
Serverless Software Engineering – And How To Get

There.

Stephen McAleese1, Jordan Conway McLaughlin 1, Filip Detyna 1, Andrey Murashev 1, Murat

Yilmaz2 [0000-0002-2446-3224], Paul M. Clarke 1,3 [0000-0002-4487-627X]

1 School of Computing, Dublin City University, Dublin, Ireland
{stephen.mcaleese2, jordan.conwaymclaughlin24, filip.detyna2,

andrey.murashev2}@mail.dcu.ie
2 Department of Computer Engineering, Gazi University, Ankara, Turkey

my@gazi.edu.tr

3 Lero, the Science Foundation Ireland Research Center for Software
paul.m.clarke@dcu.ie

Abstract. Serverless computing is on the rise but developing software to exploit

this space involves a deep rethink of software architecture, deployment, and

operation (perhaps also, software development processes and team structures).

Central to this revolution, we find a compelling argument for distributed,

services-based software architectures. But converting a large, established

monolith architecture system to microservices is non-trivial and fraught with both

cost and risk. For the many firms with established software systems, this

architectural system conversion might be considered the first stop-off on the

journey to serverless computing. In tandem, software deployment and production

monitoring also require reinvention. The focus of this paper involves an

examination of the advantages of microservices architectures, include techniques

for migrating from monolith architectures. Through application of a Multivocal

Literature Review (MLR), we find that migrating from a monolith architecture to

a microservices architecture is risky and non-trivial, but that there are techniques

that can be employed to support the transition. We find also that monoliths have

their advantages which might be overlooked to some extent in the race to

serverless computing.

Keywords: serverless software engineering, monolith, microservices, migration

1 Introduction

The microservice architecture has become increasingly popular in the past several years

as many companies have migrated their monolith applications to microservices [1].

However, the transition can be difficult and challenging [2]. Arguments for whether to

adopt the microservices architecture, how to do so and what to expect during the

transition exist in various forms both in the grey and white literature [36], though the

focus of such literature varies greatly, and in some cases, there is conflicting

information.

2

The term microservice was introduced in 2011 to describe an architectural style for web

services where applications are composed of several small independently deployable

services which each run in their own process, handle a single business capability and

communicate with each other via lightweight mechanisms such as HTTP [3].

Generally, each microservice is owned by a single small “two-pizza” team which

manages its development, deployment and testing [4]. Microservices have many

advantages over monolithic applications such as better scaling, resilience, technological

heterogeneity, replaceability [5] and modifiability [6].

There has been a significant increase in the popularity of microservices in recent

years as many businesses have decided to use the microservice architecture over the

more traditional monolithic architecture [1]. As of 2020, only 23% of organisations

surveyed were not using the microservices architecture.

Fig. 1. microservice adoption rates as of 2020 [1], 23% of respondents said they had not yet

adopted microservice architecture.

The number of searches for the term ‘microservices’ has also increased significantly

over the past several years. Google trends, an online tool for measuring the search

interest of search terms, shows that the worldwide search interest for the search term

‘microservices’ from 2004 onward increased rapidly over the past several years [7].

 Netflix and Amazon have been pioneers of the microservice architecture. Amazon

launched their “Amazon Elastic Compute Cloud” in 2006 much ahead of their other

competitors such as Google or Microsoft [8]. Netflix started to migrate their monolithic

application to microservices running on AWS in 2009; two years before the term

‘microservice’ was introduced. Netflix’s adoption of this architecture has been pivotal

in facilitating the company’s massive growth. The microservice architecture enables

Netflix to regularly update their product for millions of users worldwide and provide

uninterrupted access to their service [4].

3

Fig. 2. Worldwide Google search interest for the term ‘microservices’.

Source: adapted from [7].

 A monolith is an application where all the functions of the application are

encapsulated in a single running process. The monolithic architecture was the

established way of building applications [6]. Monolithic applications have their own

strengths such as simple deployment and testing [9]. Therefore, the monolith can be

viewed as the “least software” approach to developing an application and is therefore

suitable for small companies. However, large monoliths are associated with many

problems such as high complexity, slower deployment, scaling difficulties and

technology lock-in [10]. There are pros and cons to monoliths and microservices and

whether an organisation adopts the monolithic or microservice architecture depends on

contextual factors such as the size of the company and the rate at which the software

might ideally evolve. In this paper, we examine why microservices are appealing to

software firms, what techniques might be employed when transitioning from a monolith

architecture to microservices, and what risks are involved in the process. For serverless

computing to be fully embraced, it seems that a large part of the initiative is dependent

on a distributed software architecture. For this reason, this paper focuses on the benefits

of microservices architectures, and later, the techniques that might be adopted when

migrating monolith architectures to microservices.

