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In this paper, we consider the problem of computing the self-force and self-energy for a static

scalar charge in a wormhole space-time with throat profile rð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a2

p
for arbitrary coupling of

the field to the curvature. This calculation has previously been considered numerically by Bezerra

and Khusnutdinov [Phys. Rev. D 79, 064012 (2009)], while analytic results have been obtained in the

special cases of minimal (� ¼ 0) coupling [N. R. Khusnutdinov and I. V. Bakhmatov, Phys. Rev. D 76,

124015 (2007)] and conformal coupling [V. B. Bezerra and N. R. Khusnutdinov Phys. Rev. D 79,

064012 (2009)] (� ¼ 1=8 in three dimensions). We present here a closed form expression for the static

Green’s function for arbitrary coupling and hence we obtain an analytic expression for the self-force.

The self-force depends crucially on the coupling of the field to the curvature of the space-time and hence

it is useful to determine the dependence explicitly. The numerical computation can identify some

qualitative aspects of this dependence such as the change in the sign of the force as it passes through the

conformally coupled value, as well as the fact that the self-force diverges for � ¼ 1=2. From the closed

form expression, it is straightforward to see that there is an infinite set of values of the coupling constant

for which the self-force diverges, but we also see that there is an infinite set of values for which the

self-force vanishes.

DOI: 10.1103/PhysRevD.87.024046 PACS numbers: 04.40.�b, 98.80.Cq

I. INTRODUCTION

Wormholes are topological bridges connecting different
universes or distant regions of the same universe. Interest
in wormhole space-times dates back to 1916 [1], predating
interest in black hole space-times. Its modern popularity
is owed primarily to the work of Morris and Thorne [2]
who investigated the idea of using so-called ‘‘traversable
wormholes’’ as a means for time travel. Morris and Thorne
showed that such space-times require a stress-energy
tensor that violates the null energy condition, that is they
require the existence of exotic matter. Wormholes have
subsequently played a central role in the investigation of
causality violation and the status of energy conditions as
physical laws of nature. Comprehensive reviews of worm-
hole physics can be found in Refs. [3,4].

We will consider a particularly simple, ultrastatic,
spherically symmetric wormhole geometry described by
the metric

ds2 ¼ �dt2 þ d�2 þ r2ð�Þd�2; (1.1)

where d�2 ¼ d�2 þ sin2�d�2 is the line element on the

two-sphere S2 and rð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a2

p
is the profile of

the wormhole throat with a minimum radius rð0Þ ¼ a.
The range of the radial coordinate is the entire real line,
�1< �<1, and the throat connects two identical
asymptotically flat space-times. The manifold is every-
where smooth with scalar curvature given by

R ¼ � 2a2

ð�2 þ a2Þ2 : (1.2)

We consider the problem of computing the self-force on
a scalar charge at rest in the metric described by (1.1),
allowing for the arbitrary values of the coupling constant in
the wave equation. A similar calculation was considered
by Khusnutdinov and Bakhmatov [5] who computed the
electrostatic self-force on a charged particle at rest in this
wormhole space-time. The electrostatic wave equation is
equivalent to that of a minimally coupled scalar charge at
rest and hence the self-force on a static scalar charge is
equal to the electrostatic self-force, up to an overall sign.
Bezerra and Khusnutdinov [6] numerically evaluated the
self-force on a static scalar for arbitrary coupling, though
we disagree with the overall sign of their results. The
electrostatic case was reconsidered by Linet [7] who de-
rived the Green’s function in closed form by transforming
to isotropic coordinates and expanding about the Euclidean
distance in these coordinates, a method first adopted by
Copson [8] in deriving the electrostatic potential in the
Schwarzschild space-time.
The self-force is obtained by taking the gradient of the

retarded field that is singular at the particle’s location and
requires regularization. In order to regularize the self-
force, we compute the Detweiler-Whiting singular field,
which upon subtraction yields a quantity that is regular at
the scalar charge’s location. We obtain an analytic expres-
sion for the self-force for arbitrary values of the coupling
constant, which reveals some expected features such as
infinite poles that also occurs in the expression for the
self-force [6] for the wormhole with throat profile*ptaylor@maths.tcd.ie
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rð�Þ ¼ j�j þ a, but we also find some unexpected features
such as an infinite set of values for which the self-force
vanishes.

