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In this paper, we consider the problem of test particles and test scalar fields propagating on the
background of a class of wormhole space-times. For test particles, we solve for arbitrary causal geodesics in
terms of integrals which are solved numerically. These integrals are parametrized by the radius and shape of
the wormhole throat as well as the initial conditions of the geodesic trajectory. In terms of these parameters,
we compute the conditions for the geodesic to traverse the wormhole, to be reflected by the wormhole’s
potential or to be captured on an unstable bound orbit at the wormhole’s throat. These causal geodesics are
visualized by embedding plots in Euclidean space in cylindrical coordinates. For massless test scalar fields,
we compute transmission coefficients and quasinormal modes for arbitrary coupling of the field to the
background geometry in the WKB approximation. We show that solutions of the scalar wave equation are
stable only when the coupling constant satisfies ξ < 1=2. This analysis is interesting since recent
computations of self-interactions of a static scalar field in wormhole space-times reveal some anomalous
dependence on the coupling constant such as the existence of an infinite discrete set of poles. We show that
this pathological behavior of the self-field is an artifact of computing the interaction for values of the
coupling constant that do not lie in the domain of stability.
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I. INTRODUCTION

Wormholes are topological bridges connecting distant
regions of the Universe or in the multiverse scenario the
wormhole may be a bridge between two different universes.
Interest in wormhole space-times dates back to 1916 [1],
pre-dating interest in black hole space-times. Its modern
popularity is owed primarily to the work of Morris and
Thorne [2] who investigated the idea of using so-called
“traversable wormholes” as a means for time travel, albeit
in the context of a novel pedagogical tool for teaching
General Relativity. The distinction between traversable
and nontraversable wormholes is that in the former case,
the space-time is assumed to have no horizons and the
gravitational tidal forces assumed to be bearable by a
human traveller. Morris and Thorne showed that in the
context of classical relativity, such space-times require a
stress-energy tensor that violates the null energy condition,
that is they require the existence of exotic matter, for
example ghost scalar fields or phantom energy [3–6]. As
such, wormholes were initially ruled out as objects of
astrophysical relevance. However, violations of energy
conditions is the status quo in quantum field theories and
this led to a surge of interest in wormhole solutions in
semiclassical gravity (see [7,8] for comprehensive reviews).
Moreover, Barcelò and Visser have shown [9] that there are
a number of apparently innocuous nonminimally coupled

scalar field configurations that lie within the domain of
current experimental constraints which violate the classical
energy conditions and lead to traversable wormhole sol-
utions. On the other hand, if one regards the classical
energy conditions to be fundamental, there still exists
traversable wormhole solutions in alternative theories of
gravity [10–16] and in higher dimensional theories [17–19]
that obey the energy conditions near the wormhole throat.
In fact, in Einstein-Gauss-Bonnet gravity in higher odd
dimensions, one may even obtain static wormhole space-
times that are vacuum solutions [20]. That wormhole
solutions arise in a number of different physically reason-
able higher dimensional and modified gravity configura-
tions has given new impetus to their study, where the focus
in the literature has been on their stability rather than their
existence. For example, it is known that if Einstein’s theory
is coupled to a ghost scalar field via the action

S½g;φ� ¼
Z �

1

16πG
Rþ 1

2
gμν∇μφ∇νφ

� ffiffiffiffiffiffi
−g

p
d4x; ð1:1Þ

then the theory admits static, spherically symmetric tra-
versable wormholes which are unstable [21] and may
collapse to a Schwarzschild black hole or expand indefi-
nitely [22,23]. Traversable wormholes may also be sup-
ported by less exotic sources than ghost fields, for example,
nonminimally coupled scalar fields but again these have
been shown to be linearly unstable [24]. The issue may
be circumvented by assuming that the wormhole throat is*petertaylor@astro.cornell.edu

PHYSICAL REVIEW D 90, 024057 (2014)

1550-7998=2014=90(2)=024057(17) 024057-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.024057
http://dx.doi.org/10.1103/PhysRevD.90.024057
http://dx.doi.org/10.1103/PhysRevD.90.024057
http://dx.doi.org/10.1103/PhysRevD.90.024057


supported by a phantom thin shell [25] or by adopting a
modified theory of gravity [26]. Very recently, the first stable
wormhole in general relativity without invoking phantom
thin shells has been reported [27]. Hence, although worm-
holes in GR remain physically speculative, some of the
obstacles to their viability in gravitational physics are slowly
being eroded, particularly if one takes the modified gravity
paradigms seriously.
In this paper, we wish to characterize the propagation

of test particles and scalar fields on a class of wormhole
space-times. There is a long history of similar work in the
literature and the key goal of this work is to extend in
several directions the existing catalogue. In Sec. II, we
consider causal geodesics in a class of wormhole space-
times parametrized by the size and curvature of the worm-
hole throat. The geodesics in the Ellis wormhole were solved
in terms of Elliptic integrals [28] which is a specific case of
the class of wormhole under consideration here. In general,
the solutions cannot be given in terms of known functions
but must be solved numerically. Nevertheless, the fate of a
causal geodesic, i.e., whether the geodesic is reflected,
captured on an unstable null orbit or traverses the wormhole,
can be characterized in terms of the parameters of the
wormhole and the initial conditions. The fact that there
always exists an unstable null geodesic for the class of
wormholes considered in this paper is of interest for test
scalar fields since it is well known that such orbits are related
to the existence of a quasinormal mode spectrum [29,30].
Indeed this was one of the motivations for studying geo-
desics in this class of wormhole space-times. Finally in
Sec. II, we show that by embedding the constant time,
equatorial slices of the space-time in Euclidean space in
cylindrical coordinates, a natural visualization of all causal
geodesics is immediately amenable.
In Sec. III, we turn our attention to the propagation of

scalar fields on the background geometry. Notwithstanding
the aforementioned issues of wormhole stability, one can
still consider the stability of a scalar test field propagating
on the background wormhole space-time, i.e., we ignore
the back-reaction of the scalar on the wormhole geometry.
We shall show that the stability of the solutions to the scalar
wave equation is sensitive to the coupling of the scalar
to the background geometry. Specifically, we have stable
solutions only when the coupling constant ξ satisfies the
inequality ξ < 1=2. When restricted to the stable domain of
solutions, the effective potential is positive definite with
a single peak which asymptotes to zero at both spatial
infinities. Hence, the scattering problem is analogous to the
black hole case and the methods developed for scattering off
black holes are immediately applicable. We adopt the WKB
method to fourth order to compute transmission coefficients
and quasinormal modes, extending the work of Ref. [31] to
arbitrary coupling. To lowest order in the geometric optics
limit, we retrieve the result of Ref. [31], but the next to
leading order contains a dependence on the coupling.

Finally, we reconsider the calculation of the static scalar
self-force in the Ellis wormhole space-time derived in [32].
We show that the restriction of the coupling constant to the
domain of stability removes both the pathological behavior
and the spurious vanishing of the self-force. Hence the
static self-force is a smooth function that vanishes only at
the conformal coupling value in three dimensions. The
anomalous behavior of the self-field of a static scalar in
wormholes space-times was first noted by Bezerra and
Khusnutdinov [33]. We argue that this behavior is generi-
cally an artifact of computing the self-field for values of the
coupling constant outside the domain of stability.