2 Research Methodology

This research paper was written in the context of a Multivocal Literature Review

(MLR) involving academic and non-academic literature also known as white and grey

literature respectively [36]. Under the guidance of a senior academic, the primary

research team was assigned the research topic “Monolith to Microservices Migrations:

Techniques and Pitfalls”. The first task when conducting the MLR was to divide the

research paper title into subproblems by formulating research questions to guide the

research process. Each of the four primary researchers was assigned a single research

question. The following research questions were identified:

● RQ1: Why have microservices increased in popularity in recent years?

● RQ2: What are the advantages of migrating from a monolithic to a

 microservice architecture?

4

● RQ3: What are some techniques for migrating applications from a

 monolithic to a microservices architecture?

● RQ4: What are the risks of migrating from a monolithic to a microservices

 architecture?

Once the research questions had been chosen, we used certain search keywords and

search engines to create an initial pool of white and grey literature. The names of the

search engines used to find academic literature were Google Scholar and IEEE Xplore

and Google Search was used to find non-academic literature. To find relevant academic

papers, the following search terms were used in Google Scholar: ‘monolith to

microservices’, ‘microservices’ and ‘monolith to microservices migration’. For each

search term in Google Scholar, we saved references to all the papers on the first search

results page using the Mendeley reference manager. We also used snowballing to add

additional white and grey literature to the initial document pool which ultimately

contained 79 documents.

2.1 Selection Criteria

We then applied inclusion and exclusion criteria to filter out irrelevant or low-quality

documents to create the final literature pool which contained 35 documents. To filter

our collection of academic literature, we first excluded and removed duplicate papers,

papers not written in English, papers with few citations and papers written more than

ten years ago. We then only included papers considered to be relevant to our research

questions and relevance was determined by reading the abstract of each document.

When selecting grey literature documents such as online articles and blog posts, we

included documents which were ranked high enough to be on the first search results

page, were written by prominent industry figures and had enough supporting

references. Grey literature documents were only included if they were insightful and

well-written, and if presented from sources of ostensible credibility.

Before answering the research questions, we read through the papers in the final

literature collection to create research notes, identify useful information and references

relevant to answering our research questions. In the following analysis section, a

subsection is dedicated to answering each research question.

3 Analysis

3.1 RQ1: Why have microservices increased in popularity in recent years?

There has been a significant increase in the popularity of microservices over the past

several years as more and more businesses choose the microservices architecture over

the more traditional monolithic architecture [1]. In this section, explore the reasons for

the increase in microservices to answer the first research question: “Why have

microservices increased in popularity in recent years?”.

Reasons for the increase in popularity of microservices. We identified several

reasons in the white and grey literature for the increase in popularity of microservices:

5

the advantages of the microservice over the monolithic architecture, increasing

awareness of microservices, supporting technologies which have increased the viability

of microservices and the changing software development culture.

Advantages of microservices. One of the reasons why microservices have increased in

popularity is the advantages they have over the monolithic architecture. Large

monoliths have many downsides such as slower deployment speed, higher coupling,

complexity and technology lock-in and many of these problems can be eliminated by

migrating to a microservice architecture [10]. In recent years, an increasing number of

companies have been motivated by these benefits to replace their monolithic

applications with microservices causing an increase in the popularity of microservices.

Increased awareness of microservices. The increase in awareness of microservices in

recent years [7] has probably contributed to the increased use of microservices [2]. Two

reasons for this increased awareness include the use of microservices by high-profile

companies such as Amazon and Netflix and the endorsement of microservices by

prominent industry figures. Netflix solved many of their problems using microservices

and since then many other high-profile companies such as Uber have also started using

the microservices architecture [4]. The significant increase in interest in microservices

after 2014 [7] coincided with the publishing of Martin Fowler’s article on microservices

[3] and the book Sam Newman’s Building Microservices by Sam Newman in the same

year [5]. Since then, many other prominent industry writers such as Chris Richardson

have popularised microservices by writing books, articles and presentations on the

subject [11].

Supporting technologies. Containers and deployment automation have increased the

feasibility of microservices. In the past deploying a monolith and all its dependencies

could take hours. Deployment time also increases linearly without deployment

automation. Therefore, without deployment automation or containers, deploying a

microservice application could take an entire week which is not practical [12]. To make

the deployment of microservice applications practical, several technologies are

necessary such as continuous integration, containers, monitoring and logging [6]. Since

many of these supporting technologies have only been developed in the past several

years, microservices have only recently become practical, which explains the recent

increase in popularity.

Cultural changes. In the past several years, methodologies such as extreme

programming and companies such as Amazon with its ‘two-pizza’ teams have

advocated that small autonomous teams are more productive than larger teams [4].

Since each microservice can be owned by a single team, the microservices architecture

is ideal for this new organisational structure [3]. Other cultural trends such as DevOps

with its emphasis on developer ownership, monitoring and infrastructure are well-

suited to microservices [13].

6

3.2 RQ2: What are the advantages of migrating from a monolithic to a

microservice architecture?

In this section, we describe the benefits of the microservice architecture over the

monolithic architecture that have been described in the white and grey literature to

understand why a business might want to migrate from a monolithic to a microservices

architecture.