II. GREEN’S FUNCTION

The Green’s function satisfies the following inhomoge-
neous wave equation:

ðh� �RÞGðx; x0Þ ¼ �g�1=2�ðx� x0Þ; (2.1)

where h is the d’Alembertian wave operator on the
metric (1.1), and � is the coupling to the scalar curvature
that is given by Eq. (1.2). For the charge at rest according to
observers moving on integral curves of the Killing vector
@=@t, the wave equation reduces to the three-dimensional
Helmholtz equation,�
@

@�

�
ð�2 þ a2Þ @

@�

�
þ 1

sin�

@

@�

�
sin�

@

@�

�
þ 1

sin2�

@2

@�2

þ 2�a2

ð�2 þ a2Þ
�
Gð3Þðx;x0Þ ¼ ��ðx� x0Þ

sin�
: (2.2)

The Green’s function may be given as a mode-sum over
separable solutions to the homogeneous equation,

Gð3Þðx;x0Þ ¼ 1

4�

X1
l¼0

ð2lþ 1ÞPlðcos�Þglð�; �0Þ; (2.3)

where PlðxÞ is the Legendre polynomial, cos� ¼
cos� cos�0 þ sin� sin�0 cos�� and glð�; �0Þ satisfies the
inhomogeneous radial equation,(
d

d�

�
ð�2 þ a2Þ d

d�

�
� lðlþ 1Þ þ 2�a2

ð�2 þ a2Þ

)
glð�; �0Þ

¼ ��ð�� �0Þ: (2.4)

With the transformation

y ¼ �=a; (2.5)

the radial equation takes a more simple form,(
d

dy

�
ðy2 þ 1Þ d

dy

�
� lðlþ 1Þ þ 2�

ðy2 þ 1Þ

)
glðy; y0Þ

¼ � 1

jaj�ðy� y0Þ: (2.6)

The general solution may be written as a normalized
product of two linearly independent solutions of the homo-
geneous equation

glðy; y0Þ ¼ 1

jaj
�ð1Þ

l ðy<Þ�ð2Þ
l ðy>Þ

N
; (2.7)

where y< ¼ minfy; y0g, y> ¼ maxfy; y0g, and the normal-
ization constant N is determined by the Wronskian of the
two solutions. The boundary conditions on the Green’s
function at � ! �1 require

�ð1Þ
l ðyÞ ! 0; as y ! �1;

�ð2Þ
l ðyÞ ! 0; as y ! 1: (2.8)

Writing z ¼ iy, it is clear that the solutions of the
homogeneous equation (2.6) are associated Legendre func-
tions of pure imaginary order,

P��
l ð�iyÞ; Q��

l ð�iyÞ; where � ¼ ffiffiffiffiffiffi
2�

p
: (2.9)

The multivaluedness of the associated Legendre functions
gives rise to a discontinuity at y ¼ 0. For y � 0, we choose

�ð2Þ
l ðyÞ ¼ Q�

l ðiyÞ, which vanishes as y ! 1 as required.

However, for the solution to be continuous across y ¼ 0,
we take the branch obtained from the principal branch
by encircling the branch point z ¼ 1 (but not the point
z ¼ �1) once. If we denote this branch by Q

�
l;1ðzÞ, then it

can be shown [9]

Q
�
l;1ðzÞ ¼ e���iQ

�
l ðzÞ � i�e��i �ðlþ�þ 1Þ

�ðl��þ 1ÞP
��
l ðzÞ:

(2.10)

Then, the function

�ð2Þ
l ðyÞ¼

8<
:
Q�

l ðiyÞ y�0

e���iQ�
l ðiyÞ� i�e��i �ðlþ�þ1Þ

�ðl��þ1ÞP
��
l ðiyÞ y<0;

