note as well that there is a sense in which Axiom 4 is
“gauge-agnostic,” unlike the statement that the Detweiler-
Whiting Green function must satisfy the gauge-fixed
equation (19).
Now, any Gaa0 which satisfies our four axioms provides a

useful definition for the generalized momentum P̂τ associ-
ated with an extended body. Moreover, the laws of motion
associated with this momentum admit well-behaved multi-
pole expansions. Our next task is to show that such
propagators actually exist. It is easily established that any
Detweiler-WhitingGreen functionGDW

aa0 satisfies our axioms,
so that choice can be made whenever such a Green function
exists—i.e., when d is even. The freedom to choose other
propagators can nevertheless be useful even in those cases.
This freedom is however essential when d is odd.

2. Even-dimensional propagators

If d ≥ 4 is even, the four axioms given in Sec. II D 1 are
satisfied by a Green function Gaa0 ¼ GDW

aa0 which directly
generalizes the four-dimensional Detweiler-Whiting Green
function known from [11,18]. These generalizations have
the more-explicit form

GDW
aa0 ¼ 1

2
½Uaa0δ

ðd=2−2ÞðσÞ þ Vaa0ΘðσÞ�; ð22Þ

whereUaa0 and Vaa0 are smooth symmetric bitensors which
depend only quasilocally on the metric. Essentially the
same bitensors also appear in the retarded and advanced
Green functions, although there they are to be evaluated
only when their arguments are timelike or null-separated.
A more direct specification for the bitensors appearing in
the Detweiler-Whiting Green function may be found by
substituting (22) into (19), which results in the equations
collected in Appendix A 1.
It is easily shown that if the spacetime is Minkowski,

∇a∇aσ ¼ d. Substituting this into (A1), one finds that the
van Vleck determinant is everywhere constant: Δ ¼ 1.
Moreover, ∇b∇bðΔ1=2gaa0 Þ ¼ 0, implying that the
unique nonsingular solutions to the Hadamard transport

equations (A9) areUfng
aa0 ¼ 0 for all n ≥ 1. Moreover, (A10)

implies that Vaa0 ¼ 0 when its arguments are null-
separated. Combining this with (A4), (A6), and (A8), it
follows that

Uaa0 ¼ αdgaa0 ; Vaa0 ¼ 0 ð23Þ

everywhere in even-dimensional Minkowski spacetimes,
where the dimension-dependent constant αd is explicitly

αd ≡ ð−1Þd=22λd ffiffiffi
π

p
Γð1=2 − λdÞ

ð24Þ

in terms of

λd ≡ 1 − d=2: ð25Þ

Substitution of these results into (22) fully specifies the flat-
spacetime, even-dimensional Detweiler-Whiting Green
functions. They can also be characterized somewhat differ-
ently in this special case, in terms of the advanced and
retarded solutions to (19):GDW

aa0 ¼ 1
2
ðGret

aa0 þGadv
aa0 Þ. If Fab is

taken to equal the body’s retarded field Fret
ab, it follows from

(17) that the effective field F̂ab which determines how
bodies move coincides with the so-called radiative
field 1

2
ðFret

ab − Fadv
ab Þ.

Similar relations between Detweiler-Whiting and
advanced and retarded Green functions do not generalize
to curved spacetimes, essentially because Huygens’ prin-
ciple is violated; the “tail” Vaa0 is typically nonzero.
Although few closed-form results for Uaa0 and Vaa0 are
known in curved spacetimes, Uaa0 ¼ Δ1=2gaa0 whenever
d ¼ 4. The bitensor Vaa0 is also known for d ¼ 4 plane
wave spacetimes [35], although it is “pure gauge” in the
sense that ∇½aVb�b0 ¼ 0. Expressions in maximally sym-
metric spacetimes with arbitrary d may also be extracted
from the results of [36]. More generally, numerical or
perturbative methods can be used to solve the equations in
Appendix A 1.
We have already alluded to our four axioms being more

general than the original Detweiler-Whiting axioms. This
generality is associated with a lack of uniqueness, meaning
that other propagators besides (22) are possible when d is
even. For example, it is acceptable to choose any propa-
gator with the form

Gaa0 ¼ GDW
aa0 þ Uaa0Kð2σ=l2ÞΘðσÞ; ð26Þ

where K is some smooth function which vanishes in a
neighborhood of zero and l > 0 is a constant lengthscale.
If K is fixed, each choice for l defines a different
propagator, a different P̂τ, a different effective field F̂ab,
and a different generalized force F τ. These differences do
not, however, signal any kind of contradiction. Physical
consistency is maintained by the fact that all of these
quantities vary simultaneously, and in very particular ways.
Differing forces arise, for example, because they describe
rates of change associated with slightly different aspects of
the same physical system. One might experimentally
associate a particular value of a coupling parameter—such
as a mass—with measurements which assume one value
of l, although the same experiments performed on the
same system would generically yield a different value
when inferred using a different choice of l; a particular
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propagator must be fixed before even attempting to
interpret experimental data. Nevertheless, there is a sense
in which “true” observables do not depend on these
choices. Further discussion may be found in [19].

3. Odd-dimensional propagators

If d ≥ 3 is odd, no Detweiler-Whiting Green function
appears to exist. It is thus essential to exploit the freedom
afforded by the four axioms listed above. Before construct-
ing an odd-dimensional propagator which satisfies those
axioms, note that the retarded Lorenz-gauge Green function
in this context has the form

Gret
aa0 ¼ ½ð−2σÞλdUaa0Θð−σÞ�ret; ð27Þ

where λd is again given by (25). The retarded Green
function here involves a bitensorUaa0 which may be shown
to be symmetric and to depend only quasilocally on the
metric. Also note that the “ret” on the whole expression
denotes that it has support only for x0 in the past of x. As in
the even-dimensional context, Uaa0 ¼ αdgaa0 in Minkowski
spacetime, although the odd-dimensional constants here are
given by

αd ≡ ð−1Þ1=2þλdΓð−λdÞffiffiffi
π

p
Γð1=2 − λdÞ

ð28Þ

instead of (24). In more general spacetimes, a prescription
to compute Uaa0 is described in Appendix A 2.
Whether in Minkowski spacetime or not, it is evident

from (27) that Huygens’ principle is violated when d is odd.
Signals travel not only on null cones, but also inside of
them. Although Huygens’ principle is similarly violated for
Maxwell fields in curved even-dimensional spacetimes, the
odd-dimensional case is different in that Gret

aa0 is unbounded
even when its arguments are timelike-separated. Indeed, the
tail here is not even locally integrable in general.
Equation (27) is thus closer to a schematic than a precise
description for the retarded Green function. The correct
distributional solution can more precisely be constructed by
considering ½ð−2σÞλUaa0Θð−σÞ�ret for values of λ in which
the singularity is integrable and then analytically contin-
uing the result to λ → λd. Another mathematical detail is
that ½ð−2σÞλΘð−σÞ�ret should be regarded as a single
symbol, not a product of singular distributions. These
and other details associated with the odd-dimensional
retarded Green functions are made precise in, e.g., [37,38].
The propagators which allow us to solve the self-force

problem in odd numbers of dimensions can also be defined
using analytic continuation. They are

Godd
aa0 ≡

ð−1Þ12−λd
2π

Uaa0 lim
λ→λd

l2λ ∂
∂λ ½ð2σ=l

2ÞλΘðσÞ�; ð29Þ

where the overall prefactor has been chosen in order to
enforce Axiom 4. TheUaa0 appearing here is constructed in

the same way as for the retarded and advanced Green
functions. Performing the differentiation in (29) while
leaving the limit λ → λd implicit, our propagator can
alternatively be written as

Godd
aa0 ¼

ð−1Þ12ðd−1Þ
2π

ð2σÞλdUaa0 lnð2σ=l2ÞΘðσÞ: ð30Þ

In either form, these expressions fix a 1-parameter family of
propagatorswhich depend on an arbitrary lengthscalel > 0.
This lengthscale is introduced in order to ensure that the
quantity differentiated with respect to λ is dimensionless in
(29). Choosing different values for l would result in
propagators which differ by multiples of Uaa0 ð2σÞλdΘðσÞ,
a propagator which generates source-free solution to
Maxwell’s equations. Although variations in l generically
change effective fields and thus forces, such shifts have
no observable consequences. They merely parametrize
different ways to describe the same physical system. The
situation here is fully analogous to that associated with
the l-dependence of (26) and alsowith the nonuniqueness of
the static propagators discussed in [19].
We now verify that the propagator Godd

aa0 satisfies the four
axioms described in Sec. II D 1. That the first of these holds is
immediately clear from the presence of the Θ-function in
(30). The second and third axioms are verified by noting that
σ and Uaa0 are symmetric in their arguments and depend
quasilocally on the metric, as elaborated in Appendix A.
Considerably more effort is required to show that our

propagator also satisfies Axiom 4.We do so using the direct
calculations summarized in Appendix D: Consider a point
particle with timelike worldline Γ and let Fab be identified
with that particle’s retarded field. Then the F̂ab generated
by Godd

aa0 is given by combining (D18) and (D19). In those
equations, the only position dependence is via smooth
functions, at least if the metric and the worldline are
themselves smooth. We thus conclude that F̂ab, and hence
its source ω−1

d−1∇bF̂ab, must be smooth in the presence of
retarded boundary conditions. Repeating the problem with
more general boundary or initial conditions would merely
change F̂ab by a homogeneous solution to Maxwell’s
equations. The source is thus smooth in general, verifying
Axiom 4. As claimed, all axioms given in Sec. II D 1 are
satisfied by the propagator (29).
Although Godd

aa0 is not a Green function or more general
parametrix for Lorenz-gauge vector potentials, some intu-
ition for it may nevertheless be gained by noting that the
derivative with respect to λ which appears in its definition
(30) evinces a procedure which “infinitesimally varies d.”
This suggests that our map Fab ↦ F̂ab may reduce to
dimensional regularization in a point particle limit, and may
provide an underlying physical and mathematical origin for
that procedure at least in the present context. We are not
aware of any other examples in which dimensional
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regularization arises as the natural limit of a more-general
nonsingular operation which follows from first principles.

E. Laws of motion

To summarize our development at this point, we have
shown that for all d ≥ 3, two-point propagators Gaa0 may
be found which satisfy the four axioms given in Sec. II D 1.
If d is even, one possibility is to set Gaa0 ¼ GDW

aa0 , where

GDW
aa0 is given by (22). If d is odd, one may instead use

Gaa0 ¼ Godd
aa0 , where Godd

aa0 satisfies (29). Regardless, any
specific choice for Gaa0 which satisfies the given axioms
may be associated with a particular renormalization P̂τ of
the bare generalized momentum defined by (6). More
specifically, the methods reviewed in [12] may be used
to show that the appropriate relation between these
momenta is

P̂τ ¼ Pτ þ
1

2

�Z
Bþ

τ

dVJaLξ

Z
B−

τ

dV 0Gaa0Ja
0 −

Z
B−

τ

dVJaLξ

Z
Bþ

τ

dV 0Gaa0Ja
0
�
þ
Z
Bτ

dSaJa

×

�Z
Bτ

dV 0ξbGbb0Ja
0 −

Z
1

0

duu−1∇b0σFb0c0
S ξc0

�
; ð31Þ

where B�
τ denotes the portion of the body’s worldtube

which lies to the future (þ) or past (−) of Bτ, and the
primes in the u-integral are associated with points on the
same geodesic y0ðuÞ which appeared in (6). The important
point here is that the renormalizing terms are appropriately
local: The first of our axioms for Gaa0 implies that the
momentum at time τ can depend on Tab

B , Ja, and Fab only
in the body’s worldtube, and only on those portions of the
worldtube which are spacelike or null-separated from Bτ.
This is in strong contrast to any attempt which might be
made to directly compute a “self-momentum” associated
with Tab

EM. Nevertheless, the two procedures do coincide in
simple cases where nonlocality is not an issue; see [10] for
the d ¼ 4 discussion.
Continuing our summary, fixing an appropriate Gaa0

fixes a particular definition for P̂τ, and we have shown that
this momentum must satisfy the laws of motion (13). These
laws are instantaneously identical to those which hold for
an extended test body with stress-energy tensor T̂ab

B and
current density Ja, coupled to a spacetime metric gab and an
electromagnetic field F̂ab. The effective electromagnetic
field here depends on Gaa0 and is given more precisely by
(17). The renormalized stress-energy T̂ab

B also depends on
Gaa0 , and at least in static contexts, it can be written in terms
of functional derivatives of the appropriate propagator [19].
Regardless, once a propagator has been fixed, the laws of

motion are fixed as well. The force on a body may be found
by computing F̂ab from Fab and substituting the result into
an appropriate test body equation. For example, the lowest-
order electromagnetic force acting on a body with charge q
is given by the usual Lorentz expression

f̂a ¼ qF̂ab _γ
b: ð32Þ

Similarly, the lowest-order electromagnetic torque on a
body with electromagnetic dipole moment qab ¼ q½ab� is

n̂ab ¼ 2qc½aF̂b�
c: ð33Þ

Although these expressions might appear superficially sim-
ilar to test-body expressions, they encode all leading-order
self-force and self-torque effects in general spacetimes.
More generally, the full multipole expansion for the

electromagnetic generalized force can be shown to be

FEM
τ ½F̂ab; Jc; ξd� ¼ qF̂abξ

a _γb

þ
X∞
n¼1

n
ðnþ 1Þ! q

b1���bnaLξF̂ab1;b2���bn ;

