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Abstract

We analyze the correlation between different assets in the cryptocurrency
market throughout different phases, specifically bearish and bullish periods.
Taking advantage of a fine-grained dataset comprising 34 historical cryp-
tocurrency price time series collected tick-by-tick on the HitBTC exchange,
we observe the changes in interactions among these cryptocurrencies from
two aspects: time and level of granularity. Moreover, the investment deci-
sions of investors during turbulent times caused by the COVID-19 pandemic
are assessed by looking at the cryptocurrency community structure using var-
ious community detection algorithms. We found that finer-grain time series
describes clearer the correlations between cryptocurrencies. Notably, a noise
and trend removal scheme is applied to the original correlations thanks to the
theory of random matrices and the concept of Market Component, which has
never been considered in existing studies in quantitative finance. To this end,
we recognized that investment decisions of cryptocurrency traders vary be-
tween bearish and bullish markets. The results of our work can help scholars,
especially investors, better understand the operation of the cryptocurrency
market, thereby building up an appropriate investment strategy suitable to
the prevailing certain economic situation.

Keywords: cryptocurrencies, noise and trend effects, tick-by-tick data,
network structure, community detection, COVID-19
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1. Introduction

The cryptocurrency market has become an attractive target for many
financial investors in recent years due to its potential for rapid gains. One
research topic being explored in this market is the correlation between differ-
ent cryptocurrencies. Understanding how different assets interact with each
other can help in portfolio optimization [1], predicting the future volatility
or downturn [2] and also in observing the risk spillover that benefits portfolio
diversification [3], to mention only a few.

Thanks to a network-based methodology, cryptocurrencies’ cross relation-
ships can be learned and observed visually [4]. The idea of this method is
that it builds up a network of different objects such that the distance be-
tween two objects depends on how similar they are: the shorter the distance,
the more similar the two objects are. Eventually, we can see the interaction
between objects by looking at their network’s structure and analyzing char-
acteristics of the network. Different network construction approaches have
been explored in the literature, from Minimum Spanning Tree (MST) [5],
k-Nearest neighbors (kNN) [6], planar maximally filtered graph (PMFG) [2]
to Threshold Weighted-Minimum Dominating Set (TW-MDS) [7], to name
but a few. In financial markets, normally, the similarity between two assets is
measured by comparing the evolution of two corresponding price time series,
one typical method to do this is Pearson correlation metric [8]. The study
on correlation of traditional asset classes such as stocks, bonds, national fiat
currencies and commodities has been developed a long time ago, with vary-
ing approaches invented to learn the correlation between different entities
in the same market but also between different asset classes, ranging from
statistical [9, 10] to AI-based methods [11].

Generally, there are two common shortcomings with correlation-related
studies. Firstly, one mainly uses a low-frequency dataset such as daily or
monthly, and this might cause a loss of important information from each
time series, hence failing to reflect their true nature [12]. This appears to be
a major concern in the cryptocurrency market, since it is well-known for its
high fluctuations in terms of price movement. For example, in [13], the au-
thors show that the losses of cryptocurrencies can reach 70% within one
day. Recently, in 2020, by comparing the volatility in the returns between
cryptocurrency and stock markets, the authors of [14] revealed that major
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cryptocurrencies such as BTC and ETH have volatilities of 5.68 and 7.10,
respectively, which is two-fold higher than that of S&P500 and Euro Stoxx
50 indices. Notably, Dirk et al. calculated the daily price volatility of Bitcoin
from 2001 until 2021 and found that there are extremely volatile days when
the volatility can hit 120% [15]. Thus, using a high frequency means that we
are ignoring valuable information (e.g., the intraday fluctuations of a time
series) on purpose. As a result, this can adversely affect the correlation ex-
tracted from the dataset, potentially leading to inaccurate correlation-using
experiments (e.g., portfolio optimization). Secondly, researchers tend to ana-
lyze the inter-relation between different time series by using trading price val-
ues reported on a website (e.g., Coinmarket (https://coinmarketcap.com/),
Yahoo Finance (https://finance.yahoo.com/)). However, this practice delib-
erately ignores the effects of noise and trends in financial time series, which
we will describe clearly in Section 4.

Another important factor to consider is the recent COVID-19 pandemic
which forced all countries to close off borders and restrict movements for
residents as well as businesses [16]. This had a strong effect on the global
downturn which occurred in March 2020 as a response to governments’ ef-
forts to control the disease spreading [17]. These historical events have been
shown to disturb and devalue different financial asset classes such as stocks,
bonds and also cryptocurrencies [18, 19]. Instead of looking at the changes in
time-series elements such as volumes, prices, returns and volatilities during
the COVID-19 pandemic, in this study, we will investigate the impact of the
pandemic by looking at the changes in network structures over time. Fur-
thermore, based on these network’s structures, we show how we can observe
the corresponding community structures via community detection methods.
The results from our experiment can be used to learn behaviours of investors
in different periods of time, especially during downturn times in the finan-
cial market.

From the shortcomings of existing studies and utilizing the advantage of
network-based analysis, this study aims to investigate the network structure
of cryptocurrencies without noise and trend effects and how this structure
changes under the impact of the COVID-19 pandemic. Specifically, the re-
search target is to answer these research questions:

• RQ1. Is there evidence of the existence of noise and trend effects in
the cryptocurrency market? If yes, how do noise and trend effects
influence the interactions between cryptocurrencies? What does the
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network structure of these cryptocurrencies look like after removing
noise and trend effects?

• RQ2. Does the network structure change when the level of granularity
changes? If this is the case, what level of granularity should we use to
obtain the true network structure?

• RQ3. Is there evidence that historical events such as the COVID-19
pandemic and the global downturn in 2020 changed the overall cryp-
tocurrency network structure? If this is the case, how did they change
it? Moreover, is there any possibility that this change was caused by a
change in investors’ investment strategy? In other words, does the way
investors react to a downturn change the interactions between cryp-
tocurrencies?

It should be noted that we are not new to the subject of time-varying
cryptocurrency network structure, we merely build on work by the team of
Drozdz, Watorek, Kwapien [20, 21] as well as, more recently, Nie [22]. How-
ever, our work expands the existing studies since we consider the investment
decisions of investors based on the observed network structure and we ac-
knowledge the negative effect of not only trend but also noise presenting in
cryptocurrencies. As suggested by Miceli [23], the trend and noise removal
results in a filtered MST that better explains investment strategy and also
potentially uncovers endogenous or exogenous factors that drive the price
of cryptocurrencies

To solve these research questions, we use a tick-by-tick dataset which
consists of 34 price time series corresponding to 34 cryptocurrencies traded
on the HitBTC exchange during the period between 13 February 2019 and 6
April 2021 . When it comes to network formation, we calculate the correla-
tion between cryptocurrencies by adopting the linear similarity measurement
named Pearson and then construct a Minimum Spanning Tree (MST) based
on these correlation coefficients. The noise and trend removal is carried out
by applying Random Matrix Theory (RMT). Community structure is found
by using community detection methods. In addition, different metrics are
used to analyze the network structures and support our findings.

The remainder of the article is organized as follows: Section 2 presents
an overview of the relevant literature. Section 3 provides a description of the
dataset. Section 4 describes terminologies, methods and preprocessing proce-
dures. Section 5 discusses the experimental results followed by implications
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and hypotheses. Finally, the conclusion of this study is given in Section 7.

2. Related Works

2.1. Correlation-Based Analysis in the Financial Markets
The topic of correlation analysis has a long history in connection with

stock markets throughout various historical economic crises using different
correlation-calculating metrics. In [24], the authors estimated the correlation
between 116 S&P500 stocks between 1982 and 2000 using Pearson coeffi-
cient. They further used MST to build up a correlation-based network in
order to observe time-varying correlations based on three network measuring
metrics including normalized tree length, survival ratio and mean occupation
layer. As a result, they pointed out a large change in the network structure
during Black Monday. More recently, [6] came up with a Neural Network ap-
proach to construct a graph and found a dramatic difference in the network
structure during the downturns in 2008, 2011 and 2020. In [1], a Pearson cor-
relation matrix of 200 and 400 stocks from the CSI 300 and S&P500 index,
respectively, was used to find an optimized portfolio following the Markowitz
optimization scheme. Instead of using Pearson method, Liu et al’s paper used
an interesting alternative method Mutual Information to generate a distance
metric to take account of non-linear effects in intra-day S&P stock data [25].
Other methods to estimate the correlation coefficients (i.e., Wavelet coher-
ence, Fast Fourier Transform) and construct correlation-based networks (i.e.,
PMFG, threshold method) were introduced in several studies [2, 11, 26].