Scalability. Services can be scaled vertically by running the services on more powerful

hardware or horizontally by duplicating an application on multiple servers [14]. There

are limits to vertical scaling because in practice the hardware the service is running on

has finite computational resources [15]. Therefore, as a business scales its services, it

eventually needs to scale horizontally. Monoliths can be scaled horizontally by running

several instances of the monolith on multiple machines but since the monolith must be

scaled as one unit, it is not possible to independently scale individual modules within

the monolith. Microservices address this problem by having separate independently

deployable and scalable microservices for each business capability [3]. Microservices

can be scaled horizontally more effectively and efficiently because individual

microservices can be scaled independently. Thus, microservices have a scaling

advantage over monoliths, especially for services that process many requests.

Resilience. A problem in a monolithic application could cause the entire application to

fail as the modules in a monolith are all running in the same process [2]. In contrast, as

each microservice runs independently in a different process, the boundaries between

microservices act as bulkheads and problems in a microservice can more easily be

confined to that microservice causing degraded performance instead of a full

application failure [5]. In 2008, when Netflix was using a monolithic architecture, a

single mistake caused several days of downtime [4]. By breaking its monolithic

application into microservices, Netflix was able to achieve much better availability and

resilience.

Organisation alignment. As software teams grow larger, the rate of development tends

to slow down as the communication overhead is often higher in bigger teams. To

address this problem, Amazon has a “two-pizza” team rule to ensure that teams are no

larger than about ten people [4]. The traditional monolithic architecture does not align

well with small, autonomous teams because it’s often not clear how to divide up the

work of working on the monolith between teams. One common solution to the problem

is to assign a team to each layer of the monolith. For example, there could be a front-

end team and a back-end team. The problem with this organisational structure is that it

is necessary for a team to collaborate with another team to make changes to a layer

other than the one owned by the team. This makes it significantly more difficult to make

changes outside of the team’s own layer. As a path of least resistance, each team will

tend to implement changes in their own layer creating a siloed architecture [3].

In contrast, the microservice architecture offers much better organisational

alignment for small teams as there is often a simple one-to-one mapping between teams

and microservices. Each team can own a single microservice and easily make changes

to it without needing to consult other teams resulting in higher agility and velocity [16].

7

Technological heterogeneity. Monolithic applications are usually built with a single

technology or programming language. However, a business using a monolithic

architecture may have to commit to using a single technology for a long time because

the cost of porting the entire system to a new technology is high [10] which could

promote technological conservatism and discourage experimentation [2]. Instead,

microservices offer technological heterogeneity where each service can be

implemented in using a different technology that is best suited to the business capability

[5]. If a technology becomes obsolete, an individual microservice can be easily updated

or replaced because of its small size and low coupling with the rest of the system.

Higher velocity. Another major benefit to microservices over monoliths is increased

development and deployment velocity. As the codebase of a monolith increases in size

and complexity, deployment velocity tends to decrease because the entire monolith

needs to be tested, built and redeployed for every change [17]. As deployment slows

down, teams may decide to deploy multiple changes at a time to maintain velocity.

However, this strategy increases the risk of regressive changes being introduced to the

system [5].

As a monolithic codebase increases in size and complexity, development velocity

also tends to fall. The codebase becomes increasingly difficult to understand as it grows

which makes it more difficult to make changes and add new features [6]. Large

monoliths also slow down the onboarding of new hires because it takes longer for new

hires to understand a large codebase than a smaller one [18].

Many of these problems can be eliminated by using a microservice architecture.

Microservices do not grow beyond a certain size because new business capabilities are

implemented in new microservices [3]. Consequently, the problems that arise from

large codebases are less likely to arise when small microservices are used.

3.3 RQ3: What are some techniques for migrating applications from a

monolithic to a microservice architecture?

A business with a monolithic architecture (MA) might decide to migrate to a

microservice architecture (MSA) once the problems associated with their growing

monolith become greater than the cost associated with migrating it to a microservice

architecture [6][20][9]. The following section explores several migration techniques

which have been described in white and grey literature and answers the fourth research

question, “What are some techniques for migrating applications from a monolithic to a

microservices architecture?”.

Rebuild the application from scratch using microservices. A business with a

monolithic application that is old, tightly coupled or highly complex might decide to

replace it with a new application built from scratch using microservices if doing so is

more cost effective than migrating the old application [6]. In addition to saving time

and money, the new application could be built with modern technologies and would be

less likely to inherit the undesirable complexity of the monolith. In most cases,

however, a business’s monolithic application is unlikely to be so poorly implemented

that replacing it completely would be easier than breaking it up into microservices.