ð34Þ

where qb1���bna denotes the 2n-pole moment of Ja and
F̂ab;c1���cn the nth tensor extension of Fab. Letting Îc1���cnab

denote the 2n-pole moment of T̂ab
B and gab;c1���cn the nth

tensor extension of gab, the gravitational generalized force
may be similarly expanded as

FG
τ ½T̂ab

B ; ξc� ¼
1

2

X∞
n¼2

1

n!
Îc1���cnabLξgab;c1���cn : ð35Þ

Tensor extensions are discussed in more detail in [12,33];
the first nontrivial ones are

gab;cd ¼
2

3
RaðcdÞb; Fab;c ¼ ∇cFab: ð36Þ

Regardless, the gravitational expression here involves only
quadrupole and higher moments, and the tangent _γa to the
reference worldline appears explicitly only in the Lorentz
force (and not in the higher-order electromagnetic terms or
in any gravitational terms).
Equations (34) and (35) may now be combined with (13)

to yield the full laws of motion. It is however more
conventional to split P̂τ into its linear and angular compo-
nents via a “hatted” analog of (7). Doing so, it is convenient
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to define a renormalized force f̂a and a renormalized torque
n̂ab ¼ n̂½ab� using the similar implicit equation

d
dτ

P̂τ½ξa� ¼ f̂aξa þ
1

2
n̂ab∇aξb: ð37Þ

This definition provides forces and torques which measure
the degree by which the Mathisson-Papapetrou equations
are violated:

D
dτ

p̂a ¼ 1

2
Rbcd

aŜbc _γd þ f̂a; ð38Þ

D
dτ

Ŝab ¼ 2p̂½a _γb� þ n̂ab: ð39Þ

That the first term on the right-hand side of the second
equation is not considered a torque is natural in the sense
that an analogous term exists even for the angular momen-
tum of an isolated system in Newtonian physics. This is so
essentially because a Euclidean rotation about one origin
can be decomposed into a rotation about another origin plus
a translation. If the origin about which the angular
momentum is defined is moving, it must “mix” over time
with the linear momentum conjugate to the translations
generated by that motion. The 1

2
Rbcd

aŜbc _γd term on the
right-hand side of (38) is similarly interpreted as arising
from the fact that in a curved spacetime, pure translations at
one point are not necessarily pure translations at another
point. Both this term and the 2p̂½a _γb� in (39) are thus
kinematic in origin, an interpretation which persists even in
the absence of any true symmetries.
Now, explicit multipole expansions for our force and

torque may be derived by combining (13), (34), (35), (38),
and (39) while varying over all GKFs ξa. The result is no
different than it is when d ¼ 4, and is given by Eqs. (193)
and (194) of [12]. The monopole truncation for the
resulting force is simply (32), while the dipole truncation
for the torque is (33). Gravitational effects do not enter until
quadrupole order. To all multipole orders, our expansions
for f̂a and n̂ab are structurally identical to the multipole
expansions derived by Dixon for an extended test body
[33]. All differences are implicit in our hat notation, which
alters the definitions for the momenta, the stress-energy
moments, and the electromagnetic field in such a way that
multipole expansions remain useful even in the presence of
strong self-interaction.
Thus far, all of our discussion has allowed for essentially

arbitrary reference worldlines γðτÞ and foliating hyper-
surfaces Bτ. It is however conventional to identify the
worldline with some kind of mass center and the foliation
with the instantaneous rest frames associated with that
center. The first of these demands is typically accomplished
by imposing a “spin supplementary condition” which asks
that the mass dipole moment associated with the body

vanish in an appropriate reference frame. There are differ-
ent ways to make this precise. Although it is not essential,
here we do so by choosing γðτÞ such that

Ŝabp̂b ¼ 0: ð40Þ

We can also fix the foliation by demanding that each Bτ is
constructed from the hyperplane formed by all geodesics
which pass through γðτÞ and are orthogonal to p̂aðτÞ at that
point. These conditions may now be used to relate p̂a to _γa;
they are not necessarily parallel. Differentiating (40) while
using (38) and (39), the momentum-velocity relation is
found to be

m̂_γa ¼ 1

m̂
ðI−1Þab½ð−p̂ · _γÞp̂b − Ŝbcf̂∘c − n̂bcp̂c�; ð41Þ

where we have defined the renormalized mass by

m̂2 ≡ −p̂ap̂a; ð42Þ

used the inverse of

Ia
b ≡ δab þ

1

m̂2
Ŝac

�
1

2
RbcdfŜ

df − qF̂bc

�
; ð43Þ

and let f̂∘a ≡ f̂a − qF̂ab _γ
b be the non-Lorentz portion of the

force (which is relevant because the Lorentz force is the
only component which depends explicitly on _γa). A more
explicit momentum-velocity relation can be obtained if the
matrix rank of Ŝab is no greater than two [12,39], although
such a condition can be guaranteed only when d < 5.
Equation (41) may instead be applied whenever Ia

b is
invertible. Components of p̂a which fail to be parallel to _γa

are referred to as hidden momentum [40,41]. Although the
equations presented here are complicated, they differ from
their test-body counterparts only via physically ignorable
renormalizations and the nonlocal map Fab ↦ F̂ab. No
simpler result could reasonably be expected, at least in the
absence of a particular approximation scheme.

III. POINT PARTICLES IN FLAT SPACETIMES

One useful class of approximations may be interpreted as
point particle limits. Certain limits of this type have been
discussed in detail in [9] when d ¼ 4, while others, valid
for all d, were considered in [19]. Regardless of details, one
considers a 1-parameter family of extended bodies whose
sizes scale linearly with a control parameter δ > 0 which is
eventually taken to zero. Various physical constraints
require that other properties of the bodies—such as their
net charges—scale at rates which depend on particular
powers of δ, powers which depend both on d and on the
specific property being considered. Reasonable motivations
can be found for different approximations, although a
general feature is that self-force effects can be “more
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important” in lower numbers of dimensions; they generi-
cally compete in magnitude with test-body effects
associated with lower multipole orders. Conversely, lead-
ing-order self-force effects are strongly suppressed relative
to leading-order test-body effects when d is large. Self-
interaction should thus be understood not in isolation, but
in combination with test-body effects up to an appropriate
multipole order. Nevertheless, our discussion below
focuses for simplicity mainly on the computation of
leading-order self-forces and self-torques.
We now apply the results derived in Sec. II to perform

these computations for “point particles” in Minkowski
spacetimes of various dimensions. Although we have in
mind a point particle limit, we do not discuss details of the
associated family of extended charges. Instead, we suppose
that in this limit, the family of worldtubes associated with the
extended bodies used to construct the point particle limit
shrink to a timelike worldline Γ ¼ fγðτÞ∶τ ∈ Rg, where the
parametrization has been chosen such that _γa _γa ¼ −1. We
take Γ to be the reference worldline for the constructions of
the previous section, and assume that it satisfies the spin
supplementary condition (40). In the limit, the bodies’ net
charges typically tend to zero along with their diameters; a
body with too much charge for its size and mass cannot hold
itself together without exerting stresses which violate energy
conditions. Regardless, it is convenient to consider a point
particle limit in which the current densities associated with
members of the given family of extended charge distributions
approach an appropriate function of δ multiplied by the
point-particle current density

JappðxÞ ¼ q
Z

_γaðτÞδðx; γðτÞÞdτ: ð44Þ

The q appearing here is a fixed parameter which represents a
δ-dependent rescaling of the charges associated with differ-
ent members of the family in the limit δ → 0þ. Despite this,
we refer to it as “the” charge for simplicity. Leading-order
self-forces and self-torques may now be computed by
evaluating the effective field F̂ab associated with Japp and
then inserting the result into (32) and (33). No regularization
is required.

A. Even dimensions

In even-dimensional Minkowski spacetimes, the pre-
scription described in Sec. II implies that it is useful to
define a body’s renormalized momentum using the propa-
gatorGaa0 ¼ GDW

aa0 , whereG
DW
aa0 is given by (22). The S-field

generated by this propagator and associated with a current
of the form (44) is found by substituting (23) into (C2),
which yields

AS
a ¼ qαd

2

X
τ∈fτ�g

1

j _σj
�
−

∂
∂τ

1

_σ

�
d=2−2

gaa0 _γa
0
; ð45Þ

where the advanced and retarded times τ�ðxÞ are defined in
Appendix B and αd depends on the dimension via (24). In
the special case where the physical field Fab coincides with
the particle’s retarded field, a vector potential for the effective
field F̂ab can bewritten as in (C4). Specializing that equation
to flat spacetime,

Âa ¼
qαd
2j _σj

�
−

∂
∂τ

1

_σ

�
d=2−2

gaa0 _γa
0
����τ¼τ−

τ¼τþ

: ð46Þ

Leading-order self-forces and self-torques may now be
computed by evaluating F̂ab ¼ 2∇½aÂb� on the particle’s
worldline and substituting the result into (32) and (33).
If d ¼ 4, this procedure is reasonably straightforward

using the expansion techniques and limits collected
in Appendix B; carrying out the relevant calculations
results in

F̂ab ¼
4

3
q_γ½a γ

…

b� ð47Þ

on the particle’s worldline. It follows that the leading-
order self-force with retarded boundary conditions in four-
dimensional Minkowski spacetime is

f̂a ¼
2

3
q2hab γ

…b; ð48Þ

where hab ≡ gab þ _γa _γb denotes a projection operator
associated with the particle’s rest frame. This may be
recognized as the standard Abraham-Lorentz-Dirac radia-
tion-reaction force; see, e.g., [4,11]. The leading-order
four-dimensional self-torque follows immediately as well:

n̂ab ¼ 4

3
qqc½að_γb� γ…c − γ

…b� _γcÞ: ð49Þ

Although the fields for our particle have been obtained
without a dipole moment qab, including one would still
result in this self-torque at leading order. Also note that
n̂ab _γb need not vanish in (49). Such components may be
seen from (41) to induce a hidden momentum in which the
direction of p̂a differs from that of _γa.
Deriving analogous results in higher numbers of even

dimensions is straightforward but tedious. For d ¼ 6, we
find by expanding (46) that the effective field on a particle’s
worldline is

F̂ab ¼
2

9
q

�
4

5
γð5Þ½a _γb� þ γð4Þ½a γ̈b� − 2jγ̈j2 γ…½a _γb� −

3

2

djγ̈j2
dτ

γ̈½a _γb�

�
;

ð50Þ

implying that the leading-order flat-spacetime self-force
with retarded boundary conditions is
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f̂a ¼ −
1

9
q2hab

�
4

5
γð5Þb − 2jγ̈j2 γ…b − 3

dj̈γj2
dτ

̈γb
�
: ð51Þ

This force agrees with expressions which have been obtained
elsewhere using differentmethods [23,42–45]. Our approach
trivially allows a self-torque to be obtained as well, by
substituting (50) into (33), although we omit this for brevity.
Continuing, the d ¼ 8 effective field with retarded

boundary conditions may be computed by again expanding
(46) using the techniques of Appendix B. We omit the full
result, noting only that the leading-order self-force is

f̂a ¼ 2q2

525
hab

�
γð7Þb − 7j̈γj2γð5Þb −

35

2

dj̈γj2
dτ

γð4Þb

þ 7

9

�
25j̈γj4 þ 7j γ…j2 − 24

d2j̈γj2
dτ2

�
γ
…

b

þ 7

6

d
dτ

�
25j̈γj4 þ 7j γ…j2 − 9

d2j̈γj2
dτ2

�̈
γb

�
: ð52Þ

Taking into account differing sign conventions and a
typographical error in which _u2ü should really be ü2ü,
this agrees with an expression found in [45].
Although our flat-spacetime self-forces agree with

existing expressions in Minkowski spacetimes with even
numbers of dimensions, our odd-dimensional predictions
do not.

B. Odd dimensions

Self-forces and self-torques acting on point charges in
odd-dimensional Minkowski spacetimes may now be
obtained by fixing the definition for the renormalized
momentum by identifying the propagator Gaa0 with the
Godd

aa0 givenby (30). The constant lengthscalelwhich appears
in the definition for Godd

aa0 is assumed to have been fixed as
well, although its precise value is irrelevant. With these
choices, it is shown in Appendix D that the S-field near the
worldline of a point charge with current density (44) may be
expanded in powers of the radar distance r associatedwithΓ:

AS
a ¼

Γðd
2
− 1Þ

2π3=2Γðd
2
− 1

2
Þ

( X∞
n¼1

2
ðd−3Þ

Γðnþ 1
2
ÞΓð2 − d

2
Þ

ð2nÞ!Γðnþ 1
2
ð5 − dÞÞ

��
Hn−1

2
ðd−3Þ −H1−d

2
− 2 lnðr=lÞ

�
Wf2ng

a − ∂λW
f2ng
a

�

× r2n−ðd−3Þ þ ð−1Þ12ðd−3Þ
X12ðd−5Þ
n¼0

ð−1ÞnΓðnþ 1
2
ÞΓð2 − d

2
ÞΓð1

2
ðd − 3Þ − nÞ

ð2nÞ!
Wf2ng

a

rðd−3Þ−2n

)
: ð53Þ

Here, the sum in the second line is understood to exist
only for d ≥ 5, rðxÞ is defined more precisely by (B3), Hμ

denotes the μth harmonic number, and the coefficients

Wfng
a ðx; λÞ are defined by (D7) in terms of the flat-

spacetime specialization

Waðx; τ; λÞ ¼ qgaa0 ðx; γðτÞÞ_γa0 ðτÞΣλðx; τÞ ð54Þ
of (D5) and the “factorized world function” Σðx; τÞ defined
by (B1). All implicit instances of λ in (53) are to be
evaluated at λ ¼ λd ¼ 1 − d=2. Some results for the first

few Wfng
a and their exterior derivatives on the particle’s

worldline are collected in (B15) and (B16). Also note that
although we are focusing here on flat spacetimes, the
derivation in Appendix D 2 shows that (53) is actually valid
in all odd-dimensional spacetimes, as long as (54) is
replaced by the more-general (D5).

