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We analyse tick-by-tick data representing major cryptocurrencies traded on some different cryptocurrency trading plat-
forms. We focus on such quantities like the inter-transaction times, the number of transactions in time unit, the traded
volume, and volatility. We show that the inter-transaction times show long-range power-law autocorrelations. These
lead to multifractality expressed by the right-side asymmetry of the singularity spectra f (α) indicating that the periods
of increased market activity are characterised by richer multifractality compared to the periods of quiet market. We also
show that neither the stretched exponential distribution nor the power-law-tail distribution are able to model universally
the cumulative distribution functions of the quantities considered in this work. For each quantity, some data sets can be
modeled by the former, some data sets by the latter, while both fail in other cases. An interesting, yet difficult to account
for, observation is that parallel data sets from different trading platforms can show disparate statistical properties.

The cryptocurrency market is the newest financial mar-

ket that emerged from scratch not much more than a

decade ago yet it has already managed to undergo a grad-

ual shift from its infancy stage in 2012-2013 to an almost

mature form at present. This shift has been observed

primarily in the statistical properties of the cryptocur-

rency data, like the price return distributions, multifractal

properties, trading activity, hedging opportunities, and so

on1–3. Among many quantities characterising the cryp-

tocurrency market, the inter-transaction time intervals,

sometimes called waiting times4 or inter-trade durations5,

and some related quantities like the number of transac-

tions made in time unit still lack a proper analysis. Our

work aims at filling this gap with an analysis based on

high-quality data.

I. INTRODUCTION

If compared with the price returns, the inter-transaction
time (ITT) intervals δ t have relatively sparsely been a sub-
ject of research. A null-hypothesis approach might suggest
that the transaction moments are uncorrelated and their gen-
erating mechanism is, thus, a Poisson-like process that pro-
duces an exponential pdf. The studies based on empirical
data did not support this hypothesis, however. The inter-
transaction times occur to be autocorrelated with long-range
dependence4. This observation was the basis for applying al-
ternative models of the generating mechanism, like the autore-
gressive conditional duration processes6 and the continuous-
time random walks7–12. The probability that the next transac-
tion will occur after at least a specific time τ can also be seen

as no-trade survival probability P(τ). A natural distribution
for such a quantity is the Weibull distribution:

P(x) = α
xα−1

xα
0

exp [−(x/x0)
α ], x > 0, (1)

where α > 0.
The inter-transaction-time time series exhibit long-range

power-law correlations. This was shown, for instance, in13

by applying the detrended fluctuation analysis (DFA) to ITT
time series representing 30 large-cap American stocks. The
time series were found to be persistent with two correlation
regimes expressed by the Hurst exponents: H = 0.64± 0.02
for the intraday time scales and H = 0.94± 0.05 for the time
scales longer than daily. This means that the ITT signals are
long-range autocorrelated, which produces transaction clus-
tering – an effect that is analogous to volatility clustering14.
Transaction clustering is responsible for transaction frequency
fluctuations and long-range autocorrelation of the number of
transactions in time unit15. This significantly elevates the sur-
vival probability P(τ) for large τ with respect to uncorrelated
time series and makes a special case of the Weibull distribu-
tion – the stretched exponential (SE) distribution – the appro-
priate model for describing the statistical properties of the ITT
time series16. The cumulative distribution function (cdf) of SE
has a particularly simple form

Pc(x) = exp [−(x/x0)
α ], 0 < α ≤ 1. (2)

For α = 1 it reduces to a standard exponential distribution.
Based on the tick-by-tick recordings representing the Gen-

eral Electric stock ITT in Oct 199917 and 30 stocks belonging
to Dow Jones index over the same period5, it was shown that
Pc(x) can reproduce the empirical distributions for 0.73≤α ≤
0.95, depended on a stock. Mainardi et al.9 analyzed ITTs for
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German bonds and found agreement between SE cdf and em-
pirical data for small and medium-size ITTs with α ≈ 0.95.
A smaller α ≈ 0.82 and 0.90 were reported for the Korean
treasury bond futures market KOFEX18. The SE model was
well fitted to the inter-transaction times of 30 American com-
panies (1993-1996, δ t = 1). After a proper rescaling of the
data, the empirical cdfs showed some degree of universality
across different stocks with a mean value of the parameter
α ≈ 0.7213. The USD/JPY exchange rate 2002-2004 revealed
much a smaller SE parameter α ≈ 0.5919. A study involving
the most liquid Chinese stocks in 2003 reported that α ≈ 0.5,
20.

It is noteworthy that several data sets were modeled by the
power-law distributions instead of SE. For example, ITT for
the JPY/USD exchange rate between Oct 1998 and Mar 1999
were studied in21 and fitted by a power-law model with tail
exponent γ ≈ 1.8 (i.e., in the Lévy-stable domain). More-
over, a sample Chinese liquid stock (the years 2005-2006)
and its warrant were found to differ from the SE model and
be more power-law-like20. The SE model fails to fit the data
for the Forex exchange rates of major currencies if the wait-
ing times between the best executable bid or ask prices are
considered instead of the ITTs22. A better choice is the log-
normal distribution for a global fit covering both the small and
large waiting times, but the best performance is observed if
the power-law distribution is fitted to large waiting times and
a certain variant of the El-Farol bar model is fitted to small
waiting times22. The q-Gaussian distributions5,23 as well as
the Mittag-Leffler function24 were also reported to fit well to
various ITT data.