8

Monolith to microservices migration steps. Migrating a monolith to microservices is

a complex and important challenge for businesses that can be challenging to execute

successfully [2]. The challenge is to select the appropriate ‘candidate microservices’ in

the monolith: modules or groups of modules in the monolith which are intended to be

extracted and implemented as microservices later [20]. We now describe the high-level

steps we believe are required to migrate a monolith to a microservice architecture. We

propose that migrating from a monolith to a microservice architecture involves the

following steps:

1. Identify candidate microservices in the monolithic application.

2. Choose a method or strategy for extracting the microservices candidates and

execute it until the monolith has been partially or fully replaced by

microservices.

Techniques for candidate microservice identification. A variety of techniques for

identifying candidate microservices in monoliths have been described in the white and

grey literature. These techniques can be grouped into three high-level categories:

model-driven, static-analysis and dynamic analysis approaches; though the most

common approach described in the academic literature is the model-driven approach

[17]. Model-driven approaches involve creating a visual model of the business using

domain diagrams, UML diagrams or data flow diagrams and using the model to identify

boundaries between candidate microservices [21]. Static analysis approaches

decompose monoliths by identifying boundaries in the source code structure of the

monolith application and dynamic analysis approaches identify boundaries by

analysing the execution traces of the running monolith [17][21]. The categories and

approaches in each category we will describe are as follows:

● Model-driven approaches:

o Decompose by business capability

o A dataflow-driven approach

o A graph-based approach

● Static analysis approaches:

o Identify seams

● Dynamic analysis approaches:

o Functionality-oriented microservice extraction

Decompose by business capability. Since each microservice should handle a single

business capability [5], one logical decomposition approach is to decompose by

business capability. Business capabilities can be identified using domain-driven design

(DDD) [22][23]. Another way to identify business capabilities is via communication

with stakeholders [24]. Then a microservice can be created for each business capability.

Dataflow-driven approach. A monolith application can be modelled as a dataflow

diagram and this diagram can be used to identify microservices. Chen R. et al. [20]

describes a three-step algorithm that uses a dataflow diagram (DFD) to identify

microservices. In the dataflow diagram, data storage components and operations are

9

represented as boxes and ovals respectively. Then microservices are identified as pairs

consisting of operations and their output data.

Fig. 3. Identifying microservice candidates using a dataflow diagram (adapted from [20]).

Graph-based approaches. Mazlami G. et al. [25] describe a graph-based candidate

microservice identification algorithm involving two steps: construction and clustering.

In the construction phase, a graph representation of the monolith is generated. In the

graph, nodes correspond to classes in the monolith and weighted edges between nodes

indicate the level of coupling between classes. In the clustering phase, the graph is

converted into a minimum spanning tree (MST) and edges are removed to partition the

MST into several trees which are each clusters of highly coupled classes. These clusters

are the candidate microservices.

Identify seams. In the book Building Microservices, author Sam Newman states that

monoliths can be decomposed into microservices by first identifying seams [5] which

are sections of the codebase which can be modified or removed without affecting other

components and are therefore good microservice candidates. To identify seams,

Newman recommends using namespace constructs in the source code as a guide such

as packages in the Java programming language.

10

Fig. 4. Identifying microservice candidates using a graph of the monolith's modules (adapted

from [25]).

Functionality-oriented microservice extraction. Jin, W. et al. have proposed a dynamic

analysis approach named functionality-oriented microservice extraction which

monitors the dynamic program behaviour of a monolith service, stores program

behaviour in the form of logs and analyzes the logs to identify candidate microservices

[26].

Combining migration techniques. Note that it may be effective to use several candidate

microservice identification techniques. One strategy is to start with more abstract

model-driven techniques and combine or verify the results of these methods using static

or dynamic analysis approaches [27].

Microservice extraction strategies. Once candidate microservices have been

identified in the monolith, the next step is to choose a strategy for extracting the

candidate microservices to form actual microservices so that the monolith can

eventually be replaced with microservices. When extracting microservices, Chris

Richardson recommends using the following principles [28]:

1. Migrate incrementally. Services in the monolith should be converted to

microservices incrementally rather than simultaneously to reduce risk

and complexity.

2. Migrate the services with the highest return on investment (ROI) first.

Richardson defines the services with the highest ROI as those that have the

highest ease of extraction and the highest benefit of extraction. Richardson

says that modules with more inbound dependencies are more difficult to

decouple and thus have a lower ease of extraction. Modules with the highest

benefit of extraction are those that would benefit most from the velocity

benefits such as modules that are deployed frequently and the scaling benefits

such as microservices that are under heavy load.

11

Richardson also describes a useful pattern named the strangler pattern for safely and

gradually replacing a monolith with microservices in his book Microservice Patterns

[29].

Strangler application. To create a strangler application, microservices are extracted

from the monolith and added to the strangler application. New functionality is

implemented as new microservices in the strangler application to prevent the monolith

from growing. Over time, as more services are extracted from the monolith, the

strangler application grows while the monolith shrinks. Richardson outlines the

following process for building a strangler application by extracting microservices from

a monolith application [30]:

1. Split a module within the monolith to form two modules.

2. Split the database so that each module has its own database.

3. Create a new microservice for the new module.

4. Redirect traffic from the new module to the new microservice.

5. Delete the new module because it has been replaced by the microservice.

Fig. 5. Monolith to microservices migration using a strangler application (adapted from [30]).