II. THE WORMHOLE GEOMETRY
AND GEODESICS

We begin with the Morris-Thorne ansatz for a static
wormhole metric in spherical polar coordinates

ds2 ¼ −e2ΛðrÞdt2 þ ð1 − bðrÞ=rÞ−1dr2 þ r2dΩ2; ð2:1Þ
where ΛðrÞ is the lapse function or red-shift function, bðrÞ
is the shape function which determines the throat profile
and dΩ2 is the metric on the two-sphere S2. We note that in
the ultrastatic case, ΛðrÞ ¼ 0, there is no gravitational
acceleration in this frame; i.e., a particle dropped from rest
remains at rest. In order for the space-time to be free from
horizons, we require ΛðrÞ to be everywhere finite while
asymptotic flatness implies ΛðrÞ → 0 and bðrÞ=r → 0 as
r → ∞. The profile function bðrÞ determines the shape of
the wormhole throat, which can be visualized by taking the
constant time slices in the equatorial plane of the wormhole
metric and embedding in Euclidean space in cylindrical
coordinates, where the embedding function is given by

dz
dr

¼ �
�

r
bðrÞ − 1

�
−1=2

: ð2:2Þ

The coordinate r runs from spatial infinity r ¼ ∞ down
to its minimum value rmin ¼ bðrminÞ≡ b0 which is the
location of the wormhole throat whence the tangent to the
embedding function is vertical. Requiring the throat to be
connecting two asymptotically flat regions implies the
embedding function flares out in the vicinity of the throat,
this is the so-called flaring-out condition. Mathematically
speaking, the inverse of the embedding function rðzÞ must
be concave up in the vicinity of the throat, i.e.,

d2r
dz2

¼ bðrÞ − rb0ðrÞ
2bðrÞ2 > 0 at or near the throat: ð2:3Þ

It is useful to introduce the proper radial distance, ρ, in
terms of which the line element is

ds2 ¼ −e2ΛðρÞdt2 þ dρ2 þ r2ðρÞdΩ2; ð2:4Þ
where ρ is related to r by
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ρ ¼ �
Z

r

b0

�
1 −

bðrÞ
r

�
−1=2

dr: ð2:5Þ

We note that there are two spatial infinities ρ → �∞
corresponding to r → ∞ and the throat is located at ρ ¼ 0.
The geodesic equations in the equatorial plane are

given by

_t ¼ Ee−2ΛðrÞ

_ϕ ¼ L=r2

_r2 ¼
�
1 −

bðrÞ
r

��
E2e−2ΛðrÞ −

L2

r2
þ ε

�
; ð2:6Þ

where E is the conserved energy, L the conserved momen-
tum and ε ¼ −1; 0 for timelike and null geodesics, respec-
tively. Differentiation is with respect to proper time for
timelike geodesics and an affine parameter for null geo-
desics. If we restrict ourselves to the class of ultrastatic
wormholes Λ ¼ 0, then the geodesic equations in terms of
the proper radial distance take the simple form

_t¼E; _ϕ¼L=r2ðρÞ;
�
dρ
ds

�
2

¼E2−VðL;ρÞ; ð2:7Þ

where the potential is given by

VðL; ρÞ ¼ L2

rðρÞ2 − ε; ð2:8Þ

which is everywhere positive (for L ≠ 0) and asymptotes
to zero as ρ → �∞. A generic feature of this potential is
that it possesses a global maximum at the throat, a fact
which is readily verified by

dV
dρ

����
ρ¼0

¼ 0;

d2V
dρ2

����
ρ¼0

¼ −
L2

r4

�
bðrÞ
r

− b0ðrÞ
�����

ρ¼0

< 0: ð2:9Þ

The inequality above is a result of the flaring out condition
(2.3). If we assume that rðρÞ is everywhere concave up,
then ρ ¼ 0 is the only turning point in the potential and it
delimits those geodesics coming in from spatial infinity
ρ ¼ ∞ which are reflected back to ρ ¼ ∞ from those that
pass through the wormhole throat and reach the other
spatial infinity ρ ¼ −∞, with the limiting case at the peak
of the potential corresponding to a bound orbit. This is
clearly an unstable orbit since it occurs at the maximum of
the potential. For rðρÞ not necessarily globally concave up,
we can have stable circular geodesics and potential wells
admitting oscillatory motion between the turning points
[34]. Nevertheless, regardless of what form rðρÞ takes, we
always have an unstable circular geodesic at the throat. It is
well established that the existence of an unstable null

circular geodesic is intimately connected to the existence of
a quasinormal mode spectrum (see, e.g., [29]), which we
compute in Sec. III C.
In order to give a more concrete and quantitative

analysis, wewill henceforth restrict ourselves to a particular
class of ultrastatic wormholes defined by the shape function

bðrÞ ¼ b1−q0 rq; q < 1: ð2:10Þ
The exponent q we will refer to as the “shape
exponent”.The Ellis wormhole [35] corresponds to taking
q ¼ −1 and arbitrary geodesics in this space-time were
comprehensively studied in Ref. [28]. For this particular
class of power-law shape functions, the embedding
function may be given explicitly as

zðrÞ ¼ ir2F1

�
1

2
;

1

1 − q
; 1þ 1

1 − q
;

�
r
b0

�
1−q�

− ib0
ffiffiffi
π

p Γð1þ 1
1−qÞ

Γð1
2
þ 1

1−qÞ
; ð2:11Þ

where 2F1ðα; β; γ; tÞ is the Hypergeometric function [36].
The embedding function for various values of the shape
exponent and throat radius are plotted in Figs. 1–2.
Similarly, the proper radial distance defined by Eq. (2.5)

can be obtained explicitly in terms of Hypergeometric
functions:

ρðrÞ ¼ � 2b0i
3− q

�
2F1

�
1

2
;

3− q
2ð1− qÞ ;

5− 3q
2ð1− qÞ ;

�
r
b0

�
1−q

�

×

�
r
b0

�
3−q − ffiffiffi

π
p Γð 5−3q

2ð1−qÞÞ
Γð2−q

1−qÞ

�
. ð2:12Þ

Unfortunately, an exact explicit representation for the
potential VðL; ρÞ as a function of ρ is intractable since
Eq. (2.12) cannot in general be inverted. However, the
positive and negative branch of ρðrÞ are monotonic
functions and can be numerically inverted using standard

1 2 3 4 5
0

5
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15

r

z r

q 0.99

q 0.9

q 0

q 1

q 2

FIG. 1 (color online). Plot of the embedding function zðrÞ for
various values of the shape exponent q. The throat width has been
set to b0 ¼ 1.
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techniques. Alternatively, one can obtain a Taylor expan-
sion for VðL; ρÞ about the throat and match to asymptotic
series for large proper radii. For the Taylor expansion, all
derivatives of rðρÞ evaluated at the throat can be obtained
by repeated differentiation of

dr
dρ

¼ �
�
1 −

b1−q0

r1−q

�
1=2

: ð2:13Þ

Since r (and hence VðL; ρÞ) is a symmetric function of ρ,
all odd order derivatives of VðL; ρÞ vanish at the throat, and
hence the Taylor expansion yields

VðL; ρÞ ¼
X∞
k¼0

1

2k!
Vð2kÞðL; 0Þρ2k; ð2:14Þ

where the coefficients up to eighth order are

Vð0ÞðL;0Þ ¼ L2

b20
− ε

Vð2ÞðL;0Þ ¼ L2ðq− 1Þ
2b40

Vð4ÞðL;0Þ ¼ −
L2ðq− 1Þ2

48b60
ðq− 11Þ

Vð6ÞðL;0Þ ¼ L2ðq− 1Þ3
720b80

ðq2 − 16qþ 73Þ

Vð8ÞðL;0Þ ¼ −
L2ðq− 1Þ4
161280b100

ð17q3 − 354q2þ 2613q− 7096Þ:

