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Investing on behalf of a firm, a trader can feign personal skill by committing fraud that
with high probability remains undetected and generates small gains, but that with low
probability bankrupts the firm, offsetting ostensible gains. Honesty requires enough
skin in the game: if two traders with isoelastic preferences operate in continuous-time
and one of them is honest, the other is honest as long as the respective fraction of
capital is above an endogenous fraud threshold that depends on the trader’s preferences
and skill. If both traders can cheat, they reach a Nash equilibrium in which the fraud
threshold of each of them is lower than if the other one were honest. More skill, higher
risk aversion, longer horizons, and greater volatility all lead to honesty on a wider
range of capital allocations between the traders.
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Chapter 1

Background

1.1 Introduction

The expression ‘rogue trader’ entered popular culture in 1995, when Nicholas W. Lee-
son, a trader of an overseas office of Barings Bank in Singapore, made unauthorized
bullish bets on the Japanese stock market, concealing his losses in an error account. At
first, losses were recovered with a profit, but in the aftermath of the Kobe earthquake
they reached $1.4 billion (Brown and Steenbeek, 2001), forcing the 233-year old bank
into bankruptcy. Earlier episodes of rogue trading ante litteram include the losses of
Robert Citron in 1994 for Orange County ($1.7 billion, Kenyon (1997)) and of Toshi-
hide Iguchi in 1983-1995 for Daiwa Bank ($1.1 billion, Iguchi (2014)). The earliest case
is possibly the one involving the law firm of Grant & Ward in 1884, which embarrassed
former president Ulysses S. Grant, one of the firm’s partners (Krawiec, 2000).

Since the demise of Barings Bank, rogue trading episodes have increased in fre-
quency and magnitude. In 2008, Jerome Kerviel, a junior trader at Société Générale
who had been exceeding positions limits through fictitious trades to avoid detection,
eventually lost $7.6 billion, the largest rogue trading loss in history. In his defense,
he claimed that colleagues also engaged in unauthorized trading.1 Year 2004 sees the
fraud by four traders on foreign currency options trading desk - David Bullen, Luke
Duffy, Vincent Ficarra, and Gianni Gray - in National Australia Bank, incurring a loss
of $160m at the time of exposure as a result of falsifying profit and hiding losses2.

Most recently in September 2021, Keith A. Wakefield, the former head of the fixed
income trading desk at the broker-dealer IFS Securities, was charged by the U.S. Secu-
rities and Exchange Commission with unauthorized speculative trading and creating
fictitious trading profits of approximately $820,000, leading to the closure of IFS Se-
curities and substantial losses to both IFS Securities and one dozen counter-parties to

1See “Bank Outlines How Trader Hid His Activities" https://www.nytimes.com/2008/01/28/
business/worldbusiness/28bank.html and “Timeline of events in SocGen rogue trader case" https:
//www.reuters.com/article/uk-socgen-kerviel-events-timeline-idUKL1885652420080318.

2See "Former NAB foreign currency options traders sentenced" https://web.archive.org/
web/20070928000543/http://www.asic.gov.au/asic/asic.nsf/byheadline/06-221+Former+NAB+
foreign+currency+options+traders+sentenced?openDocument.

1
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Name Country Year Loss Institution

Robert Citron USA 1994 $1.7bn4 Orange County
Joseph Jett USA 1994 $74.6m5 Kidder, Peabody&Co
Nick Leeson∗ Singapore 1995 $1.4bn6 Barings Bank
Toshihide Iguchi Japan 1995 $1.1bn7 Resona Holdings
Yasuo Hamanaka Japan 1996 $1.8bn8 Sumitomo Corporation
John Rusnak USA 2002 $691m9 Allied Irish Banks
David Bullen et al. Australia 2004 $160m10 National Australia Bank
Chen Jiulin Singapore 2005 $550m11 China Aviation Oil
Matthew Taylor USA 2007 $118m12 Goldman Sachs
Boris Picano-Nacci France 2008 $751.5m13 Groupe Caisse d’Epargne
Jerome Kerviel France 2008 $6.9bn14 Societe Generale
Kweku Adoboli UK 2011 $2.2bn15 UBS
Keith Wakefield∗ USA 2021 $30m16 IFS Securities

Table 1.1: Historical and publicly known episodes of rogue
traders in ascending order by the year in which the fraud is ex-
posed. The columns from left to right correspond to the name
of the traders, the country at which the fraud is committed, the
year in which the fraud is exposed, the approximate total loss re-
sulted by the fraud and the institution in which the trader(s) is
employed.
∗The case resulted in the bankruptcy of the employer.

the trades.3 Table 1.1 summarizes some historical episodes of rogue traders, whose
unauthorized actions were deemed fraudulent by the local judicial system.

3See ‘SEC Charges Rogue Trader Who Bankrupted His Firm’ https://www.sec.gov/news/
press-release/2021-205.
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4See Kenyon (1997).
5See ‘NASD Panel Sides With Jett, Orders Kidder to Free Funds’ https://www.wsj.com/articles/

SB851033074547103500.
6See Brown and Steenbeek (2001).
7See Iguchi (2014).
8See ‘The Copper King: An Empire Built on Manipulation’ https://www.investopedia.com/

articles/financial-theory/08/mr-copper-commodities.asp.
9See ‘Rogue trader Rusnak ‘relieved’ at AIB settlement’ https://www.irishtimes.com/business/

rogue-trader-rusnak-relieved-at-aib-settlement-1.2497430.
10See ‘Former NAB foreign currency options traders sentenced’ https://web.archive.org/

web/20070928000543/http://www.asic.gov.au/asic/asic.nsf/byheadline/06-221+Former+NAB+
foreign+currency+options+traders+sentenced?openDocument.

11See ‘Former CAO Executive Pleads Guilty’ https://www.wsj.com/articles/
SB114241939419798794.

12See ‘Rogue trader gets prison, told to repay Goldman $118 million’ https://www.reuters.com/
article/us-goldman-trader-sentencing-idUSBRE9B50XQ20131206.

13See ‘French judge files preliminary charges against trader at Caisse d’Épargne’ https://www.
nytimes.com/2008/10/30/business/worldbusiness/30iht-30trader.17398216.html.

14See ‘Bank Outlines How Trader Hid His Activities’ https://www.nytimes.com/2008/01/28/
business/worldbusiness/28bank.html.

15See ‘Kweku Adoboli: From ‘rising star’ to rogue trader’ https://www.bbc.com/news/uk-19660659.
16See ‘SEC Charges Rogue Trader Who Bankrupted His Firm’ https://www.sec.gov/news/

press-release/2021-205.

3

https://www.wsj.com/articles/SB851033074547103500
https://www.wsj.com/articles/SB851033074547103500
https://www.investopedia.com/articles/financial-theory/08/mr-copper-commodities.asp
https://www.investopedia.com/articles/financial-theory/08/mr-copper-commodities.asp
https://www.irishtimes.com/business/rogue-trader-rusnak-relieved-at-aib-settlement-1.2497430
https://www.irishtimes.com/business/rogue-trader-rusnak-relieved-at-aib-settlement-1.2497430
https://web.archive.org/web/20070928000543/http://www.asic.gov.au/asic/asic.nsf/byheadline/06-221+Former+NAB+foreign+currency+options+traders+sentenced?openDocument
https://web.archive.org/web/20070928000543/http://www.asic.gov.au/asic/asic.nsf/byheadline/06-221+Former+NAB+foreign+currency+options+traders+sentenced?openDocument
https://web.archive.org/web/20070928000543/http://www.asic.gov.au/asic/asic.nsf/byheadline/06-221+Former+NAB+foreign+currency+options+traders+sentenced?openDocument
https://www.wsj.com/articles/SB114241939419798794
https://www.wsj.com/articles/SB114241939419798794
https://www.reuters.com/article/us-goldman-trader-sentencing-idUSBRE9B50XQ20131206
https://www.reuters.com/article/us-goldman-trader-sentencing-idUSBRE9B50XQ20131206
https://www.nytimes.com/2008/10/30/business/worldbusiness/30iht-30trader.17398216.html
https://www.nytimes.com/2008/10/30/business/worldbusiness/30iht-30trader.17398216.html
https://www.nytimes.com/2008/01/28/business/worldbusiness/28bank.html
https://www.nytimes.com/2008/01/28/business/worldbusiness/28bank.html
https://www.bbc.com/news/uk-19660659
https://www.sec.gov/news/press-release/2021-205
https://www.sec.gov/news/press-release/2021-205


Chapter 1. Background

Krawiec (2000) provides a concise definition of a rogue trader:

‘A rogue trader is a market professional who engages in unauthorized
purchases or sales of securities, commodities or derivatives, often for a

financial institution’s proprietary trading account.’

By this definition, rogue trading differs from the devastating trading losses where
the trading actions with excessive risk-exposure are known and acknowledged by the
higher management. Such losses include the cases that are often framed as ‘rogue’
by the public such as Brian Hunter, whose loss led to the bankruptcy of Amaranth
Advisors17, and Bruno Iksil, who bets incurred a $6bn loss for JPMorgan Chase18.

It is worth noting that a trader is labelled as a ‘rogue trader’ only if the waged bets
result in a loss, which is then exposed and charged by the regulators. As the failed
internal risk management costs both the firm itself and the shareholders, the firms
would also face a prosecution. This leads to the employers quietly firing traders who
committed frauds.

The rise in rogue trading and its threat to both financial institutions and financial
stability has been recognized by the Basel Committee as operational risk, defined as
‘the risk of loss resulting from inadequate or failed internal processes, people and systems or
from external events’ (Committee et al. (2011)). The Capital Accord of Basel II (and
Basel III, to be enacted in 2023) include provisions for protection from operational
losses: while insurance can cover high-frequency, low-impact events, rogue trading
falls squarely in the low-frequency, high-impact category of uninsurable risks, which
incur capital charges. Such charges are in turn based on standardized approaches
or statistical models, due in part to the absence of consensus on the origin of rogue
trading, which is the focus of this work.

The literature on rogue trading is relatively sparse. Most existing work explores
the legal (Krawiec (2000) and Krawiec (2009)), social psychological (Wexler (2010)),
and regulatory (Moodie (2009)) aspects of rogue trading, and offer a number of hy-
potheses for mechanisms that may foster malfeasance in trading. Armstrong and
Brigo (2019) find that risk measures such as value at risk and expected shortfall
are ineffective in preventing excessive risk-taking by traders who are risk-averse
while gaining, but risk-loving while losing (this is modelled by S-shaped utilities e.g.
U(x) = xγ

1{x≥0} − λ(−x)γ
1{x<0} with λ > 0 and γ ∈ (0, 1)). Xu, Zhu, and Pinedo

(2020) use stochastic control to minimize operational risk through preventative and
corrective policies where the operational risks are modelled as exogenous shocks. Xu,
Pinedo, and Xue (2017) review the recent literature on operational risk. Contrary to
the these studies, the fraud risk arises endogenously in our model so as to investigate
what factors motivate a trader to engage in fraudulent activities.

17See ‘TIMELINE-Amaranth’s Brian Hunter settles with U.S. CFTC’ https://www.reuters.com/
article/amaranth-settlement-idUSL2N0P413B20140915.

18See "The London Whale" https://www.bloomberg.com/quicktake/the-london-whale.
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1.1. Introduction

1.1.1 Main takeaways of this work

The starting point of this work is that ‘The continued existence of rogue trading [...]
presents a mystery for many scholars and industry observers.’ (Krawiec (2000)). ‘Opera-
tional risk is unlike market and credit risk; by assuming more of it, a financial firm cannot
expect to generate higher returns.’ (Crouhy, Galai, and Mark (2004)). In other words,
prima facie it is hard to reconcile rogue traders’ actions with the optimizing behavior
of sophisticated rational agents.

We propose a model in which rational, self-interested, risk-averse traders delib-
erately engage in fraudulent activity that has zero risk premium. While undetected,
fraud allows a trader to feign superior returns, ostensibly without additional risk. In
reality, higher returns are exactly offset by a higher probability of bankruptcy, thereby
creating no value for the firm. Yet, under some circumstances, fraud may be optimal
for a trader because, while its benefits are personal, potential bankruptcy costs are
shared with other traders. Furthermore, a trader who understands the circumstances
leading to others’ fraud, can anticipate them and act accordingly, leading to a dynamic
Nash equilibrium.

In equilibrium, each trader abstains from fraud as long as the respective share of
wealth under management exceeds an endogenous fraud threshold that depends on
both traders’ preferences (risk aversions and average horizon) and investment char-
acteristics (expected returns and volatilities). Thus, a trader must have enough skin in
the game to remain honest: when the share of managed assets drops below the fraud
threshold, then the marginal utility of fraudulent trades becomes positive, and a trader
cheats as little and as quickly as possible to restore the wealth share to the honesty
region. Importantly, such fraudulent activity does not generate extra volatility, so that
it cannot be detected by monitoring wealth before bankruptcy occurs.

These results bring several insights. First, our model suggests that rogue trading
has an important social component: A sole trader investing all the firm’s capital would
not engage in fraud because such a trader would bear in full both the costs and the
benefits of fraudulent activity (Proposition 2.3.2). Furthermore, the fraud threshold
is higher if a trader knows that nobody else is cheating (Lemma 3.4.2 and Theorem
3.5.2).

Second, the model emphasizes the danger that traders with relatively smaller
amounts of capital can pose to a financial institution, due to their insufficient stakes in
the firm. This concern is confirmed by the cases of the junior trader Jerome Kerviel and
Nick Leeson. By reviewing Mr. Leeson’s trading record and the investigation reports
from Singaporean authorities, Brown and Steenbeek (2001) suggest that he had ex-
cluded the error account (meant for traders to settle minor trading mismatches) from
the market reports to the headquarter and built up unauthorized speculative position
in the early days after assuming the duty at Baring’s office in Singapore in 1992.

5
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Third, our comparative statics offer some clues for assessing and mitigating rogue-
trading risk. The incidence of fraud is higher in less skilled traders, which means that
emphasis on performance evaluation has the indirect benefit of fraud reduction. Fraud
also declines significantly as risk aversion increases, suggesting that, ceteris paribus,
the most fearless traders are also the ones most tempted by fraud, and that the most
dangerous combination is found in a trader with high risk tolerance and low share of
managed assets. Somewhat counter-intuitively, a longer horizon does not necessarily
imply lower fraud, though fraud eventually declines when the horizon is long enough.

Fourth, our model hints at a subtle trade-off between investment performance and
operational risk. Classical portfolio theory implies that diversification can only in-
crease performance, hence the addition of a trader with expertise in a new asset class
always improves the risk-return tradeoff. Yet, our results caution that a higher num-
ber of traders, each with a lower share of assets under management, may also increase
the appeal of fraud for each of them, potentially worsening the firm’s risk profile. (The
quantitative analysis of the trade-off between diversification and fraud requires very
different technical tools, hence is deferred to future research.)

This work offers the first structural model of rogue trading, in which fraud arises
from agency issues between traders and their firms. A priori, it is traders’ hidden
action that enables fraudulent activity. A posteriori, the traders’ optimal strategies im-
ply that fraud is both continuous and of finite-variation, which makes it hard to detect
even for a hypothetical observer who could continuously monitor traders’ wealth.

In the interest of both simplicity and relevance, the model assumes that each trader
is compensated with a fraction of trading profits, i.e., contracts are linear. As a result,
the fraudulent activity that arises in the model does not stem from nonlinear incentives
that may encourage risk-taking (cf. Carpenter (2000)), but merely from the asymmetric
opportunity of taking personal credit from fraudulent gains while sharing bankruptcy
costs. In this sense, each trader’s fraud represents an externality for other traders and
the firm, whence overall demand for fraud is socially suboptimal (i.e., nonzero).

At the technical level, our analysis contributes to the financial application of the
theory of nonzero-sum stochastic differential games with singular controls. In con-
trast to single-agent singular stochastic control problems, which date back to the finite
fuel problem of Bather and Chernoff (1967), research on singular stochastic differen-
tial games is relatively recent: Guo and Xu (2019) generalize the finite fuel problem to
an n-player stochastic game and a mean-field game, in which each player minimizes
the distance of an object to the center of N objects, while keeping her total amount of
controls at minimal. Guo, Tang, and Xu (2018) extend this analysis to a larger class
of games with possible moving reflecting boundaries in Nash equilibria. Kwon (2020)
analyzes the game of contribution to the common good and discovers Nash equilibria
of mixed type i.e. the strategies in equilibrium have both absolute continuous and sin-
gular components. De Angelis and Ferrari (2018) establish the connection between a

6



1.2. Applications of stochastic differential games with singular controls

class of stochastic games with singular controls and a certain optimal stopping game,
where the underlying state processes differ but the reflective and exit boundaries co-
incide. Kwon and Zhang (2015) and Ekström, Lindensjö, and Olofsson (2020) study
optimal stopping games in which all or one of the players control an exit time that
terminates the game. Note that the fraud in Ekström, Lindensjö, and Olofsson (2020)
differs from the one considered here, in that their model entails an agent stealing from
another one, who seeks to detect fraud and can terminate the game. In these pa-
pers, players are forbidden to execute discontinuous actions simultaneously, whereas
the present model does not impose such a restriction. In addition, this work pro-
vides a structural formulation of Nash equilibrium in the presence of singular controls.
Adopting BSDE Techniques, Karatzas and Li (2012) investigate existence and unique-
ness of Nash equilibrium in games of control and stopping, while Hamadène and
Mu (2015) establish existence for the games without exit but with unbounded drift.
Dianetti and Ferrari (2020) employ fixed point methods for the monotone-follower
games with submodular costs.

The results in this work also bear a curious analogy with portfolio choice with pro-
portional transaction costs in that, similar to Davis and Norman (1990), the solution to
the present model leads to an inaction region, surrounded by two regions in which ac-
tions are performed as little as necessary to return to the inaction region. Although the
mechanisms underlying the two models are very different, it is worth pointing out the
common feature that leads to the common structure. In both cases (and in many other
singular control problems), an action is performed only in positive amount (fraud of
either trader in this paper, buying or selling in portfoio choice). As a result, the inac-
tion region arises when each action is counterproductive for its agent, while the action
regions are visited at their boundaries because costs are linear in the action performed
(bankruptcy probability in this paper, trading costs in portfolio choice).

The rest of this thesis is organized as follows. Section 1.2 reviews several appli-
cations of the theory of stochastic differential game with singular controls. Chapter 2
describes the model of rogue trading and its rationale. Chapter 3 constructs a Nash
equilibrium with two traders and states the main result. Chapter 4 discusses the inter-
pretation of the results and their implications.

1.2 Applications of stochastic differential games with singular
controls

This section is devoted to introducing stochastic differential games with singular con-
trols in a brief manner and give some of its applications. Most rigour concerning
technical assumptions, regularities and controls’ admissibility is foregone in favor of
readability.

7
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Assume that the dynamical system X = (Xt)t≥0 (i.e. the state) follows a stochastic
differential equation (SDE) of the form:

dXt = µ(Xt)dt + σ(Xt)dBt + κ(Xt−)dAt (1.2.1)

with initial data X0− = x ∈ Rd, where B is a d-dimensional Brownian motion and
the coefficients drift µ and diffusion σ are measurable deterministic functions Rd →
Rd, the coefficient of the last term κ : Rd×l → Rd, and a progressively measurable
process A = (At)t≥0 valued in Rl of which the components are right-continuous non-
decreasing with left limits. Since the process A is of finite variation, dAt induces a
positive measure on R and the integral of κ(t, Xt−)dAt can be viewed as the Lebesgue-
Stieltjes integral constructed path by path.

An agent can influence the state X by controlling the process A. Since the contin-
uous component Ac of A is not necessarily absolute continuous (that is, the path of
Ac can have a component that is a singular function19), the control A is said to be a
singular control (cf. Reppen (2018, section 1.2) for a thorough discussion on the naming
of ‘singular control’.) If the agent aims at maximizing some reward functional J(x; A)

for all admissible control A, then this problem is known as the (stochastic) optimal
control problem with singular control. The optimal strategy in this context typically
has the characteristic of activating according to local time at some boundary, which
is known as a solution to the Skorokhod problem. Such strategy can be identified by
two disconnected regions of the state space, an action region in which the agent im-
mediately brings the state to the boundary of this region; and a continuation region, in
the interior of which the agent does not exercise the control at all but on the boundary
of which the agent exercise the control minimally so as to reflect the state back into
the interior of the region. Also in this thesis, a Skorokhod problem arises- the fraud
commitment of a trader occurs only when her/his share of wealth drops to certain
threshold (see section 3.3).

To accommodate more agents, we modify the state X by generalizing the coeffi-
cient κ : Rl×d×N → Rd and the process A = (A1, . . . , AN) be valued in Rl×N , where
N ≥ 1. Now, instead of one agent, there are n agents (labelled by the integers 1, . . . , N)
who can jointly influence the state X via their individual control Ai valued in Rd for
all i ∈ {1, . . . , N}. Each agent i attempts to maximize his/her individual reward func-
tional

Ji
(

x; (A1, . . . , AN)
)
= E

[∫
[0,∞]

(
f i(t, Xt−, At−)dt + gi(t, Xt, At)dAt

)]
over all admissible Ai in some admissible set A, guaranteeing the value functions to
be well-defined. Note that the reward to a given agent (apart from her/his own action)
depends upon the actions of other players indirectly through the values of the state

19A standard example is the Cantor function, which is continuous, but not absolutely continuous.
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1.2. Applications of stochastic differential games with singular controls

X over time, but also directly as the specific actions taken by the other players may
appear explicitly in the expression of the running cost f i and gi of agent i. In this
setting, the optimality is defined by the well-celebrated notion of Nash equilibrium.

Definition 1.2.1. A set of admissible controls A∗ = (A1,∗, . . . , AN,∗) is said to be a Nash
equilibrium if for all i ∈ {1, . . . , N} and any x ∈ Rd

Ji
(

x; (A1,∗, . . . , Ai−1,∗, Ai, Ai+1,∗, . . . , AN,∗)
)
≤ Ji(x; A∗) for all Ai ∈ A.

If all players jointly maximize the same reward functional, i.e. Ji = J for all
i ∈ {1, . . . , N} for some functional J, then such game is known as the cooperative dif-
ferential game. In the case when N = 2 and J1(x; A) + J2(x; A) = 0, the game turns
into the well-known zero-sum stochastic differential game as one player’s entire gain
is on the entire loss of the other. The examples considered in this section are instead
non zero-sum games.

Remark 1.2.2. The Nash equilibria of stochastic differential games with singular controls
may not necessarily be of singular type. Section 1.2.2 presents such an example, where under
symmetry of the players, the equilibrium strategies can be absolutely continuous.

1.2.1 Market share duopoly game

This example considers a fierce market share battle that typically occurs in ma-
ture industries with shrinking profit opportunities. For instance, in 1990s the US-
telecommunication giants AT&T, MCI and Sprint compete in capturing larger market
share by spending heavily on marketing.

Let d = 1 and N = 2, the two players compete against each other in a mature and
saturated market, where the market share of player i ( i ∈ {1, 2}) denoted by Xi is
such that X1

t + X2
t = 1 a.s. for all t ≥ 0 and each solves the SDE

dXi
t = µi(Xi

t)dt + σi(Xi
t)dBt + dAi

t − dAj for any t < τ1 ∧ τ2

with Xi
0− = xi ∈ [0, 1], µi(x) = −µj(1 − x) and σi(x) = −σj(1 − x). The control Ai of

player i represents the cumulative effort up to time t to increase her/his market share,
while the player can also exit the market represented at some stopping time τi. Each
player i’s objective is to maximize the expected cumulative discounted profit (with
discount factor r > 0)

Ji
(

x; (Ai, τi), (Aj, τi)
)
= E

[ ∫ τ1∧τ2

0
e−rt

(
πi(Xi

t)dt − ki(Xi
t) ◦ dAi

t

)
+ 1{τi≥τj}e−rτj

πi(1)
r

]

9



Chapter 1. Background

Fig. 1.1: Figure 1 from Kwon and Zhang (2015): Action region
partition in Nash equilibrium in view of X1, where the constants
βc

2 := 1 − β2, θc
2 := 1 − θ2 and ηc

2 := 1 − η2 with β2, θ2 and η2
being player 2’s action boundaries in view of X2.

over all admissible controls (Ai, τi), where the term with operator ◦ is defined for any
t1, t2 ∈ [0, ∞) such that t1 < t2 by

∫ t2

t1

e−rtki(Xi
t) ◦ dAi

t :=
∫ t2

t1

e−rtki(Xi
t)dAi,c

t + ∑
t∈[t1,t2]

e−rt
∫ ∆Ai

t

0
ki(Xi

t− + u)du,

with Ai,c being the continuous component of Ai. The function πi represents the profit
rate for occupying a certain market share, ki is the cost rate of exercising the control
effort Ai and the last term πi(1)

r is the perpetual stream of profit after the other player
j exits (if instead player i decides to exit then this term vanishes). It is assumed that
∆A1

t ∆A2
t = 0 a.s. for all t ≥ 0.