The image above shows the result of applying the steps above. By repeating this

process, the monolith is gradually replaced by microservices.

3.4 RQ4: What are the risks of migrating from a monolithic to a microservices

architecture?

12

In our multivocal literature review, we have identified several risks associated with

monolith to microservice migrations.

Unnecessary migration. Although the benefits of microservices have been widely

communicated, the microservice architecture is not the best architecture for all

organisations. To make a monolith to microservices migration worthwhile, the costs of

the migration such as extra code for inter-service communication and error handling

should be exceeded by the benefits [18]. Microservices are generally more suitable for

large organisations because the disadvantages of monoliths tend to increase as they

become larger [20] and the benefits of microservices such as better scaling are only

significant for heavily used services which are more likely to be found at large,

established companies [18]. Therefore, monolith to microservices migrations should be

avoided by small companies because the net benefit is more likely to be negative. Andy

Singleton recommends that companies with fewer than 60 developers should not use

microservices [18]. If a business has a good reason to migrate their application to a

microservices architecture, there are still several pitfalls the business is vulnerable to.

Thinking microservices are a silver bullet. Adopting microservices is not a substitute

for other essential software engineering practices such as clean code, good design and

automated testing and will not somehow cause all problems to disappear [31][32]. Also,

microservices will only benefit the company substantially if they are carefully

implemented [32].

Adopting microservices without changing business practices. A business that

previously divided teams by layers (e.g. front end, back end) should change their team

structure after the adoption of microservices so that each team owns a single

microservice [32]. Similarly, the team should adopt DevOps processes such as

continuous delivery to manage their microservices effectively [31].

Difficulty decoupling the monolith. Extracting microservices from a monolith can be

challenging [32] if there is a high degree of coupling in the monolith because a change

in one part of the system would affect many components. Databases in monoliths tend

to have particularly high levels of coupling and reputation for being difficult to

decouple [5].

Unwillingness to change. Developers who invested significant amounts of time into

the development of the monolith may be reluctant to accept the significant change that

is migrating to microservices. Traditional companies or older developers may be

unwilling to accept the new microservices architecture because of its significant

difference to more traditional architectures [32].

Increased security risk. In monolithic applications, modules communicate with each

other within the same process via internal communication. In contrast, microservices

use network calls to communicate with each other over a network. The problem is that

the APIs microservices use to communicate with each other are exposed to the network

resulting in a greater attack surface area [10]. If measures to compensate for this

13

increased attack surface area are not introduced, the new microservices application

could be less secure than the original monolith.

Lower resilience. Microservices are a distributed system that relies on network calls

instead of internal communication in the case of a monolith. These network calls can

fail [5] and one problem could cascade through the system possibly resulting in lower

resilience than the original monolith if methods for handling the network failures such

as circuit breakers [5] are not put in place.

4 Limitations of Research

Although the researchers behind this paper have made every effort to create a complete

and unbiased multivocal review it must be acknowledged that there are limitations and

imperfections in our research. Perhaps the greatest limitation was that the initial

literature review effort was conducted by four final year undergraduate students who

had limited research knowledge and experience. This limitation has necessarily

diminished the strictly academic quality of the work, but it is nevertheless felt that the

findings are of interest to the community and that this can serve as a minor contribution

to an important topic. The total time available to the researchers was also a constraint

as the paper was researched and written as part of an assignment over several weeks,

with the result that there are only limited references included, and even those included

may include the effects of filter bubbles and recommendations of search engines.

However, the research was guided by experienced software engineering academics at

various stages, ultimately leading to the completion of this research paper. The fact that

the steps involved in a multivocal review are well-defined also served to limit the

possibility of errors being introduced.

Another significant limitation relates to the excessive volume of white and grey

literature available through searches. For example, the search term ‘monolith to

microservices’ returns over two thousand search results in Google Scholar which

exceeds the limitation of most individual researchers. It is therefore necessary to sample

only a small subset of those previous contributions. However, it is likely that a minority

of these documents are highly relevant to our research topic and sorting results by

relevance ensures that only the most relevant papers have been selected for this review.

A potential source of bias concerns the process of selecting relevant literature from

the initial literature pool. To reduce the effect of subjectivity in this process, we used

objective metrics such as the number of citations, publish date and search engine

relevance where possible.

5 Directions for Future Research

We have observed that the distribution of research literature relevant to our research

questions was uneven. We found a relative abundance of literature for the reasons

behind the recent increase in the popularity of microservices, the advantages and risks

of monolith to microservice migrations and methods for identifying microservice

candidates in monoliths. However, we found that there was a lack of academic literature

14

related to monolith to microservices migration steps after the identification of candidate

microservices and practical code-focused migration strategies. To address this

shortcoming, we found that it was often necessary to turn to grey literature to find

relevant content. Therefore, we suggest that candidate microservice extraction

strategies such as the strangler pattern and practical code-focused migration techniques

could be areas with many opportunities for further academic research.