The stretched exponential function was also applied to
model the return times when some quantity like, e.g., volatil-
ity, remains or recurs above certain threshold25–30, the waiting
times between certain extreme events31–33, the waiting times
for a next price change34, the first-passage times35, and the
inter-order-cancellation intervals36. It is worth noting that for
α > 1 the SE function converts to the compressed exponen-
tial function, which sometimes has its application in finance
(for instance, the over-exponential growth of the currency ex-
change rate in a case of heavy hyperinflation37).

II. DATA

We consider a set of tick-by-tick time series of buy/sell
transactions that were executed on several major trading
platforms (Binance38, Bitfinex39, Bitstamp40, Coinbase41,
HitBTC42, and Kraken43) involving the most liquid cryptocur-
rencies: bitcoin (BTC), ether (ETH), ripple (XRP), and lite-
coin (LTC) expressed in USD (USDT in the case of Binance).
These time series cover typically the period Jan 2017 – Apr
2021, but the start and end dates may differ from that in indi-
vidual cases. Tab. I shows these dates for all time series along
with the length T of the series. We chose those 4 cryptocur-
rencies as they are the most liquid ones and the corresponding
time series are the longest. From the raw data consisting of
successive transactions that were concluded at time moments
ti with i = 1, ...,T , we extract time series of inter-transaction

TABLE I. Start and end dates of all time series considered in our
study together with their length T in data points.

Bitfinex Bitstamp Coinbase HitBTC Kraken Binance
Start date

BTC 1/1/2017 1/1/2017 1/1/2017 1/1/2017 1/1/2017 8/17/2017
ETH 1/1/2017 8/16/2017 1/1/2017 5/5/2017 1/1/2017 8/17/2017
LTC 1/1/2017 6/16/2017 1/1/2017 1/1/2017 1/1/2017 12/13/2017
XRP 5/19/2017 1/3/2017 2/26/2019 12/6/2017 5/18/2017 5/4/2018

End date
BTC 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021
ETH 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021
LTC 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021 4/6/2021
XRP 4/6/2021 4/6/2021 1/18/2021 4/6/2021 4/6/2021 4/6/2021

T

BTC 116320238 39568217 138615908 72142694 30581727 739349486
ETH 56954769 12680067 94057512 33541056 22202050 342710847
LTC 23909764 5192202 58734675 15265870 5451199 126410087
XRP 36010677 17429435 26070113 9051495 6871839 169623206

intervals (or waiting times) δ ti = ti+1 − ti. It should be noted
that different trading platforms may have different recording
precision and sometimes it happens that the time resolution is
lower than the trading frequency, which leads to a situation in
which ITT can be null. The lower the resolution is, the higher
is the fraction χ of those is for which δ ti = 0. This effect
can have a heavy impact on the statistical properties of the
time series under study. Tab. II collects the respective num-
bers. Apart from Kraken, the data from all the other platforms
shows high fraction of zero ITTs (16% ≤ χ ≤ 58%). The
uniqueness of the Kraken data in this context comes from a
fact that trading frequency on that platform is smaller than on
the other platforms except for Bitstamp, so it is less likely that
two transactions are less distant in time from each other than
the temporal resolution of the data set. The case of Bitstamp is
different as the temporal resolution of its data improved sub-
stantially during the period under study and in its early part
that led to an excessive number of the null data points (and
larger χ) as compared to the later parts.

In order to put the results obtained for cryptocurrencies in
perspective, we also consider two sets of ITT time series rep-
resenting standard assets – large cap stocks from the Amer-
ican and German stock markets: Bank of America (BAC),
Johnson&Johnson (JNJ), Intel (INT), J.P. Morgan (JPM), and
Microsoft (MSFT), Deutsche Bank (DBK), DaimlerChrysler
(DCX), Karstadt (KAR), Linde (LIN), Siemens (SIE), and
Volkswagen (VOW). The corresponding time series cover the
years 2010-2011 (American stocks) and 1998-1999 (German
stocks).

III. RESULTS

A. Statistical properties over time

Time series of ITTs are unsigned, thus their pdfs are asym-
metric. In Tab. II mean 〈δ t〉 and standard deviation σδ t of the
time series δ ti are shown. Trading frequency varies both be-
tween the platforms and between the cryptocurrencies, with
Binance and BTC being the most active, while Kraken, Bit-
stamp and LTC are the least active. Also there is high vari-
ability of δ t within the same platform and the same cryptocur-
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rency – in Tab. II this is expressed by the significant values of
σδ t .

The non-stationary character of δ t can be observed in
Fig. 1, where the evolution of a few statistical quantities cal-
culated for the bitcoin data from different trading platforms is
shown over the whole period 2017-2021 by using 1-month-
long moving window. These quantities are: bitcoin price p(t)
expressed in USD, mean 10-second volatility 〈|r∆t=10s(t)|〉,
where r∆t(t) = ln p(t +∆t)− ln p(t) is logarithmic equal-time
price return and ∆t is sampling time, mean ITT 〈δ t〉, mean
number of transactions 〈N∆t(t)〉 and mean volume traded
〈V∆t(t)〉 in intervals of length ∆t = 10s. All these quantities are
non-stationary and their values and behavior change among
the platforms. It is interesting to look at 〈|r∆t(t)|〉, because the
periods of its large values correspond to times of amplified
market anxiety: the cryptocurrency bubble and subsequent
crash in 2017-2018, the downward trend at the turn of 2018
and 2019, the transitional rally in mid-2019, the Covid-19 re-
lated panic in the early months of 2020, and start of another
rally in the end of 2020. There is no qualitative difference in
this pattern among the platforms, though their volatility levels
are different.