ð2:15Þ
The radius of convergence of this series is the distance from
the throat to the nearest singularity in the complex ρ plane
which occurs whenever r ¼ 0, which from Eq. (2.12) is
given by

jρj < 2b0
ffiffiffi
π

p
ð3 − qÞ

Γð 5−3q
2ð1−qÞÞ

Γð2−q
1−qÞ

: ð2:16Þ

If the radius of convergence is sufficiently large, we can
match to an asymptotic series for large ρ, otherwise we
can patch with other Taylor expansions with overlapping
convergence regions. A plot of this convergence radius as a
function of the shape exponent is given in Fig. 3. It is a
monotonically increasing function of the shape exponent,
where we can have an arbitrarily large radius of conver-
gence by taking q to be sufficiently close to unity whereas
the radius of convergence becomes arbitrarily small as q
becomes increasingly negative. For this reason, it is best
to obtain rðρÞ by numerically inverting (2.12); nevertheless,
for q sufficiently close to unity, the Taylor expansion
method yields very accurate plots for the potential.
We will assume that the geodesics are nonradial and

noncircular since these cases follow trivially by setting _ϕ ¼
0 and _r ¼ 0 respectively in the equation (2.7). In order to
solve the geodesic equations requires specifying initial
conditions. Following Ref. [28], we wish to characterize all
causal geodesics in terms of an initial position and direction
with respect to a local reference frame of an observer.
The natural, coordinate-induced orthonormal tetrad is

eð0Þ ¼ ∂t; eð1Þ ¼ ∂ρ;

eð2Þ ¼
1

rðρÞ ∂θ; eð3Þ ¼
1

rðρÞ sin θ ∂ϕ; ð2:17Þ

which satisfies

gμνeðaÞμeðbÞν ¼ ηðaÞðbÞ: ð2:18Þ

In the equatorial plane at some initial radius ρi, we
construct such an orthonormal tetrad, then taking α ∈
ð0; πÞ to be the angle the initial direction vector makes

0 1 2 3 4 5
0

1

2

3

4

r

z r

b0 0.1

b0 0.5

b0 1

b0 2

FIG. 2 (color online). Plot of the embedding function zðrÞ for
various values of the throat radius b0. The shape exponent has
been set to q ¼ −1, i.e., the Ellis wormhole. As the throat radius
shrinks, the handle between the upper and lower universe
becomes arbitrarily short. In the limit b0 → 0, we retrieve two
copies of Minkowski space-time.
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FIG. 3 (color online). Plot of the radius of convergence ρc as a
function of the shape exponent q. The throat radius has been set
to b0 ¼ 1.
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with the eð1Þ-axis, an initial lightlike direction (in units
where c ¼ 1) takes the form

y ¼ �eð0Þ þ cos α eð1Þ þ sin α eð3Þ; ð2:19Þ

while an initial timelike direction may be written as

y ¼ �γeð0Þ þ vγ cos α eð1Þ þ vγ sin α eð3Þ; ð2:20Þ

where v is the Euclidean norm of the three-velocity and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. The choice of sign in

these expressions is determined by whether the geodesic is
future or past-directed. It is straightforward to check that

ηðaÞðbÞyðaÞyðbÞ ¼ ε: ð2:21Þ

We can of course decompose the direction vector in the
coordinate basis and use the geodesic equations to obtain

y ¼ E∂t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VðL; ρiÞ

q
∂ρ þ

L
r2ðρiÞ

∂ϕ

¼ Eeð0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VðL; ρiÞ

q
eð1Þ þ

L
rðρiÞ

eð3Þ; ð2:22Þ

where the latter equality follows from (2.17). Comparison
with Eqs. (2.19)–(2.20) allows us to express the constants
of motion in terms of the initial position and angle, viz.,

E ¼ �1; L ¼ rðρiÞ sin α for null geodesics

E ¼ �γ; L ¼ vγrðρiÞ sin α for timelike geodesics:

ð2:23Þ

Now the radial geodesic equation can be interpreted as a
classical scattering problem with an angular momentum
potential barrier VðL; ρÞ given by Eq. (2.8). Hence a
geodesic can pass through the wormhole into the other
universe if

E2 > VðL; 0Þ ¼ L2

b20
− ε; ð2:24Þ

or written in terms of the initial position and direction,

a2 ≡ b20
r2ðρiÞsin2α

> 1: ð2:25Þ

We note that this condition is independent of whether the
geodesic is null or timelike. Similarly, for a geodesic
reflected back by the potential barrier, we have

a2 < 1: ð2:26Þ

In this case the proper radius of closest approach is given by
the turning point _ρ ¼ 0, yielding the condition

rðρminÞ ¼ rðρiÞ sin α; ð2:27Þ

which can be substituted into Eq. (2.12) to give the explicit
proper radius of closest approach,

ρmin ¼� 2b0i
3− q

�
aðq−3Þ=22F1

�
1

2
;

3− q
2ð1− qÞ ;

5− 3q
2ð1− qÞ ; a

q−1
�

−
ffiffiffi
π

p Γð 5−3q
2ð1−qÞÞ

Γð2−q
1−qÞ

�
: ð2:28Þ

The critical case a ¼ 1 has two solutions for the initial
angle,

α ¼ arcsin
b0

rðρiÞ
; α ¼ π − arcsin

b0
rðρiÞ

; ð2:29Þ

representing an outgoing and ingoing geodesic, respec-
tively. We denote the latter ingoing solution by αcrit and
hence the outgoing solution is π − αcrit (Note that this is the
opposite convention to Ref. [28]). The critical angle αcrit
delimits between those geodesics that are reflected back by
the potential and those which pass through to the other
universe, the delimiting case corresponding to an unstable
bound orbit. The three cases are illustrated in the effective
potential plots in Fig. 4.
Dividing the radial and azimuthal geodesic equations

permits us to obtain an equation for rðϕÞ,
�
dr
dϕ

�
2

¼
�
1 −

�
b0
r

�
1−q

��
a2

b20
r4 − r2

�
: ð2:30Þ

Now let us define a dimensionless inverted radius by

u ¼ b0
arðρÞ ¼

rðρiÞ
rðρÞ sin α; ð2:31Þ

which may be employed in Eq. (2.30) yielding�
du
dϕ

�
2

¼ ð1 − a1−qu1−qÞð1 − u2Þ: ð2:32Þ

Hence we have a general solution of the form

ϕðuÞ ¼ �
Z

u

sin α

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a1−qy1−qÞð1 − y2Þ

p ; ð2:33Þ

or in terms of proper radial distance,

ϕðρÞ ¼ �
Z ðrðρiÞ=rðρÞÞ sin α

sin α

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − a1−qy1−qÞð1 − y2Þ

p ;

ð2:34Þ

where the choice of sign is determined by whether the
geodesic is ingoing (dρ < 0 which implies du > 0) or
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outgoing (dρ > 0 which implies du < 0). We have further
used the fact that the initial position ui ¼ uðρiÞ ¼ sin α.
Unfortunately, this integral cannot be solved in terms of

known functions for arbitrary q, and in general must be
solved numerically. As before, we can numerically invert
Eq. (2.34) to obtain ρðϕÞ or rðϕÞ as needs be.
It is instructive to consider outgoing (α < π=2) and

ingoing ðα > π=2Þ geodesics separately, which are further
divided into those geodesics delimited by a ¼ 1.

A. Case I: 0 < α < π − αcrit

For these outgoing geodesics, we have a > 1. For
numerical purposes, we would prefer if the integrand in
Eq. (2.33) was free from singularities. So let us define
ā ¼ 1=a < 1 and make the change of variable

y ¼ ā sinw; ð2:35Þ

which gives

ϕðuÞ ¼ −1
a

Z
arcsinðauÞ

arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p ;

ð2:36Þ

where the minus sign has been chosen to reflect the fact that
the geodesic is outgoing. This angle reaches its maximum
value as ρ → ∞ (u → 0) and is given by

ϕ>
max ¼

1

a

Z
arcsinða sin αÞ

0

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p :

ð2:37Þ

B. Case II: π − αcrit ≤ α ≤ π=2

For initial angles in this range, we have a ≤ 1. Here
we make a change of variable y ¼ sinw, we arrive at the
particularly simple expression

ϕðuÞ ¼ −
Z

arcsinðuÞ

α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p ; ð2:38Þ

which asymptotes to the maximum value as ρ → ∞,

ϕ<
max ¼

Z
α

0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p : ð2:39Þ

For the critical case α ¼ π − αcrit ¼ arcsinðb0=rðρiÞÞ, we
have a ¼ 1 and u ¼ b0=rðρÞ. Hence the angle is given by