Different existing approaches to study the correlations in the stock mar-
ket have been applied to digital coins. Some common conclusions from ex-
isting articles are that the cryptocurrency network changes over time but
Ethereum tends to act as a central node in the whole network, i.e., it is
a densely connected node [5, 27, 28]. A few works remedy the problem
of dataset shortages that have been concerned in the traditional markets,
i.e ones tended to use low-frequency data to implement their studies such
as daily or weekly. However, they only account for a small portion of the
existing literature. For example, Antonio et al. [29] used small frequency res-
olutions such as one hour and four hours and also consider daily data of 25
large market capitalized entities traded on the FTX exchange to discover the
evolution of cryptocurrency network structures between different time fre-
quencies. By using Pearson correlation-based MST, they found an increase
in the complexity of networks’ shape for coarser time resolutions. In other
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words, cryptocurrencies converge into a bigger group as resolution increases.
On the contrary, the authors in [20] using multiple timescales starting at 10
min to 360 min proposed an opposite statement that low timescales cause the
network to be centralized while it is distributed and more correlated at high
timescales. They used the liquidity and capitalization differences among the
assets to explain this result, since cryptocurrencies with low capitalization
are traded less frequently than those with large capitalization, it takes more
time for a piece of market information to spread over such cryptocurrencies.
Thus, they are more inclined to use longer scales. Notably, this is one of
the very few studies that remove the trend effect from the original dataset.
Interestingly, instead of using return time series like other researchers, a re-
search using hourly realized volatility values was carried out to observe the
risk spillover between 7 high-capitalized cryptocurrencies [3].

Different methods have been introduced to detect communities given a
correlation matrix. The authors in [4] applied Louvain method on the MST
of 119 cryptocurrencies to cluster potential communities. The time-varying
dynamics from the community structures found suggests collective behaviour
among these communities. With the communities found by the same method,
the authors in [30] went one step further by using Principal Component Anal-
ysis (PCA) to find an optimal portfolio out of 200 cryptocurrencies in cir-
culation. Another community detection method that is worth taking into
consideration is Girvan–Newman, which has been adopted widely for mul-
tiple purposes such as link prediction, portfolio diversification, etc. [31, 32].
A few other methods are also being used to grouping similar entities but are
less popular such as Clauset algorithm, Stochastic block model (SBM), La-
tent Dirichlet Allocation (LDA) and Markov random field (MRF) [33]. One
obstacle from existing studies is that some used a specific community detec-
tion algorithm only, raising a doubt about the robustness of the community
structure. To this end, we first use the Louvain method to detect communi-
ties in our dataset and then adopt Girvan–Newman method to examine the
robustness of the communities found earlier.

2.2. How the COVID-19 Pandemic Intervened on the Economy Worldwide
At the beginning of 2020, the economy of China started to be influenced

by COVID-19, earlier than other countries. Moreover, as the world’s hub for
global manufacturing and trade, immediate adverse effects on the Chinese
economy resulted in global impacts [16]. Different regulations have been
applied to handle the disease, such as closing national borders as well as
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stopping business activities across the world, strongly influencing the global
economy [16]. Eventually, the global financial panic in March 2020 took
place. In [18], the authors pointed out that the similarity calculated by
ACC and ADCC models between the US and Chinese markets increased
dramatically during the pandemic. Regarding the stock prices, when the
pandemic occurred, the prices of the US and Chinese stocks decreased but
started to recover again since July 2020. This trend is also true for other
emerging and developed stock markets in different countries from different
continents such as Japan, Germany, Australia and Canada [34]. Likewise,
even less risky assets such as gold were adversely affected [35]. The increase
in the correlation between different financial markets in the presence of good
and bad news has been observed for some decades. In [36], the authors stated
that stocks are more affected by the presence of bad news, compared to good
news. Moreover, bad news has a stronger correlation in traditional markets.
These results align with what happened during the COVID-19 pandemic.
Although the world continued facing different COVID-19 waves afterwards,
its impact on different asset classes lessened significantly [37], stock prices
increased and volatilities decreased again to their original values before the
pandemic [38]. Furthermore, the connectedness between different assets also
experienced a major decline [39].

In [19], the authors investigated the impact of the COVID-19 pandemic
on the cryptocurrency market by using daily prices of 45 well-known cryp-
tocurrencies between September 2019 and April 2020—the majority of which
are also used in our present study. In particular, they measured the sta-
bility of cryptocurrency time series using Largest Lyapunov Exponent and
Approximate Entropy. All time series are divided into two parts: the first
part spans September to December 2019, considered normal time, while the
second spans January to April 2020, considered a pandemic period. They
revealed that the pandemic increases in cryptocurrency market uncertainty
as prices fluctuated significantly. Moreover, the same experiment has also
been carried out on the stock market, results indicating a lower level of price
fluctuations in the stock compared to digital currencies. Also on the same
topic, Drozdz et al. [21] compared the Pearson correlation between the cryp-
tocurrency market and different asset classes including stocks, fiat currencies
and commodities, revealing that these conventional markets easily influence
the cryptocurrency market when they are in turbulent times, while there
is no significant correlation between digital currencies and other markets in
normal times, given the time resolutions they used are 10 and 360 mins.
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Reactions of the general public to the COVID-19 outbreak were also ob-
served to examine its relationship with cryptocurrencies’ returns. For ex-
ample, authors in [40] measured the fear of people by the frequency of oc-
currence of keywords COVID-19 and coronavirus on Google Trends (https:
//www.thinkwithgoogle.com/, accessed on 4 August 2022). Thanks to the
vector autoregressive (VAR) models, they compared the evolution of this
fear with the stock market’s expectation of volatility VIX index (the VIX
index is a measure of constant, 30-day expected volatility of the US stock
market, derived from real-time, mid-quote prices of S&P500. Normally, it is
calculated using the Black–Scholes formula) as well as the Bitcoin returns.
They found that increases of fear can lead to Bitcoin crashes, as the cor-
relation coefficient is −0.9. Furthermore, negative sentiment generated by
coronavirus news is associated with market volatility, which is in line with
other findings such as in [41]. Interestingly, some studies on the relationship
between news-based sentiment and cryptocurrencies showed that, although
both bad and good news cause the change in the returns and volatilities of
cryptocurrencies, positive news has more effect on the volatilities and returns
of cryptocurrencies in comparison with negative news [42, 43, 44].

Recently, network analysis in the cryptocurrency market during the Covid-
19 pandemic has been carried out, with the common result being that the
pandemic, as well as the global downturn, actually caused a change in the
network structure of the cryptocurrency market. Specifically, cryptocurren-
cies tend to form bigger groups during the downtime, i.e., the number of
potential clusters found in the network decreases during the downtime, with
a few cryptocurrencies acting as central nodes. This topic has only been
explored in a few studies to date [45, 46, 22, 21]. Moreover, there are some
gaps: (1) the lack of deep investigation of the network structure as they only
consider MSTs; (2) the noise and trend effects are not removed; (3) data
limitation issues.

We will address these shortcomings by doing deeper experiments on the
network structure of the cryptocurrency market before, during and after
the COVID-19 pandemic via a longer dataset with the effect of noise and
trend removed. In addition, we will look at the way cryptocurrencies form
a group during turbulent times by considering their rankings (identified by
its market capitalization, the larger its maket capitalization, the higher its
rank). We believe that this research can propose a better understanding
of interconnections between digital currencies during standard and unstable
periods. Furthermore, we also aim at understanding the investment decision
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of investors in different market states based on the results of community
detection.

3. Data Description

All experiments in this study have been carried out based on a tick-by-
tick price dataset (tick data are the highest resolution intraday data and
consist of the sequence of each executed trade or bid/ask quote aggregated
from an exchange) that was collected from the hitBTC exchange (a plat-
form for digital asset and currency exchange to quickly and securely trade
cryptocurrencies—website address: https://hitbtc.com/) from 13 February
2019 to 6 April 2021. The dataset comprises 34 cryptocurrencies with a hy-
brid of high and low rankings. Specifically, the highest rank is 1 (Bitcoin)
while the lowest rank is 260 (FunToken), according to the price-checking
website Coinmarketcap (https://coinmarketcap.com, accessed on 4 August
2022) in April 2021; full list in Table 1.