(2.11)

is continuous for �1< y<1 and satisfies the appropri-
ate boundary condition and hence is the correct choice.
The symmetry of the space-time implies that we take our

inner solution to be�ð1Þ
l ðyÞ ¼ �ð2Þ

l ð�yÞ, or given explicitly,

�ð1Þ
l ðyÞ ¼

8<
: e���iQ

�
l ð�iyÞ � i�e��i �ðlþ�þ1Þ

�ðl��þ1ÞP
��
l ð�iyÞ y � 0

Q�
l ð�iyÞ y < 0:

(2.12)

This solution clearly satisfies the vanishing boundary condition at y ! �1 (� ! �1) and is linearly independent to
�ð1Þ

l ðyÞ in the two regions of the space-time. We can rewrite the solution in a more symmetric form using standard results
for the Legendre functions [10], yielding

�ð1Þ
l ðyÞ ¼

8<
: ð�1Þlþ1e��i

h
Q

�
l ðiyÞ þ i� �ðlþ�þ1Þ

�ðl��þ1ÞP
��
l ðiyÞ

i
y � 0

ð�1Þlþ1Q�
l ðiyÞ y < 0:

(2.13)
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The normalization constant is given by

N ¼ �ðy2 þ 1ÞWf�ð1Þ
l ðyÞ;�ð2Þ

l ðyÞg ¼ �ð�1Þlþ1e2��i �ðlþ�þ 1Þ
�ðl��þ 1Þ : (2.14)

So the radial solution may be written as

glðy; y0Þ ¼

8>>>><
>>>>:

e��i

jaj�Q
��
l ðiyÞQ�

l ðiy0Þ þ ie���i

jaj P
��
l ðiy<ÞQ�

l ðiy>Þ y; y0 � 0;

e���i

jaj� Q
��
l ðiyÞQ�

l ðiy0Þ � ie���i

jaj Q
�
l ðiy<ÞP��

l ðiy>Þ y; y0 < 0;

1
jaj�Q

��
l ðiyÞQ�

l ðiy0Þ y � 0; y0 < 0 or y0 � 0; y < 0:

(2.15)

Let us assume, without loss of generality, that y, y0 � 0
(the closed-form expression will not depend on this con-
dition), then the Green’s function is

Gð3Þðx;x0Þ ¼ i

4�jaj
X1
l¼0

ð2lþ 1ÞPlðcos�Þ

�
�
e���iP��

l ðiy<ÞQ�
l ðiy>Þ

þ 1

�i
e��iQ

��
l ðiyÞQ�

l ðiy0Þ
�
: (2.16)

In a recent paper [11], we have derived the following
summation formula for associated Legendre functions of
arbitrary complex order,

X1
l¼0

ð2lþ1ÞPlðcos�Þe�i��P
��
l ð	<ÞQ�

l ð	>Þ¼e��cosh�1ð
Þ

R1=2
;

(2.17)

where

R ¼ 	2 þ 	02 � 2		0 cos�� sin2�;


 ¼ 		0 � cos�

ð	2 � 1Þ1=2ð	02 � 1Þ1=2 ; (2.18)

and where the radial variable here is real and runs over the
range 	> 1. We can analytically continue this result by
making the transformation 	 ¼ iy and taking the appro-
priate branch. We obtain

X1
l¼0

ð2lþ 1ÞPlðcos�Þe���iP
��
l ðiy<ÞQ�

l ðiy>Þ

¼

8>>>>>><
>>>>>>:

e�cosh�1ð
Þ
iR1=2 y; y0 � 0;

� e��cosh�1ð
Þ
iR1=2 y; y0 < 0;

e���ie�cosh�1ð
Þ
iR1=2 y � 0; y0 < 0 or y < 0; y0 � 0;

(2.19)

where

R ¼ y2 þ y02 � 2yy0 cos�þ sin2�;


 ¼ yy0 þ cos�

ðy2 þ 1Þ1=2ðy02 þ 1Þ1=2 : (2.20)

These results may be checked numerically by multiply-
ing both sides by Pl0 ðcos�Þ and integrating with respect
to �.
For y, y0 � 0, we can use the well-known relations

between Legendre functions to rewrite the Green’s func-
tion (2.16) as

Gð3Þðx;x0Þ ¼ 1

8�jaj sinð��Þ
X1
l¼0

ð2lþ 1ÞPlðcos�Þ

� ½�e�2��iP
��
l ðiy<ÞQ�

l ðiy>Þ
þ e2��iP�

l ðiy<ÞQ��
l ðiy>Þ�: (2.21)