ϕþ
critðuÞ ¼ −

Z
arcsinðb0=rðρÞÞ

arcsinðb0=rðρiÞÞ

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin1−qw

p : ð2:40Þ

C. Case III: π=2 < α ≤ αcrit

For these initially ingoing geodesics, we have a ≤ 1 and
the potential barrier implies that we must have ρ ≥ ρmin
where ρmin is given by Eq. (2.28). For an ingoing geodesic,
since the initial angle is in the second quadrant of the unit
circle, we adopt the transformation

w ¼ π − arcsinðyÞ; ð2:41Þ

which is a monotonically decreasing function of w and
hence

dw ¼ −
dyffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p ¼ dy
cosw

; ð2:42Þ

where the last equality holds since cosw < 0 in the second
quadrant. Hence for the ingoing branch of the integral
representation (2.33), we arrive at

ϕðuÞ ¼ −
Z

π−arcsinðuÞ

α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p : ð2:43Þ

We also have geodesics which are initially ingoing, reach
the minimum value permitted by the potential barrier

min 44

1

2

V

E2 1

E2 2

0

1

44

1

2

V

E2 1

E2 2

0

1

44

1

2

V

E2 1

E2 2

0

1

FIG. 4 (color online). Plots of the scattering potentials for timelike (with v ¼ 0.6) and null geodesics. In these plots the geometry is
held fixed with b0 ¼ 1 and q ¼ 0 and the initial position is fixed at ρi ¼ 6. We vary the initial angle α. In the first plot α ¼ 0.35 which
implies a < 1 and hence the geodesics are reflected by the potentials. In the second plot, we have α ¼ 2.95which corresponds to a > 1
and hence the geodesic is transmitted through the wormhole throat to the lower universe. Finally, the third plot shows α ¼ αcrit for which
the geodesic is just captured on an unstable bound orbit.
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uðρminÞ ¼ 1 and are then reflected and begin to recede to
spatial infinity. For the reflected outgoing portion of
the geodesic trajectory we employ the substitution w ¼
arcsinðyÞ in the negative branch of Eq. (2.33). Putting these
together yields

ϕðuÞ ¼ −
Z

π=2

α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p

−
Z

arcsinðuÞ

π=2

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p ; ð2:44Þ

where the first term is the contribution coming from the
ingoing geodesic integrating down to the minimum proper
radius allowed by the potential barrier, while the second
integral is the contribution from the outgoing geodesic.
This is most succinctly expressed as the single integral

ϕðuÞ ¼ −
Z

arcsinðuÞ

α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p : ð2:45Þ

For these reflected geodesics, since uðρminÞ ¼ 1 at the point
of closest approach, the angle at this turning point is
given by

ϕturning ¼ −
Z

π=2

α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p ; ð2:46Þ

while the maximum value as the geodesic recedes to
infinity is given by

ϕref
max ¼

Z
α

0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a1−qsin1−qw

p : ð2:47Þ

For the critical ingoing geodesics, we have α ¼ αcrit and
a ¼ 1, which describes those unstable bound geodesics
captured on the throat of the wormhole. Such geodesics are
given by

ϕ−
critðuÞ ¼ −

Z
π−arcsinðb0=rðρÞÞ

π−arcsinðb0=rðρiÞÞ

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin1−qw

p : ð2:48Þ

D. Case IV: α > αcrit

For the initial direction in this region, we have a > 1.
For the ingoing geodesic in the upper universe (ρ > 0),
analogous to the previous case, we employ the substitution

w ¼ π − arcsinðayÞ ⇒ dw ¼ a
cosw

dy; ð2:49Þ

in Eq. (2.33), where again we note that cosw < 0 in the
second quadrant. Hence for geodesics that remain in the
same universe, the integral becomes

ϕðuÞ ¼ 1

a

Z
π−arcsinðauÞ

π−arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p :

ð2:50Þ
For geodesics that traverse the wormhole, we make the
change of variables w ¼ arcsinðyÞ for the outgoing trans-
mitted geodesic in the lower universe. We obtain

ϕðuÞ ¼ 1

a

Z
π=2

π−arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p
−
1

a

Z
arcsinðauÞ

π=2

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p ;

ð2:51Þ
or equivalently

ϕðuÞ ¼ 1

a

Z
π=2

arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p
−
1

a

Z
arcsinðauÞ

π=2

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p :

ð2:52Þ

The throat crossing occurs at uðρ ¼ 0Þ ¼ 1=a, whence the
angle is given by

ϕthroat ¼
1

a

Z
π=2

arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p :

ð2:53Þ

Moreover, these geodesics that traverse the wormhole
asymptote to their maximum value as ρ → −∞,

ϕtrav
max ¼

1

a

Z
π=2

arcsinða sin αÞ

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p
þ 1

a

Z
π=2

0

coswdwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − sin1−qwÞð1 − ā2sin2wÞ

p :

ð2:54Þ

These solutions to the geodesic equations have been
plotted in ðau;ϕÞ coordinates for various shape exponents
in Fig. 5.
Now the most natural way to visualize the actual

geodesic trajectories in the wormhole space-time is by
an embedding in Euclidean space in cylindrical coordinates.
For the wormhole space-time itself, we simply rotate the
embedding function zðrÞ about the vertical axis to give us a
natural representation of a static equatorial slice of the
wormhole geometry. In order to plot the geodesics propa-
gating on this background, we require a parametric repre-
sentation of the solutions of the geodesic equations in
cylindrical coordinates. To achieve this, we can numerically
invert the solutions above for ϕðuÞ in order to obtain uðϕÞ
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and hence rðϕÞ ¼ b0=ðauðϕÞÞ. For example, if we take an initially ingoing geodesic with initial angle π=2 < α < αcrit, then
the geodesic is reflected and recedes to infinity. We can then invert Eqs. (2.43) and (2.44) by

uðϕÞ ¼

8>>><
>>>:

�
X∶ −

R
π−arcsinðXÞ
α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a1−qsin1−qw

p ¼ ϕ

�
0 < ϕ < ϕturning;�

X∶ −
R
π=2
α

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a1−qsin1−qw

p −
R arcsinðXÞ
π=2

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−a1−qsin1−qw

p ¼ ϕ

�
ϕturning < ϕ < ϕref

max;

ð2:55Þ

which gives the ingoing and reflected branch of the curve,
respectively. Finally to plot this geodesic in the embed-
ding space, each point along the curve is assigned the
parametric representation ðrðϕÞ cosϕ; rðϕÞ sinϕ; zðrðϕÞÞÞ
with rðϕÞ ¼ b0=ðauðϕÞÞ, where in the particular case of
the reflected geodesic, uðϕÞ is given by Eq. (2.55) and the
parameter ϕ runs over the interval ½0;ϕref

maxÞ. Analogous
statements can be made for the other types of geodesics.
The result of these parametric plots are shown in Fig. 6 for
a range of different shape exponents and different initial
conditions.