Table 1: A list of 34 cryptocurrencies used in this study. Abbreviations are put in paren-
theses.

Cryptocurrencies

Argur
(REP)

Bitcoin
SV

(BSV)

Ethereum
Classic
(ETC)

MaidSafeCoin
(MAID)

Ontology
(ONT)

Tron
(TRX)

Bancor
(BNT)

Cardano
(ADA)

FunToken
(FUN)

Maker
(MKR)

Ox
(ZRX)

Verge
(XVG)

Basic
Attention

To-
ken(BAT)

Decentraland
(MANA)

ICON
(ICX)

Monero
(XMR)

QTUM Zcash
(ZEC)

Bitcoin
(BTC)

Dogecoin
(DOGE)

IOST Nem
(XEM)

Ripple
(XRP)

Zilliqa
(ZIL)

Bitcoin
Cash

(BCH)

EOS Lisk
(LSK)

NEO Stellar
(XLM)

Bitcoin
Gold

(BTG)

Ethereum
(ETH)

Litecoin
(LTC)

OMG
Network
(OMG)

Tezos
(XTZ)
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3.1. A Note on Data Sampling and Missing Data
Since price values are collected tick-by-tick, there is no fixed timescale

for all cryptocurrencies leading to an inconsistency between the time series.
For this reason, we re-sample the dataset by using data points at a specific
timescale. In particular, we choose four different timescales, namely 30 min,
6 h, 12 h and 24 h. Each data point of a dataset is taken to be the price of
the last transaction of 34 cryptocurrencies within the considered timescale.
Eventually, we have four datasets corresponding to four different timescales.
Table 2 shows the description of each re-sampled dataset.

Table 2: Characteristics of four re-sampled datasets at four different levels of granularity.

Level of
Granularity

# Data Points # Missing Values

30 min 37,632 289 (0.8%)
6 h 3136 24 (0.8%)
12 h 1568 12 (0.8%)
24 h 784 0 (0%)

Three out of four datasets have missing values with the same percentage of
0.8%. Note that a data point of a dataset is considered missing if at least one
cryptocurrency does not have the price value at this data point. For each time
series, instead of simply removing missing values from the time series and
values from other time series from the same time, we replace missing values
with the average value of the corresponding time series. This technique
has been adopted in different research topics with good performance [47,
48, 49]. Furthermore, we notice that this does not change the statistical
properties of the correlation between time series but, instead, helps to keep
more information and thus the results found from conducting the experiments
are more reliable and accurate.

3.2. Aggregational Gaussianity
Aggregational Gaussianity is considered a stylized fact in traditional fi-

nancial markets. In [50], the authors observed the evolution of distributions
of the IBM stock returns by looking at different levels of granularity, e.g., 30
min, one day, one week and one month, finding evidence of Aggregational
Gaussianity. Another study on this topic drawing the same conclusion is
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described in [51]. However, these authors used different stocks and a higher
set of timescales from one day to one year, showing that this stylized fact is
also true for stocks at coarser time resolutions.

We investigate whether Aggregational Gaussianity exists in our log-return
time series using a set of four timescales: 30 min, 6 h, 12 h and 1 day. We
observe this statistical aspect by implementing three experiments: Firstly, we
construct the histogram as well as kernel density estimation (KDE) for each
cryptocurrency time series. Secondly, we generate the Q-Q plot, which is a
popular approach to test normality for a time series [52]. Lastly, we use the
Lilliefors hypothesis test for normality [53]. We obtained the following find-
ings: firstly, although the distributions of these cryptocurrency time series
have a bell curve shape at all timescales considered, they are not (from the
Q-Q plot and Lilliefors test) normally distributed; secondly, however, there
appears to be evidence to say that Aggregational Gaussianity exists in all
cryptocurrencies used in this present study from the Q-Q plots. This result
is in line with existing findings in the cryptocurrency market such as [54, 55].

4. Research Methodology

4.1. Correlation Matrix Based on Pearson Coefficients and Random Ma-
trix Theory

Given xi is the price time series of cryptocurrency i, we use its return val-
ues to find the correlation between cryptocurrencies. This is because Return
values are represented as a percentage, making them scale-free and especially,
stationary, which is an important requirement for many statistical tools, such
as Normalization. Thus, we first calculate the corresponding return time se-
ries ri as follows [56]: ri = log

(
xt
i/x

t−1
i

)
, where xt

i is the price value of the
cryptocurrency i at timestamp t

Each of these return time series can be normalized as follows [57]: r̂i =
(ri − µi) /σi, where µi and σi are the average value and standard deviation
of time series i, respectively.

We form a m×n matrix G such that each column represents a normalized
return time series of a cryptocurrency and each row represents a timestamp.
The corresponding correlation matrix C can be expressed as follows [56]:
C = 1

m
GG⊺. In other words, each element Cij of C shows the correlation

strength between cryptocurrencies i and j by calculating the dot product of
the two normalized return time series, Cij =< r̂i, r̂j >. Such a correlation
matrix is called Pearson correlation matrix .
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It should be noted that Pearson correlation has some limitations as de-
scribed in [58]. In particular, its sensitivity to outliers and inability to capture
non-linear relationships both have the potential to cause misleading results.
However, we believe that this correlation metric is appropriate to use in our
study for the following reasons:

• Firstly, we make use of cryptocurrency returns in order to retain the
statistical nature of the associated time series. While some authors
have proposed addressing the nonlinearity problem (e.g., Spearman [59]
and Kendall [53]), these have the disadvantage of converting rational
numbers into integer rankings, with the potential to lose out on critical
information from financial time series [60]. Moreover, it has been shown
that rank correlation metrics also suffer from the nonlinearity issue in
some cases [58].

• Secondly, Pearson has been widely applied in the existing literature,
not only in the cryptocurrency market [21, 22, 32] but also in markets
for more traditional asset classes [2, 6, 24]. This strongly reinforces our
belief in the applicability of this method of correlation calculation for
our problem.

• Thirdly, rank-based correlation metrics require independent observa-
tions. This is a known weakness of non-linear correlation methods
such as Spearman and Kendall [60]. On the other hand, Pearson works
well for time series with duplicate observations (because there is no re-
quirement for independent observations), as is the case in financial time
series. For example, the price of a cryptocurrency can be unchanged
for a period of time.

One issue raised from this type of matrix is the question of how reli-
able these correlations are, in other words, whether the correlation matrix
shows genuine and authentic relationships between the considered time se-
ries. Thanks to the RMT [61], this hypothesis can be examined. Partic-
ularly, given a m × n random matrix N whose elements are distributed
randomly with zero mean and unit variance, the eigenvalue distribution of
the correlation matrix CN = 1

m
NN⊺ follows the Marchenko–Pastur proba-

bility density function [62] if the Quality Factor Q = m
n

≥ 1 holds when
the number of timestamps m → ∞ and the number of features n → ∞:
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P (λ) = Q
2π

√
(λ+−λ)(λ−λ−)

λ
, where P is the Marchenko–Pastur probability den-

sity function, λ is an eigenvalue of CN, λ± = 1 + 1
Q
± 2

√
1
Q

are upper and
lower limits, respectively.

From RMT, eigenvalues falling outside of [λ−, λ+] are assumed to deviate
from its expected predictions [63, 64]. Hence, we can use this theory to
test the reliability of the relationships in our empirical data [65]. That is,
if an empirical correlation matrix actually has real valuable information, it
must have eigenvalues that are outside the bounds of [λ−, λ+]. Otherwise,
the empirical correlation matrix can be taken to contain mainly random
noise. In this study, RMT has been used to test our correlation matrices.
The results show that all correlation matrices are not random and contain
valuable information.

4.2. Cleaning Trend and Noise Effects in the Cryptocurrency Market
4.2.1. Noise and Trend

The cryptocurrency market is known to have a higher percentage of noise
than other traditional financial markets. According to [66], the average daily
signal-to-noise ratio of the cryptocurrency market is 36%, which is extremely
low compared to well-established US stock exchanges such as NYSE and
NASDAQ, with an average daily signal-to-noise ratio of 90%, given the con-
sidered period between March 2017 and November 2017. The noise in the
cryptocurrency market might come from different sources. For instance, there
is no fixed volume for a transaction to be executed at a time, so investors can
freely choose the amount that they want to trade; however, this issue causes
one problem, in that investors can reduce the transaction costs by splitting
their budget into smaller pieces and then buy one cryptocurrency many times
with different amounts of volume and price, a practice which can trigger un-
forseen price movements, see [67]. Furthermore, cryptocurrencies’ prices are
vulnerable to "pump and dump" schemes [68], which have become pervasive
recently, and also regulatory news enacted by national authorities [69]. All of
these factors might intervene in the price movements of digital assets. Con-
sequently, the correlation matrix between cryptocurrencies cannot explain
their real connections as it is highly influenced by these noise factors.