Mean values of ITT for different platforms reflect differ-
ences in trading frequency on these platforms as well as de-
velopments in the cryptocurrency market, which attracts more
and more investors as we approach the present day. The mean
number of transactions in unit time 〈N∆t〉 is, basically, an
inverted mean ITT, thus the evolution of both quantities is
closely coupled. The mean volume traded in unit time in prin-
ciple depends on the number of transactions and prices, but
it is also related to volatility: the larger 〈r∆t(t)〉, the larger
〈V∆t(t)〉. An interesting effect can be seen in Fig. 1 (bot-
tom panel), where the largest volume was associated with
the world’s largest cryptocurrency trading platform – Binance,
which is natural. However, the second largest volume was as-
sociated with a platform of rather moderate size – HitBTC,
which is a counter-intuitive result especially if one observes
that HitBTC was characterised by rather a small trading fre-
quency. It looks as if on that platform a peculiar activity
was taking place in 2019-2020 that involved a relatively small
number of extremely large trades that were able to amplify
volume up to a level comparable with the largest platforms.
This can be related to wash-trading that may have taken place
at that time44.

B. Temporal correlations

The existence of trends in 〈δ t〉t and 〈N∆t〉t suggest that
long-range correlations are present in the corresponding time
series. Such correlations can be detected in the simplest way
by calculating the autocorrelation function

C(τk) = (1/Tδ t)
〈δ ti+kδ ti〉i

σ2
δ t

, (3)

where τk = k ∗ 〈δ t〉t . Because a well-known property of the
inter-transaction times is seasonality, i.e. different parts of a

TABLE II. Basic statistics of the time series of inter-transaction times
(ITTs): mean value 〈δ t〉 and standard deviation σδ t (in seconds) of
the inter-transaction times δ t and the fraction of null data points χ =
(1/T )×#{i ∈ [1,T ] : δ ti = 0}.

Bitfinex Bitstamp Coinbase HitBTC Kraken Binance
〈δ t〉

BTC 1.158 3.405 0.972 1.867 4.395 0.153
ETH 2.363 9.064 1.431 3.692 6.063 0.329
LTC 5.629 23.153 2.292 8.815 24.691 0.820
XRP 3.404 7.708 2.294 11.624 17.852 0.539

σδ t

BTC 4.475 8.791 2.707 5.909 12.358 0.856
ETH 8.974 23.406 4.954 10.219 17.722 1.460
LTC 17.596 37.067 7.351 16.723 36.970 3.330
XRP 12.353 18.777 5.885 21.563 29.850 1.975

χ
BTC 0.575 0.453 0.373 0.451 0.00016 0.362
ETH 0.526 0.444 0.448 0.241 0.000104 0.342
LTC 0.495 0.369 0.470 0.169 0.000089 0.386
XRP 0.481 0.468 0.305 0.165 0.00011 0.349
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FIG. 1. A few basic statistics for the BTC inter-transaction interval
time series calculated in 1-month-long moving window on different
cryptocurrency trading platforms: Binance (cyan), Bitfinex (orange),
Bitstamp (red), Coinbase (light green), HitBTC (blue), and Kraken
(magenta): BTC price in USD (USDT in the case of Binance) (a),
mean volatility 〈|r∆t |〉t calculated in ∆t = 10s intervals (b), mean
inter-transaction times 〈δ t〉t (c), mean number of transactions 〈N∆t〉t

for ∆t = 10s (d), and mean volume traded 〈V∆t〉t for ∆t = 10s (e).

trading day or week (e.g., Saturdays and Sundays in the case
of cryptocurrencies) are characterised by different trading fre-
quency17, before we apply Eq. (3), we have to eliminate this
seasonality. Thus, we calculate mean ITT in 1-hour-long win-
dows 〈δ t〉∆t=1h and obtain 24 data points for each trading day
and then average them across all trading days in order to ob-
tain a mean daily pattern of 〈δ t〉∆t=1h. Daily patterns of ITT
for cryptocurrencies (Fig. 2) can be compared with the corre-
sponding patterns for the American stocks (Fig. 4). In the case
of cryptocurrencies, we also remove weekly patterns by using
the same procedure applied to the days of week (Fig. 3).

Next, each value of δ ti is divided by the corresponding pat-
tern value and we get a time series of deseasonalised ITTs
δ tdes

i . Now we can compute the autocorrelation function
(ACF), C(τk) – Fig. 5. All financial assets considered in
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FIG. 3. Weekly pattern of the mean inter-transaction time 〈δ t〉∆t

with ∆t = 24h calculated for different cryptocurrencies and different
trading platforms.

this study show clear long-range autocorrelation (with even
a power-law decay in some cases) over 7 orders of magni-
tude up to 107s (almost 4 months) for the cryptocurrencies
and 106s (2 weeks) for the stocks. A few additional observa-
tions can be made. While the memory effects last equally long
for the American and German stocks, for the latter they are
stronger in magnitude (larger values of C(τk)). For the cryp-
tocurrencies, the autocorrelation magnitude is between these
two cases. Except for HitBTC that shows distinct behaviour
of C(τk) than the other platforms, the autocorrelation range
expressed in real-time units for a given cryptocurrency does
not depend significantly on a platform even though the trad-
ing frequency differs among the platforms. We may conclude
that the memory effects must thus be related to some exter-
nal factors other than the inner dynamics of trading on these
platforms.