III. SCALAR FIELD PROPAGATION

We now consider a massless scalar field φðxÞ propagat-
ing on the background space-time (2.1) with ΛðrÞ ¼ 0
where the scalar is nonminimally coupled to the gravita-
tional field with coupling strength ξ. Hence φðxÞ satisfies
the wave equation

ð□ − ξRÞφðxÞ ¼ 0; ð3:1Þ

where R is the Ricci curvature scalar, which for arbitrary
shape function bðrÞ is given by

R ¼ b0ðrÞ
r2

−
bðrÞ
r3

: ð3:2Þ

Written explicitly in ðt; r; θ;ϕÞ coordinates, the wave
equation is

�
−

∂2

∂t2 þ
1

r2

�
1 −

bðrÞ
r

�
1=2 ∂

∂r
�
r2
�
1 −

bðrÞ
r

�
1=2 ∂

∂r
�

þ 1

r2 sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
þ 1

r2sin2θ
∂2

∂ϕ2

− ξ

�
b0ðrÞ
r2

−
bðrÞ
r3

��
φðxÞ ¼ 0: ð3:3Þ

Solutions can be obtained by a separation of variables and
are given by

φðxÞ ¼ e−iωteimϕPm
l ðcos θÞχωlðrÞ=r; ð3:4Þ

where Pm
l ðcos θÞ are the associated Legendre functions,

and χωlðrÞ satisfies the ordinary differential equation

��
1 −

bðrÞ
r

�
1=2 d

dr

��
1 −

bðrÞ
r

�
1=2 d

dr

�
þ ω2 −

lðlþ 1Þ
r2

−
�
ξ −

1

2

��
b0ðrÞ
r2

−
bðrÞ
r3

��
χωlðrÞ ¼ 0: ð3:5Þ

Rewriting in terms of proper radial distance ρ yields

�
d2

dρ2
þ ω2 − Vlðξ; ρÞ

�
χωlðρÞ ¼ 0; ð3:6Þ

where the potential is given by

Vlðξ; ρÞ ¼
lðlþ 1Þ

r2
þ
�
ξ −

1

2

��
b0ðrÞ
r2

−
bðrÞ
r3

�
: ð3:7Þ

This potential can be very different from those that arise in
black hole space-times which are everywhere positive
with a single peak. To see this, we note that the flaring-
out condition (2.3) implies that the second term will be
negative for ξ > 1=2 and positive for ξ < 1=2 in the
vicinity of the throat. This can give rise to a rich potential
structure depending on the mode, the specific shape
function and the coupling strength. For example, we can
have potentials with multiple turning points or negative
definite potentials. The latter case is typically indicative of
an instability which we investigate further in the following
subsection.

A. Stability

If we turn our attention back to the particular class
of wormholes defined by the shape functions given in
Eq. (2.10), then the Ricci scalar is negative definite and is
given by

R ¼ ðq − 1Þ
r2

�
b0
r

�
1−q

: ð3:8Þ
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Hence the potential in the radial wave equation is positive
definite whenever ξ < 1=2. In this case the operator,

A ¼ −
d2

dρ2
þ V; ð3:9Þ

is a positive self-adjoint operator on the Hilbert space of
square integrable functions of ρ. Wald [37] has proven
that for such operators, given some well-behaved initial
data, solutions to the wave equation remain bounded for

all time and hence the scalar field φ is stable for

ξ < 1=2. However, for ξ > 1=2 this operator is not
positive definite and Wald’s argument breaks down.
In fact, the l ¼ 0 mode gives rise to a negative definite
potential and hence this mode is always unstable. It is
actually sufficient to consider only the l ¼ 0 mode since
this mode places the strongest constraint on ξ for stable
solutions, i.e., the smallest value of ξ for which there
exists an unstable mode occurs for l ¼ 0. To see
explicitly that this mode is unstable for ξ > 1=2, we
impose quasinormal mode boundary conditions of pure
outgoing radiation at both spatial infinities and adopt the

FIG. 5 (color online). Plots of the geodesics in ðau;ϕÞ coordinate space for various values of the shape exponent q. In these plots the
throat width has been set to b0 ¼ 2 and the initial position is fixed at ρi ¼ 6. In each graph, several geodesics are plotted with different
initial angle α, which determines whether the geodesic recedes to spatial infinity, traverses the wormhole or is initially ingoing and then
is reflected to spatial infinity. The thick curve is the geodesic with initial angle α ¼ π=2 which separates geodesics which are initially
ingoing from those that are initially outgoing. The left shaded region in each plot is the space of initially outgoing geodesics which
simply recede to spatial infinity. The initially ingoing geodesics are further divided into those that are reflected back to spatial infinity
(the unshaded area) and those which traverse the wormhole (the right shaded region). The only geodesic which does not end up at spatial
infinity (ρ�∞) is the unstable bound orbit at ρ ¼ 0 which is shown as ϕ−

crit in the plots above. In terms of the variation with the shape
exponent q, it is clear from the plots that for fixed throat radius and initial position, the space of initially ingoing geodesics and the space
of traversing geodesics decreases as q decreases, while the space of reflected geodesics is increasing as q decreases. In other words, if
one emitted a light ray from a certain position ρi in a random direction in a wormhole space-time with throat radius b0 and shape
exponent q, then the chances of that light ray traversing the wormhole would be less than if the light ray had been emitted in a wormhole
with a more positive shape exponent, assuming b0 and ρi the same.
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WKB approximation to compute the l ¼ 0 quasinormal
mode frequencies [38], we obtain

ω2 ¼ αþ iβ; ð3:10Þ

where

α¼V0þ
ðnþ1

2
Þffiffiffiffiffiffiffiffiffiffi

2V0
00p �

2V0
00−

1

2304

�
Vð4Þ
0

V0
00

�
2

×

�
67þ68

�
nþ1

2

�
2
�
−

1

288

�
Vð6Þ
0

V0
00

��
5þ4

�
nþ1

2

�
2
��

β¼−
1

32

�
Vð4Þ
0

V0
00

��
1þ4

�
nþ1

2

�
2
�

ð3:11Þ

and subscript zero denotes evaluation at the wormhole
throat ρ ¼ 0. Hence, for ReðωÞ > 0, we have

ReðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
2

s

ImðωÞ ¼ β

2ReðωÞ ¼
ð−1þ qÞð2q − 7Þ

64ReðωÞb20

�
1þ 4

�
nþ 1

2

�
2
�
:

ð3:12Þ

One might object that the WKB method is effectively a
large l expansion in inverse powers of L ¼ lþ 1

2
and

hence we wouldn’t expect the approximation to be valid
for the lowest lying mode. However, higher-order WKB
approximations yield surprisingly good accuracy even
for the low-lying modes [39] and is certainly able to
provide a good order of magnitude estimate for the l ¼
0 mode. This is sufficient for the present discussion of
stability since we are only interested in the sign of the
imaginary part which from Eq. (3.12) is evidently

i 6 crit 156.666 b0 2

i 158 max 95.0213 q 0
i 6 crit 156.666 b0 2

i 151 max 95.0213 q 0
i 6 b0 2

i crit 156.666 q 0

i 5 crit 161.21 b0 2

i 160 max 77.4357 q 3
i 5 crit 161.21 b0 2

i 163 max 77.4357 q 3
i 5 b0 2

i crit 161.21 q 3

i 6 crit 161.565 b0 2

i 175 max 97.7277 q 1
i 6 crit 161.565 b0 2

i 161.5 max 97.7277 q 1
i 6 b0 2

i crit 161.565 q 1

FIG. 6 (color online). Embedding plots of the geodesic trajectories for various shape exponents and various initial conditions. For each
wormhole geometry, we give an example of a reflected, a trapped and a transmitted geodesic.
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positive. Hence the scalar field grows exponentially with
time and is therefore unstable. Henceforth, we restrict
the range of the coupling constant to ξ < 1=2, for which
solutions of the wave equation remain bounded for
all time.

B. Computation of reflection and
transmission coefficients

For ξ < 1=2, the potential is everywhere positive definite
and asymptotes to zero at both spatial infinities. Hence we
have a typical wave scattering problem analogous to black
hole scattering. We imagine an ingoing (moving towards
the wormhole throat) wave from spatial infinity scattering
off the potential barrier, some portion of the radiation
is reflected back to spatial infinity and some portion is
transmitted through the wormhole throat and reaches
the other spatial infinity. This is represented in the
Penrose diagram in Fig. 7. Hence the appropriate boundary
conditions are

χωl ∼ e−iωρ þ Aref
ωl e

iωρ ρ → ∞;

χωl ∼ Atran
ωl e

−iωρ ρ → −∞; ð3:13Þ

where Aref=tran
ωl are the amplitudes of the reflected and

transmitted waves, respectively, which are related to the
reflection and transmission coefficients by

Tωl ≡ jAtran
ωl j2

Rωl ≡ jAref
ωl j2 ¼ 1 − Tωl: ð3:14Þ

To compute the reflection and transmission coefficients to
high accuracy, we adopt the fourth order WKB approxi-
mation derived by Will and Guinn [40] which is based on
the third order WKB approximation developed by Iyer and
Will [38] in order to compute black hole normal modes.