Under appropriate conditions, Kwon and Zhang (2015, Theorem 2) state a class
of Nash equilibria with the structure depicted as in figure 1.1. In equilibrium, if the
initial market share of of player 1 starts in

(i) E1 (= [0, η1]): then player 1 exits the competition as the profit is negative when
the market share is too low, and the cost of effort to increase market share is also
too high;

(ii) K11 (= [θ1, β1]): then player i immediately exercises Ai to boost Xi to β1 and
reflects Xi at β1 thereafter to keep her/his market share from dropping below
β1;

(iii) Cc: then neither of the participants acts, except when the market share slides
to the boundary points β1 (βc

2), at which player 1 (2) acts minimally to reflects
her/his share towards higher value;

(iv) K12 (= [θc
2, ηc

2]): by an instant effort player i brings Xi to ηc
2 (which is the exit zone

of player 2) forcing player 2 out of the competition.

The argument applies likewise to player 2 with X2 being the reference state.

1.2.2 Game of contribution to common good

Two players (i.e. N = 2) consider irreversible and costly contribution to a stock of
common good. The dynamic of the common state process Xt valued in R solves the

10



1.2. Applications of stochastic differential games with singular controls

Fig. 1.2: Figure 4 from Kwon (2020): A sample path of t 7→ Xt in
Nash equilibrium: µ = −1, σ = r = k1 = k2 = 1, ρ = 2, xc = −10
and the initial data x < θ.

SDE
dXt = µ(Xi

t)dt + σ(Xt)dBt + dA1
t + dA2

t

with X0− = x ∈ R for all t ≥ 0, where Ai is the cumulative contribution of player
i. Each player i maximizes the the expected discounted (the discount factor r > 0)
payoff

Ji(x; A1, A2) = E

[∫ ∞

0
e−rt

(
πi(Xt)dt − kidAi

t

)]
over all admissible controls Ai. The coefficient µ is assumed to be negative to model
the deterioration of the common good. Similar to the reward functional in section
1.2.1, πi represents the profit rate and ki is the cost rate for increasing the contribution.

An instance of this model is the advertisement expenditures in the stock of good-
will such as the generic advertising on commodities (known as the free rider problem
of commodity promotion). For example, the advertising expenditures by Florida on
‘Florida grown’ orange juice benefit not only the local orange juice industry but also
non-Florida orange juice importers (Lee and Fairchild (1988)) and a salmon promotion
program conducted by Norway has benefited its international competitors (Kinnucan
and Myrland (2003) studies this relation between Norway and the UK). More cases
include the Polish diary campaign with the slogan: ‘Drink milk, be great!’ and the
USA campaign for ‘Cotton: the fabric of our lives’ (cf. Just and Pope (2016)) etc.. The
stock of the product’s overall goodwill is the common good, a manufacture that does
not invest on it free rides the benefits from the other manufacture’s expenditure. This
problem is a sub-class of variable concession games, which is an extension of game of
war of attrition (cf. Smith (1974)).

Under appropriate assumptions, Kwon (2020) shows that:

11



Chapter 1. Background

Fig. 1.3: Figure 3 from Guo and Xu (2019): Action region partition
in Nash equilibrium when N = 3.

(i) when N = 1, the optimal strategy of the only player is of the singular type,
keeping the state process above a constant threshold;

(ii) when N = 2: the existence of a class of Nash equilibria of the regular type, i.e.
Ai,∗ is absolute continuous w.r.t. Lebesgue measure and the mixed type, i.e. of
both the regular and singular type (for at least one of the players). The numerical
example Figure 1.2 illustrates case 2 in which player 1’s equilibrium control is of
mixed type while player 2’s is of regular type, in which the profit rate is given by
π(x) = 1 − evx for x ≥ xc and π(x) = π(xc) + (x − xc)ρ for x < xc. The region
[0, θ′] is the regular control zone for both players. Upon X reaching θ′, player 1
boosts X up to θ1. Then thereafter, the state is subject to singular control of player
1 reflecting X at boundary θ1. Note that swapping these strategies between the
players is also a Nash equilibrium;

(iii) when N = 2 with asymmetry (π1 ̸= π2 or/and k1 ̸= k2): the only Nash equilib-
ria are of mixed type.

For generalized game(s) with open-loop strategies for N > 2 players, we refer readers
to Ferrari, Riedel, and Steg (2017).

1.2.3 Fuel follower game

Let the dimension of the state equal number of players, i.e. d = N. Each player
controls (on the cost of fuel) a single object that is moving in a real line, with the
objective of minimizing the distance between the object and the center of all objects
while consuming the least amount of fuel. The position of player i (i ∈ {1, . . . , N})
denoted by Xi solves the SDE

Xi
t = xi + Bi

t + Ai,+
t − Ai,−

t ,
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1.2. Applications of stochastic differential games with singular controls

with Xi
0− = xi representing the initial position of player i. Player i can adjust her/his

own position higher or lower by controlling (Ai,+
t , Ai,−

t ) =: Ai. Notice that the state
processes are uncoupled, that is, the position and the control of one player cannot
directly affect that of another.

Each player i minimizes the cost functional

Ji(x; A) = E

[∫ ∞

0
e−αt

[
h

(
Xi

t −
∑N

k=1 Xk

N

)
dt + dAi,+

t + dAi,−
t

]]

over all Ai = (Ai,+, Ai,−) ∈ A where the discount factor α > 0, dAi,+
t + dAi,−

t is

the fuel usage in an infinitesimal time interval, Xi
t −

∑N
k=1 Xk

N is the distance between
the position of player i and the center of all players’ positions. In other words, each
player minimizes her/his distance to the center of all players while trying to consume
minimal amount of fuel.

Guo and Xu (2019, Theorem 3) provide a verification theorem for a Nash equi-
librium, where each player i has an action region Ai (at which ∆Ai

t ̸= 0 a.s.) and a
common no-action region CW ⊂ RN . When the state X is:

(i) in the interior of Ai: player i exercises Ai to instantly push X to the boundary
∂Ai;

(ii) at the boundary ∂Ai: player i pushes minimally such that X is reflected inward
along the direction perpendicular to the boundary ∂Ai;

(iii) in the exterior of Ai: player i does not act at all, i.e. Ai = 0.

Figure 1.3 illustrates the action regions in Nash equilibrium when N = 3. Note that
the a player’s action region Ai is divided into two disconnected sub-regions, where in
one region the position Xi is pushed up by the control Ai,+ whereas Xi is pulled down
in the other sub-region by the control Ai,−.
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Chapter 2

A Model of Rogue Trading

Most episodes of fraudulent trading share some distinctive features. First, they violate
a firm’s internal rules or external regulations. Second, fraud often remains concealed
and results in modest (relative to the firm’s size) gains that are ascribed to the skill
of the perpetrator. Third, fraud generates substantial risk without expected return for
the firm, and is revealed only when catastrophic losses eventually materialize.

To reproduce these features, it is useful to think of a small fraud as a (forbidden)
bet that a trader wages on the whole firm’s capital. With a small chance (say, ε), the bet
bankrupts the firm, but most of the time (with probability 1 − ε) it results in a return
of 1/(1 − ε) ≈ 1 + ε, which the trader can take credit for. Of course, the bet’s overall
return for the firm is zero, as (1− ε) · 1/(1− ε) + 0 · ε = 1. Such asymmetric outcomes
(likely small gains against unlikely large losses) are in fact common in both illicit and
licit trading strategies (for example, selling deep out-of-the money options), and have
attracted the label of ‘picking up nickels in front of a steamroller’ (Duarte, Longstaff,
and Yu (2006)).

Thus, the dilemma of an unscrupulous but profit-driven and risk-averse trader is
to what degree to engage in fraud, as cheating too little may forego some easy profits,
but cheating too much may result in likely bankruptcy. If one imagines the small fraud
above as the outcome of a (heavily biased) coin-toss, the trader essentially ponders
how many coins to toss. For example, tossing two coins would generate a likely payoff
of (1 − ε)−2 but may also lead to bankruptcy with probability 2ε − ε2.

If the trader is the sole firm’s owner, it is not hard to see that fraud does not pay:
when one bears both gains and losses in full, waging fair bets on one’s capital merely
replaces a payoff with another one, more uncertain but with the same mean – an infe-
rior choice by risk aversion.

In this sense, fraud arises from social interactions, both through the incentives im-
plied by traders’ compensation contracts, or by each trader’s awareness that others
traders in the firm may engage in fraud. The present model focuses on the latter mo-
tive by assuming that each trader receives a fixed fraction of individual profits and
losses, which is a common arrangement for bonuses with clawback provisions. The
model envisages multiple traders: each of them has a mandate to invest a share of
the firm’s capital in some risky asset with a positive risk premium and is paid with a
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Chapter 2. A Model of Rogue Trading

fraction of the terminal payoff. Thus, each trader’s objective is aligned with the firm’s.
For the sake of tractability and clarity, the paper focuses on the case of two traders.

The moral hazard stems from the asymmetric effects of fraud on a trader’s reward:
as long as the fraudulent activity is successful, the trader can disguise its revenues
as the fruit of personal skill in performing the investment mandate. In reality, such
additional revenues merely compensate for the fraudulent bets that the trader wages
on the capital of the whole firm, rather than personal capital (e.g. exceeding risk limits
by either collateralizing firm’s asset or assuming excess liabilities). Of course, such
bets are possible exactly because they are fraudulent, and are explicitly forbidden by
the firm’s regulation: they nonetheless exist, due to ‘inadequate or failed internal pro-
cesses, people and systems’ embodied in the definition of operational risk (Committee
et al. (2011)).

The appeal of fraud – privatizing gains while socializing losses – thus varies with
a trader’s share of the firm’s capital: intuitively, the temptation of fraudulently enrich-
ing oneself is much stronger for a small trader, who has little to lose and much to gain
from gambling with others’ wealth, than for a large trader who has significant skin in
the game. For this reason, in the present continuous-time model each trader can cheat
with varying intensity in response to changes in one’s and others’ wealth.

After this informal description, the precise definition of the model follows.

2.1 Investment and fraud

Fix a complete stochastic basis (Ω,F , P) equipped with the natural filtration F =

(Ft)t≥0 of an N-dimensional (N ≥ 1) Brownian motion B = (Bt)t≥0, satisfying
the usual hypotheses of right-continuity and saturatedness. Denote the σ-algebra
σ
(⋃

t≥0 Ft
)
⊂ F by F∞.

Assuming a zero safe rate to ease notation, in the absence of fraud the capital Yi
t of

the i-th trader (i ∈ {1, . . . , N}) evolves as

dYi,x
t = µiY

i,x
t dt + σiY

i,x
t dBi

t, Yi,x
0 = xi > 0,

reflecting the trader’s average ability µi > 0 to deliver excess returns with the volatility
σi > 0 that the firm’s risk management is willing to accept. For simplicity, assume that
Bi and Bj are independent for i ̸= j, which means that traders take uncorrelated risks
(for example, one invests in stocks and the other in bonds).
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2.1. Investment and fraud

To describe how each trader may engage in fraud by endangering the firm’s capi-
tal, define the class of increasing processes

A :=
{

A = (At)t≥0 : F-adapted, right-continuous,

non-decreasing, with A0− = 0 ∈ R
}

.

For A ∈ A, At represents the cumulative amount of ‘bets’ waged by a trader on
the firm’s capital up to time t. To understand such a representation, suppose that
At =

∫ t
0 λsds, which means that in the interval [s, s + ds] the trader wages a fair bet

that has the probability λsds of bankrupting the firm. Because the fraud is illicitly
waged on the firm’s capital (thereby exceeding the capital Yi,x that the trader has been
assigned), if bankruptcy does not occur such fraud yields a profit of YS

s λsds, where
YS,x := ∑N

k=1 Yk,x is the total capital of the firm.
Although this description is intuitive, it has a twofold limit: First, it encompasses

only the case of fraud with a finite rate λs, in that it excludes bursts of rogue trades at
any instant. Second, it cannot extend the impact of fraud on bankruptcy probability to
arbitrary time interval (note that simply by integration the value of

∫ t
s λudu can exceed

1). For this reason, a more careful but also more technical description is necessary.
To make precise the intuition that how dAs drives the bankruptcy rate, note first

that any A ∈ A is right-continuous and of finite variation. Therefore, it has the
representation At = Ac

t + ∑0≤s≤t ∆As for any t ≥ 0, where ∆As = As − As− and
Ac is the continuous part of the process A with Ac

0 = 0. For a set of fraud pro-
cess A = (A1, . . . , AN) ∈ AN , denote the total fraud process by AS

· = ∑N
k=1 Ak

· . The
bankruptcy time is then defined as

τA = inf
{

t ≥ 0 : AS
t ≥ θ

}
, (2.1.1)

where θ is an F -measurable exponential random variable with rate 1, independent of
the filtration F. (Recall the convention that τA = +∞ on the empty set.)

Before bankruptcy occurs, the wealth of each trader follows the dynamics

dYi,x
t = µiY

i,x
t dt + σiY

i,x
t dBi

t + YS
t−dÃi

t, Yi,x
0− = xi > 0, 1 ≤ i ≤ N, (2.1.2)

where the integral with respect to Ãi in (2.1.2) is understood in the Lebesgue-Stieltjes
sense, and Ãi

t := Ai,c
t + ∑0≤s≤t

(
e∆Ai

s − 1
)

reflects the fact that the simple return of

a jump in fraud is not ∆ itself but rather e∆ − 1. Proposition 2.3.1 further justifies the
choice of the return from jump fraud. Such a distinction is immaterial with continuous
fraud because e∆ − 1 ∼ ∆ for ∆ close to zero. The following result shows that the
pre-bankruptcy wealth (2.1.2) is well-defined, strictly positive with probability 1 and
provides an expression in terms of the stochastic exponential (see Definition 2.4.1) for
both of the individual trader’s and the total firm’s wealth.
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Lemma 2.1.1. For any k ∈ {1, . . . , N}, let rk(x) = xk

∑N
i=1 xi

for any x ∈ RN
+ .

(i) There exists a unique strong solution Yx =
(
Y1,x, . . . , YN,x) to the SDE (2.1.2) and for

all i ∈ {1, . . . , N}, P
(

Yi,x
t > 0 for all t ≥ 0

)
= 1.

(ii) For all i ∈ {1, . . . , N} and any t ≥ 0

Yi,x
t = xiE

(
µi ·+σiBi

· +
∫
[0,·]

ri(Yx
s−)

−1dÃi
s

)
t

a.s. (2.1.3)

and

YS,x
t =

(
N

∑
k=1

xk

)
E
(

N

∑
k=1

(∫ ·

0
µkrk(Yx

s )ds +
∫ ·

0
σkrk(Yx

s )dBk
s

)
+ ÃS

·

)
t

a.s.

(2.1.4)

where ÃS
· = ∑N

k=1 Ãk
· .

Proof of Lemma 2.1.1. Denote by IN an N × N identity matrix. The SDE (2.1.2) can be
written in the vector form,

dYt = diag(Yt)dRt + trace (diag(Yt−)) INdÃt, Y0− = x ∈ Rn
+, (2.1.5)

where R = (R1, . . . , RN) with Ri
t = µit + σiBi

t for any i ∈ {1, . . . , N} and Ã =

(Ã1, . . . , ÃN). The linearity of the coefficients of (2.1.5) implies uniform Lipschitz con-
tinuity, hence the existence and uniqueness of a strong solution (cf. Cohen and Elliott,
2015, Theorem 16.3.11).

For any i ∈ {1, . . . , N}, let Zi
t = Ri

t + Ãi
t and Hi

t = xi +
∫
[0,t] ∑N

j ̸=i Y j
s−dÃi

s for all
t ≥ 0 with Zi

0− = 0 and Hi
0− = xi. Rewriting (2.1.2) yields

Yi
t = Hi

t +
∫
[0,t]

Yi
s−dZi

t.

By Jacod, 2006, Theorem 6.8, it follows that

Yi
t = E(Zi)t

(
xi +

∫
[0,t]

E(Zi)−1
s−dH̄i

s

)
, (2.1.6)

where

H̄i
t = Hi

t − ∑
0≤s≤t

∆Hi
s∆Ãi

s

1 + ∆Ãi
s
= Hi,c

t + ∑
0≤s≤t

∆Hi
s

1 + ∆Ãi
s
= xi +

∫
[0,t]

N

∑
j ̸=i

Y j
s−dĀi

s (2.1.7)

and Āi
t = Ai,c

t + ∑0≤s≤t

(
∆Ãi

1+∆Ãi

)
with Āi

0− = 0. Substituting (2.1.7) into (2.1.6) yields

Yi
t = E(Zi)t

(
xi +

∫
[0,t]

E(Zi)−1
s−

N

∑
j ̸=i

Y j
s−dĀi

s

)
. (2.1.8)
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2.1. Investment and fraud

Let τ0 be the first exit time of the process mink∈{1,...,N} Yk from R+, that is, τ0 =

inf
{

t ≥ 0 : mink∈{1,...,N} Yk
t ≤ 0

}
. Suppose P (0 ≤ τ0 < ∞) > 0, then for any ω ∈

{ω : 0 ≤ τ0(ω) < ∞}, there exists q ∈ {1, · · · , N} such that Yq
τ0(ω)

(ω) ≤ 0 and
Yq

τ0(ω)−(ω) ≥ 0 as Yq is càdlàg. Since xq > 0, (2.1.8) implies

N

∑
j ̸=q

Y j
s(ω) < 0

for some s < τ0(ω), which contradicts the definition of τ0. This finishes the proof of
(i).

We thus may rewrite (2.1.2) and the firm’s total pre-bankruptcy wealth YS as

dYi
t

Yi
t−

= dRi
t +

YS
t−

Yi
t−

dÃi
t, Yi

0− = xi,

dYS
t

YS
t−

=
N

∑
k=1

Yk
t

YS
t

dRk
t + dÃS

t , YS
0− =

N

∑
k=1

xk.

An application of Jacod, 2006, Theorem 6.8 yields (ii).

Incorporating the effect of bankruptcy after τA, the final expression for wealth is

Xi,x
t = 1{t<τA}Yi,x

t with Xi,x
0− = xi. (2.1.9)

Upon bankruptcy (on the set t ≥ τA(ω)), the wealth of all traders vanishes and
remains null thereafter, hence the dynamics of the pre-bankruptcy wealths beyond
τA(ω) is irrelevant for the model. Effectively, fraud is described by the stopped pro-
cess Ai

·∧τA
.

Remark 2.1.2. One may be tempted to define the pre-bankruptcy process as

dYi,x
t = µiY

i,x
t dt + σiY

i,x
t dBi

t + YS
t−dAi

t

where the last term is not modified for the instantaneous fraud ∆Ai. This leads to ill-
posedness of the model: Let N = 1 and consider a sequence of deterministic and continu-
ous fraud process Aϵ,n, n = 1, 2, 3, . . . given by Aϵ,n

t = nt for t ≤ ϵ/n and Aϵ,n
t = ϵ

for t > ϵ/n. Note that Aϵ,n converges pointwise to Aϵ
t := ϵ for all t ≥ 0. By the conti-

nuity of paths of Aϵ,n and Lemma 2.1.1, it follows that for all t ≥ 0 limn→∞ Yx
t (Aϵ,n) =

limn→∞ xieAϵ,n
t E

(
µi ·+σiBi

·
)

t = xieϵE
(
µi ·+σiBi

·
)

t a.s., whereas Yx
t (limn→∞ Aϵ,n) =

xi(1 + ϵ)E
(
µi ·+σiBi

·
)

t. Hence, limn→∞ Yx
t (Aϵ,n) > Yx

t (limn→∞ Aϵ,n) a.s. for all t > 0.
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2.2 Bankruptcy time

The bankruptcy time τA is not an F-stopping time since the random threshold θ

is independent of the σ-algebra F∞. Thus, to accommodate the wealth process
Xx =

(
X1,x, . . . , XN,x), we expand the filtration F ‘minimally’. To this end, let

HA =
(
HA

t
)

t≥0 be the natural filtration of the bankruptcy process
(
1{·≥τA}

)
t≥0

and
define the enlarged filtration GA =

(
GA

t
)

t≥0 as GA
t =

⋂
s>t
(
Fs ∨HA

s
)
, which is the

smallest right-continuous filtration containing F such that τA is a stopping time. Such
an extension is known as ‘progressive filtration enlargement’ (cf. Jeulin, 2006 and
Jeanblanc and Le Cam, 2009) and is popularly utilized in credit risk modelling.

Let ĀS
t = AS,c

t + ∑0≤s≤t(1 − e−∆AS
s ) for all t ≥ 0. Note that ĀS ∈ A and ĀS differs

from the total fraud process ÃS. In fact, ĀS
t ≥ ÃS

t a.s. for all t ≥ 0 since 1 − e−∑N
i=1 αi ≥

∑N
i=1(1− e−αi) for any α ∈ [0, ∞)N , where the equality holds if and only if α ∈ {0}N−1 ×

[0, ∞). Hence, the processes ĀS and ÃS coincide if no simultaneous jump frauds occur
at any time t ≥ 0. The following result shows that ĀS is the compensator of the
bankruptcy process 1{·≥τA}.

Lemma 2.2.1 (Doob-Meyer decomposition). The process MA = (MA
t )t≥0 defined by

MA
t = 1{t≥τA} − ĀS

t∧τA

is a uniformly integrable GA-martingale. Furthermore, ĀS
·∧τA

is the unique GA-predictable,
integrable and non-decreasing process such that M is a GA-martingale and ĀS

0− = 0.

Proof. Note that the non-decreasing process 1{·≥τA} is a GA-submartingale. Define the
stochastic process Z = (Zt)t≥0 by Zt := P(t < τA|Ft). Because F ⊂ GA and all F-
martingales are continuous (by the Martingale Representation Theorem, Karatzas and
Shreve, 1998, Theorem 4.2), the dual F-predictable projection of 1{·≥τA} is 1 − Z· by
Aksamit and Jeanblanc, 2017, Proposition 3.9 (b). It follows by Aksamit and Jeanblanc,
2017, Proposition 2.15 that the GA-compensator of τA is

∫
[0,·∧τA]

Z−1
s− d (1 − Zs). Then

by Lemma 2.2.3 and the Itô formula,∫
[0,t∧τA]

Z−1
s− d (1 − Zs) =

∫
[0,t∧τA]

eAS
s−d
(
−e−AS

s−
)

= AS,c
t∧τA

+ ∑
0≤s≤t∧τA

(
1 − e−∆AS

s

)
a.s. for all t ≥ 0.

The occurrence of bankruptcy time τA should come as a ‘surprise’ to the traders.
More formally, τA cannot be GA-predictable (except for trivial cases). Lemma 2.2.2
shows τA is GA-predictable (i.e. announced by a strictly increasing sequence of GA-
stopping times) if and only if either fraud is absent or if any fraudulent trades are
performed only at the initial time t = 0.
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2.2. Bankruptcy time

Lemma 2.2.2. The bankruptcy time τA is GA-predictable if and only if AS
t∧τA

= AS
0 a.s. for

any t ≥ 0.

Proof. Suppose τA is a GA-predictable stopping time. It follows that the process 1{·≥τA}
is GA-predictable. Lemma 2.2.1 implies that the GA-martingale Mt is GA-predictable.
A predictable martingale of finite variation must be constant, hence, MA

t = MA
0 for

any t ≥ 0. It follows that

1{t≥τA} − 1{0=τA} = ĀS
t∧τA

− ĀS
0 a.s.

for any t ≥ 0. On the event {0 < τA < +∞}, for any t < τA, ĀS
t∧τA

− ĀS
0 = 0 a.s.

and then ∆ĀS
τA

= 1 a.s., which contradicts the fact that ∆ĀS
t = 1 − e−AS

t < 1. Hence,
P(0 < τA < +∞) = 0. On the events {τA = 0} and {τA = ∞}, it is clear that
ĀS

t∧τA
= ĀS

0 a.s. (and thus AS
t∧τA

= AS
0 .)

Conversely, let for any t ≥ 0, AS
t∧τA

= AS
0 a.s. Then, by definition of bankruptcy,

τA ∈ {0,+∞} a.s. As the events {τA = 0} and {τA = ∞} are in GA
0 , the sequence

τn of increasing GA-stopping times defined by τn = 1{τA=0} + n1{τA=+∞} announces
τA.

The following lemma characterizes the conditional probability of bankruptcy time
τA on filtration F in relation to total frauds AS.

Lemma 2.2.3. The following hold for all t ≥ 0, P-almost surely:

(i)
P (τA > t|Ft) = e−AS

t , (2.2.1)

(ii)
P (τA > t|F∞) = P (τA > t|Ft) . (2.2.2)

Furthermore, any F-martingale is a GA-martingale (this is known as the immersion property).