Regardless, (53) is the odd-dimensional analog of (45). It
generically involves non-negative even powers of r, non-
negative even powers multiplied by ln r, and negative even
powers down to r−ðd−3Þ. The self-force and self-torque may
be evaluated by subtracting this from a physical vector
potential and then using (17) to compute F̂ab. The result is
automatically finite, at least in the absence of impulsive
incoming waves or other singular phenomena external to
the body itself.
As in the even-dimensional context, it is interesting to

suppose that the true electromagnetic field Fab is equal to
the retarded field Fret

ab. Assuming this, the relevant sub-
traction with FS

ab is performed in Appendix D 3, which
culminates in the effective field (D21). That result is valid
for general odd-dimensional spacetimes. Specializing it to
the flat case by introducing Minkowski coordinates xμ

while using (27) and (28), we find that

F̂μν ¼
2ð−1Þ12ðd−3ÞΓðd=2 − 1Þffiffiffi

π
p

Γð1
2
ðd − 1ÞÞ

�
ðd − 2Þq

Z
τ−ϵ

−∞

X½μðτ; τ0Þ_γν�ðτ0Þ
½−X2ðτ; τ0Þ�d=2 dτ0 −

Xd−4
n¼0

ð−1Þn
n!

�∇½μW
fng
ν�

d − 3 − n
þ 1

ϵ
_γ½μW

fng
ν�

�

×
1

ϵd−3−n
−

1

ðd − 3Þ!
�
1

ϵ
_γ½μW

fd−3g
ν� −∇½μW

fd−3g
ν� lnðϵ=lÞ − 1

2
∂λ∇½μW

fd−3g
ν� −

1

ðd − 2Þ _γ½μW
fd−2g
ν�

��
ð55Þ
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on Γ, where we have omitted an implicit limit ϵ → 0þ and
defined Xμðτ; τ0Þ≡ γμðτÞ − γμðτ0Þ. Although individual
terms here involve negative powers of ϵ and also ln ϵ,
these cancel similarly divergent terms in the integral; the
overall limit here is well-behaved. Also note that even
though Godd

aa0 is not a Green function and the effective field
here is not in general a solution to the source-free Maxwell
equations, it is source-free for inertially moving particles.
Indeed, it vanishes in those cases.
Two qualitative differences may now be observed

between our flat-spacetime effective fields in even and
odd numbers of dimensions. First, the odd-dimensional F̂ab
depends on the particle’s past history. Its even-dimensional
counterpart does not. Second, our odd-dimensional field
depends on the arbitrary parameter l > 0 which appears in
the definition for Godd

aa0 . Varying l results in different
propagators, different definitions for a body’s momentum,
and different forces. In practice, one can choose a con-
venient value and then use it to infer masses and other
parameters from available experimental data. Although
those inferences would differ somewhat with different
choices for l, they would do so in predictable ways which
could be computed from the expressions found in Sec. II.
Having now noted that the even and odd-dimensional

effective fields discussed here differ both in their history
dependence and their parameter dependence, we emphasize
that neither of these differences are essential. Parameter
dependence can appear for even d if, e.g., one constructs
momenta using a family of propagators with the form (26).
Furthermore, history dependence generically occurs in even-
dimensional effective fields whenever the spacetime is
curved. Indeed, it arises even in flat even-dimensional
spacetimes if a body is coupled to amassive field (as opposed
to the massless Maxwell couplings considered here).

1. Special cases

In the absence of closed-form expressions for the
coefficients Wfng

μ and ∇½μW
fng
ν� which appear in (55), it

is not possible to provide fully explicit formulae for all odd-
dimensional self-forces. However, those coefficients can be
computed, for each n, using the methods of Appendix B.
Explicit self-forces may thus be obtained for any specific
odd d. We now discuss three and five-dimensional
Minkowski spacetimes as special cases.
Assuming retarded boundary conditions, substitution of

(B15) and (B16) into (55) results in the d ¼ 3 effective field

F̂μν ¼ 2q

�Z
τ−ϵ

−∞

� X½μ _γ0ν�
ð−X2Þ3=2

�
dτ0 þ 1

2
̈γ½μ _γν� lnðϵ=elÞ

�
ð56Þ

on Γ, where e denotes the base of the natural logarithm
and the limit ϵ → 0þ has again been left implicit. Com-
bining this with (32) immediately yields the leading-order
three-dimensional self-force

f̂μ ¼ 2q2
�Z

τ−ϵ

−∞

� X½μ _γ0ν� _γ
ν

ð−X2Þ3=2
�
dτ0 −

1

4
lnðϵ=elÞ̈γμ

�
: ð57Þ

Similarly, substituting (56) into (33) yields the leading-
order three-dimensional self-torque

n̂μν ¼ 2qqρ½μ
�Z

τ−ϵ

−∞

�
Xν� _γ0ρ − _γ0ν�Xρ

ð−X2Þ3=2
�
dτ0

þ 1

2
ð̈γν� _γρ − _γν� ̈γρÞ lnðϵ=elÞ

�
; ð58Þ

which depends both on a particle’s charge q and on its
electromagnetic dipole moment qμν. It is clear in this
context that varying l changes the force only by constant
multiples of ̈γμ. Different values for l thus provide different
renormalizations of a particle’s apparent mass, at least to
leading nontrivial order.
Additional insight into our d ¼ 3 forces and torques may

be gained by evaluating them in a slow-motion approxi-
mation. Applying such an approximation while integrating
(57) once by parts shows that the spatial 2-vector compo-
nents of the self-force are explicitly

f̂ ðτÞ ¼ −
q2

2

�Z
τ−ϵ

−∞
dτ0

�
γ̈ðτ0Þ
τ − τ0

�
þ γ̈ðτÞ ln

�
ϵ

e
1
2l

��
; ð59Þ

where it has been assumed that the acceleration falls off
according to

lim
τ0→−∞

ðτ − τ0Þ_γðτ0Þ − ½γðτÞ − γðτ0Þ�
ðτ − τ0Þ2 ¼ 0 ð60Þ

in the distant past. If this falloff condition is indeed
satisfied, the three-dimensional self-force thus depends
on a weighted history of the charge’s past acceleration.
Beyond noting that the relevant weighting factor decays
like 1=τ, the ϵ → 0þ limit makes it difficult to interpret (59)
directly. A manifestly finite form for the self-force can be
obtained by integrating by parts once more. Assuming that

lim
τ0→−∞

γ̈ðτ0Þ lnðτ − τ0Þ ¼ 0; ð61Þ

the d ¼ 3 self-force may be seen to reduce to

f̂ ðτÞ ¼ −
q2

2

Z
τ

−∞
γ
…ðτ0Þ ln

�
τ − τ0

e
1
2l

�
dτ0: ð62Þ

This depends on a past history of the particle’s jerk, with a
weighting factor which increases logarithmically in the
increasingly distant past.
Similar expressions may be obtained for the slow-motion

limit of the d ¼ 3 self-torque (58). If the falloff conditions
(60) and (61) are assumed to hold and the electric and
magnetic components of the particle’s dipole moment may
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be considered comparable, the time-space components of
the self-torque reduce to

n̂0iðτÞ ¼ qijðτÞf̂jðτÞ=q; ð63Þ

where i; j ∈ f1; 2g, the f̂j appearing here is given by (62),
and we have assumed that q ≠ 0. Differences between p̂
and m̂ _γ are thus controlled, in part, by the coupling of a
particle’s magnetic dipole moment to a logarithmically
weighted history of its jerk.
The remaining space-space components of the non-

relativistic d ¼ 3 self-torque, which directly affect a body’s
spin evolution, are determined by

n̂ijðτÞ ¼ 2q0½iðτÞf̂j�ðτÞ=q: ð64Þ

The spin, which has only one component in this case, is
thus affected by misalignments between a body’s electric
dipole moment and the same logarithmically weighted
history of its jerk.
Analogous expressions are more complicated when

d ¼ 5. We give only the leading-order self-force, which
is again found by substituting (B15) and (B16) into (55),
and then substituting the effective field which results into
(32). The fully relativistic force is thus

f̂μ ¼ −q2
�Z

τ−ϵ

−∞

3X½μ _γ0ν� _γ
ν

ð−X2Þ3=2 dτ
0 þ hμν

�
3̈γν
8ϵ2

−
γ
…

ν

2ϵ

−
3

16

�
γð4Þν −

3

2
j̈γj2 ̈γν

�
lnðϵ=e1

3lÞ − j̈γj2 ̈γν
32

��
: ð65Þ

Changing l is this context may be seen to shift more than
just the apparent mass; noting that

hμν
�
γð4Þν −

3

2
jγ̈j2 ̈γν

�
¼ d

dτ

�
γ
…

μ −
3

2
j̈γj2 _γμ

�
; ð66Þ

it affects both the direction and magnitude of the renor-
malized 5-momentum.
We note also that in a slow-motion limit, the spatial

components of (65) reduce to

f̂ ðτÞ ¼ 3q2

16

Z
τ

−∞
γð5Þðτ0Þ ln

�
τ − τ0

e−
17
12l

�
dτ0; ð67Þ

at least if derivatives of the particle’s position fall off
sufficiently rapidly in the distant past. This differs from its
d ¼ 3 counterpart (62) mainly by an overall sign and by the
replacement of γ

…

with γð5Þ in the integral.

2. Comparisons

We close this section by comparing with other odd-
dimensional self-force results which have appeared in the
literature. First, a five-dimensional force similar to (67) has

recently been obtained using the methods of effective field
theory [46]. In that context, l appears as a free parameter in
a dimensional regularization procedure. This is not so
different from our usage of l as a free parameter in the
choice of propagator used to define a body’s momentum:
Our propagator induces an l-dependent map Fab ↦ F̂ab,
and this turns into an l-dependent regularization in the
point particle limit. Nevertheless, we note that our results
differ conceptually in that we have provided precise
“microscopic” (or “UV-complete”) definitions for the mass,
mass center, other quantities appearing in the laws of
motion; we do not merely assert that quantities satisfying
such laws exist and that they have physical interpretations
consistent with their names.
Other odd-dimensional self-forces which have appeared

in the literature differ much more significantly from ours.
These have been obtained by the use of heuristic arguments
to directly regularize point-particle self-fields [43,47],
expressions for the momenta associated with those fields
[48], or similar quantities. In at least one case, the claimed
force law is IR-divergent; see Eq. (4.4) in [47]. Other
proposals use counterterms which depend on a particle’s
entire past history [43,48], implying that a body’s momen-
tum could not be computed without knowledge of that
history—a physically unacceptable option. Another result
predicts a time-varying mass even at leading order [48].
While mass variations are normal and expected when
including effects due to a body’s higher multipole moments
[32], they should not arise when considering only monop-
ole interactions with an electromagnetic field. Indeed, it is
clear from (32), (38), and (42) that mass variations do not
arise in our leading-order expressions.

IV. PHENOMENOLOGY OF THE
ODD-DIMENSIONAL SELF-FORCE

Although the results of Sec. III B may be used to evaluate
odd-dimensional point-particle self-forces and self-torques,
the physical implications of those results are not immedi-
ately apparent. We now elucidate some of those implica-
tions, with a particular emphasis on nonrelativistic systems
in flat, three-dimensional spacetimes. This setting (i) pos-
sesses features which are particularly distinct from the
d ¼ 4 case, and (ii) may find experimentally accessible
analogs in certain condensed-matter or fluid systems.
Nevertheless no attempt is made here to provide a com-
prehensive discussion of d ¼ 3 self-force effects. Rather,
we seek mainly to highlight some of the subtleties and
unusual features of these effects.

A. Approximations

We begin our discussion of odd-dimensional self-force
phenomenology by remarking on some of the relevant
approximations. Although we have already noted that the
results of the previous section assume a type of point
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particle limit, the details of that limit were not fixed.
Indeed, a number of different point particle limits can be
consistently discussed, and without a specific physical
system in mind, it is difficult to settle on a particular
approximation. Despite this, one generic constraint which
can be used is that physically realizable bodies cannot exist
with arbitrary combinations of physical size, charge, and
mass. Energy conditions may be violated if the stresses
required to counteract a body’s internal electrostatic repul-
sion become larger than its mass density. Letting L
characterize a charge’s linear dimension, those stresses
might be estimated to be order ðq=Ld−2Þ2. Noting that the
mass density is approximately m=Ld−1, energy conditions
thus demand that

q2 ≲mLd−3; ð68Þ
where we have used the bare mass m associated with the
bare momentum Pτ, which is defined by (6). The renor-
malized mass m̂ is however derived from P̂τ, which is
distinguished from Pτ via (31). The bare and renormalized
masses can differ from one another by terms of order
q2=Ld−3 and q2 lnðL=lÞ=Ld−3. If l is held fixed, saturating
the bound in (68) might then result in an “imaginary m̂,”
i.e., a spacelike p̂a. Other pathologies could arise as well.
Our formalism breaks down in such cases, which we avoid
by additionally requiring that

q2 ≲ mLd−3

j lnðL=lÞj : ð69Þ

This is sufficient to imply that m and m̂ have similar
magnitudes.
If a charge moves in an externally imposed electric field,

the self and external forces acting on it may now be
estimated to scale like

fself ∼ ðq2=m̂Þ fext
τd−3�

≲ ðL=τ�Þd−3
j lnðL=lÞj fext; ð70Þ

where τ� is a characteristic timescale associated with the
external field. If L is sufficiently small and τ� is indepen-
dent of L, self-forces thus remain at least logarithmically
suppressed in comparison with external forces, even for
objects which are “maximally charged” according to (69).
We note however, that this statement is not precise. What
meaning it does have is global, in the sense that nontrivial
tails imply that self-forces can be instantaneously signifi-
cant even when external forces vanish.
It would be interesting to now write down and system-

atically analyze the consequences of a complete, self-
consistent approximation scheme which saturates the given
bounds. We do not do so, however. Instead, we consider a
simpler model problem in which only the mass and charge
monopoles are significant. In this case, the momentum-
velocity relation (41) reduces simply to p̂a ¼ m̂_γa and the

force is given entirely by the Lorentz term (32). With these
assumptions, (62) implies that the nonrelativistic d ¼ 3
equation of motion is given by the integral equation

m̂ γ̈ðτÞ ¼ qEextðγðτÞÞ −
q2

2

Z
τ

−∞
γ
…ðτ0Þ ln

�
τ − τ0

e
1
2l

�
dτ0; ð71Þ

where Eext denotes the external electric field. Similarly,
(67) implies that with the same assumptions, the d ¼ 5
equation of motion is

m̂ γ̈ðτÞ ¼ qEextðγðτÞÞ þ
3q2

16

Z
τ

−∞
γð5Þðτ0Þ ln

�
τ − τ0

e−
17
12l

�
dτ0:

ð72Þ

More systematic approximations would also include vari-
ous test body effects involving the spin and higher-order
electromagnetic multipole moments.