On the other hand, the trend effect found in other correlated systems [70]
might be found in the cryptocurrency market. Briefly speaking, a trend
among cryptocurrencies means that they tend to move together in terms
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of price values. We notice that the majority of cryptocurrencies are cre-
ated based on the protocol of leading cryptocurrencies such as Bitcoin and
Ethereum (e.g., MKR, BNT, ICX, ETC and LTC) [71]. Moreover, cryp-
tocurrencies’ prices readily fluctuate with mass media [72], causing a herding
behavior [72]. Similar characteristics contribute to creating a trend in cryp-
tocurrencies.

Generally, these phenomena might be reasons for a high-value correlation
matrix of cryptocurrencies from our dataset. Thus, it is important to remove
of the existing noise and trend before moving on to further analysis.

4.2.2. Cleaning Method
In recent studies, different approaches have been proposed to remove the

noise from a correlation matrix through modification of the corresponding
eigenspectrum, e.g. Linear shrinkage [73], Eigenvector clipping [74], Non-
linear shrinkage [75] and Rotationally invariant, optimal shrinkage [76]. One
common obstacle for most of the existing cleaning methods is that they have
parameters needing definition. This is, raising an obvious question: How to
choose these?. It is acknowledged that a lot of effort has been made to obtain
the right parameter values, i.e. the noise is removed completely without the
loss of data information [77, 78]. However, these optimization approaches
have one issue is that they use the Frobenius norm in their formula so they
fail to work with outliers-containing data, a downside of the Frobenius met-
ric [79]. On the other hand, Eigenvector Clipping distinguishes itself from
others [74] as it does not require any training parameters, making its outcome
robust and more reliable. Furthermore, this cleaning method is straightfor-
ward to implement with the guaranteed efficiency as it keeps the information
part, i.e. after the cleaning process, the trace of the correlation matrix re-
mains unchanged [80]. This method has shown good performance in different
studies and has been applied widely to different topics such as programming
education, portfolio optimization and signal processing [70, 81, 82]. The out-
standing performance of the Eigenvector clipping encourages us to choose this
method for our cleaning scheme.

Given eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn and corresponding eigen-
vectors v1, v2, . . . , vn of our empirical correlation matrix C, we can identify
k ≤ n such that λk > λ+ and λk+1 ≤ λ+. The Eigenvector clipping defines
the denoised correlation matrix Cdenoised by [83]:
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Cdenoised = Σn
i=1λ

∗
i viv

⊺
i , λ

∗
i =

{
λk+1+λk+2+...+λn

n−k
,∀i ≥ k + 1

λi,∀i ≤ k
(1)

Equation 1 uses the same eigenvectors as C but modifies their correspond-
ing eigenvalues such that those greater than λ+ remain unchanged while the
rest will be replaced by their average value. Notably, although small eigen-
values are replaced, the trace of the denoised correlation matrix is equal to
its origin.

Regarding the trend effect, it is explained by the first eigenvalue and
eigenvector, referred to as "market component" [83]. The market component
is proved to influence the outcome of the correlation matrix. In particular, it
is involved in all interactions observed from the correlation matrix due to its
enormous amount of information, consequently, lessening the performance
of clustering algorithms [84]. Thus, removing this component is a necessary
step to clean the trend effect so that a greater portion of the correlation can
be explained by components that affect specific subsets of the cryptocurren-
cies and hence, facilitate clustering algorithms to find dissimilarities across
clusters. A cleaned correlation matrix Ccleaned is obtained by subtracting the
market component from the denoised correlation matrix:

Ccleaned = Cdenoised − λ1v1v
⊺
1 (2)

We found that the connections between cryptocurrencies decrease greatly
without noise and trend effects: Large cryptocurrencies such as Bitcoin,
Ethereum and Ripple do not see to affect the cryptocurrency market as they
did before the cleaning process since there is no strong connection between
them and other cryptocurrencies. This result is in line with [70], where the
Eigenvalue Clipping method was also used to clean the education-related
correlation matrix.

4.3. Distance Matrix and Its Minimum Spanning Tree
Although the correlation coefficient can explain some aspects of the re-

lationships between cryptocurrencies, it is not a metric [85]. Thus, the con-
nections learned from the correlation matrix lack topological characteristics
because they are not placed in a metric space [85]. To tackle this issue, a
concept named Distance Matrix has been introduced to replace the correla-
tion matrix.
Let D be a distance matrix deriving from Ccleaned, then:
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dij =
√

2 ∗ (1− cij) (3)

Where dij ∈ [0, 2] is an element of D, with 0 indicates the complete similarity
between 2 nodes while 2 indicates the complete difference between 2 nodes.
From the Eqn 3, we can prove that: (1) dij ≥ 0, (2) dij = 0 if i = j and (3)
dij = dji, i.e. the requirements of a metric are satisfied [85]. By using the
distance matrix, we can derive a network (graph) of cryptocurrencies (nodes)
with a specific topology, where similar cryptocurrencies are close to each other
and cryptocurrencies with different behaviors are far away from each other,
the link (edge) between each pair of cryptocurrencies is their distance value.
Thanks to this topology, different communities of cryptocurrencies can be
observed.

One problem with this type of network is that it is dense. That is, for a set
of N nodes, the corresponding graph deriving from D has N×(N−1)

2
edges such

that each vertex connects to all other vertices. To reduce the complexity of
the network, we use a Minimum Spanning Tree (MST) [86], which refers to a
special tree from the graph that links all vertices together in which its length
is minimal. Particularly, it reduces the amount of redundant information
since it only keeps the N −1 most important edges, i.e. N −1 shortest edges
that are well connected. MST stems from graph theory and is applied widely
to different fields [4, 87, 88], especially in financial markets [89, 90, 91]. To
exploit the useability of MST, the dynamics of community structures in the
stock market are observed by Huang et al. [92] with the dataset split into
consecutive smaller periods and a MST constructed at each of them. Thus,
the characteristics of a financial network can be captured by observing the
evolution of MSTs. More recently, the cryptocurrency market was introduced
and attracted a number of investors, the demand for exploring the correlation
between cryptocurrencies thereby emerged. However, this topic is rather new
and needs more studies to be implemented [4, 93].

There are two famous algorithms to find the MST, namely Prim [93]
and Kruskal [94]. While both methods show good performance, Kruskal
seems to be better in terms of time complexity. A comparison between the
two from [95] shows that the prior works well with a big network while the
latter is dominant when the network is small, which is appropriate for this
study as we have only 34 cryptocurrencies. Moreover, Kruskal is used more
often in finance-related topics compared to other approaches [96, 97, 98],
which strengthens the reliability of the algorithm. With these advantages,
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we choose Kruskal for this study.

4.4. Community Detection in the Cryptocurrency Market
Given a MST from the distance matrix D, different communities are

formed and can be recognized clearly, i.e. cryptocurrencies belonging to one
community have short distance edges among them and the distance between
two others in two different communities is longer than any edges of these two
communities. However, there are less common cases in which some nodes
are scattered between communities or it is not visible from the graph how
close are the two communities. This issue motivates us to further analyze
the MST to optimize the clustering result using several community detection
methods which have been developed [99, 100, 101, 102, 103]. Of these, the
Louvain method is applicable across a wide range of domains [104, 105, 106,
107]. Thus, we apply this method to our MST in order to obtain optimal
communities. Theoretically, Louvain is an optimization problem that uses
Modularity to measure the density of links inside communities compared
to links between communities. The target of Louvain is to minimize the
Modularity measure, which means that different authentic communities are
clustered very tight [108].

However, it is not convincing just to show results from one method only as
the community structure of a network might be just random. To overcome
this issue, we also adopt another commonly used method named Girvan-
Newman which removes edges from the original graph one-by-one such that
the edge having the highest number of shortest paths between nodes passing
through it is removed first. Eventually, the graph breaks down into smaller
pieces, so-called communities [109].