Although there are many advantages to the microservice architecture over the

monolithic architecture, it may be that published material may tend to underemphasize

the advantages of a monolithic architecture. Some companies such as Intercom [33],

believe that the benefits of microservices have been overstated and that a monolithic

architecture is often better for small companies. To reduce the risk of a bias in favour

of the microservice architecture over the monolithic architecture, we believe there is an

opportunity for future research that consolidates and articulates the advantages of the

monolithic architecture.

Finally, since we had limited time when writing this paper, we believe there is an

opportunity for a more thorough and complete multivocal review of monolith to

microservices migrations. Also, as the software engineering discipline evolves, new

ideas and practices related to the topic are likely to create new opportunities for

research.

6 Conclusions

By applying a multivocal literature review, we have identified some of the reasons

behind the increase in popularity of the microservice architecture, and the advantages

and pitfalls associated with monolith to microservices migrations. Microservices

promote lower coupling, increased organisational alignment, better scalability, velocity

and resilience, and technological heterogeneity. We identified several monolith to

microservices migration techniques from three classes of migration techniques: model-

driven, static analysis and dynamic analysis techniques and described how they could

be used to identify boundaries in monoliths between candidate microservices. We then

described high-level monolith to migration strategies and strategies for effectively and

safely migrating monoliths to microservices such as the strangler application. Finally,

we outlined some of the risks that can arise when migrating a monolithic application to

microservices such as migrating for the wrong reasons, seeing microservices as a silver

bullet and security risks.

 Recent technologies related to deployment automation and service monitoring have

increased the viability of microservices as an alternative to the monolithic architecture,

resulting in increased popularity. It is therefore the case that the apparent rising

adoption of microservices is critically dependent on a cocktail of other technology

advancements, one further example of which is serverless computing, a paradigm in

which software providers do not concern themselves with hardware. This might be

particularly the case for highly distributed architectures (those with many

microservices) in a serverless cloud computing environment, as software providers

potentially only need to pay for services when they are executing. One example of this

can be found in Function-as-a-Service (FaaS) [34]. Much is changing in this space, it

is not just a technology fad, fundamental economic considerations are also present.

15

 Discussions regarding the rise of microservices are potentially misleading, because

it is not just microservices as a standalone concept that is on the rise, it is the

convergence of several emerging concepts that when orchestrated together, present

with a harmony that is appealing to software firms. It might be beneficial to academics

and practitioners alike if this convergence was given a dedicated name: the primary

constituent elements are serverless computing, microservices architecture, automated

build and deployment pipelines, and service monitoring. In previous work we termed

this Continuous Software Engineering [35], but even that concept has now been

stretched. Perhaps this should be replaced with the term Serverless Software

Engineering.

Acknowledgements. This research is supported in part by the Department of

Enterprise, Trade and Employment, Ireland (https://enterprise.gov.ie/en/) under the

Disruptive Technologies Innovation Fund grant number DTIF DT20180116, and also

supported in part, by SFI, Science Foundation Ireland (https://www.sfi.ie/) grant No

SFI 13/RC/2094 P2 to Lero - the Science Foundation Ireland Research Centre for

Software.

References

1. Mike Loukides & Steve Swoyer. (n.d.). Microservices Adoption in 2020 – O’Reilly.

[Accessed: February 1, 2022, from https://www.oreilly.com/radar/microservices-adoption-

in-2020/]
2. Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, Motivations, and Issues for

Migrating to Microservices Architectures: An Empirical Investigation. IEEE Cloud

Computing, 4(5), 22–32. https://doi.org/10.1109/MCC.2017.4250931
3. Fowler, M. (n.d.). Microservices. [Accessed: February 1, 2022, from

https://martinfowler.com/articles/microservices.html#footnote-etymology]
4. Rud, A. (n.d.). Why and How Netflix, Amazon, and Uber Migrated to Microservices: Learn

from Their Experience – HYS Enterprise. [Accessed: February 15, 2022, from

https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-

microservices-learn-from-their-experience/]
5. Newman, S. (n.d.). Building Microservices - Sam Newman - Google Books. [Accessed:

February 2, 2022, from

https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=

building+microservices&ots=uh8heDdFXl&sig=U_FvCd-

VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false

]
6. Kazanavicius, J., & Mazeika, D. (2019). Migrating Legacy Software to Microservices

Architecture. 2019 Open Conference of Electrical, Electronic and Information Sciences,

EStream 2019 - Proceedings. https://doi.org/10.1109/ESTREAM.2019.8732170

7. Data source: Google Trends (https://www.google.com/trends).
8. Ron Miller. (2016). How AWS came to be - TechCrunch. [Accessed: February 11, 2022,

from http://tcrn.ch/29cG0Gh]
9. de Lauretis, L. (2019). From monolithic architecture to microservices architecture.