Proof. First, we show that
{t < τA} = {AS

t < θ}. (2.2.3)

On one hand, {t < τA} ⊂ {AS
t < θ} follows by the definition of τA. On the other

hand, let ω ∈ Ω be such that AS
t (ω) < θ(ω). If τA(ω) < +∞, then θ(ω) ≤ AS

τA(ω)
(ω).

Hence, t < τA(ω) because AS
t (ω) < AS

τA(ω)
(ω) and AS is non-decreasing. If τA(ω) =

+∞, then trivially t < τA(ω).
Because P(θ > x) = e−x for any x ≥ 0 and θ is independent of F∞,

P (τA > t|F∞) = P
(

AS
t < θ|F∞

)
= e−AS

t .

By the tower property of conditional expectation and AS
· being F-adapted, (2.2.1) and

(2.2.2) follow.
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Chapter 2. A Model of Rogue Trading

Finally, Aksamit and Jeanblanc, 2017, Lemma 3.8 shows that (2.2.2) implies the
immersion property.

Note that by the immersion property and Lévy’s characterization theorem, it fol-
lows that B remains a Brownian motion on the enlarged filtration GA.

2.3 Absence of moral hazard

As waging bets on one’s own wealth means bearing the risk in full, and thus, in the
absence of investment skill (i.e. µ1 = 0)1, yielding a zero risk-premium. In other
words, a trader who owns the whole firm (N = 1) without legitimate investment has
a wealth process that is a GA-martingale.

In principle, one could consider the case of fraud with a negative risk premium
(hence, a wealth process that is a GA-supermartingale). This model focuses on the par-
simonious case of zero-risk premium, which maximizes the propensity for a trader to
cheat. If the risk premium were positive, the bet would be a legitimate investment
opportunity, for which the label of “fraud” would not be justified. This is verified by
next result, which also justifies the treatment of jumps in the definition of Ã (i.e. it
is the only one consistent with the martingale property for wealth in the absence of
skill).

Proposition 2.3.1. Let N = 1, µ1 = 0 and let Ã1
t := A1,c

t + ∑0≤s≤t g
(
∆A1

s
)

where g :
[0,+∞) → [0,+∞) is measurable such that g(0) = 0.

(i) If A1
t = A1,c

t a.s. for all t ≥ 0, or if g(a) = ea − 1, then X1,x1 is a GA-martingale.

(ii) If X1,x1 is a GA-martingale for any A1 ∈ A, then the jump size function is given by
g(a) = ea − 1 for any a ≥ 0.

Proof of Proposition 2.3.1. Proof of (i): Lemma 2.1.1 (ii) and Cohen and Elliott, 2015,
Corollary 15.1.9 yield that for any t ≥ 0

Xi,x
t = xi1{t<τA}E

(
σ1B1

· + Ã1
·

)
t

= xi1{t<τA}E
(

Ã1
·

)
t
E
(

σ1B1
·

)
t

a.s.

If A1 has a.s. continuous paths or g(a) = ea − 1, then E
(

Ã1
·
)

t = eA1
t , and 1{t<τA}eA1

t is a
GA-martingale by Bielecki and Rutkowski, 2004, Lemma 5.1.7. Because the covariation
between 1{t<τA}eA1

t and E
(
σ1B1

·
)

t is zero and X1,x1
t = X1,x1

t∧τA
a.s. for all t ≥ 0, it follows

that Xi,x is a GA-martingale.
Proof of (ii): Consider the family Aξ of strategies indexed by ξ ≥ 0, defined for

t ≥ 0 by Aξ
t = 1{t≥1}ξ. By construction Aξ ∈ A for all ξ ≥ 0. Denote the corresponding

1Note that eliminating investment skill is to solely examine the effect of rogue trading to the wealth.
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2.3. Absence of moral hazard

wealth as X1,x1,ξ . By assumption, it is a GA-martingale for any ξ ≥ 0. One can factorize
it as X1,x1,ξ = MtUt, where for any t ≥ 0

Mt = x11{t<τA}eA1
t E
(

σ1B1
·

)
t

(2.3.1)

and

Ut = ∏
0≤s≤t∧τA

e−∆A1
s

(
1 + g(∆A1

s )
)
= 1t<1 + e−ξ(1 + g(ξ))1{t≥1}.

Note that M is a GA-martingale and by Lemma 2.2.1, the finite variation process U is
GA-predictable. Integration by parts (Aksamit and Jeanblanc, 2017, Proposition 1.16)
yields

X1,x1
t = MtUt = x +

∫
[0,t]

UsdMs +
∫
[0,t]

Ms−dUs.

The process
∫ ·

0 UsdMs is a GA-(local)martingale. As the process
∫ ·

0 Ms−dUs is the limit
of Riemann-Stieltjes sums, it inherits the GA-predictability of finite variation from its
integrator U. Because X1,x1,ξ is a GA-martingale,

∫ ·
0 Ms−dUs is a GA-local martingale.

Then, by Cohen and Elliott, 2015, Lemma 10.3.9.
∫ ·

0 Ms−dUs is a constant. Since M1− >

0 with positive probability2 and

∫ ·

0
Ms−dUs =

 0, t < 1

M1−(e−ξ(1 + g(ξ))− 1), t ≥ 1
,

we conclude that e−ξ (1 + g(ξ)) = 1, for all ξ ≥ 0.

The goal of each trader is to maximize expected utility over a random horizon τ,
which is an F -measurable exponential random variable with rate λ > 0, independent
of both F∞ and θ (hence of the bankruptcy time τA). This random horizon models
a trader with an open-ended contract, whose mandate is to maximize profits in the
long-term. The arrival rate λ summarizes both the traders’ impatience and the likeli-
hood that business may end for exogenous reasons (that is, independently of traders’
performance).

A trader’s attitude to risk is represented by a utility function of power type

Ui(xi) =
x1−γi

i
1 − γi

, with 0 < γi < 1.

In particular, the relative risk aversion parameter γi is below one, so that the utility is
finite also upon bankruptcy (xi = 0), and the problem is nontrivial. If it were greater

2In (2.3.1) all quantities except the indicator function are strictly positive; and P(τA ≥ 1) > 0 because,

in view of (2.2.3), 0 < P
(

Aξ
1 < θ

)
≤ P

(
∩ε∈(0,1){A1−ε < θ}

)
= P

(
∩ε∈(0,1){τA > 1 − ε}

)
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Chapter 2. A Model of Rogue Trading

or equal to one, then zero wealth would be completely unacceptable (U(0) = −∞) and
fraud would disappear. In fact, as shown below (Remark 3.5.3), fraud does vanish as
γi converges to one.

As anticipated in the description, an important implication of this model is that a
rational and strictly risk-averse trader abstains from fraud if no other trader is present.
Its significance is to confirm that in this model fraud stems from the ability to share
losses but not gains, hence disappears when such sharing disappears. (Note that for
this result the assumption of an exponential horizon, made in the rest of the paper, can
be dropped.)

Proposition 2.3.2 (No fraud for N = 1). Let N = 1, κ ≥ 0 and τ1 be an F -measurable, a.s.
finite random horizon (independent of F∞ and θ) such that E

[
e((1−γ1)(µ1−γ1σ2

1 /2)−κ)τ1
]
< ∞.

If the sole trader maximizes
E
[
e−κτ1U1(X1,x1

τ1
)
]

over all fraud processes A1 ∈ A, then A1,⋆ is optimal if and only if A1,⋆
t = 0 a.s. for any t ≥ 0

such that P (τ1 ≥ t) > 0. In particular:

(i) If τ1 is unbounded, then A1,⋆
t = 0 a.s. for all t ≥ 0.

(ii) If τ1 ≤ T1 a.s. for some T1 > 0, then A1,⋆
T1
−
= 0. If P

(
τ1 = T1) > 0, then also A1,⋆

T1 = 0
a.s.

Proof. By Lemma 2.1.1, trader 1’s wealth has the expression

X1,x1
t = 1{t<τA}x1eA1

t +(µ1−σ2
1 /2)t+σ1B1

t , t ≥ 0.

Then, by Lemma 2.2.3, it follows that

E
[
U1(X1,x1

t )|Ft

]
= E

[
1{t<τA}U1(Y1,x1

t )|Ft

]
= e−A1

t U1(Y1,x1
t )

=
x1−γ1

1
1 − γ1

e−γ1 A1
t +(1−γ1)((µ1−σ2

i /2)t+σ1B1
t )

≤
x1−γ1

1
1 − γ1

e(1−γ1)((µ1−σ2
i /2)t+σ1B1

t ).

Therefore, by the tower property of conditional expectation,

E
[
U1(X1,x1

t )
]
≤

x1−γ1
1

1 − γ1
e(1−γ1)(µ1−γ1σ2

1 /2)t (2.3.2)

and

E
[
U1(X1,x1

t )
]
=

x1−γ1
1

1 − γ1
e(1−γ1)(µ1−γ1σ2

1 /2)t if and only if At = 0 a.s.. (2.3.3)
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2.3. Absence of moral hazard

Let Pτ1 be the law of τ1, i.e. Pτ1(U) = P(τ1 ∈ U) for any τ1-measurable set U ⊂ R+.
Then, by the law of total probability and the independence of τ1 from B and θ,

E
[
e−κτ1U1(X1,x1

τ1
)
]
=
∫ ∞

0
E
[
e−κτ1U1(X1,x1

τ1
)|τ1 = t

]
dPτ1(dt)

=
∫ ∞

0
e−κtE

[
U1(X1,x1

t )
]

dPτ1(dt). (2.3.4)

Thus, (2.3.2) implies that

E
[
e−κτ1U1(X1,x1

τ1
)
]
≤

x1−γ1
1

1 − γ1

∫ ∞

0
e((1−γ1)(µ1−γ1σ2

1 /2)−κ)tPτ1(dt)

=
x1−γ1

1
1 − γ1

E
[
e((1−γ1)(µ1−γ1σ2

1 /2)−κ)τ1
]

(2.3.5)

and, due to (2.3.3) and (2.3.4), the equality

E
[
e−κτ1U1(X1,x1

τ1
)
]
=

x1−γ1
1

1 − γ1
E
[
e((1−γ1)(µ1−γ1σ2

1 /2)−κ)τ1
]

holds if and only if P
(

A1
t = 0

)
= 1 for all t > 0 for which P (τ1 ≥ t) > 0. (Sup-

pose, by contradiction, that there exists some t0 ≥ 0 for which P (τ1 ≥ t0) > 0, but
P
(

A1
t0
> 0

)
> 0. Because A1 is non-decreasing a.s., for all t ≥ t0, {A1

t ≥ A1
t0
} is an

event of probability one, and (2.3.3) implies that

E
[
U1(X1,x1

t )
]
<

x1−γ1
1

1 − γ1
e(1−γ1)(µ1−γ1σ2

1 /2)t, t ≥ t0,

and since P (τ1 ≥ t0) > 0, we have upon integration (cf. (2.3.4)) indeed strict inequal-
ity in (2.3.5).)

Note that this proposition fails if N ≥ 2 because the coupling term YS,x
t− of (2.1.2)

rescinds the martingale property (Proposition 2.3.1) for each trader’s wealth in the
absence of drift (µi = 0). For example, if all but the i-th trader abstain from fraud,
then Xi,x can become a sub-martingale if the i-th trader cheats: in this case, the wealth
processes of other traders become super-martingales as they share the bankruptcy risk
from the i-th trader action. As shown in Section 3, engaging in fraud may be optimal
depending on traders’ shares of capital, risk-aversions, drifts, and volatilities.
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Chapter 2. A Model of Rogue Trading

2.4 Supplements

Here we recall the definition of the stochastic exponential (cf. Jacod and Shiryaev,
2013, Eq. I.4.62) for general semimartingales:

Definition 2.4.1 (Stochastic exponential). For any R-valued semimartingale S, the stochas-
tic exponential of S is the process

E(S)t := exp
(

St − S0 −
1
2
[Sc]t

)
∏

0≤s≤t
e−∆Ss (1 + ∆Ss) t ≥ 0

where E(S)0− = 1 and Sc denotes the continuous part of S.

All stochastic exponentials in this thesis are P-a.s. strictly positive because the
jump sizes are bounded away from −1 (cf. Jacod and Shiryaev, 2013, Theorem I.4.61
(c). For finite-variation jumps (as in this paper), note that

St = Sc
t + ∑

0≤s≤t
∆Ss,

with Sc
0− = 0, therefore the stochastic exponential simplifies to

E(S)t = exp
(

Sc
t −

1
2
[Sc]t

)
∏

0≤s≤t
(1 + ∆Ss) .
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Chapter 3

Nash Equilibrium

While the presentation in the previous section considered an arbitrary number N of
traders, the main result in this section focuses on two traders to simplify both the ex-
position and the proofs.1 Thus, henceforth N = 2 and, for clarity, the indexes {a, b} re-
place {1, 2} to identify traders. The wealth processes are denoted by either Xx(Aa, Ab)

or Xx (respectively, Yx(Aa, Ab) or Yx), depending on the need to specify the fraud pro-
cess A = (Aa, Ab) in context.

3.1 Preliminary results for value functions

For any i, j ∈ {a, b} such that i ̸= j (henceforth abbreviated as ‘for any i ̸= j ∈ {a, b}’),
the goal of trader i is to maximize expected utility on a random horizon τ i.e.,

Ji(x; Ai, Aj) := E
[
e−κτUi

(
Xi,x

τ (Ai, Aj)
)]

(3.1.1)

over any Ai ∈ A, where

Ui(xi) =
x1−γi

i
1 − γi

with 0 < γi < 1.

Here κ ≥ 0 is the discount rate and the random horizon τ is independent of F and θ,
and exponentially distributed with rate λ (meaning that 1

λ represents traders’ average
horizon or, equivalently, λ is their time-preference or impatience rate). Let thus

Vi(x; Aj) := sup
Ai∈A

Ji(x; Ai, Aj)

be the value function for i-th trader given trader j’s fraud process Aj and initial wealth
x ∈ R2

+.
The next assumption stands throughout the paper, which is required to ensure that

the optimization problem is well-posed: the sum of the impatience rate λ and the dis-
count rate κ needs to be large enough in relation to risk aversion and skill, so that the

1A model with N traders implies that relative shares of capital follow a N − 1 dimensional diffusion,
which is considerably simpler in one dimension.
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Chapter 3. Nash Equilibrium

value function remains finite. This parameter restriction depends only on minimum
risk aversion and maximum skill. If the impatience rate is unrealistically too small,
then the value functions would blow up with only the legitimate investment.

Assumption 3.1.1. Let λκ = κ + λ, λκ > (1 − γa ∧ γb) (µa ∨ µb).

As shown in the next result, the p-moment for 0 < p < 1 of firm’s wealth, which
then implies traders’ wealth, are finite.

Lemma 3.1.2. For any p ∈ (0, 1) and t ≥ 0,

E
[(

XS,x
t

)p]
≤
(

N

∑
k=1

xk

)p

ept maxk∈{1,...,N} µk . (3.1.2)

Proof. Using the expression of YS,x as in (2.1.4), since the covariation between the terms
inside E(·) in (2.1.4) is zero, by Cohen and Elliott, 2015, Corollary 15.1.9, it follows that

YS,x
t =

(
N

∑
k=1

xk

)
E
(

ÃS
·

)
t
E
(

N

∑
k=1

µk

∫ ·

0

Yk,x
s

YS,x
s

ds

)
t

E
(

N

∑
k=1

σk

∫ ·

0

Yk,x
s

YS,x
s

dBk
s

)
t

and, upon rearranging and estimating terms,

YS,x
t E

(
ÃS
·

)−1

t
=

(
N

∑
k=1

xk

)
E
(

N

∑
k=1

µk

∫ ·

0

Yk,x
s

YS,x
s

ds

)
t

E
(

N

∑
k=1

σk

∫ ·

0

Yk,x
s

YS,x
s

dBk
s

)
t

≤
(

N

∑
k=1

xk

)
E
((

max
k∈{1,...,N}

µk

) N

∑
k=1

∫ ·

0

Yk,x
s

YS,x
s

ds

)
t

E
(

N

∑
k=1

σk

∫ ·

0

Yk,x
s

YS,x
s

dBk
s

)
t

=

(
N

∑
k=1

xk

)
e(maxk∈{1,...,N} µk)tE

(
N

∑
k=1

σk

∫ ·

0

Yk,x
s

YS,x
s

dBk
s

)
t

. (3.1.3)

For any k ∈ {1, . . . , N} and any t ≥ 0, as

exp

σ2
k

2

∫ t

0

(
Yk,x

s

YS,x
s

)2

ds

 ≤ exp

(
σ2

k
2

t

)
< ∞

a.s. so the Novikov’s criterion (Revuz and Yor, 2013, Corollary 1.16) holds and hence,

E
(

N

∑
k=1

σk

∫ ·

0

Yk,x
s

YS,x
s

dBk
s

)
t≥0

is a true martingale. Taking expectation on both sides of (3.1.3) yields

E

[
YS,x

t E
(

ÃS
·

)−1

t

]
≤
(

N

∑
k=1

xk

)
e(maxk∈{1,...,N} µk)t. (3.1.4)
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The stochastic exponential E(ÃS)t satisfies

E(ÃS)t = eÃS
t ∏

0≤s≤t
(1 + ∆ÃS

s )e
−∆ÃS

s

= eAS,c
t ∏

0≤s≤t

(
1 +

N

∑
k=1

(
e∆Ak

s − 1
))

≤ eAS,c
t ∏

0≤s≤t
e∑N

k=1 ∆Ak
s = eAS

t , (3.1.5)

where the inequality (3.1.5) follows from e∑N
k=1 yk − 1 ≥ ∑N

k=1(e
yk − 1) for any

(y1, . . . , yN) in RN
+ . Note that the equality of (3.1.5) is strict if and only if the fraud

processes (A1, . . . , AN) satisfy

P
(

∆Ai
s∆Aj

s = 0
)
= 1, 0 ≤ s ≤ t, for all i ̸= j ∈ {1, . . . , N}. (3.1.6)

By Lemma 2.2.3 (i), for any t ≥ 0

E
[

XS,x
t

]
= E

[
1{t<τA}YS,x

t

]
= E

[
YS,x

t E
[
1{t<τA}|Ft

]]
= E

[
e−AS

t YS,x
t

]
. (3.1.7)

Therefore, by the estimate (3.1.5),

E
[

XS,x
t

]
≤ E

[
YS,x

t E
(

ÃS
·

)−1

t

]
(3.1.8)

and note that the strict equality holds if and only if condition (3.1.6) holds.
Finally, it follows by Jensen’s inequality, (3.1.8) and (3.1.4) that for any 0 < p ≤ 1,

E
[(

XS,x
t

)p]
≤
(

E
[

XS,x
t

])p
≤
(

N

∑
k=1

xk

)p

ept maxk∈{1,...,N} µk .

The next result reveals several properties of the reward functional Ji and the value
function Vi. Note that the upper-bound of the value function (Lemma 3.1.3 (iii)) fol-
lows by a direct application of Lemma 3.1.2.

Lemma 3.1.3. For any i ̸= j ∈ {a, b}, x ∈ R2
+ and (Ai, Aj) ∈ A2,

(i) Ji(x; Ai, Aj) = λE

[∫ ∞

0
e−λκ t−AS

t Ui(Yi,x
t (Ai, Aj))dt

]
.

(ii) For any c > 0, Ji(cx; Ai, Aj) = c1−γi Ji(x; Ai, Aj).

(iii) 0 < Vi(x; Aj) ≤ λUi (xa + xb)

λκ − (1 − γi)(µa ∨ µb)
.

Proof of Lemma 3.1.3. By the independence between τ and F∞ ∨ σ(θ), the tower prop-
erty of the conditional expectation, and Lemma 2.2.3, it follows that for any i ̸= j ∈
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{a, b} and any Ai, Aj ∈ A,

E
[
e−κτUi

(
Xi,x

τ (Ai, Aj)
)]

= E
[
E
[
e−κτUi

(
Xi,x

τ (Ai, Aj)
)
|F∞ ∨ σ(θ)

]]
= E

[∫ ∞

0
λe−λκ tUi(Xi,x

t (Ai, Aj))dt
]

= λE

[∫ ∞

0
e−λκ tE

[
1{t<τA}|Ft

]
Ui(Yi,x

t (Ai, Aj))dt
]

= λE

[∫ ∞

0
e−λκ t−AS

t Ui(Yi,x
t (Ai, Aj))dt

]
which proves (i).

Furthermore, the scale-invariance (ii) is an immediate result of Yi,cx and cYi,x being
indistinguishable (implied by Lemma 2.1.1 (ii)).

Finally, Tonelli’s theorem and Lemma 3.1.2 yield

Ji(x; Ai, Aj) =
λ

1 − γi

∫ ∞

0
e−λκ tE

[(
Xi,x

t (Ai, Aj)
)1−γi

]
dt

≤ λ (xa + xb)
1−γi

1 − γi

∫ ∞

0
e−λκ t+(1−γi)(µa∨µb)tdt

=
λUi (xa + xb)

λκ − (1 − γi)(µa ∨ µb)
.

Taking the supremum over Ai ∈ A, the proof of (iii) follows.

By Lemma 3.1.3 (i), we take the approach of focusing on the pre-bankruptcy wealth
Yx as the state processes of the optimization problem; By Lemma 3.1.3 (ii), we exploit
the scale-invariance of the value function to reduce the resulting Hamilton-Jacobi-
Bellman (HJB) equations to ordinary differential equations (see Section 3.5.1 for the
derivation and simplification of the HJB equations).

3.2 Definition of Nash equilibrium

In section 2 we have not specified the information a trader can act on; now we intro-
duce an information structure as follows: For any i ̸= j ∈ {a, b}, at time t, trader i acts
by the path of her own wealth s 7→ Yi,x

s for all s ∈ [0, t), her colleague trader j’s path
of wealth s 7→ Y j,x

s for all s ∈ [0, t] (so that trader i can respond to trader j’s instant
wealth change ∆Y j,x

t ) and lastly the path of her own fraud t 7→ Ai
s for all s ∈ [0, t).

To be more formal, we first introduce some notation. For t ≥ 0, let D+ ([0, t]) (resp.
D+ ([0, t))) denote the set of R+-valued càdlàg functions on [0, t] (resp. [0, t)) with
left-limit at t = 0 valued in R+. Analogously, let D↑ ([0, t]) (resp. D↑ ([0, t))) be the
set of [0,+∞)-valued non-decreasing, right-continuous functions on [0, t] (resp. [0, t))
with left-limit of 0 at time 0. For any process Z = (Zt)t≥0, the processes Z[0,t), Z[0,t]
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3.2. Definition of Nash equilibrium

denote the restrictions of the paths of Z, to the interval [0, t) and [0, t], respectively,
with the left-limit of each at 0.

To construct Nash equilibrium of closed-loop form, we consider a special class of
fraud strategies which constitute a trader’s responses to the fraudulent activities of
the other trader, depending on the latter only through the wealth of both traders and
one’s own strategy:

Definition 3.2.1 (Responses via wealth observation). Let i ̸= j ∈ {a, b}. The set Λi is
the collection of response maps Ψ = (Ψt)t≥0 which are, for any t ≥ 0, measurable maps of the
form

Ψt : D+ ([0, t))×D+ ([0, t])×D↑ ([0, t)) → [0, ∞)

such that for any x = (xi, xj) ∈ R2
+ and any Aj ∈ A there exists a unique Ai ∈ A satisfying

Ai
t = Ψt

(
Yi,x
[0,t), Y j,x

[0,t], Ai
[0,t)

)
, t ≥ 0, P − a.s., (3.2.1)

where (Yi,x, Y j,x) is the pre-bankruptcy wealth associated with (Ai, Aj).2

We are ready to define Nash equilibria in the context of this paper:3

Definition 3.2.2 (Nash equilibrium). A pair (Ψ⋆,a, Ψ⋆,b) ∈ (Λa, Λb) is called Nash equi-
librium if for any x ∈ R2

+ there exists a unique pair (Aa,⋆, Ab,⋆) ∈ A2 such that for any
i ̸= j ∈ {a, b},

(i) for any t ≥ 0, P-almost surely, Ai,⋆
t = Ψ⋆,i

t

(
Yi,x,⋆
[0,t) , Y j,x,⋆

[0,t] , Ai,⋆
[0,t)

)
, where (Ya,x,⋆, Yb,x,⋆)

denotes the wealth associated with (Aa,⋆, Ab,⋆).

(ii) non-cooperative optimality holds, that is, for any Ai ∈ A, the response Aj satisfying
(3.2.1) with Ψj = Ψ⋆,j forces Ai to be sub-optimal in that

Ji
(

x; Ai, Aj
)
≤ Ji

(
x; Ai,⋆, Aj,⋆

)
. (3.2.2)

We call the pair (Aa,⋆, Ab,⋆) equilibrium fraud processes.