If the results proposed by these 2 community detection methods are sim-
ilar, it implies that the relationship of the cryptocurrencies as well as their
corresponding community structure are reliable and reflects their genuine
characteristics. The results after applying these methods are shown in sec-
tion 5.

4.5. Time Window Division
Given the dataset described earlier, one important question about con-

structing a network structure in these cryptocurrencies is how to split the
dataset into different consecutive periods?. This is because a network struc-
ture corresponding to each period of time should be able to explain what has
happened to the cryptocurrencies throughout that time, i.e. there must be a
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reason behind this topological structure. If we divided the dataset randomly,
we could not capture important historical events at a specific period. As
a result, the topology we found would be meaningless in the corresponding
time window. To this end, we must select time windows rationally. We note
that our dataset contains the period of the Covid-19 pandemic as well as the
global downturn 2020. From the literature in section 2, we see these his-
torical events actually adversely influenced the financial markets. Thus, we
postulate that the Covid-19 pandemic is a reasonable milestone to separate
our dataset.

To verify the pandemic’s impact on the global economy and thereby
choose the right time windows for the dataset, we consider the movements
of four different factors. Firstly, the attention to the Covid-19 pandemic, as
measured by the frequency of Covid-related keywords searched on Google
Trends. For this factor, we use two keywords including covid 19 and coro-
navirus disease 19. Secondly, we use the VIX index to observe fluctuations
of the stock market, this index starts at 0 for no upper bound and a higher
value implies that the stock market has stronger fluctuation. Thirdly, we also
observe the prices of the S&P500 index representing the US economy. Lastly,
the growth rate of the world’s GDP is used as a proxy for the development
of the global economy in general.

Figure 1 visualizes these aforementioned factors. From Figure 1a, people
started to concern about this disease in January 2020. However, it was not
until March 2020, that the Covid-19 pandemic actually caught the attention
of people worldwide as the volume of searching Covid-related terms quickly
peaked. This remained a topic of interest until July 2020. Also, March
2020 was the month that a pandemic-induced economic recession occurred,
seriously affecting the economy of nations worldwide. This effect is shown in
Figures 1b-1d. In particular, the GDP’s growth rate decreased by 3.3 percent
in 2020, which is the highest decrease ever, it is even worse than the Great
Recession in 2007-2009 [110]. Simultaneously, the stock market fluctuated
dramatically which can be seen via the VIX index and the S&P500 index
experienced a significant fall during March 2020. However, the economy
started to recover afterward, the stock market became less fluctuated and
the S&P500 index regained it original value before the pandemic in July
2020.
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(a) Public attention (b) GDP growth rate

(c) VIX index (d) S&P5000 index

Figure 1: The reaction of general public and global economy to the Covid-19 pandemic.
Four factors are considered: (a) Worldwide attention to the pandemic, (b) Global GDP
growth, (c) VIX index, (d) S&P500 index

Consequently, we split the 784 days from 13 February 2019 to 6 April
2021 into 3 time windows which correspond to 3 different stages, including
normal time, downturn time and recovery time. The details for these time
windows are shown in Table. 3.

Table 3: Three time windows used in this work (time windows split to take into consider-
ation the Covid-19 pandemic).

Time window Stage Time span # days
1 Normal time 13 February 2019 - 31 December 2019 322 days
2 Downturn time 1 January 2020 - 30 June 2020 182 days
3 Recovery time 1 July 2020 - 6 April 2021 280 days

5. Experimental Results and Discussion

This section sets out our three research questions. We will first examine
the impact of noise and trend effects on the correlation between cryptocur-
rencies as well as their corresponding topological structure. Then, we observe
the evolution of the structure according to the levels of granularity. Finally,
the results from these two experiments will be used to construct the right
network structure. Consequently, the corresponding community structure is
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identified, which is used to learn the investment decisions of crypto investors
during the Covid-19 pandemic.

We note that all calculations in our study are implemented using Python
programming language (version 3.7.14, designed by Guido van Rossum, Cen-
trum Wiskunde & Informatica (CWI), Netherlands). Regarding network-
related calculations (e.g. network construction and network-involved met-
rics), we utilize the networkx (https://networkx.org/) package incorporated
into Python.

5.1. The Response of Network Structures to Noise and Trend Effects
Given the fact that there is noise and trend in the cryptocurrency market,

we examine whether these factors affect the cryptocurrency network struc-
ture. Since we have four datasets corresponding to four timescales (e.g. 30
minutes, 6 hours, 12 hours and 24 hours), we use both metrics-related meth-
ods and visualization for all available datasets to discover the discrepancy
between original and cleaned (after removing noise and trend) datasets.

To show the difference between two network structures, we choose two
such metrics to measure the connection strength in a network of cryptocur-
rencies:

• Residuality Coefficient [93]: This compares the relative strength of the
connections above and below a threshold distance value. In this exper-
iment, we use the highest distance value ensuring connectivity of the
MST as the threshold, denoted L:

R =
Σ[dij>L]d

−1
ij

Σ[dij≤L]d
−1
ij

(4)

• MST-based mean distance [111]: This calculates the average distance
of the MST:

M =
1

N − 1
Σdij∈MSTdij (5)

An increase in these means that cryptocurrencies are further from each other.
By contrast, cryptocurrencies are closer to each other if these metrics de-
crease. Note that although both metrics are used to examine the connection
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strength of cryptocurrencies, Residuality coefficient is known to be more vul-
nerable to the links between cryptocurrencies in different groups, i.e. if the
connection strength between cryptocurrencies in different groups increases,
the Residuality coefficient will decrease dramatically and vice versa, the con-
nections between cryptocurrencies within one group do not affect the Resid-
uality coefficient much [112]. On the other hand, Mean distance is more
vulnerable to the links between cryptocurrencies belonging to one group, as
it mainly uses the connections within a group to find the average value and
ignores the connections between different groups [111].

Table 4: Cryptocurrency network connection strength through three time windows mea-
sured by Residuality Coefficient and Mean Distance. Four different granularity levels are
considered, each with datasets, including original and cleaned dataset after removing noise
and trend effects.

Metric Data Type Time
window

Granularity
30 mins 6 hours 12 hours 24 hours

Residuality
Coefficient

Original Data

1 0.41 0.11 0.16 0.08
2 0.28 0.111 0.06 0.05
3 0.14 0.05 0.07 0.34

Cleaned data

1 1.69 6.66 14.82 14.40
2 5.98 8.90 14.41 15.34
3 2.32 2.99 1.88 1.05

Mean
distance

Original Data

1 1.08 0.82 0.80 0.76
2 0.99 0.71 0.65 0.56
3 0.98 0.57 0.46 0.45

Cleaned data

1 1.29 1.38 1.42 1.42
2 1.40 1.42 1.42 1.42
3 1.29 1.12 1.01 1.22

Table. 4 shows the results of the two metrics using different levels of gran-
ularity. It is clear that both Residuality coefficients and Mean distance values
increase significantly when the effects of noise and trend are dismissed. This
phenomenon remains unchanged in different timescales, implying that this is
a genuine characteristic of the cryptocurrency market. Furthermore, a visu-
alization of network structures before and after cleaning is shown in Fig. 2 to
reinforce our finding. As can be seen, the topological structure changes after
the noise and trend are removed. Moreover, what happens in each time win-
dow is that the number of communities decreases after removing these effects.
From these figures and illustrations, we can conclude that the connections
between cryptocurrencies are caused mainly by the noise and trend effects.
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That is, these factors result in different cryptocurrencies becoming closer to
each other and forming a group. This phenomenon can be explained by low
values for Residuality coefficients and Mean distance values in the original
data compared to the cleaned one. A value less than unity of the prior metric
means that there are few connections greater than the threshold L. More-
over, a small value of the latter metric means that cryptocurrencies within
a group are closer to each other. In summary, each group of the network is
compact with strong links inside, which helps the community detection algo-
rithm to easily cluster them. In other words, the difference between different
groups is clear because the links between different groups are weak, i.e. the
ones greater than L. However, after cleaning the correlation matrix, cryp-
tocurrencies that are closely related to each other through noise and trend
become further away, i.e. the strong links between some cryptocurrencies
are broken. This causes our metrics to increase dramatically, which means
that the network structure starts to expand, forming a sparse network. For
example, the Residuality coefficient of the second time window in 30-minute
original data is 0.28 while it is 20 times higher after cleaning the effects of
noise and trend. This fact is also true for the rest of our dataset. The result
is in line with [20], these authors did not consider the noise effect but with
the removal of trend, they found that the correlation between 80 most liquid
cryptocurrencies from 01/01/2020 to 01/10/2021 decreased.