The method involves simultaneously matching the asymp-
totic WKB series to a Taylor expansion about the peak of
the potential and hence is valid for frequencies ω2 ≈ V0.
This has been extended to higher orders and applied to the
cases of minimally coupled scalar and electromagnetic
fields [31] in the same class of wormholes under consid-
eration here. The WKB method results in a transmission
coefficient

Tωl ¼ ð1þ e2πiSÞ−1; ð3:15Þ

where S is a pure imaginary factor defined implicitly by

S ¼ i
ðω2 − V0Þffiffiffiffiffiffiffiffiffiffiffiffiffi

−2V0
00p − Λð2Þ − Λð3Þ − Λð4Þ: ð3:16Þ

The ΛðiÞ are higher order WKB corrections which them-
selves contain a dependence on S up to quadratic order.
This is not an exact equation to be solved as a polynomial in
S, but rather the ΛðiÞ are progressively smaller corrections
and hence we solve for S by iteration. For notational
convenience, we introduce the variables

k ¼ −2V 00
0; q20 ¼

ω2 − V0

V 00
0

> 0; vðnÞ ¼
VðnÞ
0

V00
0

; ð3:17Þ

where subscript zero denotes evaluation at the wormhole
throat ρ ¼ 0 which coincides with the maximum of the
potential. As in the geodesic equation, the potential is
symmetric about the throat and hence vðnÞ ≡ 0 for all odd
orders. The WKB corrections are explicitly given by

Λð2Þ ¼ i

8
ffiffiffi
k

p vð4Þ

�
1

4
þ S2

�

Λð3Þ ¼ S
k

�
67

2304
v2ð4Þ −

5

288
vð6Þ

�
þ S3

k

�
17

576
v2ð4Þ −

1

72
vð6Þ

�

Λð4Þ ¼ −
1

k3=2

�
57

16384
v3ð4Þ −

7

2048
vð4Þvð6Þ þ

1

2048
vð8Þ

�

−
S2

k3=2

�
569

18432
v3ð4Þ −

59

2304
vð4Þvð6Þ þ

7

2304
vð8Þ

�

−
S4

k3=2

�
125

9216
v3ð4Þ −

11

1152
vð4Þvð6Þ þ

1

1152
vð8Þ

�
:

ð3:18Þ

Repeated substitution of S into these expressions and only
retaining terms to the required order gives the following
solution for S:

FIG. 7. Penrose diagram for a wormhole connecting two
asymptotically flat universes. The diagram shows incoming
radiation from spatial infinity ρ ¼ ∞ being partially reflected
back to infinity and partly transmitted through the wormhole
throat to reach the other spatial infinity ρ ¼ −∞.
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S ¼ −ik1=2
�
1

2
q20 −

1

32
vð4Þq40 þ

�
35

4608
v2ð4Þ −

1

576
vð6Þ

�
q60

þ
�
−

385

147456
v3ð4Þ þ

7

6144
vð4Þvð6Þ −

1

18432
vð8Þ

�
q80

�

− ik−1=2
�
1

32
vð4Þ −

�
85

4608
v2ð4Þ −

5

576
vð6Þ

�
q20

−
�
−

875

73728
v3ð4Þ þ

77

9216
vð4Þvð6Þ −

7

9216
vð8Þ

�
q40

�

− ik−3=2
�
−

665

147456
v3ð4Þ þ

73

18432
vð4Þvð6Þ −

1

2048
vð8Þ

�
:

ð3:19Þ

We have plotted various transmission coefficients for
different values of q and ξ in Figs. 8–9. We note a few
key features of these plots. First, as noted in Ref. [31], we
see from Fig. 8 that the transmission coefficients approach
the step function θðω2b20 − lðlþ 1ÞÞ as q → 1. Even away
from this limit, it is clear that the transmission coefficient is
nontrivial only in a small region about ω ≈ l. For fixed ξ,
the effect of increasing l results in a simple linear shift in
the transmission coefficient that is only weakly dependent
on the shape function q. We can see from the graphs also
that for fixed ξ and l, each graph for various q approx-
imately passes through a common point, and this point
corresponds to the reflection coefficient at the peak of the
potential ω2 ¼ V. In the large l limit, the common point is
exactly the frequency at the peak of the potential and the
reflection and transmission coefficients are equal, i.e., half
the amplitude is transmitted and half reflected. To see this
explicitly, we note that at the peak of the potential q20 ¼ 0
and hence only the term proportional to k−3=2 survives in
Eq. (3.19). It is straightforward to show that this term
vanishes in the large l limit and hence Tωl ¼ Rωl ¼ 1=2.
Turning now to Fig. 9, we see that for fixed l and q, a

change in the coupling strength ξ induces a shift in the
graph of the transmission coefficient, and hence the graphs
do not cross, i.e., the transmission coefficient is a slowly
monotonically increasing function of the scalar coupling.
On the other hand, we see from the coalescing of the graphs

that the dependence on the coupling is suppressed by larger
lmodes. This is not surprising of course, since in the large l
geometric optics limit, the terms that are independent of the
principal part of the wave equation are subdominant, or
stated another way, the behavior of the field on very small
length-scales is dominated by the terms in the wave
equation that involve second-order derivatives.

C. Quasinormal modes

The quasinormal modes (QNMs) of a scalar field on
a wormhole space-time are the complex frequencies cor-
responding to pure outgoing radiation at both spatial
infinities, where the real part of the mode determines the
oscillation frequency and the imaginary part determines the
damping. The WKB method was adopted in Ref. [41] to
compute QNMs for minimal coupling for the q ¼ −1 case
and extended to arbitrary q and higher-orders in the WKB
expansion in Ref. [31]. Here we extend these results to
include nonminimal coupling. Again we adopt the fourth-
order WKB method [38] which gives the square of the
quasinormal mode frequency

ω2 ¼
�
V0 þ

1

8
vð4Þ

�
1

4
þ
�
nþ 1

2

�
2
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ð3:20Þ

We have tabulated some values for the first few l-modes
with q ¼ −1 for various values of the coupling constant in
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FIG. 8 (color online). Plot of transmission coefficients for various shape exponents for l ¼ 2; 3; 10. The coupling constant has been set
to the conformal value ξ ¼ 1=6 and the throat radius is set to unity.
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Table I. The first thing to note from these values is that the
imaginary part is always negative which rules out any
exponentially growing modes as expected since we have
limited ourselves to the stable domain ξ < 1=2. In the large
l limit, we find

ReðωÞ¼ 1

b0

�
lþ1

2

�
−

1

128b0ðlþ1
2
Þ
�
16þð1−qÞð64ξ−22Þ

þð1−qÞ2þ4

�
nþ1

2

�
2

ð1−qÞð3−qÞ
�
þOðl−3Þ;

ImðωÞ¼−
ðnþ1

2
Þ ffiffiffiffiffiffiffiffiffiffi

1−q
pffiffiffi
2

p
b0

�
1−

ð1−qÞ
6144b0ðlþ1

2
Þ2ð380

þ12ð1−qÞð128ξ−43Þþ31ð1−qÞ2

þ4

�
nþ1

2

�
2

ð5ð1−qÞ2−12ð1−qÞ−44ÞÞ
�
þOðl−3Þ:

ð3:21Þ

To lowest order, we retrieve the result of Ref. [31] for
minimal coupling but to next-to-leading order we have a
coupling dependence. As in the case of the transmission

coefficients we see that the quasinormal mode dependence
on the coupling constant is suppressed at large l but
interestingly we also see that it is suppressed in the limit
as q → 1. The latter limit further suggests the existence of
long-lived modes since the large l approximation of the
damping can be made arbitrarily small by taking q
sufficiently close to unity.
A simple alternative approximation may be obtained

by fitting the inverted potential to a potential whose bound
states are known exactly, for example, the Pöschl-Teller
potential. This technique was developed by Ferrari and
Mashhoon in order to estimate the quasinormal modes of
black holes [29,42]. For Schwarzschild black holes, it gives
better than a few percent accuracy compared with accurate
numerical computations. If we denote

λ2 ¼ lðlþ 1Þ; μ2 ¼ 1

2
− ξ; ð3:22Þ

then our potential may be written as

V ¼ λ2

r2
þ μ2ð1 − qÞ

r2

�
b0
r

�
1−q

: ð3:23Þ
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FIG. 9 (color online). Plot of transmission coefficients for various values of the coupling constant for l ¼ 1; 3; 10. The shape exponent
is q ¼ 0 and the throat radius is set to unity.