A power-law decay of the autocorrelation function is ob-
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<
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>
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 [s
]
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MSFT

FIG. 4. Daily pattern of the mean inter-transaction time 〈δ t〉∆t with
∆t = 1h calculated for sample large cap American stocks.

FIG. 5. Autocorrelation function C(τk) (τk = k ∗ 〈δ t〉t ) of desea-
sonalised ITT time series δ tdes

i calculated for the cryptocurrencies
(BTC, ETH, XRP, and LTC) traded on different platforms (Binance,
Bitfinex, Bitstamp, Coinbase, HitBTC, and Kraken), as well as sam-
ple American stocks from Dow Jones (BAC, INT, JNJ, JPM, MSFT)
and sample German stocks from DAX30 (DBK, DCX, KAR, LIN,
SIE, VOW). Mean trading frequency n = 1/〈δ t〉t of each instrument
is given in the legend boxes.

served for the processes that show multiscaling45, so it is nat-
ural to ask whether the same can be observed in the present
case as broad singularity spectra that indicate rich multifrac-
tality have already been reported in literature in a context of
the ITT time series representing stocks4,20,46,47. A convenient
way to characterise fractal properties of time series is by using
multifractal detrended fluctuation analysis (MFDFA)48.

We start from a time series of ITTs δ tdes
i , i = 1, ...,T . For

a given temporal scale s (smin ≤ s ≤ smax), we divide the time
series into segments of length s by starting from both ends and
obtaining Ms = 2⌊N/s⌋ segments total (⌊·⌋ means integer part
here). In each segment ν (ν = 1, ...,Ms), we integrate data
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points and construct a detrended signal profile ∆i(s,ν):

∆i(s,ν) =
i

∑
j=1

δ tdes
j+sν −P

(m)
ν (i), (4)

where P
(m)
ν (i) is an mth-degree polynomial. Next we calculate

the detrended variance for each segment:

f 2(s,ν) =
1
s

s

∑
i=1

∆2
i (s,ν) (5)

and use the so-defined variances to compute a family of fluc-
tuation functions Fq(s) of order q:

Fq(s) =
{ 1

Ms

Ms

∑
ν=1

f 2(s,ν)q/2
}1/q

. (6)

Fluctuation functions are calculated independently for a range
of different scales s with a typical smin larger than the longest
sequence of zeros in the original time series δ tdes

i and smax

equal to T/1049. Fractal signals give a power-law dependence
on scale:

Fq(s) ∼ sh(q), (7)

where a family of the generalized Hurst exponents h(q) al-
low for distinguishing mono- and multifractal type of scal-
ing: if h(q) 6= const, the time series is multifractal, while it is
monofractal otherwise. Another quantity that is able to distin-
guish both types of fractality is singularity spectrum f (α):

α(q) = h(q)+ qh′(q), f (α) = q(α(q)− h(q))+ 1, (8)

where h′(q) denotes the first derivative of h(q) with respect to
q.

We calculate fluctuation functions Fq(s) for each deseason-
alised ITT time series from out data sets. We choose smin and
smax according to the above rules for each time series individ-
ually and fix the Rényi-like parameter q to be within [-4,4].
The results obtained for the cryptocurrencies are collected in
the main plots of Fig. 6 (BTC and ETH) and Fig. 7 (XRP
and LTC). Except for the shortest time scales, for which the
overall behaviour of Fq(s) becomes heavily distorted espe-
cially for q < 0, due to a significant number of the intervals
with δ tdes

i = 0, the fluctuation functions show fractal (parallel
lines) and sometimes multifractal scaling (spread lines). This
result is supported by the plots of the generalized Hurst ex-
ponent h(q), which in each case is, roughly, a monotonically
decreasing function of q (insets of Fig. 6 and Fig. 7).

In order to visualise it in a more straightforward manner, we
calculate the singularity spectra f (α) for each function Fq(s)
that is power-law over at least two decades of s. These spectra
are shown in Fig. 8.

What draws immediate attention is the broad shape of the
presented spectra with no monofractal, point-like case regard-
less of the asset and the platform. Moreover, all the spec-
tra show a significant right-side asymmetry, which means that
the multifractal behaviour is observed primarily among small
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FIG. 6. (Main plots) Fluctuation function Fq(s) calculated for the
deseasonalised inter-transaction-time time series δ tdes

i representing
BTC (left) and ETH (right) and different trading platforms (top to
bottom). The upper cut-off scale smax depends on time series length
and q ∈ [−4,4]. (Insets) The generalized Hurst exponents h(q) esti-
mated from the range of s indicated by dashed red lines.