5.2. Real Network Structures in Different Levels of Granularity: An Experi-
ment on Cleaned Data

In this section, we will construct the network structure of 34 cryptocur-
rencies removing the effect of noise and trend. By doing this, we can look
at the evolution of network structures at each timescale over time and, of
greater interest, the differences in the network structures between different
timescales. Note that community detection results found by using Louvain
algorithm are also included in these networks. The results of this experiment
can shed light on the influence of timescales on cryptocurrencies’ connections
and what timescale should be used for cryptocurrency-related analysis.

5.2.1. The Evolution of the Cryptocurrency Network According to Timescales
Figures 3-5 show the results of network structures along with detected

communities using the Louvain method with each figure representing a dif-
ferent time window. For each window, four network structures corresponding
to four different levels of granularity are displayed. One obvious statement
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(a) Time window 1, original (b) Time window 1, cleaned

(c) Time window 2, original (d) Time window 2, cleaned

(e) Time window 3, original (f) Time window 3, cleaned

Figure 2: Cryptocurrency network structures using daily data. For each time window,
Louvain method is applied to both original and cleaned data to detect existing commu-
nities. The illustrations on the left and right hand side are for the original and cleaned
data, respectively for 3 time windows referring to normal, downturn and recovery times,
respectively.
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that can be made from the illustrations is that the community structures
at each level of granularity change over time. Also, if we consider different
levels of granularity at the same time, the number of detected communities
tends to decrease when the timescale becomes more coarse-grained. For large
timescales, such as 24 hours, cryptocurrencies build up big groups with few
cryptocurrencies acting as central nodes that link directly to the remain-
der. For example, in Figure 3d, MANA acts as a central node that links
all other cryptocurrencies together. This explains why community detection
techniques cannot distinguish several subsets as the network in this case is
naturally one group. Figure 4d shows a similar pattern while in 5d, there are
two central nodes that create 2 big groups with relatively similar sizes. To
this end, with low-frequency data, we expect we can predict the long-term
trend of cryptocurrencies in the future by looking at the central nodes from
their corresponding community structures. If this is the case, it will be very
beneficial for investors who choose a long-term investment. However, this
behaviour requires deeper investigation and will be the subject of further
research.

We notice that the difficulty of detecting communities in this market
increases with the timescale length. In other words, cryptocurrencies are
more likely to belong to the same community if we just look at their price
values at a high level of granularity such as daily. Thankfully, it can be
explained based on the nature of the cryptocurrency market. In particular,
the cryptocurrency market is well-known for its high volatility compared to
other traditional asset classes such as stocks, bonds and commodities [113,
114, 115, 116]. In [117], the authors used 5-minute data of Bitcoin prices
traded on three different exchanges Kraken, Bitstamp, Btcbox during the
period between 2017 and 2021 to calculate the realized volatility1 of this most
stable and popular cryptocurrency. The results showed that although Bitcoin
is the most valuable and trustworthy cryptocurrency, its volatility fluctuates
from 4.8 to 7.5. By contrast, with the same level of granularity, the stock
market seems to be more stable as the realized volatility stood at roughly
0.58 during normal times [118] and increased to just around 1.0 during the
Covid-19 pandemic [119]. These facts suggest that the cryptocurrency price
fluctuations are dramatic even within a 5-minute period. Consequently, using

1The assessment of variation in returns for an asset by analyzing its historical returns
within a defined time period.
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a low-frequency dataset such as 12 hours or 24 hours appears to cause a
loss of important information that influences the results of analysis. This
problem has also been described in earlier studies such as [12]. However,
existing studies mainly focused on daily data to detect communities in the
cryptocurrency market.

In this study, the loss of information by using large timescales including 6
hours, 12 hours and 24 hours makes judging the correlation between different
cryptocurrencies unclear. As a result, it affects the corresponding MST which
can be seen in figures 3-5. Ideally, we would like to use a dataset that is
as fine-grained as possible. Unfortunately, our experiments show that for
frequencies lower than 30 minutes, there are a huge amount of missing values
as some cryptocurrencies are not traded frequently [120], thus requiring their
removal or imputing a value. This adversely affects the correlation between
time series and impact on our analysis. Finally, we choose 30-minute dataset
for further experiments.

5.2.2. Louvain vs Girvan-Newman for Community Structure Detection
The Louvain method is our main technique for detecting communities

but we also use the Girvan-Newman method to double-check the communities
found. The v−measure gives the similarity between these two methods [121]
shown in Table 5. This metric ranges from 0 to 1 such that 0 indicates
a complete dissimilarity between two graphs while 1 indicates a complete
similarity. We found that the v-measure in all cases is high with the lowest
value of 0.82 from the third time window in the 6 hour-dataset 5. That
is, Louvain method proposes similar results as Girvan-Newman. Thus, the
communities found by Louvain are reliable and for use in further analysis.

Table 5: v-measure between Louvain and Girvan-Newman methods

Granularity
30 mins 6 hours 12 hours 24 hours

Time window 1 0.88 1.00 1.00 1.00
Time window 2 1.00 1.00 1.00 1.00
Time window 3 0.87 0.82 0.91 1.00
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(a) Time window 1, 30 mins (b) Time window 1, 6 hours

(c) Time window 1, 12 hours (d) Time window 1, 24 hours

Figure 3: Network structure for the first time window, community detection is applied
using Louvain method. Four different timescales are used, e.g. (a) 30 minutes, (b) 6
hours, (c) 12 hours, (D) 24 hours

(a) Time window 2, 30 mins (b) Time window 2, 6 hours

(c) Time window 2, 12 hours (d) Time window 2, 24 hours

Figure 4: Network structure for the second time window, community detection is applied
using Louvain method. Four different timescales are used, e.g. (a) 30 minutes, (b) 6 hours,
(c) 12 hours, (D) 24 hours
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(a) Time window 3, 30 mins (b) Time window 3, 6 hours

(c) Time window 3, 12 hours (d) Time window 3, 24 hours

Figure 5: Network structure for the third time window, community detection is applied
using Louvain method. Four different timescales are used, e.g. (a) 30 minutes, (b) 6 hours,
(c) 12 hours, (D) 24 hours

5.3. Analysis of Investors’ Investment Decisions based on the Time-varying
Network Structure

5.3.1. The Changes in Crypto Network Structure during Times of Crisis
To observe the growth of the network structure over time, we use De-

gree Assortativity Coefficient [122] and Average Betweenness Centrality [3].
However, these metrics fail to tell us the similarity between two networks.
Thus, to statistically compare the topological change between two networks,
we use three more metrics, including v-measure, Degree centrality [26] and
Eigenvalue method [123, 124].

Table 6 shows results of Betweenness Centrality and Degree Assortativity.
Immediately, we can see that there is a huge change occurring in time window
2 which corresponds to the turbulent time caused by the pandemic on both
metrics.

Regarding the Betweenness Centrality, this metric decreases from 0.15 in
time window 1 to 0.05 in the next period before going back to its original
value prior to the pandemic outbreak (time window 1). A reasonable expla-
nation for this movement is that the network structure of the cryptocurency
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market during normal times appears to have a dispersive tendency with the
whole network divided into multiple small-size groups such that each group
share common characteristics. However, during Covid-19, these synchronize
to form a big group. Thus, the number of groups decreases while the size
of each group increases. This might be a consequence of an increase in the
connectedness of cryptocurrencies during the pandemic, as shown in many
research papers [11, 27, 45]. In the recovery time, however, the network
started to divide into smaller parts again, perhaps because the cryptocur-
rency market overcame the most connected period and started to go back to
its normal behavior.

The Degree Assortativity results strongly support those of the Between-
ness Centrality. In particular, a negative value shows that high-degree nodes
are more likely to link to low-degree nodes, which means that each group in
the network has one node acting as a central node connecting to the rest.
While the values in time window 1 and 3 are approximately the same, time
window 2 shows a decline by nearly 50 percent. This indicates that the
number of connections between high-degree nodes and low-degree nodes in-
creases, i.e. the network forms big groups with a large number of leaf nodes
in each group.