B. Runaway solutions

The simplest applications for the equations of motion
(71) and (72) concern the behavior of free particles.
Unaccelerated trajectories are of course valid solutions
when Eext ¼ 0, although they are not the only solutions.
The space of possible initial data for these integral
equations is infinite dimensional, and nontrivial choices
for this data generically lead to nontrivial trajectories.
Physically, this is as expected. However, there also exist
solutions which are not physically reasonable. These
“runaway solutions” accelerate exponentially and without
bound: Letting a0 denote an arbitrary constant vector,
suppose that

γ̈ðτÞ ¼ a0 expðτ=τrunÞ: ð73Þ

If d ¼ 3, substitution of this expression into (71) shows that
it is a solution when

τrun ¼ l expðγE þ 1=2 − 2m̂=q2Þ; ð74Þ

where γE denotes the Euler-Mascheroni constant. Note that
although τrun may appear to depend on the arbitrarily
chosen lengthscale l, the implicit dependence of m̂ on lnl
ensures that it does not.
More importantly, the existence of runaway solutions

suggests that a particle upon which no force has been
applied might spontaneously and violently accelerate with-
out any apparent cause. One may hope that the runaway
solutions are artifacts of the initial data (or lack thereof), in
that solutions for which γ̈ðτÞ ¼ 0 for all τ < τ0 might
behave more sensibly. Unfortunately, this is not so. The
three-dimensional equation of motion (71) may be solved
using Laplace transforms, and doing so shows that with
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trivial initial data, almost any applied force excites a
runaway mode with growth timescale τrun.
The situation is somewhat better when d ¼ 5. Sub-

stituting the ansatz (73) into (72), the runaway timescale
may be seen to satisfy

m̂
q2

¼ 1

64τ2run
f17þ 12½lnðτrun=lÞ − γE�g: ð75Þ

However, the right-hand side here has a maximum when
varying over all τrun > 0, implying that runaway solutions
can exist (with the given form) only when

q2=m̂ ≥
32

3
l2 expð2γE − 11=6Þ: ð76Þ

If this bound holds but is not saturated, there are in fact two
solutions to (75), and thus two runaway timescales. If the
bound is violated, solutions to our equation of motion
appear not to be unstable in five dimensions.
Although we are not aware of runaway solutions having

previously been discussed in odd-dimensional spacetimes,
they are well-known features of the d ¼ 4 Abraham-
Lorentz-Dirac equation. One objection to them (besides
their manifest disagreement with observation) is that their
associated timescale is extremely short—of order q2=m̂
when d ¼ 4. However, (68) implies that a well-defined
four-dimensional point particle limit requires that q2=m̂ be
of order L or smaller. Additionally, standard derivations
assume that all dynamical timescales are much longer than
L. Runaway solutions in four dimensions are thus solutions
to an equation whose properties violate the conditions
under which that equation has been derived. In this sense,
they are not genuine predictions.
Similar conclusions may be reached also when d ¼ 3 or

d ¼ 5; the runaway solutions discussed above cannot be
considered genuine predictions of the theory. This is most
easily seen in the five-dimensional case, for which (69)
implies that q2=m̂ → 0þ in a point particle limit. The bound
(76) is thus violated for sufficiently small bodies, which
means that runaway solutions do not exist in the relevant
portion of parameter space. If d ¼ 3, runaway solutions do
exist formally, although they violate the conditions under
which the equation of motion may be expected to hold. A
body which is maximally charged according to (69) has a
runaway timescale (74) which is short compared to its light-
crossing time L, and particles with less charge have runaway
timescales which are even shorter. However, our derivation
breaks down for timescales of orderL; runaway solutions are
thus unphysical also in three dimensions.

C. Reduction of order

Although runaway solutions are not true predictions
of our equations, it would be desirable to be able to
systematically extract solutions which are physically and

mathematically justified—well-behaved trajectories which
are sufficiently close to satisfying, e.g., (71) and for which
all significant timescales are much larger than L. By
analogy with the d ¼ 4 case, we accomplish by “reducing
order,” which corresponds to supposing that the external
force alone generates a “zeroth order” trajectory determined
by γ̈ ≈ qEext=m̂, and that it is this trajectory which should
be substituted into the self-force integrals. If d ¼ 3, such a
procedure results in

m̂ γ̈ðτÞ ¼ qEextðγðτÞÞ −
q3

2m̂

Z
τ

−∞
_Eextðγðτ0ÞÞ ln

�
τ − τ0

e
1
2l

�
dτ0:

ð77Þ

When d ¼ 5, one finds instead that

m̂ γ̈ðτÞ ¼ qEextðγðτÞÞ þ
3q3

16m̂

Z
τ

−∞
E
…

extðγðτ0ÞÞ ln
�
τ− τ0

e−
17
12l

�
dτ0:

ð78Þ

These replacements do not change the order of the
approximation as long as q2=m̂ is sufficiently small.
More to the point, they mollify the high-frequency char-
acter of the Fourier transforms associated with the unmodi-
fied accelerations (as is made more clear in Sec. IV D
below). Regardless of justification, these equations no
longer admit runaways and there is a sense in which their
solutions nearly satisfy their parent equations as long as the
self-force is sufficiently small. However, as we shall see
below, the reduced-order equations can still be problematic
when applied over very long times.
To briefly remark on our terminology, the reduction-of-

order procedure applied to the d ¼ 4 Abraham-Lorentz-
Dirac equation yields what is sometimes referred to as the
Landau-Lifshitz equation. In that case, it has the math-
ematical effect of reducing the order of the relevant
differential equation from three to two. Here, the
reduced-order terminology is retained even though we
are not changing the order of a differential equation.
We also note that the reduction-of-order procedure is not

as ad hoc as it might appear. It arises naturally when
constructing more careful point particle limits; see [9] at
least for the d ¼ 4 case.

D. Exact and approximate solutions without runaways

We next discuss how physically acceptable exact and
approximate solutions—i.e., solutions which do not run
away—of the integro-differential equation of motion (71)
can be obtained when d ¼ 3, how the reduced-order
equation (77) arises in a certain limit, and how reduction
of order breaks down over very long timescales.
First note that our original equation (71), which assumes

that the acceleration vanishes in the distant past, can be
recast as
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2

q
EextðγðτÞÞ ¼

Z
τ

−∞
γ
…ðτ0Þ ln

�
τ − τ0

l expð1
2
− 2m̂

q2 Þ
�
dτ0: ð79Þ

This may be viewed as a linear integral equation for the
particle’s jerk γ

…

in terms of the prescribed external force
qEext. In particular, it is a Volterra equation of the first kind.
Such equations are often solved using Laplace transforms.
If the initial data is trivial, solutions obtained in this way
generically display the runaway behavior mentioned above.
However, there does exist nontrivial initial data for which
no such problems arise. This data is selected automatically
by using Fourier transforms instead of Laplace transforms,
as the former cannot be used to represent exponentially
growing solutions. Indeed, we view the solution obtained
by Fourier transform to be “the” physical one in a wide
range of scenarios.
It is first convenient to define the body’s acceleration as it

would be in the absence of self-interaction:

aext ≡ q
m̂
Eext: ð80Þ

Also defining the dimensionless time variable

s≡ ðτ=τrunÞeγE ð81Þ

and its primed equivalent in terms of the runaway time (74)
and the Euler-Mascheroni constant γE, the body’s true
acceleration a ¼ γ̈ is found from Eq. (79) to satisfy

aextðsÞ ¼
q2

2m̂

Z
s

−∞

da
ds0

ðs0Þ lnðs − s0Þds0: ð82Þ

Since this equation is linear, a general solution can be
written as

aðsÞ ¼ 2m̂
q2

Z
∞

−∞
Kðs − s0Þaextðs0Þds0 ð83Þ

for some kernel K, where the factor 2m̂=q2 has been
included for later convenience.
To solve for K, we now assume that the Fourier trans-

form of the solution exists. As mentioned above, this
assumption excludes runaway solutions, and so yields only
a certain class of solutions of the original equation.
Defining the Fourier transform of the kernel by

K̃ðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dseiωsKðsÞ; ð84Þ

and substituting into (82) and (83), we find that

K̃ðωÞ ¼ i
2π

1

ωG̃ðωÞ ; ð85Þ

where GðsÞ≡ ΘðsÞ lnðsÞ. Evaluating the Fourier transform
of GðsÞ now yields

K̃ðωÞ ¼ −
1ffiffiffiffiffiffi
2π

p 1

lnþðωeγEÞ − iπ=2
; ð86Þ

where lnþðωÞ is the function obtained by analytically
continuing lnðωÞ from the positive real axis into the upper
half ω plane. In particular, for real ω, we have

lnþðωÞ ¼ ln jωj þ iπΘð−ωÞ: ð87Þ
One consequence is thatZ

∞

−∞
KðsÞds ¼

ffiffiffiffiffiffi
2π

p
K̃ð0Þ ¼ 0: ð88Þ

In combination with (83), it follows that with appropriate
falloff conditions on aext,

Δv≡
Z

∞

−∞
aðτÞdτ ¼ 0: ð89Þ

Initially stationary particles thus return to rest at late times,
an effect which is discussed further in Sec. IV E 4 below.
A particle’s motion at finite times can be understood by

obtaining an expression for the kernel in the time domain,
which of course follows from the inverse Fourier transform
of (86):

KðsÞ ¼ −
1

2π

Z
e−iωsdω

lnþðωeγEÞ − iπ=2
: ð90Þ

We note that the Fourier transform G̃ðωÞ ∝ 1=K̃ðωÞ is
analytic in the upper half ω plane, which reflects the causal
nature of GðsÞ:

GðsÞ ¼ 0; s < 0: ð91Þ

By contrast, taking the reciprocal of G̃ðωÞ to find K̃ðωÞ
results in a simple pole at

ω ¼ ie−γE ; ð92Þ

indicating that the kernel KðsÞ does not vanish for s < 0.
The motion given by the solution (83) thus exhibits a
degree of “preacceleration,” just as for solutions of the
Abraham-Lorentz-Dirac equation in four dimensions.
Preacceleration arises in both of these cases when one
imposes that the solution does not diverge at late times.
Although the three and four-dimensional equations of
motion are mathematically quite different, such an imposi-
tion necessarily requires knowledge of the future—violating
causality.We now show that this violation is confined to very
small timescales which are effectively negligible.
For s < 0, the inverse Fourier transform (90) can be

evaluated by completing the contour into a semicircle in the
upper half plane and evaluating the residue at the pole (92),
yielding
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KðsÞ ¼ e−γE expð−e−γE jsjÞ; s < 0: ð93Þ

Although the kernel is acausal, its acausality is thus limited
to a specific timescale over which s varies of order eγE.
Recalling (81), this corresponds to a physical timescale
equal to the runaway time τrun, given by (74). As argued in
Sec. IV B, this timescale is short compared to the body’s
size L; it is negligible.
If s > 0, one can instead complete the contour in (90)

into a semicircle in the lower half ω plane, with a detour
around branch cut at ArgðωÞ ¼ −π=2. This yields an
expression for the kernel in the form of a Laplace transform

KðsÞ ¼ −
Z

∞

0

e−sσdσ
lnðσeγEÞ2 þ π2

; s > 0: ð94Þ

While we have been unable to find an explicit analytic
expression for KðsÞ for s positive, it follows that an upper
bound is

jKðsÞj ≤ 1

π2s
ð95Þ

for all s > 0. This indicates that the memory of an external
force on a body’s acceleration decays at least as fast as 1=τ.
To summarize up to this point, we have found, for

generic external fields, exact, physically acceptable solu-
tions to the d ¼ 3 equation of motion (71). The acceler-
ations corresponding to these solutions are given by (83),
where aext is defined by (80), s is defined by (81), and
where KðsÞ satisfies (93) and (94).
The Laplace transform expression (94) for the kernel

KðsÞ for s > 0 is not very transparent. We now develop a
useful approximation to this kernel. We have in mind two
small quantities. First, the limiting process discussed in
Sec. IVA above requires that q2 ≪ m̂. Second, we define
τ� to be a timescale over which the external electric field
varies, and define the dimensionless quantity ν by