Proceedings - 2019 IEEE 30th International Symposium on Software Reliability

Engineering Workshops, ISSREW 2019, 93–96.

https://doi.org/10.1109/ISSREW.2019.00050

https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://www.oreilly.com/radar/microservices-adoption-in-2020/
https://doi.org/10.1109/MCC.2017.4250931
https://martinfowler.com/articles/microservices.html#footnote-etymology
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microservices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false
https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microservices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false
https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microservices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false
https://books.google.ie/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=building+microservices&ots=uh8heDdFXl&sig=U_FvCd-VitpQmi249fxelnEXjQc&redir_esc=y#v=onepage&q=building%20microservices&f=false
https://doi.org/10.1109/ESTREAM.2019.8732170
https://www.google.com/trends
http://tcrn.ch/29cG0Gh
https://doi.org/10.1109/ISSREW.2019.00050

16

10. Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., &

Safina, L. (2017). Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior

Software Engineering, 195–216. https://doi.org/10.1007/978-3-319-67425-4_12
11. Richardson, C. (n.d.). What are microservices? [Accessed: February 1, 2022, from

https://microservices.io/]
12. Gouigoux, J. P., & Tamzalit, D. (2017). From monolith to microservices: Lessons learned

on an industrial migration to a web oriented architecture. Proceedings - 2017 IEEE

International Conference on Software Architecture Workshops, ICSAW 2017: Side Track

Proceedings, 62–65. https://doi.org/10.1109/ICSAW.2017.35
13. Amazon. (n.d.). What is DevOps? - Amazon Web Services (AWS). [Accessed: February 17,

2022, from https://aws.amazon.com/devops/what-is-devops]
14. Guitart, J., Beltran, V., Carrera, D., Torres, J., & Ayguadé, E. (2005). Characterizing secure

dynamic web applications scalability. Proceedings - 19th IEEE International Parallel and

Distributed Processing Symposium, IPDPS 2005, 2005.

https://doi.org/10.1109/IPDPS.2005.137
15. Qu, C., Calheiros, R. N., & Buyya, R. (2018). Auto-Scaling Web Applications in Clouds.

ACM Computing Surveys (CSUR), 51(4), 33. https://doi.org/10.1145/3148149
16. Prasandy, T., Titan, Murad, D. F., & Darwis, T. (2020). Migrating application from

monolith to microservices. Proceedings of 2020 International Conference on Information

Management and Technology, ICIMTech 2020, 726–731.

https://doi.org/10.1109/ICIMTECH50083.2020.9211252
17. Ponce, F., Marquez, G., & Astudillo, H. (2019). Migrating from monolithic architecture to

microservices: A Rapid Review. Proceedings - International Conference of the Chilean

Computer Science Society, SCCC, 2019-November.

https://doi.org/10.1109/SCCC49216.2019.8966423

18. Singleton, A. (2016). The Economics of Microservices. IEEE Cloud Computing, 3(5), 16–

20. https://doi.org/10.1109/MCC.2016.109
19. Richardson, C. (n.d.). Introduction to Microservices | NGINX. [Accessed: February 15,

2022, from https://www.nginx.com/blog/introduction-to-microservices/]
20. Chen, R., Li, S., & Li, Z. (2018). From Monolith to Microservices: A Dataflow-Driven

Approach. Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 2017-

December, 466–475. https://doi.org/10.1109/APSEC.2017.53

21. Fritzsch, J., Bogner, J., Zimmermann, A., & Wagner, S. (2018). From Monolith to

Microservices: A Classification of Refactoring Approaches. Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 11350 LNCS, 128–141. https://doi.org/10.1007/978-3-030-06019-0_10
22. Khononov, V. (n.d.). Learning Domain-Driven Design - Vlad Khononov - Google Books.

[Accessed: February 9, 2022, from

https://books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+

context&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgE

EAI#v=onepage&q=bounded%20context&f=false]
23. Richardson, C. (n.d.). Decompose by subdomain. [Accessed: February 9, 2022, from

https://microservices.io/patterns/decomposition/decompose-by-subdomain.html]

24. Bucchiarone, A., Dragoni, N., Dustdar, S., Larsen, S. T., & Mazzara, M. (2018). From

Monolithic to Microservices: An Experience Report from the Banking Domain. IEEE

Software, 35(3), 50–55. https://doi.org/10.1109/MS.2018.2141026
25. Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of Microservices from Monolithic

Software Architectures. Proceedings - 2017 IEEE 24th International Conference on Web