Remark 3.2.3. Although the readers may be familiar with the popular notion of Nash equilib-
rium, it is important that a few points to be clarified:

a A Nash equilbrium (Ψ⋆,a, Ψ⋆,b) ∈ (Λa, Λb) does not necessarily constitute best-
response maps: For any i ̸= j ∈ {a, b}, for any Ai ∈ A, it does not in general imply
that

J j
(

x; Aj,′ , Ai
)
= sup

Aj∈A
J j
(

x; Aj, Ai
)

, (3.2.3)

2According to Lemma 2.1.1 (i), (Yi,x, Y j,x) is the unique strong solution to the SDE (2.1.2) for the given
pair of fraud processes (Aa, Ab) and initial wealth x ∈ R2

+.
3See Carmona, 2016 for an overview of Nash equilibria in stochastic settings with absolute continuous

type controls.
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where Aj,′ satisfying (3.2.1) with Ψj = Ψ⋆,j. Put differently, the response Ψ⋆,j of trader
j does not have to be optimal in the sense of (3.2.3), but merely enough to deter trader i
from deviating from Ai,⋆. Note that if trader i adopts the equilibrium fraud process, i.e.
Ai = Ai,⋆, then clearly (3.2.3) holds due to condition (ii) in definition 3.2.2.

b Furthermore, since the ‘deviating’ fraud processes Ai ∈ A in condition (ii) in Definition
3.2.2 are not restricted to any other form, condition (ii) is stronger than the alternative:

• For any Ψi ∈ Λi such that there exists a unique tuple (Ai, Aj, Yx) with Yx being
the unique strong solution to the SDE (2.1.2) and Ai

· = Ψi
·

(
Yi,x
[0,·), Y j,x

[0,·], Ai
[0,·)

)
∈

A and Aj
· = Ψj,⋆

·
(

Y j,x
[0,·), Yi,x

[0,·], Aj
[0,·)

)
∈ A, Ji (x; Ai, Aj) ≤ Ji (x; Ai,⋆, Aj,⋆).

In other words, given trader i’s inference of trader j’s strategy Ψj, trader i chooses only
among the strategies that lead to the existence of a joint fraud process. Most importantly,
condition (ii) implies a stronger Nash equilibrium in the sense that even if trader i can
observe trader j’s fraud, i.e. Ai is of the form Ai

· = Ψ·
(

Yi,x
[0,·), Y j,x

[0,·], Ai
[0,·), Aj

[0,·)

)
for

some mapping Ψ, she does not need to observe the other trader’s fraud action to execute
her own strategy, as her optimal response Ψi ∈ Λi to trader j’s strategy Ψj ∈ Λj does
not depend on trader j’s fraud.

c Traders realistically cannot have the perfect knowledge of each other’s investment skill
represented by µi and σi and the level of risk-aversion, but this does not prevent each
other from guessing them and deriving a Nash equilibrium in their own perspective and
then executing their equilibrium strategies respectively. Although the accuracy of such
estimation can be wildly wrong: A newly joined trader may estimate the existing trader’s
skill more accurately by observing the latter’s past performance, than the existing trader
guessing that of the newly joined trader by only looking at her/his resume. Section 4.2
models skill estimation with binomial distribution.

d Unlike in other definitions of Nash equilibrium (cf. Carmona, 2016, Definition 5.2),
where the sub-optimal condition (3.2.2) would be of the form

Ji
(

x; Ai, Aj,⋆
)
≤ Ji

(
x; Ai,⋆, Aj,⋆

)
for all Ai ∈ A, (3.2.4)

we instead drop the superscript ‘⋆’ for trader j’s fraud process Aj in the left-hand side
of (3.2.4). This is because the star symbol merely represents the equilibrium tuple
(Yx,⋆(Ai,⋆, Aj,⋆), Ai,⋆, Aj,⋆), where Aj,⋆

t = Ψ⋆,j
t

(
Y j,x,⋆
[0,t) , Yi,x,⋆

[0,t] , Aj,⋆
[0,t)

)
. When trader i

deviates with some other fraud process Ai ∈ A, the resulting tuple (Yx(Ai, Aj), Ai, Aj)

is not indistinguishable with (Yx,⋆(Ai,⋆, Aj,⋆), Ai,⋆, Aj,⋆), although trader j’s strategy
Ψ⋆,j remains unchanged.
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3.3. Share of wealth and Skorokhod reflection problem

3.3 Share of wealth and Skorokhod reflection problem

To rigorously define the behavior of each trader cheating as little as necessary so as to
keep the personal share of wealth above a certain threshold, it is necessary to examine
the processes of share of wealth and then recall the notion of Skorokhod reflection.

For any x = (xa, xb) ∈ R2
+ and any i ∈ {a, b}, define ri(x) = xi

xa+xb
, then ri(Yx

t ) is

trader i’s share of the firm’s capital at time t. Let W i,wi
t (Ai, Aj) = ri

(
Yx

t (Ai, Aj)
)

for
any t ≥ 0 with W i,wi

0− (Ai, Aj) = ri(x) = wi. For any i ̸= j ∈ {a, b}, define the coefficient
functions (of a single variable)

b̄i(w) := w(1 − w)
(

σ2
j (1 − w)− σ2

i w + µi − µj

)
, (3.3.1)

σ̄i(w) :=

 (σaw(1 − w),−σbw(1 − w)) if i = a,

(−σaw(1 − w), σbw(1 − w)) if i = b,
(3.3.2)

respectively. Introduce also the processes Q̃i
t = Ai,c

t +∑0≤s≤t qi(∆Ãs) where qi : R2
+ →

R+ is defined as qi(a1, a2) = ai
1+a1+a2

. Next result provides the identification of the
wealth share W i,w and the SDE (3.3.3).

Lemma 3.3.1. The following statements hold:

(i) For any i ̸= j ∈ {a, b} and x ∈ R2
+, the traders’ pre-bankruptcy wealth shares ri (Yx

· )

is the unique strong solution to the SDE

W i,wi
t = wi +

∫ t

0
b̄i(W i,wi

s )ds +
∫ t

0
σ̄i(W i,wi

s )dBs +
∫
[0,t]

(1 − W i,wi
s− )dQ̃i

s

−
∫
[0,t]

W i,wi
s− dQ̃j

s. (3.3.3)

with wi = ri(x).

(ii) For all t ≥ 0, W i,wi
t ∈ (0, 1) a.s.

Proof. (i): An application of Itô formula shows that the fractions ri (Yx
· ) satisfy the SDE

(3.3.3) and the uniqueness follows by local Lipschitz continuity of its coefficients (cf.
Cohen and Elliott, 2015, Theorem 16.3.11.). Furthermore, the strict positivity of the
pre-bankruptcy wealth Yx (Lemma 2.1.1) proves (ii).

Now we present the Skorokhod reflection problem in the context of a trader’s share
of wealth.

Definition 3.3.2 (Skorokhod reflection). Let i ̸= j ∈ {a, b} and mi ∈ (0, 1). A Ψi,mi ∈ Λi

is the solution of the (one-sided) Skorokhod reflection problem (henceforth SPi
mi+

) if for any
Aj ∈ A and any x ∈ R2

+, the associated pair (Ai, Yx) to Ψi,mi is the unique pair satisfying

(i) mi ≤ W i,wi
t (Ai, Aj) < 1 a.s. for all t ≥ 0, and
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(ii)
∫
[0,∞)

1{
W

i,wi
t (Ai ,Aj)>mi

}dAi
t = 0 a.s..

By (i), W i,wi
t (Ai,⋆, Aj) almost surely does not take values below mi for any t ≥ 0,

while (ii) means that, as Ai,⋆
t increases, W i,wi

t (Ai,⋆, Aj) can reach mi but without spend-
ing any positive amount of time at this point. Clearly, for any i ̸= j ∈ {a, b}, W i,wi

being reflected at mi towards 1 is the same as the other trader’s fraction of wealth
W j,1−wi being reflected at 1 − mi towards 0, because W i,wi and 1 −W j,1−wi are indistin-
guishable. Moreover, the uniqueness of the solution to SPi

mi+
is up to identifying the

same pair (Ai,⋆, Yx).
Per the discussion of the fraud strategy in section 3.2, since trader i at time t acts

by observing the path s 7→ Yi
s for all s ∈ [0, t) and t 7→ Y j

t for all s ∈ [0, t], then she
can act by the path of ‘moment-before trader i’s own jump-fraud share of wealth’ i.e
s 7→ ri

(
Yi,x

s−, Y j,x
s

)
for all s ∈ [0, t], which is almost surely semi-continuous with left

and right limits.
The next statement provides explicit solution to SPi

mi+
and also establishes the con-

dition (i.e. two traders’ respective fraud thresholds cannot cross each other) under
which the individual Skorokhod reflections becomes a two-sided Skorokhod reflec-
tion, which ultimately allows to derive a Nash equilibrium.

Proposition 3.3.3 (Skorokhod reflection problem). Let i ̸= j ∈ {a, b} and mi ∈ (0, 1).
The parameterized functional Ψi,mi ∈ Λi with Ψi,mi

t = Ψi,c,mi
t + Ψi,d,mi

t :(
yi
[0,t), yj

[0,t], ai
[0,t)

)
∈ D+ ([0, t))×D+ ([0, t])×D↑ ([0, t)) → [0, ∞)

given by

Ψi,c,mi
t

(
yi
[0,t), yj

[0,t], ai
[0,t)

)
=

1
1 − mi

(
sup

s∈[0,t]

[
mi − wi−

s + (1 − mi)ai,c
s

+ ∑
0≤u<s

[
mi − wi−

u

]+ ]+
− ∑

0≤s≤t

[
mi − wi−

s

]+)

and

Ψi,d,mi
t

(
yi
[0,t), yj

[0,t], , ai
[0,t)

)
= ∑

0≤s≤t
ln

[
1 +

wi−
s−

1 − mi

[
mi

wi−
s

− 1
]]+

(3.3.4)
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where wi−
t := ri(yi

t−, yj
t) for all t ≥ 0 and ai,c denotes the continuous part of ai, solves SPi

mi+
.

The associated unique fraud process Ai,′
· is: for any t ≥ 0, P-a.s.,

Ai,c,′
t = Ψi,c,mi

t

(
Y j
[0,t), Y j

[0,t], Ai,′
[0,t)

)
,

∆Ai,′
t = ∆Ψi,d,mi

t

(
Y j
[0,t), Y j

[0,t], Ai,′
[0,t)

)
= ln

[
1 +

ri(Yi
t−, Y j

t−)

1 − mi

[
mi

ri(Yi
t−, Y j

t )
− 1

]]+
. (3.3.5)

Furthermore, if ma + mb < 1, then there exists a unique tuple (Yx, Ai,′ , Aj,′) such that
Yi,x is the unique strong solution of the SDE (2.1.2) with Ai,′

· = Ψi,mi·
(

Yi
[0,·], Y j

[0,·], Ai,′
[0,·)

)
and

Aj,′
· = Ψ

i,mj
·
(

Y j
[0,·], Yi

[0,·], Aj,′

[0,·)

)
(known as two-sided Skorokhod reflection problem). In this

case, the expression of ∆Ak,′
t simplifies to 1{t=0}

[
ln
(

1−wk
1−mk

)]+
for all k ∈ {a, b}.

Proof. Fix x ∈ R2
+ and let wi = ri(x). Note that if Ai ≡ 0 then the process(

W i,wi
t (0, Aj)

)
t≥0

with W i,wi
0− (0, Aj) = wi ∈ (0, 1) satisfies

W i,wi
t (0, Aj) = wi +

∫ t

0
b̄i(W i,wi

s (0, Aj))ds +
∫ t

0
σ̄i(W i,wi

s (0, Aj))dBs

−
∫
[0,t]

W i,wi
s− (0, Aj)dĀj

s. (3.3.6)

Slightly generalize the SDE (3.3.6) by adding a process Pi ∈ A: for any wi ∈ (0, 1) and
t ≥ 0,

W i,wi
t (Pi, Aj) = wi +

∫ t

0
b̄i(W i,wi

s (Pi, Aj))ds +
∫ t

0
σ̄i(W i,wi

s (Pi, Aj))dBs

−
∫
[0,t]

W i,wi
s− (Pi, Aj)dĀj

s + Pi
t . (3.3.7)

Note that W i,wi· (Pi, Aj) is not necessarily bounded above by 1 depending on the pro-
cess Pi. By De Angelis and Ferrari (2018, Lemma 2.2.), there exists a unique pair(

W i,w,(Pi,′ , Aj), Pi,′
)

such that W i,w,(Pi,′ , Aj) is the unique strong solution to the SDE

(3.3.7) with Pi,′ ∈ A given by

Pi,′
t = sup

0≤s≤t

[
mi − wi −

∫ t

0
b̄i(W i,wi

s (Pi,′ , Aj))ds −
∫ t

0
σ̄i(W i,wi

s (Pi,′ , Aj))dBs

+
∫
[0,t]

W i,wi
s− (Pi,′ , Aj)dĀj

s

]+
= sup

0≤s≤t

[
mi − W i,wi

s (Pi,′ , Aj) + Pi,′
s

]+
(3.3.8)

a.s. for any t ≥ 0 satisfying
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(i) mi ≤ W i,wi
t (Pi,′ , Aj) < 1 a.s. for any 0 ≤ t < τ1,

(ii)
∫
[0,τ1)

1{
W

i,wi
t (Pi,′ ,Aj)>mi

}dPi,′
t = 0 a.s.,

where the exit time τ1 = inf{t ≥ 0 : W i,wi
t (Pi,′ , Aj) ≥ 1}.

Let Pi,c,′ denote the continuous part of the process Pi,′ . Then there exists a unique
process with continuous path (Ai,c,′

t )t≥0 ∈ A such that

Pi,c,′
t =

∫ t

0
(1 − W i,wi

s (Pi,′ , Aj))dAi,c,′
s (3.3.9)

or equivalently

Ai,c,′
t =

∫ t

0
(1 − W i,wi

s (Pi,′ , Aj))−1dPi,c,′
s

=
∫ t

0

(
1{W

i,wi
s (Pi,′ ,Aj)>mi}

+ 1{W
i,wi
s (Pi,′ ,Aj)=mi}

) (
1 − W i,wi

s (Pi,′ , Aj)
)−1

dPi,c,′
s

=
Pi,c,′

t
1 − mi

, (3.3.10)

where the third equality follows by condition (ii).
Note that for any t ≥ 0, ∆W i,wi

t (Pi,′ , Aj) = ∆Pi,′
t −W i,wi

t− (Pi,′ , Aj)∆Āj
t , a.s. Condition

(ii) implies that if ∆Pi,′
t (ω) > 0 for some ω ∈ Ω, then W i,wi

t (Pi,′ , Aj)(ω) = mi for any
t ∈ [0, τ1), which in turn implies that

∆Pi,′
t (ω) = mi − e−∆Aj

t(ω)W i,wi ,′
t− (Pi,′ , Aj)(ω) > 0.

Otherwise, if ∆Pi,′
t (ω) = 0 for some ω ∈ Ω, then W i,wi

t (Pi,′ , Aj)(ω) ≥ w̃i. Hence,

∆Pi,′
t =

[
mi − e−∆Aj

tW i,wi ,′
t− (Pi,′ , Aj)

]+
(3.3.11)

a.s. for any t ≥ 0.
Let pi,j(ai, aj, w) =

ai(1+aj−w)

(1+aj)(1+ai+aj)
for any (ai, aj, w) ∈ R2

0,+ × (0, 1). Because ai 7→
pi,j(ai, aj, w) is strictly increasing, for any t ≥ 0 there exists a unique random variable
∆Ai,′

t such that

∆Pi,′
t = pi,j

(
∆Ãi,′

t , ∆Ãj
t, W i,wi

t− (Pi,′ , Aj)
)

, (3.3.12)

or, equivalently,

∆Ãi,′
t =

∆Pi,′
t (∆Ãj

t + 1)

1 − ∆Pi,′
t − (∆Ãj

t + 1)−1W i,wi
t− (Pi,′ , Aj)

=
1

1 − mi

[
mie∆Aj

t − W i,wi
t− (Pi,′ , Aj)

]+
(3.3.13)
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where the second equality follows by (3.3.11)..
Defining the process Ãi,′

t = Ai,c,′
t +∑0≤s≤t ∆Ãi,′

s , and substituting (3.3.9) and (3.3.12)
into (3.3.7) shows that (W i,wi

t (Pi,′ , Aj))t≥0 solves the SDE (3.3.3) and hence, we set
W i,wi

t (Ai,′ , Aj) = W i,wi
t (Pi,′ , Aj) for all t ≥ 0. As for any (Ai, Aj) ∈ A2 the solution

to the SDE (3.3.3) with initial data wi ∈ (0, 1) never leaves the interval (0, 1) with
probability 1 (Lemma 3.3.1 (ii)), it follows that τ1 = +∞.

By Lemma 2.1.1 (i) it follows that there exists a unique strong solution Yx(Ai,′ , Aj)

to the SDE (2.1.2), and Lemma 3.3.1 (i) implies that ri

(
Yx
· (Ai,′ , Aj)

)
and W i,wi· (Ai,′ , Aj)

are indistinguishable. Let W i−,wi
t (Ai,′ , Aj) = ri

(
Yi,x

t− , Y j,x
t

)
for all t ≥ 0 and note that

P − a.s.

W i−,wi
t (Ai,′ , Aj) =

Yi,x
t−

Yi,x
t− + Y j,x

t

=
Yi,x

t−

Yi,x
t− + Y j,x

t−
e−∆Aj

t = W i,wi
t− (Ai,′ , Aj)e−∆Aj

t . (3.3.14)

Also, by (3.3.7) it follows that

W i,wi
t− (Ai,′ , Aj)− Pi,′

t− = wi +
∫ t

0
b̄i(W i,wi

s (Ai,′ , Aj))ds +
∫ t

0
σ̄i(W i,wi

s (Ai,′ , Aj))dBs

−
∫
[0,t)

W i,wi
s− (Ai,′ , Aj)dĀj

s, (3.3.15)

and substracting W i,wi
t− (Ai,′ , Aj)∆Āj

t from both sides of (3.3.15), it follows by (3.3.14)
that

W i−,wi
t− (Ai,′ , Aj)− Pi,′

t− = wi +
∫ t

0
b̄i(W i,wi

s (Ai,′ , Aj))ds +
∫ t

0
σ̄i(W i,wi

s (Ai,′ , Aj))dBs

−
∫
[0,t]

W i,wi
s− (Ai,′ , Aj)dĀj

s

= W i,wi
t (Ai,′ , Aj)− Pi,′

t (3.3.16)

a.s. for any t ≥ 0. It follows by substituting (3.3.16) into (3.3.8) that

Pi,′
t = sup

s∈[0,t]

[
mi − W i−,wi

s (Ai,′ , Aj) + Pi,′
s−

]+
a.s., which in turn yields

Pi,c,′
t + ∑

0≤s≤t
∆Pi,′

s = sup
s∈[0,t]

[
mi − W i−,wi

s (Ai,′ , Aj) + Pi,c,′
s + ∑

0≤u<s
∆Pi,′

u

]+
. (3.3.17)

The equality (3.3.14) implies

∆Pi,′
t =

[
mi − W i−,wi ,′

t (Pi,′ , Aj)
]+

(3.3.18)
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and together with (3.3.13) it follows that ∆Ãi,′
t =

W
i−,wi
t− (Ai,′ ,Aj)

1−mi

[
mi

W
i−,wi
t (Ai,′ ,Aj)

− 1
]+

a.s..

To complete the proof, substituting (3.3.10) and (3.3.18) into (3.3.17) yields

Ai,c,′
t = Ψi,c,mi

t

(
Y j
[0,t)(Ai,′ , Aj), Y j

[0,t](Ai,′ , Aj), Ai,′
[0,t)

)
a.s. and by ∆Ãi,′

t = e∆Ai,′
t − 1 it follows that

Ai,d,′
t = Ψi,d,mi

t

(
Y j
[0,t)(Ai,′ , Aj), Y j

[0,t](Ai,′ , Aj), Ai,′
[0,t)

)
.

Concerning the second part of the claim, for any process Pi ∈ A and Pj ∈ A
consider the SDE:

W i,wi
t (Pi, Pj) = wi +

∫ t

0
b̄i(W i,wi

s (Pi, Pj))ds +
∫ t

0
σ̄i(W i,wi

s (Pi, Pj))dBs

+ Pi
t − Pj

t (3.3.19)

By Tanaka, 2002, Theorem 4.1, for any W i,wi
0− (Pi,′ , Pj,′) = wi ∈ (mi, 1−mj), there exists a

unique triplet (W i,wi(Pi,′ , Pj,′), Pi,′ , Pj,′) with continuous paths such that W i,wi(Pi,′ , Pj,⋆)

is the unique strong solution to (3.3.19) (Pi,′ , Pj,′) ∈ A2, and with probability 1,

(a) For any t ≥ 0, mi ≤ W i,wi
t (Pi,′ , Pj,′) < 1 − w̃j,

(b)
∫
[0,∞)

1{
W

i,wi
t (Pi,′ ,Pj,′ )>mi

}dPi,′
t = 0,

(c)
∫
[0,∞)

1{
W

i,wi
t (Pi,′ ,Pj,′ )<1−mj

}dPj,′
t = 0.

Therefore, we can define a unique pair (Ai,c,′ , Aj,c,′) ∈ A2 with continuous paths such
that

Pi,′
t =

∫ t

0
(1 − W i,wi

s (Pi,′ , Pj,′))dAi,c,′
s = (1 − mi)Ai,c,′

t , (3.3.20)

Pj,′
t =

∫ t

0
W i,wi

s (Pi,′ , Pj,′)dAj,c,′
s = (1 − mj)Aj,c,′

t . (3.3.21)

Substituting (3.3.20) and (3.3.21) into (3.3.19) reveals that W i,wi
t (Pi,′ , Pj,′) satisfies the

SDE (3.3.3) with Ak = Ak,c,′ for any k ∈ {a, b}. For wi ∈ (0, 1), define the pro-

cesses Ai,′
t = Ai,′,c

t +
[
ln
(

1−wi
1−mi

)]+
and Aj,′

t = Aj,′,c
t +

[
ln
(

1−wi
mj

)]+
. Note that

(Ai,′
0 , Aj,′

0 ) are the unique functions of wi such that W i,wi
0 (Ai,′ , Aj,′) ∈ [mi, 1 − mj],

Ai,′
0 1

{
W

i,wi
0 (Ai,′ ,Aj,′ )>mi

} = 0 and Aj,′
0 1

{
W

i,wi
0 (Ai,′ ,Aj,′ )<1−mj

} = 0. Together with the prop-

erties (a)–(c),Lemma 2.1.1 (i) and Lemma 3.3.1 (i) it follows by Part (i) of the claim
that

Ai,′
t = Ψi,mi

t

(
Yi
[0,t)(Ai,′ , Aj,′), Y j

[0,t](Ai,′ , Aj,′), Ai,′
[0,t)

)
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3.4. Fraud thresholds

for any i ̸= j ∈ {a, b}. As for any k ∈ {a, b} and any t ≥ 0, ∆Ak,′
t = 0 a.s., the

expressions of (3.3.5) simplifies to 1{t=0}

[
ln
(

1−wk
1−mk

)]+
.

3.4 Fraud thresholds

This section establishes the existence of the fraud thresholds in Nash equilibrium from
the main result (Section 3.5).

For better readability, it is necessary to introduce some notation.

Definition 3.4.1. For any i ̸= j ∈ {a, b}, define the parameter-dependent threshold

ŵi :=
−αi(1 − γi)

γi − αi
, (3.4.1)

where

αi :=
1
σ2

(
ki −

√
k2

i + 2σ2 pi

)
, σ2 := σ2

a + σ2
b ,

pi := λκ − (1 − γi)

(
µj −

γiσ
2
j

2

)
, ki := µj − µi − γiσ

2
j +

σ2

2
.

Furthermore, set

qi := λκ − (1 − γi)

(
µi −

γiσ
2
i

2

)
, ai := 1 − γi − αi,

βi :=
1
σ2

(
ki +

√
k2

i + 2σ2 pi

)
, bi := 1 − γi − βi.

Let ∆ := {(wa, wb) ∈ (0, 1)2 : wa + wb < 1}, for any i ̸= j ∈ {a, b} define Fi : ∆ → R by

Fi(wi, wj) := ai(αi(1 − γi − wi) + γiwi)(wj − bi)

(
wi

1 − wi

)bi
(

wj

1 − wj

)−βi

− bi(βi(1 − γi − wi) + γiwi)(wj − ai)

(
wi

1 − wi

)ai
(

wj

1 − wj

)−αi

+ (ai − bi)(wi(αi + βi − 1)− αiβi)w
γi
j (1 − wj)

1−γi .