ν2 ≡ τrun=τ�: ð96Þ

We assume ν to be small and throw away terms that are
suppressed by one or more powers of it.
An approximate expression for the kernel (94) at large s

can now be obtained as follows: Changing the variable of
integration from σ to u ¼ sσ we first obtain

KðsÞ ¼ −
1

s

Z
∞

0

e−udu
½lnðueγEÞ − ðln sÞ2�2 þ π2

: ð97Þ

Expanding the integrand here at large ln s gives

KðsÞ ¼ −
1

sðln sÞ2
Z

∞

0

due−u
�
1þ 2 lnðueγEÞ

ln s

þO
��

ln u
ln s

�
2
��

; ð98Þ

which is an approximation that breaks down both at large u
and at small u. At large u, the errors in the integrand
become of order unity when u≳ s, but because of the
exponential suppression factor in the integrand, the overall
fractional corrections to the integral scale as e−s, which we
neglect. At small u, the errors in the integrand are of order
unity or larger for u≲ 1=s, and the corresponding overall
fractional corrections to the integral scale as the size of this
region compared with the value u ¼ upeak ∼ 2= ln s at
which the integrand in (97) takes its maximum value; they
are of order

1=s
upeak

∼
ln s
s

:

Terms with this relative magnitude are also neglected here.
Evaluating the integral (98) thus gives

KðsÞ ¼ −
1

sðln sÞ2
�
1þO

�
1

ðln sÞ2
��

ð99Þ

for s > 0.
We now argue that the asymptotic form (99) of the kernel

is sufficient for deriving a useful explicit approximation for
the acceleration (83). We start by writing the latter
expression in the form

aðsÞ ¼ 2m̂
q2

�Z
s̄

−∞
þ
Z

∞

s̄

�
ds0Kðs0Þaextðs − s0Þ; ð100Þ

for some parameter s̄. Although this parameter is clearly
arbitrary, we find it convenient to set

s̄ ¼ 1=ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ�=τrun

p
≫ 1: ð101Þ

This accomplishes two goals. First, it allows us to use

aextðs − s0Þ ¼ aextðsÞ½1þOðνÞ� ð102Þ

for js0j≲ s̄, at least if we are not too close to the boundary
of the support of aext. Second, if (99) is used to approximate
the kernel in the second integral in (100), the relative error
in doing so is bounded by ε2, where

ε−1 ≡ ln s0 ¼
m̂
q2

þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ�
l expð1

2
þ γEÞ

r
≈

m̂
q2

: ð103Þ

The first integral in (100) can now be approximated
by substituting (102) when js0j≲ s̄ and noting that
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contributions from larger negative values of s0 are expo-
nentially suppressed due to (93). Combining this with (88)
and (99), it follows that

aðsÞ ¼ 2m̂
q2

Z
∞

s̄

ds0

s0ðln s0Þ2 ½aextðs − s0Þ − aextðsÞ�

× ½1þOðν; ε2Þ�: ð104Þ

A somewhat simpler expression arises when integrating by
parts, which yields

aðsÞ ¼ 2m̂
q2

Z
∞

s̄

ds0

ln s0
daextðs − s0Þ

ds
½1þOðν; ε2Þ� ð105Þ

if it is assumed that aextðsÞ → 0 as s → ∞. Note that the
omission of the s0 ¼ s̄ boundary term in this expression,
which is equal to

−
2m̂
q2

�½aextðs − s̄Þ − aextðsÞ�
ln s̄

�
ð106Þ

up to terms of relative order ν or ε2, results in errors of order

daext
ds

ε−1s̄
ln s̄

∼ aext

�
τrun
τ�

�
s̄ ∼ aextν: ð107Þ

This is absorbed into the overall Oðν; ε2Þ relative error in
(105). Using (81), our approximation (105) can finally be
rewritten in terms of the physical time τ: Letting τ̄≡
e−γE s̄τrun ¼ e−γE

ffiffiffiffiffiffiffiffiffiffiffi
τrunτ�

p
[which is not to be confused with

the τ̄ defined by (B2)],

aðτÞ ¼ q
m̂

Z
∞

τ̄
dτ0

�
_Eextðγðτ − τ0ÞÞ

1þ ðq2=2m̂Þ lnðτ0=e1
2lÞ

�

× ½1þOðν; ε2Þ�: ð108Þ

This is our approximate solution to the d ¼ 3 equation of
motion (71).
The reduced-order equation (77) can now be obtained

directly from (108) by assuming that EextðγðτÞÞ is nonzero
only for a finite time, which we assume to be short
compared to the timescale

l expð2m̂=q2Þ ≫ l ≫ L: ð109Þ

If, furthermore, we evaluate aðτÞ at times τ which are small
compared to this timescale, we can expand the denominator
in (108) in a Taylor series in q2=2m̂. This yields

aðτÞ ¼
�
aextðτÞ −

q2

2m̂

Z
τ

−∞
dτ0 _aextðτ0Þ ln

�
τ − τ0

e
1
2l

�

×

�
1þO

�
q2

2m̂
ln

�
τ

l

���	
½1þOðν; ε2Þ�; ð110Þ

where we have used (102) and also the fact that the lower
limit of τ̄ in (108) can be replaced by a lower limit of 0
while incurring relative errors only of order ν. This result
coincides with the expression (77) obtained earlier by
reduction of order. At times large compared to the timescale
(109), the approximation (110) is no longer valid, and one
must instead use the original expression (108).

E. Special types of motion

Our equations of motion may now be used to answer at
least two types of questions:
(1) How does a small charge move in response to a

given external field?
(2) Which external field is required in order for a charge

to move on a given trajectory?
The first of these questions cannot generally be answered
using the exact equations of motion (71) and (72), since
their solutions generically involve unphysical instabilities
as discussed in Sec. IV B above. However, at least if d ¼ 3,
one can instead use the reduced-order equation (77) over
short timescales, or more generally (108) over all time-
scales. Either of these possibilities yield approximate
solutions with no unphysical instabilities.
The second potential question we can address, concern-

ing the force required to hold a particle on a given
trajectory, can be computed using either (71) or (77) when
d ¼ 3, although it is the former unmodified equation which
is typically simpler for this purpose. Answers will in any
case be similar using either method, at least if all timescales
associated with the given trajectory are sufficiently long
and q2=m̂ is sufficiently small. We now discuss some
simple examples.

1. Exponential growth

Our first case is that of exponential motion: Consider
trajectories with the form (73), where τrun is now replaced
by a generic positive constant τ�. At least formally, (71)
predicts that if τ� ¼ τrun, no external force is required to
effect such a trajectory when d ¼ 3. A rather different
prediction follows, however, from the reduced-order equa-
tion (77). If τ� ≫ τrun, both equations predict similar
results; the unmodified one gives the exactly exponential
external force

qEext ¼
�
1þ q2

2m̂

�
lnðτ�=lÞ −

1

2
− γE

��
m̂a0eτ=τ� ð111Þ

in three dimensions, while the reduced-order equation
implies that if this force is applied, the particle’s accel-
eration will be

γ̈ ¼
�
1 −

�
q2

2m̂

�
lnðτ�=lÞ −

1

2
− γE

��
2
	
a0eτ=τ� : ð112Þ
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The relative difference between this and our starting ansatz
(73) is of order ðq2=m̂Þ2, as expected when comparing
equations in which order reduction has and has not been
applied.

2. Harmonic motion

A more interesting example which can be understood
analytically (and is mathematically similar) is that of
harmonic motion. Suppose that the trajectory is given by

γðτÞ ¼ ℜ½γ0 expðiωτÞ�; ð113Þ

where ω is real and the constant vector γ0 may be complex.
Such an acceleration violates the falloff condition (61) but
not the weaker condition (60). We therefore substitute into
(59) to find that the leading-order external force required to
maintain harmonic motion is

qEext ¼
�
1 −

q2

2m̂

�
ln jωjlþ 1

2
þ γE

��
m̂ γ̈þ π

4
q2jωj_γ

ð114Þ
when d ¼ 3. The analogous d ¼ 5 expression is very
similar except for an additional overall factor of ω2 in
the self-interaction terms. Regardless, if the motion is
confined to one spatial dimension, the self-force acts to
provide (i) a damping force, and (ii) a ln jωjl shift to a
charge’s apparent inertia. If the motion is instead circular,
similar interpretations apply, except that it is only the
component of the self-force which is proportional to the
velocity that performs work.

3. Power laws and analytic trajectories

Another example which is easily understood is one in
which the acceleration vanishes for all τ < τ0, while

γ̈ðτÞ ¼ an½ðτ − τ0Þ=τ��n ð115Þ
thereafter, where an, τ0, τ�, and n are constants (the latter
two of which are assumed to be positive). Substituting this
into (71) shows that the external force required to produce
such an acceleration has a somewhat-different time depend-
ence than the acceleration itself: In terms of the harmonic
number Hn,

qEext ¼
�
1þ q2

2m̂

�
ln

�
τ − τ0
e
1
2l

�
−Hn

�	
m̂ γ̈ ð116Þ

when d ¼ 3 and τ > τ0. The logarithm here implies that
even at late times, there remains a strong “memory” of the
“turn-on event” at τ ¼ τ0.
This result allows us to understand which external forces

are needed to hold a charge on a more-general trajectory
which is analytic for all τ > τ0. Suppose that γ̈ðτÞ ¼ 0 for
τ < τ0 and

γ̈ðτÞ ¼
X∞
n¼1

an½ðτ − τ0Þ=τ��n ð117Þ

when τ ≥ τ0, where the an are constants. Combining (115)
and (116), the required external force is seen to be

qEextðγðτÞÞ ¼
�
1þ q2

2m̂
ln
�
τ − τ0
e
1
2l

��
m̂ γ̈ðτÞ

−
q2

2

X∞
n¼1

anHn½ðτ − τ0Þ=τ��n: ð118Þ

4. Kicks

Our last—and most interesting—example is concerned
with a charge which is briefly “kicked” by some external
force. Focusing again on three dimensions, we initially ask
which external field must be imposed in order for a particle
to be only momentarily accelerated: Suppose that a charge
is initially stationary, is subjected to a brief acceleration
near τ ¼ τ0, and moves inertially thereafter with velocity
_γðτÞ ¼ Δv. Substituting this into (62) shows that the self-
force at late times must be balanced by an external force
satisfying

qEextðγðτÞÞ ¼
q2

2

�
Δv

τ − τ0

�
; ð119Þ

where we have neglected terms of order 1=ðτ − τ0Þ2. The
self-force thus acts to push the particle back toward rest.
This effect persists indefinitely, suggesting that the par-
ticle’s initially stationary state creates a “preferred rest
frame” to which it always attempts to return.
We now change perspective, asking not for the external

force required to maintain a briefly accelerated trajectory,
but instead for the trajectory of a particle in which the
external force is only briefly nonzero. There are potential
physical issues associated with this scenario, essentially
because it is not clear if the strong tails present in three
dimensions preclude any possibility of setting up a pre-
scribed, confined electric field; there may be unavoidable
and significant remnants of the process by which any
experiment might be assembled. See, e.g., [49] for some
recent remarks—in a somewhat different context—on per-
sistent memory effects in odd dimensions. Regardless, there
is no mathematical difficulty with assuming a prescribed
external field and we proceed without further comment.
The net force acting on a charge for which the external

field has a Gaussian profile is plotted in Fig. 1, assuming
the reduced-order equation of motion (77). Self-interaction
is seen to slightly increase the peak magnitude of the force
in this case, and also to shift that peak earlier in time. That
the peak of the net force appears to anticipate the peak of
the applied force might initially appear to violate causality,
and to be reminiscent of the preacceleration seen in the
Abraham-Lorentz-Dirac equation (and in the d ¼ 3 results
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discussed in Sec. IV D above). Causality is not violated here,
however. The result arises from the explicitly causal integral
in (77), and appears because the self-force is sensitive to
_Eext, which decreases near the peak of the external force.
One can also see in the figure that the self-force

eventually switches sign and only slowly returns to zero.
A charge thus continues to decelerate long after the external
field decays away. The late-time behavior of this process
does not depend on whether or not the external field is
Gaussian, and we now analyze more generally the asymp-
totic motion of a kicked charge.
Long after a briefly nonzero external force has been

applied, the reduced-order equation (77) would suggest that
the acceleration decays like 1=ðτ − τ0Þ. However, an
acceleration which decays this slowly implies a velocity
which grows logarithmically at late times. Such growth is
unphysical. It may be traced back to a failure of the order
reduction procedure at late times; cf. the derivation of (110)
from (108).
A more careful analysis using the methods of Sec. IV D

shows that in fact, a particle asymptotically returns to its
initial “prekick” velocity; see (88). In essence, this recovers
the Aristotelian idea that perturbed masses eventually
return to rest when all perturbations are removed. More
precisely, (108) shows that the asymptotic velocity of a
particle which is initially at rest decays like

_γðτÞ ¼ Δv
1þ ðq2=2m̂Þ ln½ðτ − τ0Þ=ðe1

2lÞ� ð120Þ

at late times, where Δv is the time integral of
aextðτÞ ¼ ðq=m̂ÞEextðγðτÞÞ.