δ tdes
i , while for large ITTs the multifractality is less promi-

nent50. Such observation indicates that in periods of more in-
tensive market activity that corresponds to small values of δ ti
the multifractality becomes richer than during the less inten-
sive trading. As the opposite type of asymmetry, i.e., the left-
hand side one, is typically observed in time series of the price
returns, the right-hand side asymmetry has been expected to
occur here for ITTs (small 〈δ tdes〉 leads to large N∆t and it in
turn leads to large r∆t). It is also worth noting that the time se-
ries, which we analyse here, are long enough that the effects
of spurious broadening of f (α) that are common in short sig-
nals51,52 with heavy-tailed pdfs disappear here. In order to
show it, we created the shuffled surrogates of the original ITT
signals and calculated the corresponding singularity spectra.
They are displayed in Fig. 8 for the four cryptocurrencies (in-
sets). Their width is much smaller than in the case of the orig-
inal time series and suggests that they are monofractal. There-
fore we feel free to conclude that the multifractality is caused
by the long-range autocorrelations in time series of ITTs.

Looking at more detail, in the main plots of Fig. 8, we see
that there is a difference in the widths of the spectra among
the cryptocurrencies with, typically, the widest being the ones
for ripple (XRP) and the narrowest being the ones for lite-
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FIG. 7. (Main plots) Fluctuation function Fq(s) calculated for the
deseasonalised inter-transaction-time time series δ tdes

i representing
XRP (left) and LTC (right) and different trading platforms (top to
bottom). The upper cut-off scale smax depends on time series length
and q ∈ [−4,4]. (Insets) The generalized Hurst exponents h(q) esti-
mated from the range of s indicated by dashed red lines.
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cies: BTC (top left), ETH (top right), XRP (bottom left), and
LTC (bottom right) as well as different trading platforms: Binance,
Bitfinex, Bitstamp, Coinbase, HitBTC, and Kraken. The original
time series (main plots) are compared with their shuffled surrogates
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FIG. 9. (Main plots) Fluctuation function Fq(s) calculated for the
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i representing
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The generalized Hurst exponents h(q) estimated from the range of s

indicated by dashed red lines.

coin (LTC). There is no regularity, however, in the widths of
the spectra associated with a particular cryptocurrency among
different trading platforms.

Fluctuation functions calculated for the stocks are shown
in Fig. 9 and the corresponding singularity spectra in Fig. 10.
The functions Fq(s) for the American stocks reveal a power-
law scaling over a longer range of scales than the German
stocks do, which can be explained by the longer time series
considered in the former case (not only the German stock mar-
ket is smaller and less liquid than the American one, but also
the data from the American market were 12 years later, when
the trading frequency was much larger : 〈δ tUS〉 ≈ 0.2s and
〈δ tGER〉 ≈ 33s). The spectra f (α) exhibit a right-side asym-
metry as is the case for the cryptocurrencies – see Fig. 10.
Even though these spectra are broader for the surrogate time
series of the German stocks than for the American ones (see
insets in Fig. 10), we conclude that in both cases the surro-
gates may be considered as monofractal (the ITT time series
of the German stocks are significantly shorter than the time
series for their American counterparts because of the less in-
tensive trading activity in Frankfurt in 1998-1999 than in New
York in 2010-2011).

Each time series of ITT include a large number of null val-
ues δ ti = 0 since temporal resolution of the recorded trade
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data can be worse than the actual inter-transaction intervals.
Some of our data sets suffer from such a problem. This is why,
in order to eliminate the effect of null data on the multifractal
analysis, we consider time series of the number of transactions
in time interval of ∆t = 10s: N∆t,i, which comprises far fewer
zeros. However, before we perform MFDFA on this quantity,
we must note that N∆t,i undergoes seasonal fluctuations simi-
lar to those of 〈δ ti〉∆t . It is therefore recommended to remove
this seasonality in the same manner as it was done with δ ti
above and to focus on Ndes

∆t,i henceforth. Fig. 11 and Fig. 12
present the corresponding fluctuation functions calculated for
the cryptocurrencies. Indeed, the plots of Fq(s) are now much
more tame and homogeneous throughout the scales. Since the
length of all time series is now comparable (see the dates in
Tab. I), we may fix smin and smax.

Unlike the case of ITT time series, the singularity spectra
in Fig. 13 reveal now a left-side asymmetry. Such a shape
of f (α) provides us with information about the more visible
multifractal properties of large fluctuations of Ndes

∆t,i and much

suppressed multifractality of small fluctuations50. However,
since the following relation holds N∆t,i = 〈δ ti〉

−1
∆t , it becomes

obvious why the left-side asymmetry of f (α) in Fig. 8 trans-
forms here into the right-side asymmetry.

The MFDFA formalism given by Eqs. (4)-(6) can easily be
generalized to two cross-correlated time series xi and yi. The
detrended covariance is then defined as

f 2
XY(s,ν) =

1
s

s

∑
i=1

Xi(s,ν)Yi(s,ν), (9)

where Xi and Yi are signal profiles (Eq. (4)) of xi and yi, re-
spectively. The fluctuation functions are now given by

FXY
q (s) =

{ 1
Ms

Ms

∑
ν=1

sign( f 2
XY(s,ν)| f

2
XY(s,ν)|

q/2
}1/q

, (10)
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FIG. 11. (Main plots) Fluctuation function Fq(s) calculated for the
deseasonalised number of transactions Ndes

∆t in intervals of ∆t = 10s
for BTC (left) and ETH (right) and for different trading platforms
(top to bottom). The upper cut-off scale smax is the same in each
case and q ∈ [−4,4]. (Insets) The generalized Hurst exponents h(q)
estimated from the range of s indicated by dashed red lines.