We can employ the summation formula (2.19) to obtain
the following closed form representation of the Green’s
function for a static scalar charge in our wormhole
space-time:

Gð3Þðx;x0Þ ¼ 1

4�jaj sinð��Þ
sinð�cos�1ð�
ÞÞ

R1=2
; (2.22)

where we have used the fact that

�þ icosh�1ð
Þ ¼ cos�1ð�
Þ for j
j< 1: (2.23)

A similar analysis for the case where y, y0 < 0 and where
the two points are in different regions of the space-time
yield the same closed form expression as Eq. (2.22).
Finally, restoring the variable � ¼ y=a gives

Gð3Þðx;x0Þ

¼ 1

4� sinð��Þ
sinð�cos�1ð�
ÞÞ

ð�2 þ �02 � 2��0 cos�þ a2sin2�Þ1=2 ;

(2.24)

where


 ¼ ��0 þ a2 cos�

ð�2 þ a2Þ1=2ð�02 þ a2Þ1=2 : (2.25)
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We note that this Green’s function has the correct
Hadamard singularity structure [12] in three dimensions.
We also note that the Green’s function possesses infinite
poles for certain values of the coupling constant given by

� ¼ n2

2
; n 2 Z n f0g: (2.26)

This is analogous to the infinite poles that arise in the
Green’s function for throat profile rð�Þ ¼ j�j þ a, as
shown in Ref. [6].

For minimal coupling, Eq. (2.24) is understood to mean

Gð3Þ
�¼0 ¼

1

4�2

cos�1ð�
Þ
ð�2 þ �02 � 2��0 cos�þ a2sin2�Þ1=2 ;

(2.27)

which agrees with the closed form representation given in
Ref. [5] if we take � ¼ 0.

III. SELF-FORCE AND SELF-ENERGY

There are a number of approaches one can take to
compute the self-force (see Ref. [13] for example), but
the most direct way for a static charge is by subtracting the
Detweiler-Whiting [14] parametrix that yields a finite
quantity upon taking coincidence limits. It is constructed
in such a way as to leave, upon subtraction from the
Green’s function, only the regular part of the field entirely
responsible for the self-force. This approach was adopted
in Ref. [15] to compute the self-force on a static scalar
charge in Kerr space-time. There it was shown that for a
static scalar charge with worldline x0� ¼ z�ð�Þ and four-

velocity u� ¼ ut
0
��

t0 in a general stationary space-time,

the self-force is

fself� ¼ 4�q2 lim
x!x0

�
r�

�
1

ut
0 G

ð3Þðx;x0Þ �GDWðx;x0Þ
��

;

(3.1)

where Gð3Þðx;x0Þ is the zero-frequency mode of the four-
dimensional retarded Green’s function (modulo a factor of
2�) andGDWðx; x0Þ is the Detweiler-Whiting Green’s func-
tion given by [13]

GDWðx; x0Þ ¼ 1

4�

�
�1=2ðx; xretÞ

2rret
þ�1=2ðx; xadvÞ

2radv

þ 1

2

Z �adv

�ret

Vðx; x0ð�ÞÞd�
�
; (3.2)

where � is the Van-Vleck Morrette determinant, rret is the
retarded distance between the field point x and the retarded
point x0 ¼ xret on the charge’s worldline, and radv is the
advanced distance between x and the advanced point
x0 ¼ xadv on the worldline.