V. DISCUSSION

We have developed a general formalism with which to
understand the motion of extended, self-interacting charges
in all spacetime dimensions d ≥ 3. Before understanding
how such objects move, it is first necessary to fix precisely
what should be meant by the concept of motion. We do so
by giving precise definitions for a body’s linear and angular
momenta. One of the central properties of the momenta
introduced here is that their laws of motion are structurally
identical to the laws of motion satisfied by extended test
bodies. This statement holds to all multipole orders, and for
both an object’s translational and rotational d.o.f. For
example, the lowest-order force is given by the usual
Lorentz expression (32), and the lowest-order torque by
(33). The only difference between these results and their
test body counterparts is that the field F̂ab which appears in
them is a certain nonlocal linear transformation of the
physical electromagnetic field Fab. It is in the details of this
field that the most visible effects of self-interaction may be
found. Note as well that it is the same effective field which
appears in expressions for both forces and torques, and that
the prescription for this field remains the same at all
multipole orders.
To be somewhat more precise, we do not find only a

single momentum definition which obeys laws of motion
structurally identical to test-body laws, but rather a class of
such definitions. Different elements of this class become
distinct only when self-interaction is significant, and they
may be characterized by a certain 2-point “propagator”
Gaa0 ðx; x0Þ; see (6), (7), and (31). Physically, this propa-
gator fixes a sense in which a charge element at x0 can
source a field at x whose net effect on the body’s motion
may be removed by finite renormalization of its multipole
moments. We show from first principles that any propa-
gator which satisfies the four “axioms” given in Sec. II D 1
has this interpretation, and that such propagators may be
used to define momenta with physically desirable proper-
ties. Our axioms generalize the three originally proposed by
Poisson [11] (in a somewhat different context) in order to
characterize the d ¼ 4 propagators originally constructed
by Detweiler and Whiting [18].
The axioms we introduce are essential to understanding

the odd-dimensional self-force, and can be useful also in
certain even-dimensional scenarios. However, they do not
single out a unique propagator. Consequently, we do not
have a unique momentum, a unique effective field, or even
unique multipole moments associated with a body’s stress-
energy tensor. All of these quantities may depend on the
choice of propagator. Nevertheless, such differences do not
signal any kind of physical inconsistency. They merely
reflect that one can choose to focus on slightly different
aspects of the same physical system, and there is no reason
to expect that all such aspects behave identically. A
somewhat simpler “gauge freedom” of this kind arises
even in d ¼ 4 discussions of extended test bodies, wherein

–2 –1 1 2 3 4 *

– 0.2

0.2

0.4

0.6

0.8

1.0

FIG. 1. Net force as a function of τ=τ� for a Gaussian external
field proportional to expð− 1

2
ðτ=τ�Þ2Þ, as computed using the

reduced-order d ¼ 3 equation of motion (77). Here, l ¼ τ� > 0
and all results are normalized so that the maximum external force
is equal to unity. The solid line corresponds to the external force,
the dashed line to the net force when q2=2m̂ ¼ 1=10, and the
dotted line to the net force when this parameter is equal to 1=5.
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different spin supplementary conditions may be applied to
yield distinct centroids which nevertheless describe differ-
ent aspects of the same physical system [41].
Having established an appropriate class of propagators

with which to construct physically useful momenta, it is
essential to be able to find explicit examples in that class. In
even numbers of dimensions, a straightforward generali-
zation of the Detweiler-Whiting “S-type” Green function
satisfies our constraints, and may therefore be used to
generate suitable momenta for extended charge distribu-
tions. Adopting such definitions, the laws of motion
involve effective electromagnetic fields which locally
satisfy the source-free Maxwell equations. Extended self-
interacting charges in even numbers of dimensions may
thus be viewed as obeying laws of motion which are
structurally identical to those of extended test bodies, and
where the effective field appearing in those laws is source-
free. This is a relatively straightforward generalization of
existing d ¼ 4 results on relativistic motion in generic
spacetimes [10]. It may also be viewed as a generalization
of the well-known statement that massive bodies interacting
via Newtonian gravity or electrostatics satisfy laws of
motion which involve only source-free external fields.
The odd-dimensional case is different. One of our main

results is the identification of an odd-dimensional propa-
gator, namely (29), which satisfies the four constraints
given in Sec. II D 1. This propagator is quite different from
its even-dimensional Detweiler-Whiting counterpart; it is
not a Green function or even a more general parametrix for
Maxwell’s equations. The effective field which appears in
the laws of motion may thus fail to satisfy the source-free
Maxwell equations when d is odd. This difference is
reasonably subtle at lower multipole orders. However, it
may be qualitatively important when higher-order
extended-body effects become significant: In that context,
all components of a body’s multipole moments may affect
its motion, rather than only their (more familiar) trace-free
components.
Another interesting feature of the odd-dimensional

effective fields identified here is that in a point-particle
limit, the map which translates the physical field into the
effective field appears to turn into a kind of dimensional
regularization procedure. This procedure arises as the limit
of a map which is generically nonsingular, makes no
symmetry assumptions, and applies in a single spacetime
with fixed integer dimension. A better understanding of this
link may provide an improved understanding of dimen-
sional regularization more generally.
Regardless, whether in even numbers of dimensions or

odd, our formalism can be applied together with point
particle limits to generate explicit laws of motion. We do so
in Sec. III, restricting to flat spacetimes for simplicity.
Assuming retarded boundary conditions, we provide the
general prescription for all dimensions d ≥ 3, and apply it
in full to find leading-order point-particle self-forces for

d ¼ 3, 4, 5, 6, 8, and leading-order self-torques for d ¼ 3,
4, 5. Our explicit self-forces agree with existing results in
the literature when d ¼ 4, 6, 8, although for d ≠ 4, our
approach is more systematic and includes microscopic
definitions which were previously lacking. The odd-
dimensional cases are different, and we identify significant
problems with most other proposals which have been
suggested in that context.
Finally, Sec. IV analyzes solutions to the nonrelativistic

limits of our d ¼ 3 and d ¼ 5 results. The particularly slow
decay of odd-d fields—particularly in three dimensions—
results in a very strong dependence on a charge’s past
history: It follows from (62) that the self-force acting on a
particle in 2þ 1 dimensional Minkowski spacetime
depends on the past history of its jerk γ

…ðτÞ, with a
weighting factor which grows logarithmically in the
increasingly distant past.
Some physical consequences of this can be illustrated

by considering a charge which is briefly kicked by an
externally imposed electric field in a d ¼ 3 Minkowski
spacetime. If this external field is Gaussian, one sees from
Fig. 1 that self-interaction causes the peak of the net force
to arrive before the peak of the applied force. Despite
appearances, this effect is causal. Moreover, for any
external force—whether Gaussian or not—we show that
if a charge is stationary for all time before an external field
is applied, the slowly decaying remnant of its self-field
causes that charge to asymptotically return to rest at late
times. The slow decay of the self-field a body produces
while it is initially at rest in three spacetime dimensions
thus provides a preferred, dynamically produced rest frame
which persists and remains significant even in the distant
future.
We note that although this paper has focused on the

motion of bodies coupled to electromagnetic fields, our
analysis extends straightforwardly for other types of
interactions. For example, our odd-dimensional electro-
magnetic propagator (29) is replaced by

Godd ¼
ð−1Þ12−λdU

2π
lim
λ→λd

l2λ ∂
∂λ ½ð2σ=l

2ÞλΘðσÞ�; ð121Þ

for a body coupled to a Klein-Gordon field in an odd-
dimensional spacetime, whereU is a smooth biscalar which
also appears in the retarded Green function. Furthermore,
point-particle scalar fields can be obtained directly from
our electromagnetic vector potentials by replacing the
Waðx; τ; λÞ given by (D5) with

Wðx; τ; λÞ ¼ qðτÞ
αd

Uðx; γðτÞÞΣλðx; τÞ: ð122Þ

We note as well that our methods generalize almost
as easily for bodies coupled to (at least the linearized)
d-dimensional Einstein equation.
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As a simple application in the scalar setting, we note that
masses can vary here even at monopole order, and that
charges which source Klein-Gordon fields are not neces-
sarily conserved. If an initially uncharged body rapidly
acquires a net charge q∞ around τ ¼ τ0, our equations
show that the mass “evaporates” according to

m̂ðτÞ − m̂ðτ0Þ ¼ q2∞ ln

�
τ0 − τ0
τ − τ0

�
ð123Þ

for a stationary particle in a d ¼ 3 Minkowski spacetime,
where τ, τ0 ≫ τ0. Accounting for differences in numerical
conventions, this matches an earlier result [50] obtained
using different methods. It is also conceptually similar to
the scalar charge evaporation found for freely falling
charges in d ¼ 4 de Sitter spacetimes [51].
Whether in electromagnetic or other contexts, there are

various directions in which the results presented in this
paper may be extended or applied. One possibility would
be to relax our assumptions regarding retarded boundary
conditions and trivial topology. Some discussion of motion
in topologically nontrivial spacetimes has already been
given [52], although mainly in cases where the formally
divergent portion of the point-particle self-field could be
clearly seen not to contribute to the self-force. The
formalism developed here lays the groundwork for extend-
ing these kinds of results for generic types of motion: All of
the formalism developed in Sec. II holds regardless of
boundary or initial conditions, or topology, and the S-fields
given by (C2) and (53) are similarly agnostic to these
features. If a physical field Fab can be computed in some
physical system—whether by numerical, perturbative, or
other methods—the S-fields given here can be used to
straightforwardly determine the force. One motivation for
such generalizations is the potential for connecting this
work with the behavior of certain lower-dimensional
condensed matter systems, systems which are often char-
acterized by nontrivial boundary conditions or topology.
Moreover, experimental work in pilot-wave hydrodynam-
ics [20] suggests—although the mathematics applicable
there is not precisely analogous to ours—that self-
interaction problems in two spatial dimensions can have
very rich and surprising behaviors in the presence of
nontrivial boundary conditions.
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APPENDIX A: PROPAGATORS AND
HADAMARD SERIES

This Appendix explains how to determine the bitensors
which appear in the even-dimensional Detweiler-Whiting
Green functions GDW

aa0 with the form (22), and also in the

odd-dimensional propagators Godd
aa0 given by (29). In both

cases, it is convenient to introduce the van Vleck deter-
minant Δðx; x0Þ, which is a symmetric biscalar satisfying
[11,19]

σa∇a lnΔ ¼ d −∇a∇aσ; ðA1Þ

and also Δðx; xÞ ¼ 1. In general, σa ≡∇aσðx; x0Þ lies
tangent to the geodesic which passes through x and x0,
so (A1) may be viewed as a first-order ordinary differential
equation for Δðx; x0Þ along that geodesic. If Synge’s
function is known, d −∇a∇aσ is easily computed and
the solution can be written as an explicit integral along that
geodesic. Integral solutions for this and similar “transport
equations” may be found in, e.g., Appendix B of [19].

1. Even-dimensional propagators

The even-dimensional Detweiler-Whiting Green func-
tion GDW

aa0 involves two bitensors, Uaa0 and Vaa0 .
Substituting its form (22) into (19) shows that these must
satisfy

0 ¼ ½2σb∇bUaa0 þ ð∇b∇bσ − dÞUaa0 �δðd=2−1ÞðσÞ
þ ½∇b∇bUaa0 − Ra

bUba0 �δðd=2−2ÞðσÞ
þ ½2σb∇bVaa0 þ ð∇b∇bσ − 2ÞVaa0 �δðσÞ
þ ½∇b∇bVaa0 − Ra

bVba0 �ΘðσÞ ðA2Þ

when x ≠ x0, and also

lim
x0→x

Uab0 ðx; x0Þ ¼ αdgab; ðA3Þ

where αd is given by (24). The first three lines restrict Uaa0

and Vaa0 on the σ ¼ 0 light cones, while the last requires
that Vaa0 satisfy the homogeneous Maxwell equation

∇b∇bVaa0 − Ra
bVba0 ¼ 0; ðA4Þ

at least when σ > 0. We note that the bitensors determined
by these equations also arise in the retarded and advanced
Green functions, via

Gret;adv
aa0 ¼ ½Uaa0δ

ðd=2−2ÞðσÞ − Vaa0Θð−σÞ�ret;adv; ðA5Þ

although they may be evaluated at different locations here
than in GDW

aa0 .
In order to complete the solution to (A2), it is first

convenient to factor out the square root of the van Vleck
determinant and to expand in the Hadamard series

Uaa0 ¼ Δ1=2
Xd=2−2
n¼0

σn

n!
Ufng

aa0 : ðA6Þ
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Note that this is not a Taylor expansion; the “coefficients”

Ufng
aa0 may be nontrivial functions of x and x0. Regardless,

using (A1) and the identity

σnδðpÞðσÞ ¼ ð−1Þnp!
ðp − nÞ! δ

ðp−nÞðσÞ; ðA7Þ

while setting to zero explicitly equal numbers of derivatives
of δðσÞ, we find that

Uf0g
aa0 ¼ αdgaa0 ; ðA8Þ

and that for all n ∈ f1;…; d=2 − 2g,

ðσb∇bþnÞUfng
aa0 ¼

n
d−2−2n

× ½Δ−1=2∇b∇bðΔ1=2Ufn−1g
aa0 Þ−Ra

bUfn−1g
ba0 �:
ðA9Þ

These constitute a tower of transport equations for each

Ufng
aa0 in terms of Ufn−1g

aa0 . The lone nonsingular solutions to
these differential equations are the physical ones. They
guarantee that the first two lines of (A2) vanish.
The last line of that equation vanishes by (A4), while

the third can be eliminated by imposing the “boundary
condition”

½σb∇b þ ðd=2− 1Þ�ðΔ−1=2Vaa0 Þ

¼ ð−1Þd=2−1
2

h
Δ−1=2∇b∇bðΔ1=2Ufd=2−2g

aa0 Þ−Ra
bUfd=2−2g

ba0

i
ðA10Þ

on Vaa0 when its arguments are null-separated.
Equations (A4), (A8), (A9), and (A10) together provide
a complete solution to (A2), and thus a complete deter-
mination of Uaa0 and Vaa0 .
Note that unlike when finding these bitensors for the

retarded or advanced Green functions, solving (A4) with
boundary data (A10) constitutes a peculiar type of
“exterior” characteristic problem: Data is specified on
the past and future light cones and we seek a solution to
the wave equation outside of those light cones. Although
the general mathematical status of such problems is not
particularly clear, a Hadamard-like series analogous to (A6)
can be developed for Vaa0, resulting in an infinite tower of

transport equations for the Hadamard coefficients Vfng
aa0 . We

assume Vaa0 to be specified in this sense, and that the
resulting series is well behaved. In fact, it can be acceptable
to use Detweiler-Whiting propagator in which the
Hadamard series for Vaa0 is truncated at some finite order.
Forces and torques due to the associated effective field
would be slightly altered by this truncation, although that

would be due to them describing rates of change of slightly
different quantities; such propagators still generate correct
and useful laws of motion.
It is clear from this discussion that since each Hadamard

coefficient Ufng
aa0 or Vfng

aa0 can be written as a line integral
along the geodesic segment which connects its arguments,
it can depend on the geometry only on that geodesic. This
establishes that each coefficient is quasilocal in the sense of
Axiom 3 in Sec. II D 1. The world function and the van
Vleck determinant are similarly quasilocal, so this descrip-
tion holds for GDW

aa0 as a whole.
Note as well that each of the Hadamard coefficients is

symmetric, so

Uaa0 ðx; x0Þ ¼ Ua0aðx0; xÞ; Vaa0 ðx; x0Þ ¼ Va0aðx0; xÞ:
ðA11Þ

This may be argued in various ways. Most simply, the self-
adjointness of the differential operator δba∇c∇c − Rb

a,
Stokes’ theorem, and the causal properties of the advanced
and retarded Green functions imply that Gret

aa0 ¼ Gadv
a0a .