TABLE I. We tabulate the quasinormal modes for mode numbers l ¼ 1 to l ¼ 4 for various values of the coupling constant in the Ellis
(q ¼ −1) wormhole. The throat radius has been set to unity.

ξ ¼ 0 ξ ¼ 1
8

ξ ¼ 1
6

ξ ¼ 31
64

l ¼ 1 n ¼ 0 1.54470 − 0.56885i 1.46687 − 0.55894i 1.44057 − 0.55550i 1.241469 − 0.520920i
n ¼ 1 1.25818 − 1.80846i 1.17398 − 1.78376i 1.14745 − 1.77481i 1.00524 − 1.66915i

l ¼ 2 n ¼ 0 2.53614 − 0.52511i 2.48862 − 0.51792i 2.47267 − 0.51539i 2.34961 − 0.49322i
n ¼ 1 2.32911 − 1.62589i 2.28098 − 1.60558i 2.26509 − 1.59840i 2.14771 − 1.53321i
n ¼ 2 1.94921 − 2.78714i 1.90192 − 2.75542i 1.88693 − 2.74412i 1.78585 − 2.63785i

l ¼ 3 n ¼ 0 3.52966 − 0.51194i 3.49514 − 0.50760i 3.48358 − 0.50611i 3.39459 − 0.49393i
n ¼ 1 3.37893 − 1.56045i 3.34463 − 1.54754i 3.33321 − 1.54309i 3.24666 − 1.50640i
n ¼ 2 3.09518 − 2.65077i 3.06160 − 2.62965i 3.05056 − 2.62235i 2.96916 − 2.56123i
n ¼ 3 2.67257 − 3.77252i 2.64096 − 3.74384i 2.63078 − 3.73387i 2.55867 − 3.64885i

l ¼ 4 n ¼ 0 4.52468 − 0.50680i 4.49754 − 0.50400i 4.48846 − 0.50305i 4.41878 − 0.49550i
n ¼ 1 4.40830 − 1.53414i 4.38144 − 1.52573i 4.37248 − 1.52287i 4.30414 − 1.50008i
n ¼ 2 4.18431 − 2.58875i 4.15802 − 2.57474i 4.14930 − 2.56997i 4.08360 − 2.53175i
n ¼ 3 3.85419 − 3.66838i 3.82892 − 3.64893i 3.82060 − 3.64229i 3.75906 − 3.58866i
n ¼ 4 3.40931 − 4.77191i 3.38586 − 4.74728i 3.37822 − 4.73884i 3.32289 − 4.66993i
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This potential remains invariant under the transformations

ρ → −iρ; λ → −iλ; b0 → −ib0; μ → −iμ;
ð3:24Þ

whence the wave equation (3.6) transforms to a bound-state
problem with the inverted potential subject to vanishing
boundary conditions at both spatial infinities.
A good approximation to this potential is given by the

Pöschl-Teller potential (see Fig. 10)

V ¼ V0

cosh2ðαρÞ ; ð3:25Þ

with

V0 ¼
λ2 þ μ2ð1 − qÞ

b20
;

α ¼ 1

2b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − qÞð2λ2 þ μ2ðq − 1Þðq − 3ÞÞ

λ2 þ μ2ð1 − qÞ

s
: ð3:26Þ

The bound states of this potential are known [43] to be

ω ¼ −α
�
nþ 1

2

�
þ
�
1

4
α2 þ V0

�
1=2

; ð3:27Þ

and hence analytically continuing back yields the following
approximation for the quasinormal modes

ω¼
�
lðlþ1Þþð1
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−ξÞð1−qÞ

b20

−
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−ξÞðq−1Þðq−3ÞÞ
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2
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�
1=2

: ð3:28Þ

This approximation fails to capture the overtone depend-
ence of the oscillation frequency as does the analogous
Schwarzschild approximation, but in the large l limit gives
the same leading order behavior as theWKB approximation.
We note that this procedure is straightforward to adapt to

compute the modes corresponding to a negative definite
potential with a single minimum which requires ξ > 1=2.
In this case, we require a set of transformations that reverse
the sign of the potential, the appropriate choice is

ρ → −iρ; b0 → −ib0: ð3:29Þ

As before, this reduces the problem to finding the bound
states of a negative definite potential subject to vanishing
boundary conditions at both spatial infinities. Following
the same procedure above, we obtain after analytically
continuing back

ω ¼ iα

�
nþ 1

2

�
þ
�
−
1

4
α2 − V0

�
1=2

; ð3:30Þ

where α and V0 are defined in Eq. (3.26) with V0 < 0 in
this case. It is clear that the ImðωÞ > 0 and we have an
unstable mode. This supports the analysis in Sec. III A
where we showed, using the WKB approximation, that there
always exists an unstable mode for ξ > 1=2. Moreover, the
fit of the wormhole potential to the Pöschl-Teller potential is
good even for the lowest lying modes (see Fig. 10) and we
expect the approximation to be reasonably accurate, certainly
accurate enough to determine the sign of the imaginary part.

D. Static Self-Force in the Ellis Wormhole

One interesting application of massless scalar fields
propagating on wormhole background space-times is in
the context of the self interaction of a pointlike scalar
particle of charge Q and bare mass m0 with its own scalar
potential φðxÞ. We assume that the mass of the particle is
sufficiently small as to not perturb the wormhole space-
time and hence we consider the background geometry
fixed. If the scalar charge moves on a world-line γ
described by zμðτÞ where τ is proper time, then the action
of this system is [44]

S ¼ Sfield þ Sparticle þ Sint; ð3:31Þ

where

Sfield ¼ −
1

8π

Z
ðgμν∇μφ∇νφþ ξRφ2Þ ffiffiffiffiffiffi

−g
p

d4x;

Sparticle ¼ −m0

Z
γ
dτ;

Sint ¼ Q
Z
γ
φðzðτÞÞdτ: ð3:32Þ
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FIG. 10 (color online). Plot of the wormhole potential (Red)
and the Pöschl-Teller (Green) potential for the modes l ¼ 0 and
l ¼ 1. These plots are for the conformally coupled (ξ ¼ 1=6)
scalar in the Ellis (q ¼ –1) wormhole background. The throat
radius has been set to unity.
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Stationarity of the action under variations of the field δφ
yields

ð□ − ξRÞφðxÞ ¼ −
4πQffiffiffiffiffiffi−gp

Z
γ
δ4ðx − zðτÞÞdτ: ð3:33Þ

From the delta distribution source it is evident that the self-
force, which is the gradient of the field evaluated at the
location of the particle, is divergent and requires regulari-
zation. Regularization schemes typically involve subtracting
a judiciously chosen parametrix from the gradient of the
field before taking the limit as the field point approaches
the world-line. The regularized field satisfies the homo-
geneous equation (3.1) corresponding to a massless scalar
test field propagating on a fixed background which we have
considered in detail in the previous sections.
Let us consider a particularly simple system consisting of

a static scalar charge in the Ellis wormhole (q ¼ −1) space-
time with positive scalar coupling. The self-force has only a
radial component which can be computed analytically [32]
and is found to be

f ¼ Q2b0
ffiffiffiffiffi
2ξ

p
cotð

ffiffiffiffiffi
2ξ

p
πÞ ρ

ðρ2 þ b20Þ2
; ð3:34Þ

where Q is the scalar charge and ρ is the proper radial
distance and ξ ≥ 0. The self-force exhibits some peculiar
behavior depending on the value of the coupling constant.
In particular, it is evidently singular whenever

ξ ¼ ðnþ 1Þ2
2

; n ∈ Z; ð3:35Þ

and it vanishes whenever

ξ ¼ ð2nþ 1Þ2
8

; n ∈ Z: ð3:36Þ

However, we expect the self force to be a smooth function
of the coupling since the wave equation is smooth in the
coupling strength. On the other hand, the meaning of the
spurious zeros of the self-force has remained unexplained,
with the exception of the ξ ¼ 1=8 case for which we expect
the static self-force to vanish since this is the value of
conformal coupling in three dimensions and the static
scalar charge satisfies a three-dimensional wave equation
on a conformally flat space. (To see that the constant time
slices of the Ellis wormhole are conformally spatially flat,
make the coordinate transformation η ¼ ρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ a2

p
.)