In the case of minimal coupling, it was recently shown
[16] that the Detweiler-Whiting Green’s function for a
static charge in a static space-time is equivalent to the

direct part of the Hadamard Green’s function on the spatial
part of the metric up to the order required for regulariza-
tion, and equal up to all orders for ultrastatic space-times
such as the wormhole space-time under consideration. In
that case, the appropriate parametrix that must be sub-
tracted to give the correct self-force is particularly simple,

GDWðx;x0Þ ¼ 1

4�

�1=2ðx;x0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx;x0Þp ; (3.3)

where � and the world function  are calculated on the
three-dimensional metric

ds2ð3Þ ¼ d�2 þ r2ð�Þd�2: (3.4)

However, it is clear that this statement cannot be true for
arbitrary coupling since the biscalar Vðx; x0Þ appearing in
Eq. (3.2) depends on the coupling constant � while the
direct part of the three-dimensional Hadamard form (3.3)
does not; indeed it is purely geometrical.
In obtaining an expression for GDWðx; x0Þ, we will use

the standard expansions

�1=2ðx; x0Þ ¼ 1þ 1

12
Rab

;a;b þOð3=2Þ;

Vðx; x0Þ ¼ 1

2

�
�� 1

6

�
RþOð1=2Þ: (3.5)

We can use the fact that the space-time is spherically
symmetric to set � ¼ 0, in which case the Van-Vleck
Morrette expansion reduces to

�1=2ð�; �0Þ ¼ 1� a2

6ð�02 þ a2Þ2 ��
2 þOð��3Þ: (3.6)

From the expansion for Vðx; x0Þ, the integral in Eq. (3.2) is

1

2

Z �adv

�ret

Vðx; x0ð�ÞÞd� ¼ 1

4

�
�� 1

6

�
R��þOð�x2Þ; (3.7)

where �� ¼ �adv � �ret. Coordinate expansions for the
quantities rret, radv, and �� were computed for a static
charge in an arbitrary stationary space-time in Ref. [15],
which in the wormhole space-time under consideration
simplify greatly to give

rret ¼ radv ¼ 1

2
�� ¼ j��j: (3.8)

Hence the Detweiler-Whiting parametrix is

GDWð�; �0Þ ¼ 1

4�j��j �
�2a2

ð�02 þ a2Þ2 j��j þOð��2Þ;

(3.9)

where we recall that � ¼ ffiffiffiffiffiffi
2�

p
and we have used the

expression for the scalar curvature given by Eq. (1.2).
We also require an expansion for the closed form

Green’s function of Eq. (2.24). Taking the scalar particle’s
location to be �0 and the field point to be �, then for � near
�0 the Green’s function may be expanded as
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Gð3Þð�; �0Þ ¼ 1

4���
� 1

4�

� cosð��Þ
sinð��Þ

jaj
ð�02 þ a2Þ

� 1

8�

jaj�
sinð��Þ

�
2�0 cosð��Þ þ jaj� sinð��Þ

ð�02 þ a2Þ2
�
��

þOð��2Þ; (3.10)

where �� ¼ �0 � � which we assume, without loss of
generality, to be positive.

The self-energy for a charge q is proportional to the
coincidence limit of the regularized Green’s function and is
given by

Uð�0Þ ¼ 2�q2 lim
�!�0

½Gð3Þð�; �0Þ �GDWð�; �0Þ�

¼ � q2

2

� cosð��Þ
sinð��Þ

jaj
ð�02 þ a2Þ : (3.11)

For minimal coupling, � ¼ 0 (� ¼ 0), we arrive at the
result of Khusnutdinov and Bahkmatov [5] (which was
rederived by Linet [7])

Uð�0Þ ¼ � q2jaj
2�ð�02 þ a2Þ ; (3.12)

while for conformal coupling � ¼ 1=8 (� ¼ 1=2), the self-
energy vanishes, which agrees with the results of Bezerra
and Khusnutdinov [6]. The self-energy, like the Green’s
function, is also divergent for the particular values of the
coupling constant given by Eq. (2.26).

We turn now to the calculation of the self-force, which
we have defined for a static scalar charge in a stationary
space-time in Eq. (3.1). For the ultrastatic wormhole space-
time under consideration, this reduces to

fself� ¼ 4�q2 lim
�!�0

r�ðGð3Þð�; �0Þ �GDWð�; �0ÞÞ; (3.13)

with all other components vanishing due to the spherical
symmetry. Substituting in the expression for the singular
field (3.9) and the Green’s function expansion (3.10), we
obtain for the self-force

fself� ¼ q2jaj� cotð��Þ �0

ð�02 þ a2Þ2 : (3.14)

Again, we note that the self-force has an infinite number of
poles whenever the coupling constant is � ¼ n2=2, where
n 2 Z=f0g. A similar analysis [6] for throat profile rð�Þ ¼
j�j þ a also exhibits this behaviour for the self-force.