Equation (A5) thus implies (A11), at least for null and
timelike-separated points. Symmetry of the Detweiler-
Whiting Green function merely requires that this property
extend also to spacelike-separated points. Such an exten-
sion is argued to be valid in Sec. 6.4 of [37]; see also [53].

2. Odd-dimensional propagators

The bitensor Uaa0 which appears in our odd-dimensional
propagator Godd

aa0 is the same as the one which appears in the
retarded and advanced Green functions associated with
(19). It may be found by factoring out the van Vleck
determinant and expanding in the Hadamard series

Uaa0 ¼ Δ1=2
X∞
n¼0

σn

n!
Ufng

aa0 : ðA12Þ

Unlike its even-dimensional analog (A6), the sum here
does not necessarily terminate at finite n. Nevertheless, the
zeroth term in the series is again given by (A8), although
the odd-dimensional αd is now computed using (28) instead
of (24). Substituting this and (27) into (19), the higher-

order Hadamard coefficients Ufng
aa0 may be shown to be the

nonsingular solutions to the same transport equations (A9)
which determine the even-dimensional Hadamard coeffi-
cients. The Uaa0 appearing here is again symmetric and
quasilocally dependent on the metric, by the same argu-
ments as in the even-dimensional case.
Also note that again, there is no obstacle to working

instead with a somewhat-different propagator whose
Hadamard series is truncated at finite n.
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APPENDIX B: EXPANSION METHODS AND
COINCIDENCE LIMITS

We now collect various expansion methods and
results relevant to the point-particle fields computed in
Appendices C and D.
Many of these expansions involve σðx; γðτÞÞ, Synge’s

world function specialized to cases in which one argument
is evaluated at a specific proper time on a given timelike
worldline Γ. This is assumed to be a smooth function of x
and τ, at least if gab and Γ are themselves smooth and x and
γðτÞ are sufficiently close. More precisely, we suppose that
these points always lie within a convex normal neighbor-
hood. Then, if τ is varied while x is held fixed near (but not
on) Γ, there exist exactly two “nearby” zeros. We call the
larger of these the advanced time τþðxÞ and the smaller the
retarded time τ−ðxÞ. While it is possible to approximate
these times in terms of some given coordinate system, we
have no need to do so. Instead, we note that Synge’s
function must factorize via

2σðx; γðτÞÞ ¼ ½τþðxÞ − τ�½τ − τ−ðxÞ�Σðx; τÞ; ðB1Þ

where Σðx; τÞ is assumed to be positive and smooth in all
regions of interest. For an inertial worldline in flat space-
time, Σðx; τÞ ¼ 1. More generally, everything we need is
encoded in the various derivatives of Σðx; τÞ evaluated
using coincidence limits in which x → γðτÞ.
It is convenient to also use the retarded and advanced

times to introduce the “radar time”

τ̄ðxÞ≡ 1

2
½τþðxÞ þ τ−ðxÞ�; ðB2Þ

and the “radar distance”

rðxÞ≡ 1

2
½τþðxÞ − τ−ðxÞ�; ðB3Þ

associated with points x near Γ. In terms of these functions,
(B1) may be rearranged to read 2σ=Σ ¼ r2 − ðτ − τ̄Þ2, from
which it follows that

τ̄ ¼ τ þ ∂
∂τ

�
σ

Σ

�
; r2 ¼ 2σ

Σ
þ
� ∂
∂τ

�
σ

Σ

��
2

: ðB4Þ

These expressions imply that if σ=Σ is smooth, so are τ̄
and r2.
Now solve (B1) for Σðx; τÞ and consider the substitution

x ¼ γðτ0Þ, in which case τþ ¼ τ− ¼ τ0:

Σðγðτ0Þ; τÞ ¼ −
2σðγðτ0Þ; γðτÞÞ

ðτ0 − τÞ2 : ðB5Þ

Coincidence limits for the left-hand side or its derivatives
follow by evaluating the right-hand side or its derivatives

as τ0 → τ, using well-known coincidence limits for the
derivatives of Synge’s function. For example, applying
L’Hôpital’s rule twice gives

ΣðγðτÞ; τÞ ¼ −lim
τ0→τ

_γa
0
_γb

0∇a0∇b0σ: ðB6Þ

where we have used the vanishing coincidence limits of σ
and ∇a0σ. Further applying

lim
x0→x

∇a0∇b0σðx; x0Þ ¼ gab; ðB7Þ

it follows that

ΣðγðτÞ; τÞ ¼ 1: ðB8Þ

Supplementing (B7) by, e.g.,

lim
x0→x

∇a0∇bσðx; x0Þ ¼ −gab; ðB9Þ

coincidence limits of τ-derivatives of Σðx; τÞ may be
derived similarly. If we specialize to flat spacetime, in
which third and higher derivatives of σ vanish, it may be
shown that

_Σ ¼ 0; Σ̈ ¼ 1

6
jγ̈j2; Σ

… ¼ 1

2
ð̈γ · γ…Þ;

Σð4Þ ¼ 1

15
ð8j γ…j2 þ 9 ̈γ · γð4ÞÞ;

Σð5Þ ¼ 1

3
ð2̈γ · γð5Þ þ 5 γ

…

· γð4ÞÞ;

Σð6Þ ¼ 1

28
ð20̈γ · γð6Þ þ 64 γ

…

· γð5Þ þ 45jγð4Þj2Þ; ðB10Þ

when x ¼ γðτÞ.
We also need coincidence limits for ∇aΣðx; τÞ and its τ

derivatives. First note that differentiating (B1) with respect
to x and rearranging using (B2) and (B3) implies that

∇aΣðx; τ0Þ ¼
2∇aσ þ∇a½ðτ̄ − τ0Þ2 − r2�Σ

ðτþ − τ0Þðτ0 − τ−Þ
; ðB11Þ

where we have added a prime to the second argument for
later convenience. Noting that

∇aτ̄ðγðτÞÞ ¼ −_γaðτÞ; ∇ar2ðγðτÞÞ ¼ 0; ðB12Þ

substituting x ¼ γðτÞ into (B11) gives

∇aΣðγðτÞ; τ0Þ ¼ −
2

ðτ0 − τÞ2 ½∇aσðγðτÞ; γðτ0ÞÞ

þ ðτ0 − τÞ_γaðτÞΣðγðτÞ; τ0Þ�: ðB13Þ

Repeatedly applying L’Hópital’s rule to this expression
again allows us to evaluate coincidence limits τ0 → τ for

HARTE, TAYLOR, and FLANAGAN PHYS. REV. D 97, 124053 (2018)

124053-26



∇aΣðγðτÞ; τ0Þ and its τ-derivatives. Specializing to flat
spacetime while using (B10), the first few such limits are

∇aΣ ¼ γ̈a; ∇a
_Σ ¼ 1

6
ð2 γ…a − jγ̈j2 _γaÞ;

∇aΣ̈ ¼ 1

6
½γð4Þa − 2ð ̈γ · γ…Þ_γa�;

∇aΣ
… ¼ 1

30
½3γð5Þa − ð8j γ…j2 þ 9 ̈γ · γð4ÞÞ_γa�;

∇aΣð4Þ ¼ 1

15
½γð6Þa − 2ð2 ̈γ · γð5Þ þ 5γ

…

· γð4ÞÞ_γa�;

∇aΣð5Þ ¼ 1

84
½4γð7Þa − ð20̈γ · γð6Þ þ 64 γ

…

· γð5Þ

þ 45jγð4Þj2Þ_γa�: ðB14Þ

Point-particle electromagnetic fields in odd numbers of
dimensions are expressed below in terms of coincidence
limits ofWfng

a ðx; λÞ and its derivatives, functions defined by
(D5) and (D7). However, we specialize here to flat
spacetime, in which case the first of these equations is
replaced by (54). Recalling that ∇bgaa0 ¼ ∇b0gaa0 ¼ 0 in

Minkowski spacetimes, the Wfng
a ðx; λÞ can depend only on

the particle’s worldline and on Σðx; τÞ. Using (B10)
and (B14), the first coincidence limits in flat spacetime
may be shown to be

Wf0g
a ¼ q_γa; Wf1g

a ¼ qγ̈a;

Wf2g
a ¼ q



γ
…

a þ
λ

6
j̈γj2 _γa

�
;

Wf3g
a ¼ q

h
γð4Þa þ λ

2
ðjγ̈j2 ̈γa þ ðγ̈ · γ…Þ_γaÞ

i
; ðB15Þ

and

∇½aW
f0g
b� ¼ −qð1þ λÞ_γ½a ̈γb�;

∇½aW
f1g
b� ¼ −q

�
1þ 1

3
λ

�
_γ½a γ

…

b�;

∇½aW
f2g
b� ¼ 1

6
q½2λ ̈γ½a γ…b� − λð4þ λÞj ̈γj2 _γ½a ̈γb�

− ð6þ λÞ_γ½aγð4Þb� �: ðB16Þ

APPENDIX C: POINT-PARTICLE FIELDS
IN EVEN DIMENSIONS

This Appendix computes various electromagnetic fields
associated with monopole point charges in potentially
curved spacetimes for which d ≥ 4 is even. We start by
evaluating the vector potential (18) for the S-field asso-
ciated with the point-particle current (44). Identifying Gaa0

with the Detweiler-Whiting Green function (22), this is
more explicitly

AS
aðxÞ ¼

q
2

Z
½Uaa0 ðx; γðτÞÞδðd=2−2Þðσðx; γðτÞÞÞ

þ Vaa0 ðx; γðτÞÞΘð−σðx; γðτÞÞÞ�_γa0 ðτÞdτ: ðC1Þ

The range of τ values over which this integration is to
performed are to be understood as restricted to a normal
neighborhood of x, in which case the only relevant zeros of
σðx; γðτÞÞ are, for fixed x, at τ ¼ τ�ðxÞ [cf. (B1)]. Hence,

AS
a ¼

q
2

� X
τ∈fτ�g

1

j _σj
�
−

∂
∂τ

1

_σ

�
d=2−2

Uaa0 _γ
a0 þ

Z
τþ

τ−

Vaa0 _γ
a0dτ

�
;

ðC2Þ

where _σ ¼ ∂σðx; γðτÞÞ=∂τ and the sum denotes that one is
to substitute τ ¼ τþ and then add to that the same
expression evaluated at τ ¼ τ−. While other null geodesics
may exist between the particle’s worldline and x, it is only
the “closest two” which are included in this expression.
The retarded Green function may be shown to have to

have the form (A5) at least within a normal neighborhood,
so the retarded vector potential is

Aret
a ¼ q

�
1

j _σj
�
−

∂
∂τ

1

_σ

�
d=2−2

Uaa0 _γ
a0
���
τ¼τ−

þ lim
ϵ→0þ

Z
τ−−ϵ

−∞
Gret

aa0 _γ
a0dτ

�
: ðC3Þ

The Green function in the second line here is left as is
to allow for integrations beyond the normal neighborhood, in
which case the Hadamard form (A5) can fail to remain valid.
If the full electromagnetic field Fab is identified with the

retarded field Fret
ab ¼ 2∇½aAret

b� , it follows from (17) that

F̂ab ¼ 2∇½aðAret
b� − AS

b�Þ. In Minkowski spacetime, this is

equivalent to what is often called the radiative field, one-
half of the retarded minus advanced fields. In more general
spacetimes, a vector potential for F̂ab with retarded
boundary conditions may be written as the difference
between (C3) and (C2):

Âa ¼ q

�
1

2j _σj
�
−

∂
∂τ

1

_σ

�
d=2−2

Uaa0 _γ
a0

�����
τ¼τ−

τ¼τþ

−
1

2

Z
τþ

τ−

Vaa0 _γ
a0dτ þ lim

ϵ→0þ

Z
τ−−ϵ

−∞
Gret

aa0 _γ
a0dτ

�
: ðC4Þ

Although it is not obvious from this expression, the
effective field is finite, and indeed smooth, even on the
worldline, essentially because it satisfies the source-free
Maxwell equations.
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APPENDIX D: POINT-PARTICLE FIELDS IN
ODD DIMENSIONS

We now compute point-particle fields in odd numbers of
dimensions. Section D 1 starts by obtaining a vector
potential AS

a for the S-field FS
ab associated with the

point-particle current (44), identifying the propagator
Gaa0 by which these fields are defined with the Godd

aa0 given
in (30). The final result, summarized by (53), is a series
involving the radar distance r away from the particle’s
worldline Γ [as defined by (B3)]. This series involves
positive and negative powers of r, ln r, and coefficients
which can depend smoothly on x.
Next, the point-particle retarded field Aret

a ðxÞ is computed
in Sec. D 2, again as a series involving r. Both the retarded
and S fields diverge on Γ, although we show in Sec. D 3
that their difference is smooth. This last result essentially
constitutes our verification that Axiom 4 of Sec. II D 1 is
satisfied by Godd

aa0 .