Since the potential generated by the scalar charge
satisfies the wave equation (3.1), the stability analysis of
Sec. III A applies. Hence, we see that both the pathological
and anomalous vanishing of the self-force lie outside the
domain of stable solutions to this wave equation. If we
restrict ξ to the stable region ξ < 1=2, then the self-force is
a smooth function of the coupling and vanishes only at the

three-dimensional conformal coupling value, as desired.
Moreover, there is no lower bound on ξ and we can
analytically continue Eq. (3.34) for negative values of the
coupling constant yielding

f ¼ Q2b0
ffiffiffiffiffiffiffiffi
−2ξ

p
cothð

ffiffiffiffiffiffiffiffi
−2ξ

p
πÞ ρ

ðρ2 þ b20Þ2
; ð3:37Þ

where we note the presence now of the hyperbolic
cotangent. Combining Eqs. (3.34) and (3.37), it is clear
that the self-force is a decreasing function of ξ over
the entire domain of stability. The force is attractive with
respect to the throat in the narrow region 1=8 < ξ < 1=2
and repulsive for all other values of the coupling ξ < 1=8
(see Fig. 11). From Fig. 12, we see that, as a function of ξ,
the magnitude of the force is slowly increasing as ξ
becomes more negative except on the domain of attraction
1=8 < ξ < 1=2 where it increases rapidly.
Finally, we note that this anomalous coupling dependence

of the static self-force in wormhole space-times was first
realized by Bezerra and Khusnutdinov [33] who considered
a class of wormhole space-times which included the Ellis
wormhole considered above. Analogous stability statements
hold for the other wormholes that were considered in
their paper and we claim that the self-force on a static scalar
charge will not possess any poles within the domain of
stability of massless scalar test fields on the background
wormhole geometry.
To illustrate this point, let us consider a particularly neat

example where both the quasinormal mode spectrum and
the static self-force can be computed analytically, viz., a
wormhole with an infinite short throat where the throat
profile is given by

rðρÞ ¼ jρj þ b0; ð3:38Þ
where b0 is the throat radius. It was shown in Ref. [33] that
the static scalar self-force had poles for ξ ¼ ðnþ 1Þ=4.
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FIG. 11 (color online). Plots of the static self-force in the Ellis
wormhole space-time for various values of the coupling constant.
The plot is in units where b0 and the scalar charge Q have been
set to unity.
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Since this is a particularly simple space-time (modulo the
delta distribution curvature singularity at ρ ¼ 0), the mode
functions in both the upper and lower regions are exactly
soluble in terms of spherical Bessel functions. In order
to compute the quasinormal mode spectrum, one imposes
purely outgoing radiation at both spatial infinities, i.e.,
χωl ∼ e�iωρ as ρ → �∞. This condition results in the exact
equation for the quasinormal modes

ðlþ 1 − 4ξÞHð1Þ
lþ1=2ðωb0Þ − ωb0H

ð1Þ
l−1=2ðωb0Þ ¼ 0; ð3:39Þ

where Hð1Þ
ν ðzÞ is the Hankel function of the first kind. The

quasinormal mode spectrum of this particular wormhole is
peculiar in that there are a finite number of frequencies for
each mode. This is in contrast to black holes and smooth
wormhole space-times where there are an infinite set of
frequencies for each l-mode. In fact it is straightforward to
show that there are lþ 1 frequencies for each lmode. Since
the Hankel functions of half-integer order can be written
explicitly as a finite sum (see [36] for example), we can
recast Eq. (3.39) as

ðlþ 1 − 4ξÞ
Xl

k¼0

ik−l−1
ck;l

ðb0ωÞkþ1
−
Xl−1
k¼0

ik−l
ck;l−1
ðb0ωÞk

¼ 0;

ð3:40Þ

where

ck;l ¼
� ðlþkÞ!

2kk!ðl−kÞ! k ¼ 0; 1; 2;…; l
0 k ¼ lþ 1; lþ 2;…:

This amounts to solving a polynomial of degree lþ 1 and
hence there are lþ 1 solutions.
Again in order to constrain ξ so that solutions of the

wave equation remain bounded for all time, we need only
consider the l ¼ 0 mode, for which there is only one pure
imaginary frequency

ω ¼ i
b0

ð4ξ − 1Þ; ð3:41Þ

which corresponds to pure exponential damping for
ξ < 1=4 and to exponential growth for ξ > 1=4. Hence,
as in the case of the Ellis wormhole, the lowest lying pole
of the static self-force coincides with the boundary of
stability of the solutions to the wave equation. Restricting
to ξ < 1=4 cures the pathological behavior of the static
self-force.

IV. CONCLUSIONS

In this paper, we have solved the causal geodesic
equations in a class of ultrastatic wormhole space-times
parametrized by the size and curvature of the wormhole
throat, the latter being described by the so-called shape
exponent. In terms of these geometric parameters and initial
conditions for the position and direction of the geodesic, we
have characterized the fate of the geodesic, i.e., whether it is
reflected, trapped on an unstable orbit on the wormhole
throat or propagates through the wormhole to the other
universe. We found that the space of initial directions
that traverse the wormhole decreases with decreasing
shape exponent; i.e., as the magnitude of the curvature
of the throat increases, so too does the angular momentum
potential barrier and hence reflection of the geodesic
becomes increasingly favorable. We have described how
to visualize these geodesics in an embedding space and
have given a sample of embedding plots for various
wormhole parameters and initial conditions.
In the second part of this paper, we studied test scalar

fields arbitrarily coupled to a class of background worm-
hole space-times. We have shown that the wave equation
for massless scalar test fields admits stable solutions only
for the coupling constant in the range ξ < 1=2. Restricted
to this domain of stability, we computed transmission
coefficients and quasinormal modes using the fourth-order
WKB method. In particular, we focused on the dependence
of these quantities on the coupling strength which we found
to be suppressed in the geometric optics limit. Finally, we
revisited the calculation of the static scalar self-force on the
Ellis wormhole space-time which was known to display
some anomalous dependence on the coupling strength; in
particular, the self-force vanishes for ξ ¼ ð2nþ 1Þ2=8 and
diverges for ξ ¼ ðnþ 1Þ2=2 where n ¼ 0;�1;�2;…. We
showed that this was a consequence of naïvely computing
the self-force for values of the coupling constant outside
the domain of stability. When restricted to ξ < 1=2, the
force is everywhere regular and vanishes only at the three-
dimensional conformal value as expected. Moreover,
we argued that this was a generic feature of ultrastatic
wormhole space-times and showed by explicit computa-
tion of exact quasinormal modes in a wormhole with an
infinitely short throat that the lowest lying pole of the

FIG. 12 (color online). Plot of the self-force as a function of
proper radius and coupling constant. It is a slowly varying function
of ξ except near the boundary of stability ξ ¼ 1=2 where its
magnitude increases rapidly and without bound as ξ → 1=2.
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static self-force is equivalent to the boundary of the stable
solutions.
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