Observe that Fi depends on the arrival rate of random horizon and on all of
both traders’ parameters but trader j’s risk-aversion γj. The next result presents the
inequalities of some parameters and identifies the fraud thresholds used in Theo-
rem 3.5.1 below to construct the Nash equilibrium. For any i ̸= j ∈ {a, b}, let
∆̂i =

{
(wi, wj) ∈ (0, 1)2 : wi < min(ŵi, 1 − wj)

}
⊂ ∆.

Lemma 3.4.2 (Existence of thresholds). The following hold for any i ̸= j ∈ {a, b}:
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(i) αi < 0, ai > 1 − γi, βi > 1 − γi, bi < 0 and ŵi ∈ (0, 1 − γi).

(ii) There exists a function f i whose graph satisfies
{
( f i(wj), wj) : wj ∈ (0, 1)

}
⊂ ∆̂i and{

(wi, wj) ∈ ∆ : Fi(wi, wj) = 0
}
=
{
( f i(wj), wj) : wj ∈ (0, 1)

}
. (3.4.2)

(iii) (a) f i is differentiable.

(b) limwj↑1 f i(wj) = 0 and limwj↓0 f i(wj) = ŵi.

(iv) There exists (w̃a, w̃b) ∈ ∆ such that

Fa(w̃a, w̃b) = Fb(w̃b, w̃a) = 0. (3.4.3)

Moreover, such pair (w̃a, w̃b) satisfies w̃k < ŵk for all k ∈ {a, b}.

Proof of Lemma 3.4.2. Starting with (i), Assumption 3.1.1 implies that

pi > (1 − γi)

(
[µi − µj]

+ +
γiσ

2
j

2

)
and qi > (1 − γi)

(
[µj − µi]

+ +
γiσ

2
i

2

)
,

(3.4.4)

and inequality (3.4.4) yields

αi <
1
σ2

(
ki −

√
k2

i + σ2(1 − γi)
(

2[µi − µj]+ + γiσ
2
j

))
< 0, ai > 1 − γi,

βi >
1
σ2

(
ki +

√
k2

i + σ2(1 − γi)
(

2[µi − µj]+ + γiσ
2
j

))
=: β̂i(γi),

ŵi < 1 − γi.

Note that ki also depends on γi. Because (β̂i(γi)− (1 − γi))
′ > 0 for any 0 < γi < 1, it

follows that β̂i(γi)− (1 − γi) ≥ β̂i(0)− 1 ≥ 0, whence βi > 1 − γi and bi < 0.
Proof of (ii): First, show the inclusion ‘⊃’ in (3.4.2). For any wj ∈ (0, 1),

lim
wi↓0

Fi(wi, wj) = lim
wi↓0

αiai(1 − γi)

(
1 − wj

wj

)βi
(

1 − wi

wi

)−bi

(wj − bi) = −∞ (3.4.5)

and

lim
wi↑1−wj

Fi(wi, wj) = −aibi(ai − bi)γi

(
1 − wj

wj

)1−γi

> 0. (3.4.6)

Next, to show that
Fi(ŵi, wj) > 0 for any wj < 1 − ŵi. (3.4.7)
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3.4. Fraud thresholds

decompose Fi as

Fi(ŵi, wj) =
αibi(ai − bi)(

wj
1−wj

)−αi

(1 − αi)(γi − αi)
li(wj), (3.4.8)

where

li(wj) = (1 − wj)(1 − αi)
2
(

wj

1 − wj

)γi+αi

− (1 − γi)
2(ai − wj)

(
γi(1 − αi)

−αi(1 − γi)

)γi+αi

.

Note that
αibi(ai−bi)(

wj
1−wj

)−αi

(1−αi)(γi−αi)
> 0, so sgn

(
Fi(ŵi, wj)

)
= sgn

(
li(wj)

)
. The first and second

derivatives of li are

li
wj
(wj) = (αi − 1)2w−1

j (αi + γi − wj)

(
wj

1 − wj

)γi+αi

+ (1 − γi)
2
(

γi(1 − αi)

−αi(1 − γi)

)γi+αi

,

and

li
wjwj

(wj) = − ai(γi + αi)(αi − 1)2

w2
j (1 − wj)

(
wj

1 − wj

)γi+αi

≥ 0 iff αi + γi ≤ 0. (3.4.9)

Distinguish now the two cases:

(i) If αi + γi ≤ 0, it follows by (3.4.9) that

li
wj
(wj) ≤ li

wj
(1 − ŵi) = −aiγ

−1
i (γi − αi)

2
(

γi(1 − αi)

−αi(1 − γi)

)γi+αi

< 0,

and therefore,

li(wj) > li(1 − ŵi) = ai(1 − γi)(γi − αi)

(
γi(1 − αi)

−αi(1 − γi)

)γi+αi

> 0.

(ii) If αj + γj > 0, then
lim
wj↓0

li(wj) = 0.

The concavity of li (implied by (3.4.9)) in combination with li(1 − ŵi) > 0 yield

li(wj) > 0, wj < 1 − ŵi,

whence (3.4.7) follows.
Due to (3.4.5),–(3.4.7) the intermediate value theorem implies that for any wj ∈

(0, 1), there exist ui ∈ min(ŵi, 1 − wj) such that Fi(ui, wj) = 0. Thus, there exists a
function f i with graph in ∆̂i such that the ‘⊃’ containment relation of (3.4.2) holds.

Next, we prove the ‘⊂’ containment relation of (3.4.2) by first showing that, for
any fixed wj ∈ (0, 1), if ui ∈ (0, min(ŵi, 1 − wj)) is such that Fi(ui, wj) = 0, then
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Fi
wi
(ui, wj) > 0. The equation Fi(ui, wj) = 0 expands to

ai(αi(1 − γi − ui) + γiui)(wj − bi)

(
1 − ui

ui

)−bi
(

1 − wj

wj

)βi

=

− (ai − bi)(ui(αi + βi − 1)− αiβi)w
γi
j (1 − wj)

1−γi

+ bi(βi(1 − γi − ui) + γiui)(wj − ai)

(
ui

1 − ui

)ai
(

wj

1 − wj

)−αi

(3.4.10)

and differentiating Fi over wi yields for any (wi, wj) ∈ ∆

− (1 − wi)wiFi
wi
(wi, wj) =

ai(wj − bi) (γiwi(wi − bi − 1) + biγiαi + (1 − wi)(wi − bi)αi)

(
1 − wi

wi

)−bi
(

1 − wj

wj

)βi

− bi(ai − wj) (γiwi(1 + ai − wi)− aiγiβi − (1 − wi)(wi − ai)βi)

(
wi

1 − wi

)ai
(

wj

1 − wj

)−αi

− (ai − bi)(αi + βi − 1)(1 − wi)wi(1 − wj)
1−γi wγi

j . (3.4.11)

Substituting (3.4.10) into (3.4.11) yields that

sgn
(

∂wi F
i(ui, wj)

)
= sgn

(
ρi(ui, wj)li(ui)

)
,

where

ρi(wi, wj) = −(1 − γi − wi)(ai − wj)

(
wi

1 − wi

)ai
(

wj

1 − wj

)ai

+ (wi − αi)wj,

and
li(wi) = −(1 − γi)αiβi + (αiβi + γi(1 − αi − βi))wi

for any wi ∈
(
0, min(ŵi, 1 − wj)

)
. If αiβi + γi(1 − αi − βi) ≥ 0, then li(ui) > 0; if

αiβi + γi(1 − αi − βi) < 0 then, by the inequality ui < ŵi,

li(ui) >
αi(αi − 1)(1 − γi)γi

γi − αi
> 0.

Hence,
sgn

(
∂wi F

i(ui, wj)
)
= sgn

(
ρi(ui, wj)

)
.

It is clear that ρi(ui, wj) > 0 if wj ≥ ai. Thus, assume wj < ai. Since wj + ui < 1,
wj ≥ ai is satisfied if and only if wj < min{ai, 1 − ui}. Note that

lim
wj↓0

ρi(ui, wj) = 0, (3.4.12)
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and

ρi (ui, min(ai, 1 − ui)) =

 ai(wi − αi) > 0, if ai < 1 − ui

γiai > 0, if ai ≥ 1 − ui

, (3.4.13)

and ρi
wjwj

(ui, wj) has the same sign as

−(ai − 1)ai(1 − γi − ui)(ai + wj)

(
ui

1 − ui

)ai
(

wj

1 − wj

)ai

≤ 0 iff ai ≥ 1. (3.4.14)

If ai ≥ 1, then the concavity of ρi, (3.4.12) and (3.4.13) yield

ρi(ui, wj) ≥
ρi (ui, min{ai, 1 − ui})

min{ai, 1 − ui}
wj > 0.

If ai < 1, then
(

ui
1−wj

)ai
> ui

1−wj
and

(
wj

1−ui

)ai
>

wj
1−ui

give

ρi(ui, wj) > −(1 − γi − ui)(ai − wj)

(
ui

1 − ui

)(
wj

1 − wj

)
+ (ui − αi)wj

=
wjρ̂(ui, wj)

(1 − ui)(1 − wj)
,

where, for any wi ∈
(
0, min(ŵi, 1 − wj)

)
,

ρ̂i(wi, wj) := −wi(1 − γi − wi)(ai − wj) + (1 − wi)(1 − wj)(wi − αi).

Taking the partial derivatives with respect to wi yields

ρ̂i
wi
(ui, wj) = (1 − ai)(2 − γi − 2ui − wj) > 0.

(The inequality follows from ui + wj < 1 and ui < ŵi < 1 − γi.) Thus,

∂wi F
i(ui, wj) > 0 (3.4.15)

for any ui ∈ (0, min(ŵi, 1 − wj)) is such that Fi(ui, wj) = 0. Define f i as follows:

f i(wj) = inf
{

wi ∈
(
0, min(ŵi, 1 − wj)

)
: Fi(wi, wj) = 0

}
,

which is the minimal zero of wi 7→ Fi(wi, wj). Suppose, by contradiction, that there
exist wi > f i(wj) such that Fi(wi, wj) = 0 and let

vi = inf
{

wi ∈
(

f i(wj), min
(
ŵi, 1 − wj

))
: Fi(wi, wj) = 0

}
, (3.4.16)

which is the first zero of wi 7→ Fi(wi, wj) after f i(wj). Then by (3.4.15),
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Fi
wi
( f i(wj), wj) > 0 and Fi

wi
(vi, wj) > 0. By the smoothness of Fi, there exists

ϵ ∈
(

0, vi− f i(wj)
2

)
such that Fi( f i(wj) + ϵ, wj) > 0 and Fi(vi − ϵ, wj) < 0. However,

the intermediate value theorem implies there exists zi ∈ ( f i(wj) + ϵ, vi − ϵ) such that
Fi(zi, wj) = 0, which is impossible in view of definition (3.4.16).

Observe that
(
0, min

(
ŵi, 1 − wj

))
⊂ (0, 1 − wj). To establish the claim, it remains

to show that f i(wj) is the unique solution in the larger domain (0, 1 − wj) such that
Fi( f i(wj), wj) = 0. This facts follows by showing that there does not exist (wi, wj) ∈
∆\∆̂i such that Fi(wi, wj) = 0. Note that ∆\∆̂i =

{
(wi, wj) ∈ ∆ : wi ≥ ŵi

}
. By virtue

of (3.4.7), it suffices to consider wi ∈ (ŵi, 1).
Differentiating Fi with respect to wj reveals that Fi

wj
(wi, wj) has the same sign as

ai(biβi + (1 − wj − βi)wj)((1 − γi − wi)αi + γiwi)

(
1 − wj

wj

)βi
(

1 − wi

wi

)−bi

− bi(aiαi + wj(1 − wj − αi))(γiwi + (1 − γi − wi)βi)

(
wj

1 − wj

)−αi
(

wi

1 − wi

)ai

− (ai − bi)(γ + (1 − 2γi)wj)((αi + βi − 1)wi − αiβi)(1 − wj)
1−γi wγi

j . (3.4.17)

Let (ui, uj) ∈ ∆ be such that Fi(ui, uj) = 0. Substituting Fi(wi, uj) = 0 into (3.4.17)
yields

sgn
(

Fi
wj
(ui, uj)

)
= sgn

(
Gi(ui, uj)

)
, (3.4.18)

where for any (wi, wj) ∈ ∆,

Gi(wi, wj) := (γi + αi)(βi(1 − γi − wi) + γiwi)

− (γi + βi)(αi(1 − γi − wi) + γiwi)

(
1 − wi

wi

)βi−αi
(

1 − wj

wj

)βi−αi

. (3.4.19)

Note that for any wi ∈ (ŵi, 1), αi(1 − γi − wi) + γiwi > 0, and it follows that

sgn
(

Gi
wj
(wi, wj)

)
= sgn(αi(1 − γi − wi) + γiwi) > 0. (3.4.20)

Suppose, by contradiction, that for any fixed wi ∈ (ŵi, 1) there exists uj ∈ (0, 1 − wi)

such that Fi(wi, uj) = 0. Let vj be the smallest uj, i.e.,

vj = inf
{

wj ∈ (0, 1 − wi) : Fi(wi, wj) = 0
}

. (3.4.21)

Then by (3.4.18) and (3.4.20), Fi
wj
(wi, vj) > 0, implying there exists an ϵ ∈ (0, vj) such

that Fi(wi, vj − ϵ) < 0. Thus, as for any wi ∈ (ŵi, 1),

lim
wj↓0

Fi(wi, wj) = +∞,
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there exists an intermediate point zj ∈ (0, vj − ϵ) such that Fi(wi, zj) = 0, which con-
tradicts definition (3.4.21), and shows the non-existence of the solution in ∆\∆̂i, hence
the inclusion in (3.4.2).

Proof of (iii)a: By (3.4.15), it follows by the implicit function theorem that, in the
neighborhood of any point (w0

i , w0
j ) ∈ ∆ solving Fi(w0

i , w0
j ) = 0 with the points

(wi, wj) in this neighborhood satisfying wi < min(ŵi, 1 − wj) , there exists a unique
smooth (in fact, analytic) function f i

0(wj) satisfying f i
0(w

0
j ) = w0

i such that f i
0(wj) ∈(

0, min(ŵi, 1 − wj)
)

and Fi( f i
0(wj), wj) = 0. Suppose, by contradiction, that f i is not

analytic. Then, then there exists w0
j ∈ (0, 1), where the local function f i

0(w
0
j ) ̸= f i(w0

j ).
But this implication contradicts uniqueness, and thus wj 7→ f i(wj) is indeed analytic
on the open domain (0, 1).

Proof of (iii)b: Since 0 < f i(wj) < 1 − wj for all wj ∈ (0, 1), the limit
limwj↑1 f i(wj) = 0 follows. Moreover, for any wi ∈ (0, ŵi),

lim
wj↓0

Fi(wi, wj) = −∞, (3.4.22)

lim
wj↑1−wi

Fi(wi, wj) = −γiaibi(ai − bi)
wi

1 − wi

1−γi
> 0. (3.4.23)

Thus, by the intermediate value theorem, for any wi ∈ (0, ŵi) there exists uj < 1 − wi

such that Fi(wi, uj) = 0 and so there exists a function gi : (0, ŵi) → (0, 1) such that{
(wi, gi(wi)) : wi ∈ (0, ŵi)

}
⊂
{
(wi, wj) ∈ ∆̂i : Fi(wi, wj) = 0

}
.

Property (iii)b yields{
(wi, gi(wi)) : wi ∈ (0, ŵi)

}
⊂
{
( f i(wj), wj) : wj ∈ (0, 1)

}
,

which implies supwj∈(0,1) f i(wj) ≥ ŵi, equivalently,

max
wj(0,1)

f i(wj) ≥ ŵi or lim
wj↓0

f i(wj) ≥ ŵi.

On the other hand, f i(wj) < ŵi for all wj ∈ (0, 1) implies maxwj(0,1) f i(wj) < ŵi and
by the continuity of f i, limwj↓0 f i(wj) ≤ ŵi. Thus, limwj↓0 f i(wj) = ŵi.

Proof of (iv): First we establish the existence of (w̃a, w̃b) ∈ ∆ such that Fa(w̃a, w̃b) =

Fa(w̃b, w̃a) = 0. For any i ̸= j ∈ {a, b}, by (iii)b we extend f i continuously to 0 by
setting f i(0) = limwj↓0 f i(wj) = ŵi and to 1 by setting f i(1) = limwj↑1 f i(wj) = 0.
Let D = (0, 1)2 and define the function H : D̄ → D̄ such that H(wa, wb) :=(

f a(wb), f b(wa)
)
. Property (ii) implies for any i ̸= j ∈ {a, b} and for any wj ∈ [0, 1],

f i(wj) ∈ [0, ŵi] ⊂ [0, 1]. (Therefore, H is well-defined.) Since D̄ is compact and H is
continuous (due to (iii)a), by Brouwer’s fixed point theorem there exists (w̃a, w̃b) ∈ D̄
such that

(
f a(w̃b), f b(w̃a)

)
= (w̃a, w̃b). Next, we show that (w̃a, w̃b) /∈ ∂D. Note that
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Fig. 3.1: Approximation of the implicit curves f a(wb) and f b(wa)
in Lemma 3.4.2 that satisfy Fa ( f a(wb), wb) = 0 for any 0 < wb <
1 (vertical axis) and Fb (wa, f b(wa)

)
= 0 for any 0 < wa < 1

(horizontal axis) such that wa + wb < 1 with parameters γa =
γb = 0.5, µa = µb = 10%, σa = σb = 20% and λκ = 1/3.

∂D = Da,b
1 ∪Db,a

1 ∪Da,b
2 ∪Db,a

2 where

Da,b
1 = {[0, wb] : wb ∈ [0, 1]}, Db,a

1 = {[wa, 0] : wa ∈ [0, 1]},

Da,b
2 = {[1, wb] : wb ∈ [0, 1]}, Db,a

2 = {[wa, 1] : wa ∈ [0, 1]}.

For any i ̸= j ∈ {a, b}, on Di,j
1 , f i ( f j(0)

)
= f i(ŵj) ̸= 0 since f i(wj) ∈ (0, ŵi) for any

wj ∈ (0, 1); and on Di,j
2 , f i ( f j(1)

)
= f i(0) ̸= 1 because f i(0) = ŵi. Hence, (w̃a, w̃b) /∈

∂D and so (w̃a, w̃b) ∈ D. To this end, by (ii) it follows that w̃i = f i(w̃j) < 1 − w̃j for
any i ̸= j ∈ {a, b}, thus, (w̃a, w̃b) ∈ ∆.

To conclude the proof, note that if a pair (w̃a, w̃b) ∈ ∆ is such that Fa(w̃a, w̃b) =

Fa(w̃b, w̃a) = 0, then by (ii), (w̃a, w̃b) =
(

f a(w̃b), f b(w̃a)
)
∈ ∆̂a ∩ ∆̂b, meaning that

w̃k < ŵk for any k ∈ {a, b}.

Figure 3.1 displays the functions f a, f b (identifying the levels sets of Fa and Fb,
respectively) and the solution (w̃a, w̃b) to (3.4.3), where one can observe that f a and f b

satisfy (ii) and (iii). In this case, the pair (w̃a, w̃b) satisfying (iv) is unique.
In the following result, we first obtain some properties of the function Gi (given by

(3.4.19)); then we find that the function f i is strictly decreasing.

Lemma 3.4.3 (Monotonicity of f i). The following statements hold for any i ̸= j ∈ {a, b},
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3.4. Fraud thresholds

(i) If αi < −γi, then

(a) There exists a function gi :
(

0, 1+γi
2

)
→ (0, ŵi) such that

{
(wi, wj) ∈ ∆̂i : Gi(wi, wj) = 0

}
=

{
(gi(wj), wj) : wj ∈

(
0,

1 + γi

2

)}
.

(3.4.24)

(b) For any (wi, wj) ∈ ∆̂i,

Gi(wi, wj)


> 0 if wj ≥ 1+γi

2 , (3.4.25a)

> 0 if wj <
1+γi

2 and wi < gi(wj), (3.4.25b)

< 0 if wj <
1+γi

2 and wi > gi(wj). (3.4.25c)

(c) gi is differentiable and dgi(wj)
dwj

> 0 for all wj ∈
(

0, 1+γi
2

)
.

(d) For any wj ∈
(

0, 1+γi
2

)
, gi(wj) > 1−γi

2 with lim
wj↑

1+γi
2

gi(wj) = 1−γi
2 and

limwj↓0 gi(wj) = ŵi.

(ii) f i is strictly decreasing on (0, 1).

(iii) Denote by f i,−1 the inverse of f i. For any (wi, wj) ∈ ∆̂i,

Fi (wi, wj
)> 0, if wj > f i,−1(wi)

< 0, if wj < f i,−1(wi)
.

Proof. Proof of (i)a and (i)b: Note that αi < −γi if and only if ŵi > 1−γi
2 . A direct

calculation reveals that

lim
wi↓0

Gi(wi, wj) = +∞, (3.4.26)

lim
wi↑ŵi

Gi(wi, wj) = (γi + αi)(βi(1 − γi − wi) + γiwi) < 0 wj ∈ (0, 1 − ŵi) , (3.4.27)

lim
wi↑1−wj

Gi(wi, wj) = γi(αi − βi)(1 + γi − 2wj) < 0 wj ∈
(

1 − ŵi,
1 + γi

2

)
, (3.4.28)

lim
wi↑1−wj

Gi(wi, wj) = γi(αi − βi)(1 + γi − 2wj) ≥ 0 wj ∈
[

1 + γi

2
, 1
)

, (3.4.29)

and Gi has the partial derivative

Gi
wi
(wi, wj) = (αi + γi)(βi + γi)

+ (γi + βi) (αi − γi + (βi − αi) (γiwi + (1 − γi − wi)αi))

(
(1 − wi)(1 − wj)

wiwj

)βi−αi

< 2γi(αi − βi) < 0, (3.4.30)
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Fig. 3.2: The function f i : (0, 1) → (0, ŵi) (Lemma 3.4.2, in blue)
such that Fi ( f i(wj), wj

)
= 0; and the function gi :

(
0, 1+γi

2

)
→

(0, ŵi) (Lemma 3.4.3, in green) such that Gi (gi(wj), wj
)
= 0, with

the domain of each in dashed horizontal lines.

where the inequality follows from wi < 1 − wj and γiwi + (1 − γi − wi)αi < 0 (which,
in turn, follows from wi < w̃i).

Let first wj ≥ (1 + γi)/2: Strict monotonicity (3.4.30) and the limits (3.4.26) and
(3.4.29) of equal sign imply inequality (3.4.25a). Let now wj < (1 + wi)/2. The
map wi 7→ Gi(wi, wj) changes sign on (0, min(ŵi, 1 − wj) due to (3.4.26) and (3.4.27)
resp. (3.4.28). Strict monotonicity (3.4.30) therefore implies the existence of a unique
ui = gi(wj) ∈ (0, min(ŵi, 1 − wj)) such that Gi(ui, wj) = 0, and therefore also the
inequalities (3.4.25b)–(3.4.25c) must hold. This settles both the proof of (i)b and of (i)a.

Proof of (i)c: The differentiability follows by similar arguments as in the proof of
Lemma 3.4.2 (iii)a. To check the monotonicity, note that the implicit function theorem
implies for any wj ∈

(
0, 1+γi

2

)
,

dgi(wj)

dwj
= −

Gi
wj
(wi, wj)

Gi
wi
(wi, wj)

∣∣∣
wi= f i(wj)

.

Checking the partial derivative Gi
wj

and using wi < ŵi it follows that

sgn
(

Gi
wj
(wi, wj)

)
= sgn(γiwi + (1 − γi − wi)αi) < 0,
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3.4. Fraud thresholds

which together with (3.4.30) yields

sgn

(
dgi(wj)

dwj

)
= sgn

(
−

Gi
wj
(wi, wj)

Gi
wi
(wi, wj)

∣∣∣
wi= f i(wj)

)
< 0.

Proof of (i)d: wi =
1−γi

2 satisfies wj < 1 − wi =
1+γi

2 , which implies

Gi
(

1 − γi

2
, wj

)
=

1 − γi

2
(γi + αi)(γi + βi)

(
1 −

(
1 + γi

1 − γi

)βi−αi
(

1 − wj

wj

)βi−αi
)

> 0.