where the sign function enters the formula in order to en-
sure continuity of FXY

q (s), while the modulus prevents it
from being complex. For X=Y the definition (10) reduces to
Eq. (6). Having defined the fluctuation functions for FXY

q (s),
FXX

q (s), and FYY
q (s), we can calculate the q-dependent de-

trended cross-correlation coefficient ρq(s), which is a coun-
terpart of the Pearson cross-correlation coefficient for non-
stationary signals53:

ρq(s) =
FXY

q (s)
√

FXX
q (s)FYY

q (s)
, (11)

which satisfied the relation −1 ≤ ρq(s) ≤ 1 for q > 0. In this
case, for independent time series ρq(s) = 0, for perfectly cor-
related time series ρq(s) = 1, and for perfectly anti-correlated
time series ρq(s) = −1 for all scales s. For q ≤ 0 the coeffi-
cient ρq(s) can assume values beyond the interval [-1,1] and
its interpretation requires more a subtle approach53.

For classical financial markets, such quantities as transac-
tion frequency, the number of transactions in some interval,
volume traded, and volatility are related either statistically,
causally, or both. For instance, it was shown in15,54 based
on data from the American stock markets that fluctuations in
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FIG. 12. (Main plots) Fluctuation function Fq(s) calculated for the
deseasonalised number of transactions Ndes
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FIG. 14. Evolution of the q-dependent detrended cross-correlation
coefficient ρq=2(s = 10min;t) calculated over 1-month-long moving
window for the deseasonalised time series of the number of trans-
actions Ndes

∆t , volatility |rdes
∆t |, and volume traded V des

∆t of BTC in in-
tervals of ∆t = 10s. Evolution of ρq=2(s = 10min;t) for volatility
and volume (top), volatility and the number of transactions (middle),
and the number of transactions and volume (bottom) is shown for
data from different trading platforms: Binance, Bitfinex, Bitstamp,
Coinbase, HitBTC, and Kraken.

the number of transactions in a time interval N∆t have a strong
impact on the traded volume. The inter-transaction times and
price returns were also reported to be correlated55,56. Also in
the case of bitcoin correlations between volatility and volume
were studied57. It is thus interesting to look at the respec-
tive statistical relations also in the case of the cryptocurrency
market. We use the deseasonalised time series of the num-
ber of transactions Ndes

∆t , volatility |rdes
∆t |, and volume V des

∆t for
∆t = 10s and compute the coefficients ρq(s) for all pairs of
these time series. The results obtained for the BTC time se-
ries from different trading platforms are presented in Fig. 14.

Although all three pairs of the considered quantities were
substantially cross-correlated throughout the years 2017-2021
on all the platforms besides HitBTC, their cross-correlations
were relatively small in 2017 and then gradually increased in
2018 and remained strong afterwards (with some moderate
fluctuations in some cases). On average, V des

∆t and Ndes
∆t were

the strongest correlated, next were the correlations between
|rdes

∆t | and Ndes
∆t , while V des

∆t and |rdes
∆t | were correlated the weak-

est (Fig. 14). Among the platforms, Bitfinex and Coinbase
showed the strongest correlations in 2017 and 2018, while
Coinbase and Binance dominated from 2019 to 2021. Bit-
stamp showed a sizeably smaller level of ρq=2(s = 10min, t)
for the whole period, but nevertheless it was still significant.
A notable exception in this picture is the platform HitBTC,
where volume used to exhibit a moderate level of cross-
correlation with volatility (top panel in Fig. 14) and the num-
ber of transactions (bottom panel) in 2017, but this changed in
2018 when ρq(s;t) started to decrease gradually to very low
levels below 0.1 (for Ndes

∆t ) and even to almost 0 (for |rdes
∆t |)

in mid-2019. This trend reversed to some degree in 2020,
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FIG. 15. Cumulative distribution functions of the normalized inter-
transaction times δ̂ ti in units of standard deviation σδ t (main plots)
and the original inter-transaction times δ ti in seconds (insets) for
sample large cap stocks from the American (left) and German stock
markets (right). Different variants of the SE model with α = 0.4
(dashed), α = 0.5 (dotted), α = 0.6 (dash-dotted), and α = 1.0
(solid) serve as guide for an eye.

but even then ρq = 2(s = 10min;t) remained below 0.2 at its
maximum at the turn of 2020 and 2021. Only the relation
between volatility and the number of transactions was resem-
bling partially its counterparts from the other platforms. The
cross-correlation peculiarities observed in the case of HitBTC
can also be explained by the wash-trading mechanism58,59.

C. Inter-transaction time and volume distributions

The price return and volatility fluctuations in time series
from the financial markets have been a subject of extensive
studies since the very beginnings of econometrics1,14,60–66.
Although there is no consensus among the researchers, which
of the statistical distributions describes the pdf tail behaviour
of such fluctuations with a satisfactory approximation, a sub-
stantial body of evidence indicates that one of the most accu-
rate candidate distributions is the power-law pdf in its stan-
dard and exponentially truncated variants with the tail expo-
nent β ≈ 362–64.