For minimal coupling, we obtain

fself� ¼ q2�0jaj
�ð�02 þ a2Þ2 ; (3.15)

which is in agreement with the electrostatic self-force
derived in Ref. [5], modulo the sign of the force since the
field for a minimally coupled static scalar in an ultrastatic
space-time is minus the electrostatic field. Hence the self-
force on a static scalar in the wormhole space-time is always
repulsive with respect to the throat whereas in the electro-
static case, it is always attractive with respect to the throat.

For the conformal coupling in three dimensions,
� ¼ 1=8, we obtain zero self-force, which is in agreement
with the result of Ref. [6]. In fact, just as there are an
infinite set of values for which the self-force diverges, there
are also an infinite set for which it vanishes,

fself� ¼ 0; for � ¼ 2nþ 1

2
, � ¼ ð2nþ 1Þ2

8
: (3.16)

That the self-force vanishes for � ¼ 1=8 for a massless
field is expected since the spatial section of the metric is
conformally flat. However, the existence of an infinite set
of values of the coupling constant for which the self-force
vanishes is a surprising result, at least to this author.
In Fig. 1, we plot the self-force for various values of the

coupling constant. The first thing to note is that the overall
sign of the self-force differs to the numerical computation
of Ref. [6]. So for the field with conformal coupling in the
range 0< �< 1=8, the self-force is everywhere repulsive
with respect to the wormhole throat, not attractive as
previously claimed. The self-force vanishes for conformal
coupling � ¼ 1=8 and then becomes attractive for values in
the range 1=8< �< 1=2. The force becomes increasingly
attractive with respect to the throat as � increases towards
� ¼ 1=2 where it becomes divergent. This cycle then con-
tinues: the force is repulsive for 1=2< �< 9=8, vanishing
at � ¼ 9=8 and attractive with respect to the throat for
9=8< �< 2 and diverges for � ¼ 2 etc.
These poles in the expression for the self-force, which

also appear in the closed form representation of the Green’s
function, can be understood in the context of quantum

FIG. 1 (color online). Plot of the radial component of the self-
force on a static scalar charge in a wormhole space-time. We
have set q ¼ 1 and a ¼ 1. The thickness of the curves increases
as the coupling increases and the continuous lines are for values
in the range � < 1=2.
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mechanical scattering theory as the energy of bound states.
In this classical context, however, the existence of such
poles suggests that for certain coupling strengths of the
scalar field to the curvature, the charge cannot remain static.

For a particular value of the coupling constant, the
direction of the self-force in either part of the space-time
is independent of the radius at which the scalar charge is
being held. For example, for 1=8< �< 1=2 the force is
always attractive with respect to the throat regardless of
where in the wormhole space-time the charge is placed,
and hence for the coupling strength in this range we may
hypothesize that the scalar charges will accumulate in
the vicinity of the throat. On the other hand, for � < 1=8,
the self-force is everywhere repulsive with respect to the
throat. The magnitude of the self-force for a static scalar is

maximized when the charge is held at � ¼ �jaj= ffiffiffi
3

p
, and

the force at this radius is

fselfmax ¼ � 3
ffiffiffi
3

p
q2� cotð��Þ
16a2

: (3.17)

IV. CONCLUSIONS

We have obtained an analytic expression for the self-
force on an arbitrarily coupled static scalar charge in a

wormhole space-timewith throat profile rð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a2

p
.

Analytic expressions have previously been obtained only
for minimally and conformally coupled scalar fields, while
the case of general coupling had been computed numeri-
cally. We find that there are infinite poles in the expression
for the self-force corresponding to the values of the cou-
pling constant where � ¼ n2=2, for n 2 Z n f0g. We also
find that there are an infinite set of values of the coupling
constant for which the self-force vanishes.
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