Hence, gi(wj) > 1−γi
2 by the monotonicity of wi 7→ Gi(wi, wj) (see (3.4.30)). To-

gether with the continuity of gi and gi(wj) < min(ŵ, 1 − wj) ((i)a), it follows that

lim
wj↑

1+γi
2

gi(wj) =
1−γi

2 . Finally, as for any wi ∈
(

1−γi
2 , ŵi

)
,

lim
wj↓0

Gi(wi, wj) = +∞,

lim
wj↑1−wi

Gi(wi, wj) = γi(βi − αi)(1 − γi − 2wi) < 0,

and by the intermediate value theorem for any wi ∈
(

1−γi
2 , ŵi

)
there exists uj ∈ (0, 1−

wi) such that Gi(wi, uj) = 0. By the inclusion ⊆ in (i)a, gi(uj) = wi. Because this

statement holds for any wi ∈
(

1−γi
2 , ŵi

)
, also sup

wj∈
(

0, 1+γi
2

) gi(wj) = ŵi. As gi is

strictly bounded from below by ŵi, it follows that limwj↓0 gi(wj) = ŵi.
Proof of (ii): The implicit function theorem yields

d f i(wj)

dwj
= −

Fi
wj
(wi, wj)

Fi
wi
(wi, wj)

∣∣∣
wi= f i(wj)

, (3.4.31)

hence by (3.4.15), (3.4.18) and (3.4.31),

sgn

(
d f i(wj)

dwj

)
= −sgn

(
Gi( f i(wj), wj)

)
. (3.4.32)

Next, to show that f i(wj) is strictly decreasing, distinguish two cases:

(i) αi ≥ γi: Lemma 3.4.2 (i) shows that Gi(wi, wj) > 0 on ∆̂i. As Lemma 3.4.2 (ii)
implies the graph of f i satisfies

{
( f i(wj), wj) : wj ∈ (0, 1)

}
⊂ ∆̂i, by (3.4.32) it

follows that d f i(wj)
dwj

< 0 for all wj ∈ (0, 1).
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(ii) αi < γi: By (3.4.25a), Gi(wi, wj) > 0 on ∆̂i ∩
{
(wi, wj) ∈ ∆̂i : wj ≥ 1+γi

2

}
and by

Lemma 3.4.2 (i) it follows that{
( f i(wj), wj) : wj ∈

(
0,

1 + γi

2

)}
⊂ ∆̂i

⋂{
(wi, wj) ∈ ∆̂i : wj ≥

1 + γi

2

}
.

Hence, by (3.4.32) d f i(wj)
dwj

< 0 for any wj ∈ [ 1+γi
2 , 1). It remains to to check

the monotonicity of f i on the interval (0, 1+γi
2 ) (note that this coincides with the

whole domain of gi).

We proceed by showing zi(wj) := f i(wj)− gi(wj) ≤ 0 for all wj ∈ (0, 1+γi
2 ). Note

that since f i(wj) < 1 − wj for any wj(0, 1), then f i
(

1+γi
2

)
< 1−γi

2 . Then by (i)d,
it follows that

lim
wj↑

1+γi
2

zi(wj) = f i
(

1 + γi

2

)
− lim

wj↑
1+γi

2

gi(wj) < 0. (3.4.33)

Suppose, by contradiction, that there exist vj ∈
(

0, 1+γi
2

)
such that zi(vj) > 0.

Then, the intermediate value theorem implies that there exists wj ∈
(

vj,
1+γi

2

)
such that zi(wj) = 0. Let w∗

j be the first such point, i.e.,

w∗
j = inf

{
wj ∈

(
vj,

1 + γi

2

)
: zi(wj) = 0

}
.

Note that this definition implies

zi(wj) > 0 for any wj ∈
(

vj, w∗
j

)
. (3.4.34)

By the mean value theorem, there exists u∗
j ∈

(
vj, w∗

j

)
such that

dzi(wj)

dwj

∣∣∣
wj=u∗

j

=

(
d f i(wj)

dwj
−

dgi(wj)

dwj

) ∣∣∣
wj=u∗

j

< 0.

Then, by (i)c it follows that

d f i(wj)

dwj

∣∣∣
wj=u∗

j

<
dgi(wj)

dwj

∣∣∣
wj=u∗

j

< 0

and (3.4.32) implies Gi
(

f (u∗
j ), u∗

j

)
> 0, which in turn by (3.4.25b) yields f (u∗

j ) <

gi(u∗
j ), in contradiction to (3.4.34). Hence, zi(wj) ≤ 0 for all wj ∈ (0, 1+γi

2 ).

Next, we show that zi(wj) < 0 almost everywhere (a.e.) on
(

0, 1+γi
2

)
. Sup-

pose, by contradiction, that there exists an interval (a, b) ⊂
(

0, 1+γi
2

)
such that
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3.5. Main result

zi(wj) = 0 for any wj ∈ (a, b) or, equivalently,

f i(wj) = gi(wj) on (a, b). (3.4.35)

By (i)a it follows that Gi( f i(wj), wj) = 0 for any wj ∈ (a, b). Then (3.4.32) yields
that f i is a constant on (a, b), which by (3.4.35) in turn implies gi is a constant on
(a, b), an impossibility due to (i)c. Hence, f i(wj) < gi(wj) almost everywhere on(

0, 1+γi
2

)
. By 3.4.25b and (3.4.32), it follows that d f i(wj)

dwj
< 0 a.e. also on

(
0, 1+γi

2

)
,

completing the proof.

Proof of (iii): The strict monotonicity (ii) shows the inverse function f i,−1 of
f i is well-defined and differentiable. By Lemma 3.4.2 (ii), for any wi ∈ (0, ŵi),
f i,−1(wi) is the unique point in (0, 1 − wi) such that Fi(wi, f i,−1(wi)) = 0. Note that
limwj↓0 Fi(wi, wj) = −∞ and limwj↑1−wi Fi(wi, wj) = −γiaibi(ai − bi)

wi
1−wi

1−γi > 0. Sup-
pose, by contradiction, that there exists

uj ∈
(

0, f i,−1(wi)
) (

resp. uj ∈
(

f i,−1(wi), 1 − wi

))
such that Fi (wi, uj

)
> 0 (resp. Fi (wi, uj

)
< 0). Then, the intermediate value theo-

rem implies that there exists vj ∈ (0, uj) ⊂ (0, f i,−1(wi)) (resp. vj ∈ (uj, 1 − wi) ⊂
( f i,−1(wi), 1 − wi)) such that Fi (wi, vj

)
= 0, contradicting the uniqueness of f i,−1(wi)

which is a zero of the map wj 7→ Fi(wi, wj). Hence, Fi(wi, wj) < 0 for any wj ∈
(0, f i,−1(wi)), and Fi(wi, wj) > 0 for any wj ∈ ( f i,−1(wi), 1 − wi).

Remark 3.4.4. To show uniqueness of the fraud thresholds (w̃a, w̃b), one approach is to check
if f a,−1(wa)− f b(wa) is strictly monotone on [0, ŵa] (or f b,−1(wb)− f a(wb) is strictly mono-
tone on [0, ŵb]). However, differentiating f a,−1(wa)− f b(wa) yields a significantly long ex-
pression which is difficult to be simplified and hence, intractable.

As we have not encountered examples, where uniqueness fails, we conjecture that unique-
ness indeed is a feature of the system of equations (3.4.3). Figure 3.3 demonstrates the curves
f a and f b with varying parameters used in section 4.1, where the thresholds appear to be
unique.

3.5 Main result

Without additional assumptions, this section presents the main results of which the
heuristic derivation and the proofs are deferred to section 3.5.1 and section 3.5.2,

Theorem 3.5.1 (Nash equilibrium). For (w̃a, w̃b) as in Lemma 3.4.2, the pair (Ψa,w̃a , Ψb,w̃b)

is a Nash equilibrium. The corresponding game values satisfy for any i ̸= j ∈ {a, b} and any
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Fig. 3.3: The functions f a (blue) and f b (red) (described in Lemma
3.4.2) satisfying Fa( f a(wb), wb) = 0 and Fb( f b(wa), wa); and the
fraud threshold (w̃a, w̃b) satisfying Fa(w̃a, w̃b) = Fb(w̃b, w̃a) = 0
against trader a’s expected return (upper-left, 0% ≤ µa ≤ 60%),
volatility (upper-right, 0% < σa ≤ 100% ), risk-aversion (bottom-
left, 0.1 < γa < 0.9), and average horizon (bottom-right, 0 <
1/λκ ≤ 20). Other parameters are µa = µb = 10%, σa = σb =
20%, γa = γb = 0.5, wa = 0.5, λκ = 1/3.
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x ∈ R2
+,

Vi(x; Aj,⋆) = λ(xa + xb)
1−γi φi (ri(x)) ,

where

φi(w) =


ci

0(1 − w)−γi , w ∈ (0, w̃i), (3.5.1a)

ci
1wαi(1 − w)ai + ci

2wβi(1 − w)bi +
Ui(w)

qi
w ∈ [w̃i, 1 − w̃j), (3.5.1b)

ci
3w−γi , w ∈ [1 − w̃j, 1), (3.5.1c)

with strictly positive constants

ci
0 =

−aibi(1 − w̃i)
γi Ui(w̃i)

qi ((αi + βi − 1)w̃i − αiβi)
,

ci
1 =

−biw̃
ai
i (1 − w̃i)

−ai(γiw̃i + (1 − γi − w̃i)βi)

(1 − γi)qi(βi − αi) ((αi + βi − 1)w̃i − αiβi)
,

ci
2 =

aiw̃
bi
i (1 − w̃i)

−bi(γiw̃i + (1 − γi − w̃i)αi)

(1 − γi)qi(βi − αi) ((αi + βi − 1)w̃i − αiβi)
,

ci
3 = (1 − w̃j)

γi

(
ci

1(1 − w̃j)
αi w̃ai

j + ci
2(1 − w̃j)

βi w̃bi
j +

Ui(1 − w̃j)

qi

)
.

The equilibrium fraud processes
(

Aa,⋆, Ab,⋆) induced by the pair (Ψa,w̃a , Ψb,w̃b) are
such that: for any i ̸= j ∈ {a, b}, trader i cheats instantly at time 0 if the initial (at
time 0−) fraction of wealth ri(x) is in her fraud-region (0, w̃i), which then brings her
share of wealth immediately up to w̃i. Thereafter, the fraud is committed ‘minimally’
to keep the share of wealth ri(Yx

t ) in trader i’s no-fraud-region [w̃i, 1). As the same
argument applies to trader j, and since trader j’s no-fraud-region [w̃j, 1), in view of
trader i’s wealth share, is (0, 1 − w̃j], then the intersection of both traders’ no-fraud-
regions [w̃i, 1 − w̃j) represents the common-no-fraud-region. Note that (w̃a, w̃b) ∈ ∆
ensures w̃a + w̃b < 1 which in turn guarantees [w̃i, 1 − w̃j) ⊂ (0, 1).

For the purpose of comparative statics, it is useful to consider the case when only
one trader can commit fraud. Indeed, depending on circumstances, access to fraud
may be uneven. For instance, Nick Leeson was able to conceal his unauthorized trades
because he was allowed to settle his own trades (controlling both the front- and the
back-office), a privilege that other traders of the firm did not share. In this regard,
assuming that one of the two traders cannot cheat, the other trader achieves optimality
by a Skorokhod-type strategy (see Definition 3.3.2) as in Nash equilibrium, but with a
different fraud threshold than w̃i:

Theorem 3.5.2 (Solo Rogue Trader). For any i ̸= j ∈ {a, b}, if Aj ≡ 0, then the optimal
fraud process for trader i is Ai,⋆

· = Ψi,ŵi·
(

Yi,x
[0,·), Y j,x

[0,·), Ai,⋆
[0,·)

)
and the corresponding value
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function satisfies

Vi(x; 0) = λ(xa + xb)
1−γi φ̂i(ri(x))

for any x ∈ R2
+, where

φ̂i(w) =


si

0(1 − w)−γi on (0, ŵi), (3.5.2a)

si
1wαi(1 − w)ai +

Ui(w)

qi
on [ŵi, 1), (3.5.2b)

with

si
0 =

ai(1 − ŵi)
γi

qi(ŵi − αi)
Ui(ŵi) > 0 and si

1 =
1 − γi − ŵi

(1 − γi)qi(ŵi − αi)

(
ŵi

1 − ŵi

)ai

> 0.

Remark 3.5.3. Because ŵi > w̃i (Lemma 3.4.2), a sole cheater is less tolerant of decreasing
wealth than if there was another cheater present. The fraud region of trader i is indeed smaller
in the Nash equilibrium, where both cheat as little as possible (Theorem 3.5.1), so as to keep
their proportion of wealth above w̃i. Furthermore, limγi↑1 ŵi = 0 follows by (3.4.1) and, due
to ŵi > w̃i then limγi↑1 w̃i = 0, which shows that fraud is undesirable under log-utility for
both a sole cheater and dual cheaters because bankruptcy becomes totally unacceptable (i.e.
log(0) = −∞).

As shown in figure 3.4, the presence of an additional cheater reduces the value function
of the sole cheater (trader a in this example) across all allocation of initial wealth share from
0% to 100%. Such reduction is most significant when the other trader has much less skin in
the game. Moreover, the value function of the sole cheater rises approximately linearly as the
initial share of wealth increases; the game value in Nash equilibrium climbs at first and reaches
the peak in the fraud-free region, but then declines steadily in the fraud zone of the other trader.

Remark 3.5.4. One may readily check the following inequalities satisfied by the sole cheater
fraud threshold ŵi by viewing it as a function of various parameters.

a The better skill, the higher the threshold: dŵi/dµi > 0 as the time effect of the capital
accumulation prevails.

b The better skill of the other trader or the higher the volatilities, the lower the thresh-
old: dŵi/dµj, dŵi/dσ2

i > 0 and dŵi/dσ2
j > 0 due to the increased frequency of the

threshold being visited.

c Higher risk-aversion lowers threshold: ŵi/dγi < 0 so as to reduce frauds on worry of
the bankruptcy.

d Higher impatience rate increases the threshold: dŵi/dλ > 0 as the cost of waiting
increases.
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Fig. 3.4: Trader a’s game value Va(x; Ab,⋆) (blue), fraud threshold
w̃a (dashed line in canyon), trader b’s fraud threshold in view
of trader a’s wealth share 1 − w̃b (dashed line in purple) as in
Theorem 3.5.1, and value function (red) and fraud threshold ŵa
(dashed line in green) as in Theorem 3.5.2, against the initial share
of wealth of trader a (0% < wa < 100%). Other parameters are
µa = µb = 10%, σa = σb = 20%, γa = γb = 0.5, λ = 1/3,
κ = 10%, xa + xb = (λ + κ)γa−1.
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3.5.1 Heuristic Derivation

By the linearity of the SDE (2.1.2), we conjecture a singular-type Nash equilibrium
in which each trader prevents the wealth process from leaving a region. Let for any
i ̸= j ∈ {a, b}, C j ⊂ R2

+ be an open set and C̄ j := C j ∪ ∂C j its closure in R2
+. Let

Ψj,C j ∈ Λj be such that for any Ai ∈ A the associated pair (Aj,⋆, Yx) to Ψj,C j
is the

unique pair satisfying: P-a.s.,

(i) for any t ≥ 0, Yx
t (Ai, Aj,⋆) ∈ R2

+\C j,

(ii)
∫
[0,∞) 1{Yx

t (Ai ,Aj,⋆)∈∂C j}dAj,⋆
t = 0.

In this way, trader j keeps personal wealth inside the region R2
+\C j at any time t ≥ 0

and for any trader i’s fraud process Ai ∈ A. Moreover, if x ∈ C j, then trader j cheats
instantly so as to bring wealth at time 0 to ∂C j and if the state is at ∂C j trader j cheats
as little as necessary so to keep the wealth process in the interior of R2

+\C j (hence, C̄ j

is the fraud-region of trader j).
Suppose the optimal fraud process Ai,⋆ ∈ A for trader i is such that a.s. for any

t ≥ 0

dAi,⋆
t dAj,⋆

t = 0 (3.5.3)

(which means that Ai,⋆ and Aj,⋆ do not simultaneously increase and we will return to
this point later) and the value function Vi(x; Aj,⋆) is smooth for any x ∈ R2

+. Then for
any x = (xa, xb) ∈ C j, Aj,⋆

0 = Aj,⋆
0 (x) > 0 is such that Yx

0 ∈ ∂C j. By (3.5.3) and Lemma
3.1.3 (i), the game value satisfies, for any x ∈ C j and any 0 ≤ α ≤ Aj,⋆

0 (x)

Vi((xi, xj); Aj,⋆) = e−αE

[
λ
∫ ∞

0
e−λκ t−Ai,⋆

t −Aj,⋆
t Ui

(
Yi,x

t

)
dt
∣∣∣

x = (xi, xj + (xa + xb)(eα − 1))

]
= e−αVi

(
(xi, xj + (xa + xb)(eα − 1)); Aj,⋆

)
.

Since

lim
α↓0

e−αVi ((xi, xj + (xa + xb)(eα − 1)); Aj,⋆)− Vi((xi, xj); Aj,⋆)

α
= 0,

it follows that

(xa + xb)Vi
xj
− Vi = 0 on C j. (3.5.4)
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Define the associated differential operator (this is the infinitesimal generator of the
uncontrolled pre-bankruptcy process Yx(0, 0)),

Lϕ(x) = ∑
k∈{a,b}

µkxk∂xk ϕ(x) +
1
2 ∑

k∈{a,b}
σ2

k x2
k∂2

xkxk
ϕ(x) (3.5.5)

for any ϕ ∈ C2(R2
+). For any x ∈ R2

+\C j, the problem for trader i becomes an optimal
(singular) control problem. Treating the triplet

(
Ai
·, Aj

·, Yx
·

)
as the state process, the

dynamic programming principle (see e.g. Fleming and Soner, 2006, Section VIII.2)
yields the following quasi-variational inequality (QVI):

max
R2

+\C j

{
LVi − λκVi + Ui, (xa + xb)Vi

xi
− Vi

}
= 0 (3.5.6)

and the verification theorems (cf. Carmona, 2016, Theorem 3.18, Fleming and Soner,
2006, Theorem 4.1, Øksendal and Sulem, 2019, Theorem 8.2) suggest that the set

C̄ i =
{

x ∈ R2
+\C j : (xa + xb)Vi

xi
− Vi = 0

}
, (3.5.7)

corresponds to the fraud-region of Ai,⋆, so that the optimal cheating strategy for trader
i is to only cheat in a region C i ⊂ R2

+ and prevent the wealth process from leaving the
region R2

+\C i at any time t ≥ 0. More formally, and similarly to Aj,⋆, Ai,⋆ is such that,
a.s. for any t ≥ 0,

(i) Yx
t (Ai,⋆, Aj,⋆) ∈ R2

+\(C j ∪ C i)

(ii)
∫
[0,∞) 1{Yx

t (Ai,⋆,Aj,⋆)∈∂C i}dAi,⋆
t = 0

Here R2
+\(C j ∪ C i) is the common no-fraud region. Note that Condition (3.5.3) implies

that their fraud-regions do not intersect, that is, C i ∩ C j = ∅.
Substituting (3.5.7) into (3.5.6), it follows that for any x ∈ R2

+\C j

LVi − λκVi + Ui = 0 on R2
+\(C i ∪ C j), (3.5.8)

LVi − λκVi + Ui < 0 on C i, (3.5.9)

(xa + xb)Vi
xi
− Vi < 0 on R2

+\(C i ∪ C j). (3.5.10)

Let Li be the following differential operator acting on φ ∈ C2(R+),

Li φ(w) = (1 − γi)
(

µiw + µj(1 − w)− γi

2
(σ2

i w2 + σ2
j (1 − w)2)

)
φ(w)

+
(

µi − µj + γi(σ
2
j (1 − w)− σ2

i w)
)

w(1 − w)φw(w)

+
σ2

i + σ2
j

2
w2(1 − w)2φww(w).
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Now, conjecture that for both traders k ∈ {a, b}, the fraud regions in a Nash equilib-
rium are of the form

Ck = {x ∈ R2
+ : rk(x) < mk}, (3.5.11)

where mk ∈ (0, 1) such that 0 < ma + mb < 1. In other words, by cheating, traders
prevent their fraction of wealth from going below their critical threshold mk.

The condition ma + mb < 1 is equivalent to Ci ∩ Cj = {x ∈ R2
+ : ri(x) <

mi and ri(x) > 1 − mj} = ∅ (using the equality ri(x) + rj(x) = 1); and this condition
is required because otherwise, there would not exist a corresponding wealth Yx satis-
fying (i) i.e. ri(Yx

t ) ∈ [mi, 1 − mj] a.s. (impossible as mi + mj ≥ 1 and ri(Yx
t ) ∈ (0, 1)

a.s.), which also justifies the postulation (3.5.3).
Hence, the equilibrium fraud processes (Aa,⋆, Ab,⋆) and the pre-bankruptcy wealth

Yx(Aa,⋆, Ab,⋆) together are the associated processes to Ψk,mk which solves SPmk+ for all
k ∈ {a, b} (see Definition 3.3.2). Note that the scale invariance of Ji (Lemma 3.1.3 (ii))
is inherited by the value function i.e. for any c > 0 and any x ∈ R2

+,

Vi(cx; Aj,⋆) = c1−γi Vi(x; Aj,⋆). (3.5.12)

Combining (3.5.12) with Lemma 3.1.3 (i) yield that Vi is of the form

Vi(x; Aj,⋆) = λ(xa + xb)
1−γi φi(ri(x)), (3.5.13)

where φi(w) = Vi((w,1 − w); Aj,⋆) for any w ∈ (0, 1). Let ri(x) = w and substitute
(3.5.13) and (3.5.11) into (3.5.8), (3.5.9), (3.5.7), (3.5.10) and (3.5.4), yielding the HJB
equations

Li φi(w)− λκ φi(w) + Ui(w) = 0 on (mi, 1 − mj), (3.5.14)

Li φi(w)− λκ φi(w) + Ui(w) < 0 on (0, mi), (3.5.15)

(1 − w)φi
w(w)− γi φ

i(w) = 0 on (0, mi), (3.5.16)

(1 − w)φi
w(w)− γi φ

i(w) < 0 on (mi, 1 − mj), (3.5.17)

wφi
w(w) + γi φ

i(w) = 0 on (1 − mj, 1). (3.5.18)

which are the starting point of verification.
Now we seek the candidate solutions to the HJB equations (3.5.14) - (3.5.18). We

start by identifying the solutions to (3.5.16), (3.5.18) and (3.5.14). For any i ̸= j ∈ {a, b},
the unique solutions to the first-order linear ODEs (3.5.16) and (3.5.18) are

φi(w) = ci
0(1 − w)−γi on (0, mi)
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and
φi(w) = ci

3w−γi on (1 − mj, 1)

respectively, for some constants c0, c3 ∈ R to be determined. In order to find the solu-
tion to the inhomogeneous second-order linear ODE (3.5.14), first we find the general
solution to the second-order homogeneous linear ODE:

Li φi(w)− λφi(w) = 0 (3.5.19)

equivalently,
gi

2(w)φi
ww(w) + gi

1(w)φi
w(w) + gi

0(w)φi(w) = 0,

where

gi
2(w) =

σ2

2
w2(1 − w)2,

gi
1(w) =

(
µi − µj + γiσ

2
j − γiσ

2w
)

w(1 − w),

gi
0(w) = (1 − γi)

(
µj −

γiσ
2
j

2
+ (µi − µj + γiσ

2
j )w − γ2σ2

2
w2

)
− λκ.

Using the fact that αi and βi are the roots of quadratic equation

σ2

2
x2 − kix − pi = 0,

one can readily verify that both of the candidates ρi,1(w) := wαi(1−w)ai and ρi,2(w) :=
wβi(1 − w)−bi for any w ∈ (0, 1) solve (3.5.19). Since the Wronskian between ρi,1 and
ρi,2 satisfies

W(ρi,2, ρi,2)(w) = ρi,1(w)ρi,2
w (w)− ρi,1

w (w)ρi,2(w)

= c1c2(αi − βi)wαi+βi−1(1 − w)1−2γi−αi−βi(1 − 2w)

̸= 0

for any w ∈ (0, 1), ρi,1 and ρi,2 are linearly independent. It follows that

ρi(w) = ci
1wαi(1 − w)ai + ci

2wβi(1 − w)−bi

for some constants c1, c2 ∈ R is the general solution to (3.5.19). Next, note that if
neither of the traders engages in fraud, the corresponding reward functional is

Ji(x; 0, 0) = λ(xi + xj)
1−γi

Ui(ri(x))
qi

.
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Factoring out λ(xi + xj)
1−γi then note that Ui(w)

qi
is a particular solution to (3.5.14),

leading to the solution to (3.5.14)

φi(w) = ci
1wαi(1 − w)ai + ci

2wβi(1 − w)−bi +
Ui(w)

qi
.

on the fraud-free region (mi, 1 − mj). To identify the total of 10 unknown constants
ma, mb, ca

0, ca
1, ca

2, ca
3, cb

0, cb
1, cb

2, cb
3, we impose the continuity and smooth pasting condi-

tions at mi and 1 − mj for φi

φi(mi−) = φi(mi+),

φi
w(mi−) = φi

w(mi+),

φi ((1 − mj)−
)
= φi ((1 − mj)+

)
,

φi
w
(
(1 − mj)−

)
= φi

w
(
(1 − mj)+

)
,

which yield 8 equations. In addition, Soner and Shreve, 1989 suggests the twice-
continuous-differentiability of the value function for singular control problem with
two-dimensional Brownian motion. Since given trader j’s fraud strategy of reflecting
the wealth share ri(Yx) at 1−mj, trader i faces an optimal control problem of choosing
her/his fraud threshold mj, so we impose

φi
ww(mi−) = φi

ww(mi+),

mounting to a total of 10 equations. After rearranging the equations, one obtains
the expressions for the constants ci

0-ci
3 in Theorem 3.5.1 and arrives at (ma, mb) solves

Fa(wa, wb) = 0 and Fb(wb, wa) = 0.
The checking of the variational inequalities (3.5.15) and (3.5.17) is rather technical

and is deferred to section 3.5.2.