1. The S-field

The point-particle S-field vector potential may be found
by evaluating (18) with Gaa0 ¼ Godd

aa0 and Ja ¼ Japp. Given
the form (29) for Godd

aa0 , it is useful to introduce the auxiliary
family of propagators

G̃aa0 ðx; x0; λÞ≡Uaa0 ðx; x0Þ½2σðx; x0Þ�λΘðσðx; x0ÞÞ; ðD1Þ

and the associated point-particle fields

Ãaðx; λÞ ¼ q
Z

τþðxÞ

τ−ðxÞ
½2σðx; γðτÞÞ�λUaa0 ðx; γðτÞÞ_γa0 ðτÞdτ:

ðD2Þ

Once this potential is known, the point-particle S-field
follows from

AS
a ¼ ð−1Þ12−λd

2π
lim
λ→λd

l2λ ∂
∂λ ðl

−2λÃaÞ; ðD3Þ

where l > 0 is the arbitrary lengthscale used in the
construction of Godd

aa0 , the dimension-dependent number
λd is given by (25), and the limit implies an analytic
continuation in λ.
A series expansion for Ãa may now be found by

substituting the factorization (B1) for σ into (D2). Doing
so results in

Ãaðx; λÞ ¼ αd

Z
τþðxÞ

τ−ðxÞ
dτ½τþðxÞ − τ�λ½τ − τ−ðxÞ�λ

×Waðx; τ; λÞ; ðD4Þ

where αd is given by (28) and it convenient to define

Waðx; τ; λÞ≡ q
αd

Uaa0 ðx; γðτÞÞ_γa0 ðτÞΣλðx; τÞ: ðD5Þ

Expanding Waðx; τ; λÞ about τ ¼ τ̄ðxÞ as defined in (B2),
we find that

Waðx; τ; λÞ ¼
X∞
n¼0

1

n!
½τ − τ̄ðxÞ�nWfng

a ðx; λÞ; ðD6Þ

in terms of the coefficients

Wfng
a ðx; λÞ≡ ∂n

∂τn Waðx; τ; λÞ
���
τ¼τ̄ðxÞ

: ðD7Þ

Substituting these expressions into (D4) now yields

Ãa ¼ 2αd
X∞
n¼0

Wf2ng
a

ð2nÞ!
Z

τþ

τ̄
dτðτ − τ̄Þ2ðnþλÞ

×

��
r

τ − τ̄

�
2

− 1

�
λ

: ðD8Þ

If λ > −1, the integral on the right-hand side is well defined
and

Ãa ¼ αd
X∞
n¼0

Γðnþ 1
2
ÞΓðλþ 1Þ

ð2nÞ!Γðnþ λþ 3
2
ÞW

f2ng
a r1þ2ðnþλÞ: ðD9Þ

However, it follows from (25) that λd < −1 in five or more
dimensions. The analytic continuation associated with the
limit in (D3) nevertheless implies that the right-hand side of
(D9) remains valid as long as it may be analytically
continued to λ → λd.
Carrying out this continuation, Γðnþ λþ 3

2
Þ diverges for

all n ≤ 1
2
ðd − 5Þ. Such terms therefore go to zero in the sum

(D9) and

lim
λ→λd

Ãaðx; λÞ ¼ αd
X∞

n¼1
2
ðd−3Þ

Γðnþ 1
2
ÞΓð2 − 1

2
dÞ

ð2nÞ!Γðnþ 1
2
ð5 − dÞÞ

×Wf2ng
a ðx; λdÞr2n−ðd−3Þ: ðD10Þ

This depends only on non-negative even powers of rðxÞ and
on the smooth functions Wf2ng

a ðx; λdÞ; the overall result is
smooth near the particle’s worldline.
Computing AS

a requires not only Ãa continued to the
appropriate value of λ, but also a continuation for the
λ-derivative of that field. Differentiating (D9), one finds
that is

∂λÃa ¼ αd
X∞
n¼0

Γðnþ 1
2
ÞΓðλþ 1Þ

ð2nÞ!Γðnþ λþ 3
2
Þ r

1þ2ðnþλÞ½∂λW
f2ng
a

þ ðHλ −Hnþλþ1
2
þ 2 ln rÞWf2ng

a � ðD11Þ
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for general values of λ, where Hμ denotes the μth harmonic
number. Taking the λ → λd limit here requires some care
since the factor of Γðnþ λþ 3

2
Þ in the denominator and the

harmonic number Hnþλþ1
2
in the numerator both diverge in

that limit, for all n ≤ 1
2
ðd − 5Þ. What is important however

is the limit of their ratio, which may be shown to be

lim
λ→λd

Hnþλþ1
2

Γðnþ λþ 3
2
Þ ¼ ð−1Þ12ðd−3Þ−nΓ

�
1

2
ðd − 3Þ − n

�
ðD12Þ

for all n ≤ 1
2
ðd − 5Þ. Hence,

lim
λ→λd

∂λÃa ¼ αd

8<
:

X∞
n¼1

2
ðd−3Þ

Γðnþ 1
2
ÞΓð2 − d

2
Þ

ð2nÞ!Γðnþ 1
2
ð5 − dÞÞ ½ðH1−d

2
−Hn−1

2
ðd−3Þ þ 2 ln rÞWf2ng

a þ ∂λW
f2ng
a �r2n−ðd−3Þ

− ð−1Þ12ðd−3Þ
X12ðd−5Þ
n¼0

ð−1ÞnΓðnþ 1
2
ÞΓð2 − d

2
ÞΓð1

2
ðd − 3Þ − nÞ

ð2nÞ! Wf2ng
a r2n−ðd−3Þ

)
: ðD13Þ

The full S-field is found by substituting this equation and
(D10) into (D3). The result is (53) in the main text.

2. The retarded field

We now derive the retarded point-particle field, an
expansion of which may be found using an integral analo-
gous to (D8). Unfortunately, the relevant integration is no
longer performed over the interval τ ∈ ðτ−; τþÞ, but instead
runs over all τ < τ−. There are various reasons for which it is
undesirable to attempt expansions over this infinite domain,
so we initially consider integrals for the retarded vector
potential which are truncated at some finite time T < τ−. We
eventually find it convenient to letT be only slightly less than
τ−, although it may be viewed more generally for now.
Convolving the odd-dimensional retarded Green func-

tion (27) with the point-particle current density (44) while
using the expansion coefficients defined by (D7), the
appropriate truncated field can be shown to be

AT
a ¼ αd

X∞
n¼0

ð−1Þn
n!

Wfng
a

Z
τ−

T
dτðτ̄ − τÞnþ2λ

×

�
1 −

�
r

τ̄ − τ

�
2
�
λ

; ðD14Þ

where we have omitted the implicit limit λ → λd. From this,
the full retarded field strength follows via

Fret
ab ¼ 2∇½aAT

b� þ 2q
Z

T

−∞
∇½aGret

b�b0 _γ
b0dτ: ðD15Þ

We choose to consider Fret
ab here instead of Aret

a in order to
avoid convergence problems when d ¼ 3.
Now, the truncated vector potential may be evaluated by

applying the binomial theorem to expand the term in square
brackets in (D14), giving

AT
a ¼ αd

X∞
n¼0

X∞
k¼0

ð−1ÞnþkΓð1þ λÞ
n!k!Γð1þ λ − kÞW

fng
a r2k

×
Z

τ̄−r

T
dτðτ̄ − τÞnþ2ðλ−kÞ: ðD16Þ

Evaluating the λ → λd limit of this expression requires
some care. Omitting details, the result is that

AT
a ¼ αd

(X∞
n¼0

X∞
k≠kn

ð−1ÞkþnΓð2 − d
2
Þðτ̄ − TÞnþ3−d−2kWfng

a r2k

n!k!ðnþ 3 − d − 2kÞΓð2 − d
2
− kÞ þ

X12ðd−5Þ
n¼0

Γð2 − d
2
ÞΓð1

2
ðd − 3Þ − nÞWf2ng

a

2ð2nÞ!Γð1
2
− nÞrðd−3Þ−2n

−
X∞

n¼1
2
ðd−3Þ

ð−1Þnþ1
2
ðd−3ÞΓð2 − d

2
Þr2nþ3−d

2ð2nÞ!Γð1
2
− nÞΓðn − 1

2
ðd − 5ÞÞ

�
H−1

2
−n −Hn−1

2
ðd−3Þ þ 2 ln

�
r

τ̄ − T

��
Wf2pg

a

)
; ðD17Þ

where kn ≡ 1
2
½n − ðd − 3Þ�. This can be substituted into (D15) to obtain the full (nontruncated) retarded field for a point

particle in an odd-dimensional spacetime.
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3. The effective field

Our final task in this Appendix is to compute the point-particle effective field with retarded boundary conditions in odd
dimensions. Defining the effective cutoff potential by ÂT

a ≡ AT
a − AS

a and comparing (D17) with (53), all logarithms and
negative powers of r exactly cancel, leaving

ÂT
a ¼ αd

(X∞
n¼0

X∞
k≠kn

ð−1ÞkþnΓð2 − d
2
Þðτ̄ − TÞnþ3−d−2kWfng

a r2k

n!k!ðnþ 3 − d − 2kÞΓð2 − d
2
− kÞ þ

X∞
n¼1

2
ðd−3Þ

ð−1Þnþ1
2
ðd−5ÞΓð2 − d

2
Þr2n−ðd−3Þ

2ð2nÞ!Γð1
2
− nÞΓðn − 1

2
ðd − 5ÞÞ

× ½ðH−1
2
−n −H1−d

2
− 2 ln ððτ̄ − TÞ=lÞÞWf2ng

a − ∂λW
f2ng
a �

)
: ðD18Þ

This depends on x only via non-negative even powers of rðxÞ, the smooth coefficients Wfng
a ðx; λdÞ, and τ̄ðxÞ. Moreover, it

follows from (17) and (D15) that the full effective field strength with retarded boundary conditions is

F̂ab ¼ 2∇½aÂ
T
b� þ 2q

Z
T

−∞
∇½aGret

b�b0 _γ
b0dτ: ðD19Þ

As long as the series in (D18) converge, any number of derivatives of the effective field exist, even on Γ, because
τ̄ðxÞ − T ≠ 0 everywhere of interest and τ̄ðxÞ and r2ðxÞ are smooth; see Appendix B.
Evaluating the leading-order self-force and self-torque acting on a point particle requires that we evaluate F̂abðxÞ on the

particle’s worldline, where r → 0. Discarding terms in the truncated potential (D18) which are Oðr2Þ, we find that

ÂT
a ¼ αd

( X∞
n≠d−3

ðT − τ̄Þn−ðd−3Þ
n!ðnþ 3 − dÞW

fng
a þ 1

ðd − 3Þ! ½W
fd−3g
a ln ððτ̄ − TÞ=lÞ þ 1

2
∂λW

fd−3g
a �

)
: ðD20Þ

Using this in (D19) and letting r → 0þ, individual terms in the resulting expression for F̂abðγðτÞÞ depend on the arbitrarily
chosen cutoff time T. Nevertheless, all such terms taken together cannot depend on T. We are therefore free to choose
T ¼ τ − ϵ for some ϵ > 0, and then to take the limit ϵ → 0þ. Doing so eliminates the infinite sum in n, leaving only

F̂abðγðτÞÞ ¼ 2 lim
ϵ→0þ

�
q
Z

τ−ϵ

−∞
∇½aGret

b�b0 _γ
b0dτ0 − αd

�Xd−4
n¼0

ð−1Þn
n!

�∇½aW
fng
b�

d − 3 − n
þ 1

ϵ
_γ½aW

fng
b�

�
1

ϵd−3−n

þ 1

ðd − 3Þ!
�
1

ϵ
_γ½aW

fd−3g
b� −∇½aW

fd−3g
b� lnðϵ=lÞ − 1

2
∂λ∇½aW

fd−3g
b� −

1

ðd − 2Þ _γ½aW
fd−2g
b�

��	
: ðD21Þ

A version of this expression specialized to flat spacetime
is given by (55) in the main text. In either form, the
coefficients Wfng

a ðγðτÞ; λÞ and ∇½aW
fng
b� ðγðτÞ; λÞ which

appear here are to be evaluated in their coincidence limits,
and it is implicit that λ ¼ λd ¼ 1 − d=2. The first four

undifferentiated and the first three differentiated coefficients
of this kind are given explicitly in flat spacetimeby (B15) and
(B16). These are sufficient to determine F̂ab in full for d ¼ 3
and d ¼ 5. Higher-dimensional results follow by extending
the limit calculations described in Appendix B.
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