Services, ICWS 2017, 524–531. https://doi.org/10.1109/ICWS.2017.61

26. Jin, W., Liu, T., Zheng, Q., Cui, D., & Cai, Y. (2018). Functionality-Oriented Microservice

Extraction Based on Execution Trace Clustering. Proceedings - 2018 IEEE International

https://doi.org/10.1007/978-3-319-67425-4_12
https://microservices.io/
https://doi.org/10.1109/ICSAW.2017.35
https://aws.amazon.com/devops/what-is-devops
https://doi.org/10.1109/IPDPS.2005.137
https://doi.org/10.1145/3148149
https://doi.org/10.1109/ICIMTECH50083.2020.9211252
https://doi.org/10.1109/SCCC49216.2019.8966423
https://doi.org/10.1109/MCC.2016.109
https://www.nginx.com/blog/introduction-to-microservices/
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1007/978-3-030-06019-0_10
https://books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+context&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgEEAI#v=onepage&q=bounded%20context&f=false
https://books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+context&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgEEAI#v=onepage&q=bounded%20context&f=false
https://books.google.ie/books?id=qAtHEAAAQBAJ&printsec=frontcover&dq=bounded+context&hl=en&sa=X&ved=2ahUKEwj35MTuyfL1AhVhmVwKHT7iAv8Q6AF6BAgEEAI#v=onepage&q=bounded%20context&f=false
https://microservices.io/patterns/decomposition/decompose-by-subdomain.html
https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/ICWS.2017.61

17

Conference on Web Services, ICWS 2018 - Part of the 2018 IEEE World Congress on

Services, 211–218. https://doi.org/10.1109/ICWS.2018.00034
27. Fan, C. Y., & Ma, S. P. (2017). Migrating Monolithic Mobile Application to Microservice

Architecture: An Experiment Report. Proceedings - 2017 IEEE 6th International Conference

on AI and Mobile Services, AIMS 2017, 109–112. https://doi.org/10.1109/AIMS.2017.23
28. Richardson, C. (n.d.). Decompose your monolith - Six principles for refactoring a monolith

to microservices. [Accessed: February 9, 2022, from

https://chrisrichardson.net/post/refactoring/2020/07/28/six-principles-for-refactoring-to-

microservices.html]
29. Richardson, C. (n.d.). Microservices patterns. [Accessed: February 11, 2022, from

https://microservices.io/book]
30. Richardson, C. (n.d.). Refactoring a monolith to microservices. [Accessed: February 8,

2022, from https://microservices.io/refactoring/]

31. Richardson, C. (n.d.). Microservices adoption antipatterns - the series. [Accessed: February

16, 2022, from https://microservices.io/microservices/antipatterns/-

/the/series/2019/06/18/microservices-adoption-antipatterns.htm]
32. Carrasco, A., van Bladel, B., & Demeyer, S. (2018). Migrating towards microservices:

Migration and architecture smells. IWoR 2018 - Proceedings of the 2nd International

Workshop on Refactoring, Co-Located with ASE 2018, 1–6.

https://doi.org/10.1145/3242163.3242164
33. Scanlan, B. (n.d.). 10 technical strategies to avoid when scaling your startup (and 5 to

embrace) - Inside Intercom. [Accessed: February 13, 2022, from

https://www.intercom.com/blog/ten-technical-strategies-to-avoid-when-scaling-your-

startup-and-five-to-embrace]

34. Grogan, J., Mulready, C., McDermott, J., Urbanavicius, M., Yilmaz, M., Abgaz, Y.,

McCarren, A., MacMahon, S.T., Garousi, V., Elger, P., Clarke, P.M.: A Multivocal

Literature Review of Function-as-a-Service (FaaS) Infrastructures & Implications for

Software Developers. In: Proceedings of the 27th European and Asian Conference on

Systems, Software and Services Process Improvement (EuroSPI 2020), Springer CCIS Vol.

1251, 9-11 September 2020, Dusseldorf, Germany. https://doi.org/10.1007/978-3-030-

56441-4_5

35. O'Connor, R.V., Elger, P., Clarke, P.: Continuous Software Engineering - A Microservices

Architecture Perspective. Journal of Software: Evolution and Process, 29(11), 2017, pp.1-

12

36. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and

conducting multivocal literature reviews in software engineering. J. Inf. Softw. Technol.

106, 101–121 (2019)

https://doi.org/10.1109/ICWS.2018.00034
https://doi.org/10.1109/AIMS.2017.23
https://chrisrichardson.net/post/refactoring/2020/07/28/six-principles-for-refactoring-to-microservices.html
https://chrisrichardson.net/post/refactoring/2020/07/28/six-principles-for-refactoring-to-microservices.html
https://microservices.io/book
https://microservices.io/refactoring/
https://microservices.io/microservices/antipatterns/-/the/series/2019/06/18/microservices-adoption-antipatterns.htm
https://microservices.io/microservices/antipatterns/-/the/series/2019/06/18/microservices-adoption-antipatterns.htm
https://doi.org/10.1145/3242163.3242164
https://www.intercom.com/blog/ten-technical-strategies-to-avoid-when-scaling-your-startup-and-five-to-embrace
https://www.intercom.com/blog/ten-technical-strategies-to-avoid-when-scaling-your-startup-and-five-to-embrace