3.5.2 Verification

In this section, we verify that the functions Vi(x; Aj,⋆) in Theorem 3.5.1 and Vi(x; 0) are
indeed the value functions for the Nash equilibrium and the case of the solo cheater.

The following result establishes the link between the HJB equations (3.5.16)–
(3.5.18) and the optimization problem.

Lemma 3.5.5. Let (ma, mb) ∈ ∆. For any i ̸= j ∈ {a, b} let φi ∈ C1((0, 1)) be an R+-
valued function satisfying (3.5.16)-(3.5.18). For any α ≥ 0 and w ∈ (0, 1), set

f̃ j(α, w) :=
[

ln
(

1 +
1

1 − mj

[
mjeα − (1 − w)

])]+
(3.5.20)
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and

h̃i(α, w) := e−α− f̃ j(α,w)(eα + e f̃ j(α,w) − 1)1−γi φi
(

eα − (1 − w)

eα + e f̃ j(α,w) − 1

)
. (3.5.21)

Then:

(i) f̃ j(α, w) > 0 if and only if one of the following inequalities is satisfied:

(a) w > 1 − mj,

(b) w ≤ 1 − mj and α > ln
(

1−w
mj

)
.

(ii) If (α, w) is such that f̃ j(α, w) > 0 then ∂αh̃i(α, w) < 0.

(iii) For any α ≥ 0 and for all w ∈ (0, 1),

h̃i(α, w)− φi(1 − w) ≤ 0,

and the equality holds for a fixed w if and only if

α = 0, if w ∈ (mi, 1), (3.5.22)

α ≤ ln
(

1 − w
1 − mi

)
, if w ∈ (0, mi]. (3.5.23)

Proof. Proof of (i): We show the equivalent statement, f̃ j(α, w) = 0 if and only if w ≤
1 − mj and α ≤ ln

(
1−w
mj

)
. Note that f̃ j(α, w) = 0 if and only if eα ≤ 1−w

mj
. If eα ≤ 1−w

mj
,

then 1−w
mj

≥ 1 because eα ≥ 1, which, together with eα ≤ 1−w
mj

, implies that α ≤

ln
(

1−w
mj

)
. The converse implication follows from the monotonicity of the exponential,

applied to α ≤ ln
(

1−w
mj

)
.

Proof of (ii): If f̃ j(α, w) > 0, then

eα − (1 − w)

eα + e f̃ j(α,w) − 1
= 1 − mj

and thus h̃i simplifies to

h̃i(α, w) =
1 − (1 − w)e−α

w + (eα − 1)mj

(
1 − mj

eα − (1 − w)

)γi

φi(1 − mj).

Differentiating h̃i with respect to α, and recalling that φi is strictly positive, it follows
that ∂αh̃i(α, w) has the same sign as

gi(α, w) = (1 − w)(w − mj)− e2α(1 + γi)mj + eα
(
2(1 − w)mj − γi(w − mj)

)
.

The inequalities
∂αgi(α, w) ≤ eα

(
−γi(w + mj)− 2wmj

)
< 0,
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and
gi(α, w) ≤ gi(0, w) = −w(γi + mj − (1 − w)) < 0,

implies that ∂αh̃(α, w) < 0.
Proof of (iii): All classical solutions of the linear ODEs (3.5.16) and (3.5.18) are of

the form
C(1 − w)−γi and Dw−γi , C, D ∈ R,

respectively. As φi is positive,

φi =

{
C0(1 − w)−γi for w ∈ (0, mi), (3.5.24a)

C1w−γi for w ∈ (1 − mj, 1), (3.5.24b)

where C0 > 0 and C1 > 0. Distinguish now three cases:

(i) w ∈ (1 − mj, 1): By (i) f̃ i(α, w) > 0 for any α ≥ 0, thus by (ii), h̃i(α, w) ≤ h̃i(0, w)

with equality if and only if α = 0. Thus, in conjunction with (3.5.24b),

h̃i(α, w)− φi (w) ≤ h̃i(0, w)− φi (w)

=

(
1 − mj

w

)γi

φi(1 − mj)− φi(w)

= 0,

where the equality holds if and only if α = 0.

(ii) w ∈
(
mi, 1 − mj

]
: If α > ln

(
1−w
mj

)
, by (i) f̃ i(α, w) > 0. Therefore, by (ii),

∂αh̃i(α, w) < 0 and thus h̃i(α, w) < h̃i
(

ln
(

1−w
mj

)
, w
)

for any α > ln
(

1−w
mj

)
.

If α ≤ ln
(

1−w
mj

)
, then by (i) f i(α, w) = 0, and h̃i reduces to

h̃i(α, w) = e−γiα φi (1 − (1 − w)e−α
)

.

By (3.5.17),

∂αh̃i(α, w) = −γi h̃i(α, w) + e−(1+γi)α(1 − w)φi
w
(
1 − (1 − w)e−α

)
≤ −γi h̃i(α, w) + γie−(1+γi)α(1 − w)φi (1 − (1 − w)e−α

)
= γie−γiα

(
e−α − 1

)
φi (1 − (1 − w)e−α

)
≤ 0,

where equality holds if and only if α = 0. Hence, for any α ≥ 0,

h̃i(α, w)− φi(w) ≤ h̃i (0, w)− φi(w) = 0,

with equality if and only if α = 0.
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(iii) w ∈ (0, mi]: If α > ln
(

1−w
mj

)
, then by (i) and (ii) it follows that h̃i(α, w) <

h̃i
(

ln
(

1−w
mj

)
, w
)

for any α > ln
(

1−w
mj

)
. If α ≤ ln

(
1−w
mj

)
, then a similar ar-

gument as above yields h̃i(α, w) = e−γiα φi (1 − (1 − w)e−α).

If α ∈
(

ln
(

1−w
1−mi

)
, ln
(

1−w
mj

)]
then 1 − (1 − w)e−α ∈ [mj, 1 − mi). By

(3.5.17), it analogously follows that ∂αh̃i(α, w) < 0, thus, h̃i
(

ln
(

1−w
mj

)
, w
)

<

h̃i
(

ln
(

1−w
1−mi

)
, w
)

. If α ≤ ln
(

1−w
1−mi

)
, then 1 − (1 − w)e−α ∈ [1 − mi, 1) and by

(3.5.24a) it follows that,

h̃i(α, w)− φi(w) = e−γiα φi (1 − (1 − w)e−α
)
− φi(w)

= C0e−γiα
(
(1 − w)e−α

)−γi − C0(1 − w)−γi = 0.

Theorem 3.5.6 (Verification). Let (ma, mb) ∈ ∆. For any i ̸= j ∈ {a, b}, let φi ∈
C1([0, 1])∩C2 ((0, 1 − mj)

)
be R+-valued such that φi

w is also Lipschitz continuous on (0, 1)
and satisfies (3.5.14)-(3.5.18). Let ϕk(x) := λ(xa + xb)

1−γk φk(rk(x)) for any x ∈ R2
+ and

k ∈ {a, b}. Then the pair (Ψa,ma , Ψb,mb) is a Nash equilibrium and (ϕa, ϕb) are the corre-
sponding game values, i.e. for any i ̸= j ∈ {a, b}

ϕi(x) = Vi(x; Aj,⋆).

Proof. Let i ̸= j ∈ {a, b}. We first show that

ϕi(x) ≥ sup
Ai∈A

Ji(x; Ai, Aj), x ∈ R2
+. (3.5.25)

where Aj satisfies (3.2.1) with Ψj = Ψj,mj . To this end, extend φi to R by setting
φi(w) := φi(0) for any w < 0 and φi(w) := φi(1) for any w > 1. Let ξ ∈ C∞(R)

be a non-negative function, compactly supported in the interval [−1, 1] and such that∫
R

ξ(x)dx = 1. For any m ≥ 1, let ξm(w) := ξ(mw)
m and define the smooth function

through convolution

φi,m(w) :=
∫

R
φi(y)ξm(w − y)dy.

Since supp(ξm) ⊂ [−1/m, 1/m], for any Lebesgue measurable function h on R, the
value of (h ∗ ξm)(w0) =

∫
R

h(y)ξm(w0 − y)dy depends only on the values of h in
[w0 − 1/m, w0 + 1/m]. Since φi is continuous on R, φi,m converges to φi as m → ∞
uniformly on any compact subsets of R. Moreover, as φi

w ∈ C([0, 1]), also φi,m
w con-

verges to φi
w on any compact subset of R (cf. the argument in Fleming and Soner,

2006, Appendix C). For r > 0, define the disk Dr(x) := {x ∈ R2 : |x| < r} and
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Rm,r := Rm ∩ Dr(0), where

Rm :=
{

x ∈ R2
+ : min{xi, xj} >

1
m

}
.

Define the exit time τm,r := inf{t ≥ 0 : Yx
t /∈ Rm,r} and the function ϕi,m(x) :=

λ(xa + xb)
1−γi φi,m(ri(x)). Applying Itô formula to e−λκ(t∧τm,r)−AS

t∧τm,r ϕi,m(Yx
t∧τm,r

) we
obtain, upon taking expectations (using the abbreviation Yx

t = Yx
t (Ai, Aj))

ϕi,m(x) = E
[
e−λκ(t∧τm,r)−AS

t∧τm,r ϕi,m(Yx
t∧τm,r

)
]

− E

[
λ
∫ t∧τm,r

0
e−λκs−AS

s (Yx,S
s )1−γi

(
Li φi,m(W i,wi

s )− λκ φi,m(W i,wi
s )

)
ds
]

− E

[
λ
∫ t∧τm,r

0
e−λκs−AS

s (Yx,S
s )1−γi

(
(1 − W i,wi

s )φi,m
w (W i,wi

s )− γi φ
i,m(W i,wi

s )
)

dAi,c
s

]
+ E

[
λ
∫ t∧τm,r

0
e−λκs−AS

s (Yx,S
s )1−γi

(
W i,wi

s φi,m
w (W i,wi

s ) + γi φ
i,m(W i,wi

s )
)

dAj,c
s

]
− E

[
λ ∑

0≤s≤t∧τm,r

e−λκs−AS
s−(Yx,S

s− )1−γi
(

e−∆AS
s

(
e∆Ai

s + e∆Aj,⋆
s − 1

)1−γi
φi,m(W i,wi

s )

− φi,m(W i,wi
s− )

)]
, (3.5.26)

where W i,wi
t = ri(Yx

t ) for any t ≥ 0 with W i,wi
0− = ri(x) = wi.

Since Ψj,mj solves SPj
mj+

, then by Proposition 3.3.3 that 0 < W i,wi
t ≤ 1 − mj a.s. for

any t ≥ 0. By the continuity of Li φi on (0, 1 − mj), it follows that limm→∞ Li φi,m(w) =

Li φi(x) for any w ∈ (0, 1 − mj). Also, since φi
w is Lipschitz continuous on (0, 1), for

any r > 0 there exists M > 0 such for any m ∈ N and for any x ∈ Rm,r, |(xi +

xj)Li φi,m(ri(x))| < M. As

lim
m→∞

τm,r = τr := inf
{

t ≥ 0 : Yx
t /∈ R2

+ ∩ Dr(0)
}

,

dominated convergence implies that, with probability one,

lim
m→∞

∫ t∧τm,r

0
e−λκs−AS

s (Yx,S
s )1−γiLi φi

m(W
i,wi
s )ds =

∫ t∧τr

0
e−λκs−AS

s (Yx,S
s )1−γiLi φi(W i,wi

s )ds.

Using the fact that Aj,c increases only at 1−mj and the equality (3.5.18), letting m → ∞
and r → ∞ in (3.5.26) (limr→∞ τr → ∞ a.s. as ∂R2

+ is unattainable for Yx when x ∈ R2
+),
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we obtain

ϕi(x) = E
[
e−λκ t−AS

t ϕi(Yx
t )
]

− E

[
λ
∫ t

0
e−λκs−AS

s (Yx,S
s )1−γi

(
Li φi(W i,wi

s )− λκ φi(W i,wi
s )

)
ds
]

(3.5.27)

− E

[
λ
∫ t

0
e−λκs−AS

s (Yx,S
s )1−γi

(
(1 − W i,wi

s )φi
w(W

i,wi
s )− γi φ

i(W i,wi
s )

)
dAi,c

s

]
(3.5.28)

− E

[
λ ∑

0≤s≤t
e−λκs−AS

s−(Yx,S
s− )1−γi

(
e−∆AS

s

(
e∆Ai

s + e∆Aj,⋆
s − 1

)1−γi
φi(W i,wi

s )

(3.5.29)

− φi(W i,wi
s− )

)]
.

Note that by Lemma 3.3.3 and the equality (3.3.14), ∆Aj
t = f̃ j

(
∆Ai

t, W i,wi
t−

)
a.s., where

f̃ j is given by (3.5.20). Hence, Lemma 3.5.5 (iii) yields

h̃i
(

∆Ai
t, ri(Yx

t )
)
− φi (wi(Yx

t−)) = e−∆AS
t

(
e∆Ai

t + e∆Aj
t − 1

)1−γi
φi (ri(Yx

t ))

− φi (ri(Yx
t−))

≤ 0

a.s. for any t ≥ 0, where h̃i is given by (3.5.21). Together with the HJB equations
(3.5.14)-(3.5.18) and the fact that (xi + xj)

1−γi Ui(ri(x)) = Ui(xi) for any x ∈ R2
+, it

follows that, for any t ≥ 0

ϕi(x) ≥ E
[
λe−λκ t−AS

t (Yx,S
t )1−γi φi(ri(Yx

t ))
]
+ E

[
λ
∫ t

0
e−λκs−AS

s Ui(Yi,x
s )ds

]
. (3.5.30)

Lemma 2.2.3 implies E
[
e−AS

t (Yx,S
t )1−γi

]
= E

[(
1{t<τA}Yx,S

t

)1−γi
]

. Using the bound-

edness of φi, Lemma 3.1.2, (3.1.5) and Jensen’s inequality yield

E
[
e−AS

t (Yx,S
t )1−γi φi(ri(Yx

t ))
]
≤ ME

[(
1{t<τA}Yx,S

t

)1−γi
]

≤ ME
[
1{t<τA}Yx,S

t

]1−γi

≤ M(xi + xj)e(1−γi)t maxk∈{a,b} µk

for some constant M ≥ max0≤w≤1
∣∣φi(w)

∣∣. Assumption 3.1.1 implies that

lim
t→∞

E
[
e−λκ t−AS

t (Yx,S
t )1−γi φi(ri(Yx

t ))
]
= 0.

Letting t → ∞ for (3.5.30), dominated convergence theorem yields (3.5.25).
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Next we improve (3.5.25) by showing that equality indeed holds: If trader i em-
ploys the cheating strategy Ψi,mi· , then by Proposition 3.3.3, mi < ri

(
Yx

t (Ai,⋆, Aj,⋆)
)
<

1 − mj a.s. for almost every t ≥ 0, where Ai,⋆
· = Ψi,mi

(
Yi,x
[0,·), Y j,x

[0,·), Ai,⋆
[0,·)

)
. The process

Ai,c,⋆ increases only when W i,wi is at mi; hence the term (3.5.28) vanishes by (3.5.16).

The jump ∆Ai,⋆
t = 1{t=0}

[
ln
(

1−wi
1−mi

)]+
is nonzero only when ri(x) < mi, and such

jump brings W i,wi
0 to mi, thus by Lemma 3.5.5 (iii) the term (3.5.29) vanishes. There-

fore, using (3.5.14) for the term (3.5.27) equality in (3.5.30) follows.
Finally, letting t converge to infinity yields

ϕi(x) = Ji(x; Ai,⋆, Aj,⋆) = sup
Ai∈A

Ji(x; Ai, Aj).

where Aj satisfies (3.2.1) with Ψj = Ψj,mj .

Lemma 3.5.7. (i) The constants ci
k (k = 0, 1, 2, 3) in Theorem 3.5.1 are strictly positive.

(ii) Let c > 0, w⋆ ∈ (0, ŵi] and suppose f ⋆(w) := c(1 − w)−γi satisfies

Li f ⋆(w⋆)− λκ f ⋆(w⋆) + Ui(w⋆) = 0, w ∈ (0, w⋆]. (3.5.31)

Then Li f ⋆(w)− λκ f ⋆(w) + Ui(w) < 0 for any w ∈ (0, w⋆).

Proof. Proof of (i): First, show that for any w ∈ (0, ŵi], (αi + βi − 1)w − αiβi > 0. If
αi + βi − 1 > 0, then clearly (αi + βi − 1)w − αiβi > 0. If αi + βi − 1 < 0, by the
inequalities w < ŵi and βi > 1 − γi (Lemma 3.4.2 (i)),

(αi + βi − 1)w − αiβi > (αi + βi − 1)ŵi − αiβi

= −αi(1 − αi)(βi − (1 − γi))

γi − αi
> 0. (3.5.32)

Since w̃i < ŵi (Lemma 3.4.2 (iv)), it follows by (3.5.32) that ci
0,ci

1,ci
2 are strictly positive,

which in turn implies ci
3 > 0.

Proof of (ii): For any w ∈ (0, w⋆), Li f ⋆(w)− λκ f ⋆(w) +Ui(w) has the same sign as

l(w) := w1−γi(1 − w)γi − c(1 − γi)

(
pi −

(
σ2

2
− ki

)
w
)

= w1−γi(1 − w)γi − σ2

2
c(1 − γi) ((αi + βi − 1)w − αiβi) . (3.5.33)

The condition 3.5.31 implies l(w⋆) = 0, and

lim
w↓0

l(w) =
1
2

c(1 − γi)σ
2αiβi < 0, (3.5.34)

lww(w) = −γi(1 − γi)w−1−γi(1 − w)−2+γi < 0. (3.5.35)
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Supposing, by contradiction, that supw∈(0,w⋆) l(w) > l(w⋆) = 0, by (3.5.34) and the
strict concavity (3.5.35), the maximum of l is attained at some z ∈ (0, w⋆), that is,
supw∈(0,w⋆) l(w) = l(z). Thus,

lw(z) = z−γi(1 − z)γi−1(1 − γi − z) +
σ2

2
c(1 − γi)(1 − αi − βi) = 0. (3.5.36)

As z < ŵi < 1 − γi (Lemma 3.4.2 (i)) plugging (3.5.36) into (3.5.33) yields

l(z) =
c(1 − γi)σ

2

2(1 − γi − z)
((αi − 1)γiz + (γiz + (1 − γi − z)αi) βi)

<
c(1 − γi)σ

2

2(1 − γi − z)
(αi − 1)γiz < 0,

which contradicts l(z) > 0. Hence, supw∈(0,w⋆) l(w) ≤ 0, which implies l(w) < 0 for
any w ∈ (0, w⋆).

Proof of Theorem 3.5.1:
The proof follows by verifying that the conditions of the Verification Theorem 3.5.6

are met: By construction, for any i ̸= j ∈ {a, b}, the function φi satisfies the ODEs
(3.5.14), (3.5.16) and (3.5.18), as well as the smooth pasting conditions

φi(w̃i−) = φi(w̃i+), (3.5.37)

φi
w(w̃i−) = φi

w(w̃i+), (3.5.38)

φi
ww(w̃i−) = φi

ww(w̃i+). (3.5.39)

As Fi(w̃i, w̃j) = 0, also the following hold:

φi((1 − w̃j)−) = φi((1 − w̃j)+), (3.5.40)

φi
w((1 − w̃j)−) = φi

w((1 − w̃j)+). (3.5.41)

By construction, φi ∈ C2((0, w̃i)) ∩ C2((w̃i, 1 − w̃j)) ∩ C2((1 − w̃j, 1)). The equalities
(3.5.37)-(3.5.39) therefore imply φi ∈ C2(0, 1 − w̃j) and equalities (3.5.40) and (3.5.41)
yield φi ∈ C1(0, 1).

Due to the finiteness of the limits

lim
w↓0

φi(w) = ci
0, lim

w↑1
φi(w) = ci

3, lim
w↓0

φi
w(w) = γici

0, lim
w↑1

φi(w) = −γici
3,

we may extend the function φi to be in C1([0, 1]). Furthermore, in view of the finite
limits limw↓0 φi

ww(w) = ci
0γi(1+ γi), limw↑1 φi

ww(w) = ci
3γi(1+ γi), φi

ww((1− w̃j)+) =
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ci
3γi(1 + γi)(1 − w̃j)

−2−γi ,

φi
ww((1 − w̃j)−) = w−2(1 − w)−2

(
ci

1wαi(1 − w)ai
(
α2

i − (1 − 2γiw)αi − (1 − γi)γiw2)
+ ci

2wβi(1 − w)bi
(

β2
i − (1 − 2γiw)βi − (1 − γi)γiw2) )

− γi

qiw1+γi

∣∣∣∣∣
w=1−w̃j

and the continuity of φi
ww on the regions (0, 1 − w̃j) and (1 − w̃j, 1), it follows that

supw∈(0,1)

∣∣φi
ww(w)

∣∣ < ∞, whence φi
w is Lipschitz continuous.

The inequality (3.5.15) follows from w̃i < ŵi in conjunction with Lemma 3.5.7 (i)
and (ii). To check the inequality (3.5.17), note that for any w ∈ (w̃i, 1 − w̃j), (1 −
w)φi

w(w)− γi φ
i(w) has thee same sign as

(wj − γi)Fi(w̃i, wj) + γiaibili(wj) =: hi(wj),

where wj := 1 − w (so wj ∈ (w̃j, 1 − w̃i)) and

li(wj) := (γiw̃i + (1 − γi − w̃i)βi)

(
wj

1 − wj

)−αi
(

w̃i

1 − w̃i

)ai

− (γiw̃i + (1 − γi − w̃i)αi)

(
1 − wj

wj

)βi
(

1 − w̃i

w̃i

)−bi

.

As w̃i < ŵi implies γiw̃i + (1 − γi − w̃i)αi < 0, it follows that li(wj) > 0.
By Lemma 3.4.2 (ii) and Lemma 3.4.3 (ii), (w̃i, w̃j) ∈

{
(wi, f i,−1(wi)) : wi ∈ (0, ŵi)

}
.

It follows that f i,−1(w̃i) = w̃j, and Lemma 3.4.3 (iii) yields that

Fi(w̃i, wj) > 0 for any wj ∈ (w̃j, 1 − w̃i). (3.5.42)

If wj ≤ γi, by Lemma 3.4.2 (i) and (3.5.42) it follows that hi(wj) < 0. It remains to

check the case wj > γi: Factoring out
(

1−wj
wj

)1−γi
from hi yields

sgn
(

hi(wj

)
= sgn

(
h̄i(wj)

)
,

where

h̄i(wj) := ai(wj − bi − γi) (γiw̃i + (1 − γi − w̃i)αi)

(
1 − w̃i

w̃i

)−bi
(

1 − wj

wj

)−bi

+ bi(ai + γi − wj) (γiw̃i + (1 − γi − w̃i)βi)

(
w̃i

1 − w̃i

)ai
(

wj

1 − wj

)ai

+ (ai − bi)(wj − γi)(w̃i(αi + βi − 1)− αi).
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It follows from wj > γi and Lemma 3.4.2 (i) that wj − γi − bi > 0, γiw̃i + (1 − γi −
w̃i)αi < 0 and ai + γi − wj > 1 − wj > 0. The inequalities 1−w̃i

wj
> 1 and 1−wj

w̃i
> 1

imply that

h̄i(wj) < ai(wj − bi − γi) (γiw̃i + (1 − γi − w̃i)αi)

+ bi(ai + γi − wj) (γiw̃i + (1 − γi − w̃i)βi)

+ (ai − bi)(wj − γi)(w̃i(αi + βi − 1)− αiβi)

= aibi(1 − w̃i − wj)(βi − αi) < 0.

Therefore, (1 − w)φi
w(w)− γi φ

i(w) < 0 for any w ∈ (w̃i, 1 − w̃j), proving the inequal-
ity (3.5.17).

In the proof of Theorem 3.5.2 below, we use an auxiliary statement similar to
Lemma 3.5.5(iii). The similar, but simpler proof, is omitted for brevity.