Now we focus our attention on the statistical properties of
the time series representing the quantities considered in our
study. We start from calculating the cdfs of ITTs δ ti that are
then plotted in the insets in Fig. 16. According to earlier stud-
ies reported in literature that analyzed the ITT time series from
the classical financial markets, such series can be modelled by
various statistical distributions, including the stretched expo-
nentials5,9,13,17–19, the power-laws20,21, and some other func-
tions22,23. Before we show the results for the cryptocurren-
cies, Fig. 15 shows the ITT cdfs for the time series represent-
ing the American and German stocks. The plots use semi-
logarithmic scale that allows us to distinguish a standard ex-
ponential distribution (which is a straight line in this case)

FIG. 16. Cumulative distribution functions of the normalized inter-
transaction times δ̂ ti in units of standard deviation σδ t (main plots)
and the original inter-transaction times δ ti in seconds (insets) for
the cryptocurrencies: BTC (top left), ETH (top right), XRP (bot-
tom left), and LTC (bottom right). In each plot cdfs for the data
from six trading platforms are shown: Binance, Bitfinex, Bitstamp,
Coinbase, HitBTC, and Kraken. Different variants of the SE model
with α = 0.4 (dashed), α = 0.5 (dotted), and α = 1.0 (solid) serve
as guide for an eye.

from the SE distributions (nonlinear curves). It is evident from
the plots that the exponential model may be discarded for the
American stocks and for a majority of the German large cap
ones, but the less capitalized stocks - KAR and LIN - traded on
the German market can be close to this case (which suggests
that the transactions involving such stocks may show little
autocorrelation). The SE model performs much better over-
all and its specific realisations can approximate the empirical
data, especially for α > 0.4. The cdfs in the main panels were
created for the normalized time series in order to make the dis-
tributions comparable with each other. However, they do not
allow for a direct assessment of how large are the largest data
points in absolute sense. This is why insets in Fig. 15 show
the analogous distributions for the unnormalized time series
δ ti. Here the cdf tails perform significantly different than in
the main plots, but this may be considered as a misleading
effect due to the significantly different values of mean 〈δ t〉
and standard deviation σδ t of the considered ITT time series.
Note that the unsigned character of δ ti implies the cdf tail be-
haviour can influence not only σδ t but also 〈δ ti〉, making both
quantities effectively related. This is why the German stocks
with significantly higher 〈δ t〉 - KAR and LIN - have a shorter
distribution tail measured in σδ t . On the other hand, when we
calculate the distribution in original time units without nor-
malization (insets), the stocks with large 〈δ t〉 have the longest
distribution tail and stocks with small 〈δ t〉 have the shortest
distribution tail.

A similar analysis for the cryptocurrency ITTs leads to the
results that are displayed in Fig, 16. For small multiplicities of
σδ t , the empirical cdfs can in most cases be fitted with the SE
model. However, if compared with the results for the stocks,
this model performs on average much worse with only a few
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FIG. 17. Cumulative distribution functions of the normalized number
of transactions N̂∆t,i in units of standard deviation σN∆t

with ∆t =
10s for the cryptocurrencies: BTC (top left), ETH (top right), XRP
(bottom left), and LTC (bottom right). In each plot cdfs for the data
from six trading platforms are shown, denoted as in Fig. 16. Different
variants of the SE model with α = 0.3 (dashed), α = 0.4 (dotted),
and α = 1.0 (solid) serve as guide for an eye.

cases, in which the SE distribution follows its empirical coun-
terpart up to more than 10σδ t . For all the data sets, the expo-
nential model does not agree with the data either, even though
for the time series representing XRP and LTC from Kraken it
is relatively the closest one (bottom panels). The cryptocur-
rencies on less liquid platforms with higher 〈δ t〉 (Kraken, Bit-
stamp, and HitBTC - see Tab II) have shorter distribution tails
measured in σδ t and the longest tails for unnormalized time
series δ t distributions. The opposite situation, the longest dis-
tribution tail measured in σδ t and the shortest one for the un-
normalized δ t, can be observed for the most liquid exchange
– Binance.

Another quantity that we shall attempt to model is the nor-
malized number of transactions N̂∆t,i realised in intervals of
∆t = 10s. These time series much more sparsely than δ̂ ti show
values that equal 0. Fig. 17 documents that in this case no em-
pirical cdf obeys the exponential distributions, while the SE
distributions are able to account for for the empirical results
in some cases (Kraken up to 80σN∆t

for BTC; HitBTC up to
50σN∆t

for BTC; Bitfinex, HitBTC, and Kraken up to 200σN∆t

for XRP). A particularly interesting is the result for Binance,
where the cdfs obtained from BTC, ETH, and XRP follow
the stretched exponentials over the whole range of time series
values. In contrast, LTC does not exhibit such an effect at all.

Another model that has to be tested against empirical data
is the power-law distribution with a tail exponent β = 3 (the
inverse cubic power law dependence63,64). Fig. 18 shows es-
sentially the same empirical distributions as Fig. 17, but plot-
ted in double logarithmic scale in order to simplify detection
of possible power-law scaling. In the case of BTC, we see
two clear examples of a partial agreement between the data
and the power-law model: Bitstamp for medium time series
values (β > 3) and Kraken for the whole range of N∆t,i (for
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FIG. 18. The same cumulative distribution functions as in Fig. 17
plotted in double logarithmic scale. The SE model with α = 0.4
(dotted), the exponential model (α = 1.0, solid), and the power-law
model with tail exponent β = 3 (dashed) serve as guide for an eye.