We notice that this time-varying structure is similar to what have been
shown in works of Drozdz et al. [21, 20], who stated that the market has a
distributed-network topology or a hierarchical-network topology in which no
node dominates the network during normal times. However, it becomes more
centralized during the pandemic and started to distribute as this turbulent
time is gone. More recently, another work proposed by Nie also confirmed
the same result [22].

Table 7 shows results of the three similarity metrics for different time
periods: normal time (time window 1), downtime (time window 2) and re-
covery time (time window 3). Each values shows the similarity between two
time windows. For v-measure, the higher the value is, the more alike two
networks are. On the other hand, for the remaining values, a lower value
indicates that two networks are more similar.

The differences between time window 2 and the other two time windows
are very clear. In particular, the v-measure between time window 1 and 3
is 0.32, meaning that communities found in time window 3 holds roughly
one third of characteristics from time window 1’s communities. By con-
trast, v-measure values between time window 1 and 2 as well as between
time window 2 and 3 are negligible, standing at 0.04 and 0.02, respectively.
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Besides, for the topological structures of MSTs, the other two metrics also
show the same principle since time window 1 and 3 share common character-
istics and the similarity degree of other cases are nearly zero. Remarkably,
Eigenvalue method shows a significant divergence of time window 2 with oth-
ers as shown in Table 7.

The severe pandemic and the March 2020 global downturn together seem
to have actually changed the way cryptocurrencies interact with each other.
The changes of these interactions have created new communities and bro-
ken down old ones, i.e. some cryptocurrencies become closer to each other
while others get further away from each other due to the Covid-19 pandemic
and the economic recession. Eventually, the topological structure during the
turbulent time shows completely different patterns compared to the period
when the global market is stable. Furthermore, we noticed that the com-
munity structure started to recover back to its pre-Covid after June 2020,
which coincides with the time the global economy recovered and the Covid-
19 pandemic impacted less. During this time, some characteristics of the
network structure reappeared which are similar to the structure during the
normal time (it is obvious that these structures are not fully similar because
it changes over time as proven in previous sections. In addition, after June
2020, the global economy started to recover but not as well as its past and
the pandemic still had an impact on the economy worldwide to some extent).
This is why the v-measure between time window 1 and 3 increased signifi-
cantly and the corresponding differences measured by Degree centrality and
Eigenvalue method are very small. The community structures for the three
time windows are shown in Figures 3a, 4a and 5a.

Table 6: The growth of network structures over time measured by Betweenness Centrality
and Degree Assortativity.

Metrics Time window 1 Time window 2 Time window 3
Betweenness centrality 0.15 0.05 0.16
Degree Assortativity -0.49 -0.72 -0.51
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Table 7: Similarity in network structures between different phases of the cryptocur-
rency market measured by three metrics. A higher value of v-measure indicates a more
similarity between two structures. Whereas, a higher values of degree centrality and
eigenvalue method indicate a more dissimilarity between two structures.

Metrics

Time
window 1 vs 2 1 vs 3 2 vs 3

Degree centrality 0.5 0.09 0.42
Eigenvalue method 844.45 4.59 759.16

v -measure 0.04 0.32 0.02

5.3.2. Learning the Investment Decision of Crypto Traders based on Ranking
Distribution

The ranking of a cryptocurrency is measured by its market capitalization2.
We obtain cryptocurrencies’ ranking on the https://coinmarketcap.com web-
site (accessed on 15 August 2022).

We use this characteristic of cryptocurrencies to examine how they are
distributed in each community of the cryptocurrency network. More impor-
tantly, we will have a look at the way cryptocurrencies form groups during
different phases of the global economy by observing the distribution of rank-
ing in each group between different periods of time.

2A multiplication between the number of coins in circulation and the current market
price of a single coin
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Table 8: Distributions of rankings in each community during different phases of the finan-
cial market: normal time, downturn time and recovery time. The rankings are sorted in
ascending order. Bold values are minimum and maximum ranks in each period.

Group Cryptocurrencies Rankings

N
or

m
al

ti
m

e 1 ADA, XLM, BAT, ZIL 10, 13, 32, 99
2 BTG, IOST, XTZ, ZRX, ETC 12, 21, 45, 57, 83
3 LSK, OMG, REP, FUN, MKR 26,54, 58, 70, 168
4 NEO, MANA, BNT, XVG, XEM, QTUM 19, 31, 41, 86, 117, 184
5 ONT, ZEC, XMR, XRP, EOS, TRX, LTC 3, 6, 7, 11, 16, 29, 35
6 ICX, MAID, DOGE, BTC, BSV, ETH, BCH 1, 2, 5, 9, 34, 84, 130

D
ow

nt
u
rn

ti
m

e 1 DOGE, ICX, BNT, MANA, ZRX, FUN,
MAID, BAT, XVG, ONT

32, 33, 40, 45, 60, 81,
105, 124, 139, 196

2

ADA, BCH, BSV, BTC, BTG, EOS,
ETH, ETC, IOST, LSK, LTC,
MKR, NEO, OMG, QTUM, REP, TRX,
XEM, XLM, XMR, XRP, XTZ, ZEC,
ZIL

1, 2, 4, 5, 6, 7, 9,
11, 12, 15, 17, 18,
21, 22, 27, 30, 34, 48,
51, 53, 54, 62, 65, 91

R
ec

ov
er

y
ti

m
e 1 BTG, MANA, BAT, ZEC 56, 62, 67, 107

2 ONT, QTUM, EOS, BSV, MKR 24, 31, 53, 75, 88
3 XVG ,ZIL, XEM, MAID, BTC, ETH 1, 2, 38, 48, 109, 136
4 ADA, DOGE, XRP, BCH, XLM, LTC 6, 7, 9, 15, 16, 20
5 OMG, BNT, IOST, REP, ICX, LSK 68, 78, 85, 100, 101, 140
6 ETC, ZRX, TRX, NEO, XMR, FUN, XTZ 17, 27, 33, 35, 64, 76, 129

Table 8 summarizes the results of community detection using Louvain
method. For each period of time, the found communities are listed with
a set of cryptocurrencies and corresponding rankings belonging to each of
them. We found that during the normal time, there is a mix between high-
ranking and low-ranking cryptocurrencies in each community. For example,
group 6 has a size of 7 including top-ranking cryptocurrencies such as BTC,
ETH and BCH while having a very low-ranking ones such as MAID and ICX.
We pay more attention to communities found in the downturn time. At this
phase, we recognized that the community formation of these cryptocurrencies
seems to be dramatically different from the previous period. In particular,
there are only two communities found during this period while the other has
six. More importantly, there seems to be a separation between high-ranking
and low-ranking because the majority of top-ranking cryptocurrencies belong
to one group while the majority of low-ranking cryptocurrencies are in the
other. Besides, by comparing these results with the period of recovery, we
noticed that this period shares common characteristics with both normal time
and downturn time. Specifically, after the downturn time, cryptocurrencies
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started to separate from each other, this can be seen by looking at the number
of communities during this time. There was an increase from 2 to 6, which is
equal to the normal time case. While the majority of communities show a mix
between high and low ranking cryptocurrencies, there are two communities
that are similar to the downturn time, including group 4 with all high ranking
cryptocurrencies and group 5 with all low-ranking cryptocurrencies.