Lemma 3.5.8. For any i ̸= j ∈ {a, b} and for any mi ∈ (0, 1), let φi ∈ C1((0, 1)) be an
R+-valued function satisfying (3.5.16)–(3.5.17). Then for any α ≥ 0 and any w ∈ (0, 1), the
function

ĥi(α, w) := e−αγi φi (1 − e−α(1 − w)
)

satisfies
ĥi(α, w)− φi(1 − w) ≤ 0,

where the equality holds for a fixed w, if and only if

α = 0, if w ∈ (mi, 1),

α ≤ ln
(

1 − w
1 − mi

)
, if w ∈ (0, mi].

Proof of Theorem 3.5.2: A direct calculation yields that φ̂i satisfies

Li φ̂i(w)− λκ φ̂i(w) + Ui(w) = 0, w ∈ (ŵi, 1), (3.5.43)

(1 − w)φ̂i
w(w)− γi φ̂

i(w) = 0, w ∈ (0, ŵi), (3.5.44)

and

φ̂i(ŵi−) = φ̂i(ŵi+), (3.5.45)

φ̂i
w(ŵi−) = φ̂i

w(ŵi+), (3.5.46)

φ̂i
ww(ŵi−) = φ̂i

ww(ŵi+). (3.5.47)

As φ̂i ∈ C2((0, ŵi)) and φ̂i ∈ C2((ŵi, 1)), it follows by (3.5.45), (3.5.46) and (3.5.47) that
φ̂i ∈ C2((0, 1)). Moreover, Lemma 3.4.2 (i) implies that si

0 > 0 and si
1 > 0. Hence, by
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Lemma 3.5.7 (ii)

Li φ̂i(w)− λκ φ̂i(w) + Ui(w) < 0, w ∈ (0, ŵi). (3.5.48)

Next, we prove that

(1 − w)φ̂i
w(w)− γi φ̂

i(w) < 0, w ∈ (ŵi, 1). (3.5.49)

To this end, note that for any w ∈ (ŵi, 1),

sgn
(
(1 − w)φ̂i

w(w)− γi φ̂
i(w)

)
= sgn

(
li(w)

)
,

where

li(w) =
1 − γi − w
(1 − γi)qi

− si
1

(
1 − w

w

)ai

(w − αi).

Also,

lim
w↓ŵi

li(w) = lim
w↓ŵi

li
w(w) = 0, and lim

w↑1
li(w) = − γi

(1 − γi)qi
< 0,

and
sgn

(
li
ww(w)

)
= sgn ((γ − αi)w + αi(1 + ai)) .

As w ∈ (ŵi, 1), it follows that

(γ − αi)w + αi(1 + ai) ∈ ((1 − αi)αi, (1 − αi)(γi + αi)) .

Distinguish two cases:

(i) If γi + αi ≤ 0, then li
ww(w) < 0 and hence,

li
w(w) < lim

w↓ŵi
li
w(w) = 0.

Therefore, an ODE comparison argument yields that li < 0 on (ŵi, 1).

(ii) If γi + αi > 0, then li
ww(w) ≤ 0 on

(
ŵi,

−αi(1+ai)
γi−αi

]
and it follows again by an ODE

comparison argument that li(w) < 0 for any w ∈
(

ŵi,
−αi(1+ai)

γi−αi

]
. As li is strictly

convex on the interval
(
−αi(1+ai)

γi−αi
, 1
)

, and li
(
−αi(1+ai)

γi−αi

)
< 0, limw↑1 li(w) < 0, we

conclude that li < 0 on
(
−αi(1+ai)

γi−αi
, 1
)

.

This completes the proof of subclaim (3.5.49). An application of Itô’s Lemma to
e−λκ t−Ai

t ϕ̂i(Yx
t ) yields, upon taking expectations (The dependence of Yx and W i,wi on
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(Ai, 0) is omitted for the sake of brevity.)

ϕ̂i(x) = E
[
e−λκ t−Ai

t ϕ̂i(Yx
t )
]

− E

[
λ
∫ t

0
e−λκs−Ai

s(Yx,S
s )1−γi

(
Li φ̂i(W i,wi

s )− λκ φ̂i(W i,wi
s )

)
ds
]

− E

[
λ
∫ t

0
e−λκs−Ai

s(Yx,S
s )1−γi

(
(1 − W i,wi

s )φ̂i
w(W

i,wi
s )− γi φ̂

i(W i,wi
s )

)
dAi,c

s

]
− E

[
λ ∑

0≤s≤t
e−λκs−Ai

s−(Yx,S
s− )1−γi

(
e−γi∆Ai

s φ̂i(W i,wi
s )− φ̂i(W i,wi

s− )
)]

. (3.5.50)

By Lemma 3.5.8 and (3.5.44), (3.5.49), the term in the last line of (3.5.50) is non-negative.
Using (3.5.43)–(3.5.44) and (3.5.48)–(3.5.49), similar arguments as in the proof of Theo-
rem 3.5.6 yield

ϕ̂i(x) ≥ sup
Ai∈A

Ji(x; Ai, 0), x ∈ R2
+. (3.5.51)

Finally, using the properties of Ψi,ŵi established in Proposition 3.3.3, the equality in
(3.5.51) follows.
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3.6 Notes

The heuristic arguments that derived the free boundary problem (3.5.4) and (3.5.6) can
easily be generalized to apply for arbitrary number of traders (N > 2), yielding that
for any i ∈ {1, . . . , N} and any x ∈ RN

+ ,(
N

∑
k=1

xk

)
Vi

xj
− Vi = 0 on C j

for all j ̸= i ∈ {1, . . . , N} and

max
R2

+\∪N
j ̸=iC j

{
LNVi − λκVi + Ui,

(
N

∑
k=1

xk

)
Vi

xi
− Vi

}
= 0

where the operator LN is given by

LNϕ(x) =
N

∑
k=1

µkxk∂xk ϕ(x) +
1
2

N

∑
k=1

σ2
k x2

k∂2
xkxk

ϕ(x).

Although the scale invariance property (3.5.12) can reduce the problem by 1 dimen-
sion, the reduced problem of dimension N − 1 in general remains a challenge to be
solved analytically. Recall that when N = 2, the system of PDEs reduces to a system
of ODEs and the free domains could be tackled by the smooth-pasting technique.

Even if the solution to the HJB equations is obtained, the resulted fraud regions
of traders can intersect, but simultaneous burst of frauds by multiple traders may not
form a Nash equilibrium. This requires a weaker concept of equilibrium e.g. ϵ-Nash
equilibrium (c.f. Benazzoli, Campi, and Di Persio, 2019) for the problem to be solved
globally.

Lastly, the major issue arises from the boundary of the fraud region not being a
hyperplane of the form {x ∈ RN

+ : ri(x) = c ∈ (0, 1)}, implying that traders would
have to observe the wealth shares across all traders instead of just her/his own share to
execute the fraud strategy - somewhat ‘unrealistic’. A possible solution to this problem
is to reformulate the Nash equilibrium problem to a filtering problem in which traders
can only observe some reasonable signal processes and this is deferred to a future
research.

72



Chapter 4

Numerical Examples

4.1 Fraud thresholds and frauds

This section brings to life the theoretical results in Section 3.5 by examining the prop-
erties of the Nash equilibrium for concrete parameter values.

Figures 4.1 and 4.2 display the dependence of the fraud thresholds and the aver-
age amount of fraud of each trader on model parameters (The numerical scheme for
deriving the estimator for average fraud is described in section 4.3 ), respectively.

A trader’s fraud threshold is relatively insensitive to the profitability of personal
investments (figure 4.1, upper left), even as such profitability increases from 10% to
60%. The flatness of the threshold, however, does not imply flatness of average fraud,
which instead declines rapidly as profitability increases (figure 4.2, upper left). The
explanation of this phenomenon lies in the dynamics of relative wealth shares: when
one trader’s profitability is high, that trader’s wealth share tends to increase over time,
thereby reaching the fraud threshold less often, hence generating lower fraud.

By contrast, the fraud threshold of the other trader (whose profitability remains
constant) rapidly withdraws upwards, meaning that this trader cheats when the re-
spective wealth share falls below a lower threshold. Again, this fact does not imply a
decline in the amount of fraud, because such trader’s typical wealth share also tends
to decline. In fact, figure 4.2 shows that the amount of fraud first increases (up to
µa ≈ 40%) and then decreases: The initial rise is understood as a short-term appro-
priation, whereby the less skilled trader’s higher fraud pilfers the other’s profits. The
subsequent decline is more akin to a long-term appropriation: the less skilled trader
recognizes that the other’s skill is so high that it is overall more profitable to limit the
amount of fraud per unit of time, as to let the other’s wealth grow faster, so that future
fraud can be even more profitable. Put differently, the less skilled trader establishes
a sort of parasite-host relationship with the more skilled trader, thereby avoiding ex-
cessive cheating, lest the host perish. Note also that the threshold of the more skilled
trader is more sensitive to the honesty (or lack thereof) of the other trader, while the
less skilled trader becomes indifferent to the other’s honesty when the profitability is
sufficiently high.
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Fig. 4.1: Fraud thresholds for trader a (blue) and b (red), in view
of trader a’s share of wealth (vertical axis), in Nash equilibrium
(solid line), and when the other trader is honest (dashed line),
against trader a’s expected return (upper-left, 0% ≤ µa ≤ 60%),
volatility (upper-right, 0% < σa ≤ 100% ), risk-aversion (bottom-
left, 0 < γa < 1), and average horizon (bottom-right, 0 < 1/λ ≤
20 ). Other parameters are µa = µb = 10%, σa = σb = 20%,
γa = γb = 0.5, λ = 1/3, κ = 10%.
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As the volatility of a trader’s investments increases (upper right, figures 4.1 and
4.2), that trader’s fraud threshold recedes aggressively, but fraud increases signifi-
cantly. Increased volatility is qualitatively similar to lower skill, which makes the
trader more reliant on fraud to generate profits. Vice versa, the other trader can still
rely on a personal payoff with lower volatility, which would be significantly degraded
by the additional asymmetry generated by more fraud.

Risk aversion (lower left, figures 4.1 and 4.2) has a major impact on propensity for
fraud. Holding the opponent’s risk aversion constant at 0.5, as a trader’s risk aver-
sion increases from zero to one, the fraud threshold declines very rapidly from one
(incessant fraud) to zero (no fraud). Note that, as a fraud threshold declines, the other
threshold also declines, not to zero, but to the threshold that assumes the other’s hon-
esty. Put differently, a fearless trader’s propensity for fraud forces the other, more
prudent, trader to withdraw from fraud, as overall risk is already too high. The im-
plication is that, when the two traders have very different risk aversion but similar
investment opportunities, it is the least risk averse that has most potential for fraud.
Vice versa, when risk aversions are similar, the overall potential for fraud is much
lower and is evenly distributed between traders.

Fraud completely disappears with unit risk aversion (i.e. logarithmic preferences).
In this case, the dread of bankruptcy is so high that traders abstain from fraud regard-
less of its potential rewards. Note that this phenomenon stems from the fraud’s inher-
ent discontinuity, which always implies a probability, however small, that wealth may
vanish. Put differently, for the logarithmic investor the marginal utility of any amount
of fraud is infinitely negative, regardless of expected profits.

The average horizon is also an important determinant of fraud (lower right, fig-
ures 4.1 and 4.2). Fraud thresholds recede as the horizon increases (λ decreases) and
with it the expected reward for delaying fraud. In fact, the average amount of fraud
increases sharply up to a horizon of about five years, climbing steadily thereafter and
converging eventually. The implication is that: while reducing fraud per unit of time,
its overall amount in fact increases the most in the medium term - the typical traders
turnover in financial institutions.

4.2 Uncertain opponent’s skill

In practice, a trader may not have perfect information about the other’s investment
skill and portfolio risk, but she/he may be able to estimate them. Volatility can be
determined rather precisely from frequent (say, daily) observations of wealth history:
indeed, in the model, volatility follows directly from the quadratic variation of the
logarithmic wealth process, which is insensitive to fraud (as it is a finite-variation
process).
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Fig. 4.2: Equilibrium average fraud (vertical axis), up to horizon
or bankruptcy, of traders a (blue) and b (red) against trader a’s
expected return (upper-left, 0% ≤ µa ≤ 60%), volatility (upper-
right, 0% < σa ≤ 100% ), risk-aversion (bottom-left, 0.1 < γa <
0.9), and average horizon (bottom-right, 0 < 1/λ ≤ 20). Re-
sults obtained from simulation of 104 paths, each with step size
5 · 10−4. Other parameters are µa = µb = 10%, σa = σb = 20%,
γa = γb = 0.5, wa = wb = 0.5, λ = 1/3, κ = 10%.
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Fig. 4.3: Left-panel: Probability mass function of trader a’s esti-
mator µ̂a

b with mean 10% and standard deviation εa
b (3%, 5% and

7%). Right-panel: Equilibrium average fraud (vertical axis) with
estimated drifts, up to horizon or bankruptcy, of traders a (blue)
and b (red) against trader a’s estimation error (1% ≤ εa

b ≤ 10%).
Results obtained from simulation of 104 paths, each with step size
5 · 10−4. Other parameters are µa = µb = 10%, σa = σb = 20%,
γa = γb = 0.5, wa = wb = 0.5, λ = 1/3, κ = 10% and µ̂b

a is with
mean 10% and standard deviation εb

a = 5%.

The situation is more delicate for the skill µj. As Theorem 3.5.1 proves that a ratio-
nal trader cheats only when the respective wealth share drops below some boundary1,
the cumulative return of the opponent satisfies

dY j
t

Y j
t

= µjdt + σjdBj
t + dUt, Y j

0 > 0,

where the continuous, non-decreasing process U, which reflects the contribution of
fraud to returns, increases only on the set {(t, ω) : rj(Yx

t (ω)) = wj}, where wj is the
fraud threshold. Thus, the opponent’s return includes the contributions of both skill
and fraud, but the latter can be removed by excluding the returns that take place near
the minimum of rj. In practice, if the discrete-time observations are (Y j

tk
)0≤k≤n, the

trader calculates the minimum r = min1≤k≤n rj(Yx
tk−1

), and then estimates the oppo-
nent’s skill µj from the returns

µ̂j =
1
m ∑

rj(Yx
tk−1

)>r+ε

 Y j
tk

Y j
tk−1

− 1

 where m = #{1 ≤ k < n : rj(Yx
tk−1

) > r + ε} (4.2.1)

1And spending approximately zero time at such boundary.
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and the parameter ε is chosen so that the probability that rj(Yx
t ) reaches r between

rj(Yx
tk−1

) and rj(Yx
tk
) is negligible, hence the estimator of µj is approximately unbiased.2

The large-sample distribution of µ̂j is close to normal, but the the trader recognizes
that the exact normal distribution is ill-suited to estimate the skill µj, which is assumed
to be positive and to satisfy Assumption 3.1.1. Instead, a viable alternative distribution
that is close to normal while preserving positivity is the binomial distribution, so that
trader i can posit that

µj ∼ Bi(nj, pj),

where the parameters nj and pj are identified by the first two moments nj pj = µ̂j and
nj pj(1 − pj) = v̂j, where v̂j is the variance associated to the opponent’s skill.3 Then,
the trader can choose a personal cheating threshold that maximizes expected utility
for an uncertain opponent’s skill with prescribed distribution.

Figure 4.3 helps to understand the impact of uncertainty on the opponent’s skill
on fraud: the left panel displays the dependence of the probability mass function of
the drift estimator, while the right panel plots the average amount of fraud of each
trader on the estimation error, holding the opponent’s estimator of the trader’s drift
constant with mean 10% and error 5%. As trader’s estimation error of the opponent’s
skill increases from 1% to 10% (horizontal axis), fraud reduces significantly (approx-
imately 10% with the chosen parameters), while the opponent’s behaviour remains
nearly constant.

This is because, as the left-panel suggests, the ‘wrong’ estimates are more likely
to be over-estimations; and as the top-left panel of figure 4.1 suggests, overestima-
tion of the opponent’s investment skill leads to a significant pull-back of a trader’s
cheating threshold. The positive correlation between drift-overestimation and fraud-
reduction reveals that: a trader’s fraud - while exposing the firm to bankruptcy risk
- nevertheless can reduce the other trader’s fraud by misguiding the other trader to
over-estimate one’s investment skill.

2The probability that a Itô process with diffusion coefficient σ moves from x > y to z > y in ∆t
time without reaching y is approximately e−2(x−y)(z−y)/(σ2∆t) (Borodin and Salminen, 2002, 1.2.8 p. 252).
Thus, choosing x − y, z − y ≈ 2σ

√
∆t, for daily observations such a probability is about e−8 ≈ 0.03%,

corresponding to a frequency of less than one day in ten years (0.03% · 252 · 10 ≈ 0.8). Hence, a reasonable
choice for ε is two standard deviations of the daily change in wealth share.

3A frequentist trader who estimates variance only from returns would choose v̂j to be their sample

variance, i.e., 1
m−1 ∑rj(Ytk−1 )>r+ε

(
Y j

tk
/Y j

tk−1
− 1 − µ̂j

)2
. A Bayesian trader may use different estimators

for µ̂j and v̂j, depending on the relative weight of the prior on the opponent’s skill.
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4.3 Supplements

In this section, we present the numerical method used in section 4.1 and 4.2 to estimate

E
[
Aa,⋆

τA∧τ

]
and E

[
Ab,⋆

τA∧τ

]
(4.3.1)

where Aa,⋆ and Ab,⋆ are equilibrium fraud processes in Theorem (3.5.1).
First we simulate the equilibrium state fractional wealth process (W i,⋆

t )t≥0 by an
approximation scheme. Recall that, by Lemma 3.3.1, the dynamics of trader i’s frac-
tional wealth solves the SDE:

W i,wi
t = wi +

∫ t

0
b̄i(W i,wi

s )ds +
∫ t

0
σ̄i(W i,wi

s )dBs +
∫
[0,t]

(1 − W i,wi
s− )dQ̃i

s

−
∫
[0,t]

W i,wi
s− dQ̃j

s. (4.3.2)

with wi = ri(x) for any x ∈ R2
+, b̄ is given by (3.3.1) and σ̄ is given by (3.3.2). Let

Pi
t =

∫
[0,t](1 − W i,wi

s− )dQ̃i
s and Pj

t =
∫
[0,t] W i,wi

s− dQ̃j
s for all t ≥ 0.

In contrast to simulate SDEs where both strong and weak convergence schemes
are available under mild conditions on the coefficients, similar results are not easy
to obtain for reflected SDE where the main difficulty owes to approximate the local
time spent on the reflecting boundary. For one-sided reflection, Lepingle, 1995, The-
orem 2 demonstrates a strong convergence of order 1/2 by the Euler-Peano scheme
and a weaker rate of convergence is shown in the penalization scheme and the Euler
scheme (see Liu, 1995 and Słomiński, 1994, respectively). Here, we adopt the numeri-
cal scheme for two-sided reflection proposed by Lepingle, 1995 where a weaker result
is proven.

Step 1. Fix h > 0, let li, lj ∈ (0, 1) be such that mi < li < 1 − lj < 1 − mj and let
Nh = ⌊ τ

h ⌋ be the random total number of steps which ends at the largest integer just
below τ/h. For k ∈ {0, 1, . . . , Nh − 1}, discretize (4.3.2) as follow

W i,wi ,h
0 = 1{wi<mi}mi + 1{mi≤wi≤1−mj}wi + 1{wi>1−mj}(1 − mj),

W i,wi ,h
k+1 = mi ∨

(
(1 − mj) ∧

(
W i,wi ,h

k + b̄i(W
i,wi ,h
k )h + σ̄i(W

i,wi ,h
k )(B(k+1)h − Bkh)

+ 1{W
i,wi ,h
k <li}

[Hi,h
k+1 − (W i,wi ,h

k − mi)]
+

− 1{W
i,wi ,h
k >1−lj}

[H j,h
k+1 + (W i,wi ,h

k − (1 − mj))]
+
))
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where

Hi,h
k+1 = sup

kh≤s≤(k+1)h

{
−b̄i(W

i,wi ,h
k )(s − kh)− σ̄i(W

i,wi ,h
k )(Bs − Bkh)

}
,

H j,h
k+1 = sup

kh≤s≤(k+1)h

{
b̄i(W

i,wi ,h
k )(s − kh) + σ̄i(W

i,wi ,h
k )(Bs − Bkh)

}
.

Since b̄i and σ̄i are Lipschitz, Lepingle (1995, Theorem 3) ensures that there exists a
constant C > 0 (which does not depend on Nh) such that with probability 1 (as Nh is
random),

sup
k∈{1,...,Nh}

(
E

[∣∣∣W i,wi
kh − W i,wi ,h

k

∣∣∣2])1/2

≤ Ch1/2.

For any k ∈ {1, . . . , Nh}, let Gh
k = (Gi,h

k , Gj,h
k ) be a a sequence of i.i.d two-dimensional

Gaussian centered random vectors with covariance matrix hI2×2, and let Ek be a se-
quence of i.i.d exponential random variables with parameter 1

2h . Next, define for any
k ∈ {0, 1, . . . , Nh − 1}

Ĝi,h
k+1 = −σ̄i(W

i,wi ,h
k )Gh

k+1 − b̄i(W
i,wi ,h
k )h

+
(
|σ̄i(W

i,wi ,h
k )|2Ek+1 + (σ̄i(W

i,wi ,h
k )Gh

k+1 + b̄i(W
i,wi ,h
k )h)2

)1/2
,

Ĝj,h
k+1 = σ̄i(W

i,wi ,h
k )Gh

k+1 + b̄i(W
i,wi ,h
k )h

+
(
|σ̄i(W

i,wi ,h
k )|2Ek+1 + (σ̄i(W

i,wi ,h
k )Gh

k+1 + b̄i(W
i,wi ,h
k )h)2

)1/2
.

Then Lepingle (1995, Theorem 1) implies that conditioned on W i,wi ,h
k ,

(B(k+1)h − Bkh, Hi,h
k+1) equals (Gh

k+1, Ĝi,h
k+1/2) in distribution;

(B(k+1)h − Bkh, H j,h
k+1) equals (Gh

k+1, Ĝj,h
k+1/2) in distribution.

In summary, the steps W i,wi ,h
k is simulated recursively - given a step W i,wi ,h

k , the next
step W i,wi ,h

k+1 is obtained by simulating (Gh
k+1, Ĝi,h

k+1/2).
Step 2. Now we approximate Pi,c,⋆ and Pj,c,⋆ by extracting the reflections from the

obtained W i,wi ,h. For any k ∈ {0, 1, . . . , Nh − 1}, since simultaneous reflections by both
upper and lower controls are forbidden (in other words, at most only one reflection
can occur at each step), let

Pi,c,h
k+1 = ∑

0≤m≤k+1

[
W i,wi ,h

k+1 − W i,wi ,h
k − b̄i(W

i,wi ,h
k )h − σ̄i(W

i,wi ,h
k )Gh

k+1

]+
,

Pj,c,h
k+1 = − ∑

0≤m≤k+1

[
W i,wi ,h

k+1 − W i,wi ,h
k − b̄i(W

i,wi ,h
k )h − σ̄i(W

i,wi ,h
k )Gh

k+1

]−
,
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which account for the intervention excluding that from the drift and the volatility. As
a result, for any k ∈ {0, . . . , Nh − 1}

W i,wi ,h
k+1 = W i,wi ,h

k + b̄i(W
i,wi ,h
k )h + σ̄i(W

i,wi ,h
k )Gh

k+1 + Pi,c,h
k+1 − Pj,c,h

k+1 .

Then by Lemma 3.3.3, we approximate the cheating processes by

Ai,h
k+1 =

[
ln
(

1 − wi

1 − mi

)]+
+

Pi,c,h
k+1

1 − mi
,

Aj,h
k+1 =

[
ln
(

wi

1 − mj

)]+
+

Pj,c,h
k+1

1 − mj
.

Step 3. For Monte Carlo simulation, fix sample size M ∈ N and let τm and θm for
m ∈ {1, . . . , M} be sequences of i.i.d. random variables having the same distribution
as τ and θ, respectively. Then we have M number of total steps Nh

m = ⌊ τm
h ⌋. Let

τh
A,m = inf

{
0 ≤ k ≤ Nh

m : ∑
k≥0

AS,h
k ≥ θm

}

be the approximated bankruptcy time, where AS,h
k = Ai,h

k + Aj,h
k for all 0 ≤ k ≤ Nh

m.
Finally, we estimate (4.3.1) by

Âi,h
τA∧τ =

1
M

M

∑
m=1

Ai,h
τh

A,m∧τh
m

.

We point out two main sources of errors that affect the precision of this approxima-
tion: 1. The statistical error, i.e. the difference between Âi,h

τA∧τ and E
[

Ai,h
τh

A∧τh

]
; 2. The

discretization error, i.e. the difference between E
[

Ai,h
τh

A∧τh

]
and E

[
Ai

τA∧τ

]
.
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