FIG. 19. Cumulative distribution functions of the normalized volume
V̂∆t,i in units of standard deviation σV∆t

with ∆t = 10s for the cryp-
tocurrencies: BTC (top left), ETH (top right), XRP (bottom left),
and LTC (bottom right). In each plot cdfs for the data from six trad-
ing platforms are shown, denoted as in Fig. 16. Different variants of
the SE model with α = 0.3 (dashed), α = 0.4 (dotted), and α = 1.0
(solid) serve as guide for an eye.

β ≈ 3). HitBTC can be better fitted by the SE distribution
with α = 0.4 In the case of ETH, more data sets show power-
law scaling for at least part of time series value range with
α < 3. The exception is HitBTC, whose cdf does not exhibit
any scaling region. Such an exception is Coinbase, which is
more SE-like, in the case of XRP, which generally shows the
inverse cubic power-law dependence. In parallel, the excep-
tion for LTC is also HitBTC, which in this case is not compat-
ible with any of the models.

Fig. 19 presents the cdfs calculated from the time series of
normalized volume traded V̂∆t,i. Here the SE model seems
to be in agreement with the data for BTC, ETH, and LTC



Cryptocurrency inter-transaction time 11

FIG. 20. The same cumulative distribution functions as in Fig. 19
plotted in double logarithmic scale. The SE model with α = 0.4
(dotted), the exponential model (α = 1.0, solid), and the power-law
model with tail exponent β = 3 (dashed) serve as guide for an eye.

even for the HitBTC platform, even though it is close to an
exponential distribution. Relatively the worst compatibility
between the model and the data is seen for XRP, but the cor-
responding disagreement is predominantly connected with the
largest values of the time series, while the smaller values are
also well fitted by the SE distribution. As the traded volume
cdf behaves as the SE function, an attempt to model its tails
with the power-law functions (Fig. 20) largely fails. A trace
of scaling can be found only in few cases: BTC from Kraken
and Coinbase, ETH from Bitfinex and Coinbase, and XRP
from Bitfinex, Bitstamp, and Kraken. No compliance with this
model can be found for LTC. We can also distinguish here an
unusual behaviour of the HitBTC platform, where the volume
distribution has the shortest tails.

IV. CONCLUSIONS

In our work we studied high-frequency, tick-by-tick data
from a few cryptocurrency trading platforms, including the
largest one – Binance. Unlike our earlier analysis1, which was
devoted to price fluctuations, here we focused on the statistical
properties of the inter-transaction times, the number of trans-
actions in time unit, and volume for 4 major cryptocurrencies:
BTC, ETH, XRP, and LTC.

All these quantities show significant variation with time re-
lated both to changes that the whole cryptocurrency market
(or even the whole economy) has experienced during several
years: the speculative bubbles and subsequent trend reversals,
the outburst of pandemics, the progressive development of the
cryptocurrency market with more and more investors focus-
ing their attention there with resultant improved liquidity, the
emergence of new trading platforms and new cryptocurrencies
that reshape the market internally, and so on. Such a long-term
variation of the market properties contributes to the already
existing long-range correlations in the quantities characteris-

ing the market and the individual assets. These correlations,
which are often power-law decreasing, are in turn responsi-
ble for the fractal structure of the market time series. Our
analysis confirms the earlier published conclusions that the
inter-transaction times for the stock market data are multifrac-
tal and, for the first time, gives evidence that the same is true
for the cryptocurrency market. Our study shows also that the
ITTs display a right-side asymmetry of the singularity spec-
tra, which indicates that mainly the small values of ITTs are
responsible for the multifractality, while the large values show
poorer multifractal behaviour. As small ITTs correspond to
the intensive trading activity, our results show that on the cryp-
tocurrency market shows richer multifractality during its most
active periods.

Another observation we made is that the highest level of the
detrended cross-correlations for the number of transactions
and volume, which can be viewed as natural, while the rela-
tively lowest yet still significant for the number of transactions
and volatility. We found that, generally, the inter-transaction
times of the cryptocurrency trading show significantly worse
agreement with the stretched-exponential model compared to
the ITTs of large-capitalization stocks from the American and
German markets. On the other hand, if we look at individ-
ual time series from different platforms, in some cases the
SE model cannot be discarded. The number of transactions
in time unit, which in our case was 10s, displays mixed evi-
dence: there are data sets that seem to be in better agreement
with the power-law model and there are also ones whose cdf
tails can be well-fitted by the stretched exponentials.

An interesting observation is that the results can differ even
among the platforms: the number of transactions for the same
cryptocurrency can be modelled by the SE distribution on one
platform, while it cannot on another platform, where it is more
compatible with the power-law model. This is not the only
quantity that shows such duality as similar observations can
be made for the time series of traded volume (which cannot
come as a surprise, because both quantities are strongly cross-
correlated). This discrepancy of the statistical properties of
the otherwise parallel data representing different trading plat-
forms can serve as an intriguing topic for future research. This
is especially true for the platforms where data reveal even
more peculiar properties, like in the case of the HitBTC plat-
form. As some platforms face strong criticism regarding some
practices, like wash trading, they allegedly have been carrying
out, an in-depth analysis of the related data might give an-
swers to such criticisms. Our results can be considered a clue
as to where to search for such answers.
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