Figure 6 shows the distribution of cryptocurrencies’ rankings in three
different phases of time. We use this visualization to show readers the changes
of ranking distributions clearer and easier. Each community is represented
by a circular shape while the rankings of cryptocurrencies are represented
by the intensity of the blue color, i.e. the darker the blue, the lower the
cryptocurrency’s rank. Figure 6b shows that the circular shape of group 1 is
clearly darker than that of group 2. On the other hand, there is a combination
of both bright and dark blue in the majority of cases in two remaining sub-
figures. Notably, Groups 3 and 5 in Figure 6c show a clear difference from
the rest.
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(a) Time window 1 (b) Time window 2

(c) Time window 3

Figure 6: Cryptocurrency’s rankings distributions in three different phases of time. Each
community is represented by a circular shape while the rankings of cryptocurrencies in
this community are given by the blue color intensity, i.e. the darker the blue, the lower
the cryptocurrency’s rank

When it comes to these results, investors’ investment decisions can be
considered as potential explanations for the time-varying community struc-
ture. During normal times, i.e. when the financial market is stable and
there is no major event occurring that impacts the society, investors show a
non-herding behaviour. That is, their decision for investing in a cryptocur-
rency is based on their own market analysis and is not influenced by other
investors’ choice. This might pushes up the vibrant of the cryptocurrency
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market where a large number of coins with both high and low rankings are
traded. As a result, there is a diversification in terms of rankings in each
community. Empirically, it is found that there was no herding behavior be-
fore the pandemic. In particular, Larisa et al. in [125] used hourly price time
series of multiple exchanges such as Binance, Bitbay, BitFinex, Coinbase and
major cryptocurrencies including BTC, LTC and ETH to find the existence
of herding before the start of Covid-19. Based on the Cross Sectional Abso-
lute Deviation model, they found that the herding behavior was free during
this time. By contrast, during turbulent time, investors are panicked by the
fluctuations of cryptocurrencies’ price as well as being bombarded by bad
news that strongly affect their investment. Different studies have been car-
ried out to investigate the investors’ behavior since the onset of the Covid-19
outbreak. Generally speaking, these reached the same conclusions, that the
pandemic actually increased herding behavior in the cryptocurrency market.
In [126], the authors used 43 cryptocurrencies with large market capitaliza-
tion between 2013 and 2020, they found that investors in the cryptocurrency
market follow the consensus and the impact of coronavirus media coverage is
significant on the herding behavior. In particular, news related to the coron-
avirus increases fear and affects the behavior of investors reducing appetite for
risk. Consequently, investors disregard their private information and follow
others’ investment decisions. However, the impact of media is reduced when
the market returns to a normal phase. This is in line with different studies
that use different datasets and time periods [127, 125, 128]. More impor-
tantly, the way investors show herding behavior is that they tended to invest
in major and most-tradable cryptocurrencies [27]. This can be explained
by the fact that high-ranking cryptocurrencies are more mature so they are
more stable than the rest and are more likely to retain value under the un-
certainty of the global financial market, causing a bias from investors [129].
Consequently, major cryptocurrencies were seen to increase in terms of trad-
ing volume and act as a store of value during the turbulence times [130]. In
other words, there was a risk aversion occurring after the pandemic outburst
as described in [72]. Eventually, all high-ranking cryptocurrencies belong to
one group.

When it comes to low-ranking cryptocurrencies, we notice that cryptocur-
rencies with the lowest rankings in our dataset belong to another group, this
might be because they receive the same treatment from investors during the
downturn time so they have the same trend. One possible reason for this is
that low-ranking cryptocurrencies are less likely to be used as an investment
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option during the downturn time because they have negligible value and bring
more risk to investors. Instead, they are mainly used for other purposes such
as paying transaction fees, as currency for a smart contract or simply a token
on a cryptocurrency platform used to access applications [27]. This seems
reasonable as the pandemic stopped in-person interactions. Hence, they had
to complete all work remotely. In this case, cryptocurrencies and blockchain
technology are extremely useful since it proposes an online environment to
resume working activities worldwide and also bring benefits to users. Being
used for the same purpose causes a similarity between these cryptocurrencies.

All findings that we have shown earlier help us to explain the commu-
nity structure in time window 3, which corresponds to the recovery period.
During this time, the concerns about this pandemic started to decrease, not
only cryptocurrency but other traditional assets recovered with investors’
newfound positive attitude bringing them back to normal trading. Crypto
traders started to diversify their portfolio by investing in different low and
high market capitalized assets and making their own decisions [126]. How-
ever, one remarkable phenomenon that is worth taking into consideration
is the risk-taking behavior. A piece of research implemented by Christoph
et al. [131] used 100 return time series of risky stocks to conduct a survey
related to the investment behavior of professional market traders. The re-
sponses of more than 800 participants revealed that a number of investors
underestimate risk after prolonged exposure to high risk, as they become
accustomed to the uncertainty of the economy. Thus, they go back to in-
vesting in risky assets or even become risk-taking to gain more profits. This
tendency explains the similarity in the community structures between time
windows 1 and 3. However, as we can see, there exists one group with high-
ranking cryptocurrencies and one group with low-ranking ones as a result of
the risk aversion of a portion of investors after the great shock caused by the
pandemic.

6. Limitations and Future Works

6.1. Limitations
Although the tick-by-tick dataset used in this study is large and that

strengthens the results of the experiments, the number of cryptocurrencies
should ideally be higher so that we can draw firmer conclusions regarding the
cryptocurrency market (e.g. whether the results generalise for large cap and
small cap crypto assets). This will be the subject of future work. Secondly,
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while 30 min granularity has been found to suffice for our calculations, it
would be better if we could use a lower level, say 15 mins or even finer.
Unfortunately, some cryptocurrencies are not traded regularly causing a lot
of missing values at these timescales. This will also be the subject of future
work.

There is also a concern with respect to the use of Pearson correlation
for clustering problems. In particular, although this correlation metric has
been applied widely in the existing literature and proposed various findings
in the financial markets [21, 22, 2], it is sensitive to outliers [58] and can-
not capture non-linear relationships that might cause misleading results [25].
Consequently, this adversely affects the clustering results. Indeed, these is-
sues are also observed in other correlation metrics such as Spearman and
Kendall [58]. Furthermore, we noticed that the results of clustering vary
significantly by using different correlation measuring methods. Thus, it is
necessary to deeply investigate different methods for a specific research task
and analyze the results from each of these methods. Besides, the creation
of new approaches for calculating correlation coefficients that overcome the
current limitations needs to receive more attention.

6.2. Future Works
Understanding how cryptocurrencies are correlated with each other sheds

light on portfolio optimization. Based on the outcome of this study, we can
take one step further by constructing and comparing the portfolio optimiza-
tions at different phases of the market, i.e. during bear and bull market
periods. Therefore, the unique characteristics of an optimized portfolio at
different market phases can, in theory, be learned and analysed. Secondly, we
have noted that different network structures can be observed for a number of
exchanges. Thereby, a comparison between them can be made. Another fu-
ture plan which is worth taking into consideration is to observe the correlation
using different techniques. For instance, we are aiming to use mutual informa-
tion, which is successfully applied in [25], to estimate the correlation between
two cryptocurrencies. This method can overcome obstacles from popular lin-
ear and non-linear methods since it can measure the non-linear correlation
while allowing the existence of non-monotonic relationships. Lastly, we have
noticed that the network structure of low-frequency data behaves differently
to that of high-frequency data. We remark that we can expect to learn the
long-term characteristics of cryptocurrencies based on this structure which
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could be potentially beneficial for investors who choose to make a long-term
investment decision.

7. Conclusion

This research aims at answering three questions related to cross-correlations
in the cryptocurrency market: Firstly, how do noise and trend in cryptocur-
rencies influence their cross-correlations and then the corresponding network
structure?. Secondly, what level of granularity should we use?. Lastly, If the
dramatic change in the cryptocurrency network structure during the pan-
demic is caused by investors’ investment strategy?. We firstly analyze the
effect of noise and trend in cryptocurrencies on their cross-correlations and
then remove these factors thanks to Random Matrix Theory and Market
Component. Four sub-datasets with different levels of granularity including
30 mins, 6 hours, 12 hours and 1 day are created from the original tick-by-
tick data to examine the importance of choosing the right frequency resolu-
tion. Then, we use MST to construct a correlation-based network and detect
different potential communities by using Louvain and Girvan-Newman algo-
rithms. We found that the correlations between cryptocurrencies are mainly
caused by noise and trend effects, which might lead to a big problem for
the traders’ investment strategy because investors might be fooled by look-
ing at the counterfeit relationship. It is necessary to analyze and explore
real interactions between cryptocurrencies so that the evolution of the cryp-
tocurrency market can be learned properly and thus investors can choose a
good strategy for their investment. Moreover, the frequency resolution of
our data plays an important role in the performance of correlation matrix
and also community detection. Specifically, the finer the data, the more pre-
cise the community structure. Thus, we use 30-minute dataset which is the
finest available timescale in this study. The dramatic change in the com-
munity structures between bearish and bullish markets reveals a change in
the investment decisions of investors. In particular, investors makes their
own investment decisions based on their personal market analysis and ex-
perience during normal times. Eventually, this causes a diversification in
the cryptocurrencies chosen to invest in since not only high but low ranking
cryptocurrencies are added in the portfolios. On the other hand, ones tend to
trade cryptocurrencies with high market capitalization only during turbulent
times while smaller cryptocurrencies are mainly used for other purposes such
as transaction fees, smart contracts’ token or simply used to run a digital
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platform.
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