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ABSTRACT
In this paper we propose a new approach to assess the performance
of video anomaly detection algorithms. Inspired by the COCO
metrics we propose a quartile based quality assessment of video
anomaly detection to have a detailed breakdown of algorithm per-
formance. The proposed assessment divides the detection into five
categories based on the measurement quartiles of the position, scale
and motion magnitude of anomalies. A weighted precision is intro-
duced in the average precision calculation such that the frame-level
average precision reported in categories can be compared to each
other regardless of the baseline of the precision-recall curve in
every category.

We evaluated three video anomaly detection approaches, in-
cluding supervised and unsupervised approaches, on five public
datasets using the proposed approach. Our evaluation shows that
the anomaly scale introduces performance difference in detection.
For both supervised and unsupervised methods evaluated, the de-
tection achieve higher average precision for the large anomalies
in scale. Our assessment also shows that the supervised multiple
instance learning method is robust to the motion magnitude dif-
ferences in anomalies, while the unsupervised one-class neural
network method performs better than the unsupervised autoen-
coder reconstruction method when the motion magnitudes are
small. Our experiments, however, also show that the positions of
the anomalies have impact on the performance of the multiple in-
stance learning method and the one-class neural network method
but the impact on the autoencoder-based approach is negligible.
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1 INTRODUCTION
Detecting abnormal events is critical in video surveillance and is
traditionally labor intensive. In recent years computer vision al-
gorithms have been developed in an effort to automatically detect
the abnormal events from videos. The performance of these algo-
rithms has been measured by the area under receiver operating
characteristic curve (auROC), equal error rate (EER), F1 score, etc.
These metrics give an assessment of the overall performance of each
method. The diverse nature of anomalies, however, is a big chal-
lenge to their detection, and fine-grained assessment is needed to
establish the advantages and disadvantages of various algorithms.

The COCO metrics are widely used in object detection [10].
Rather than computing an average precision (AP) for all objects,
COCO metrics compute APs across multiple object scales. Inspired
by the COCO metrics, we introduce a detailed breakdown analysis
of the video anomaly detection in terms of the position, scale and
motion magnitude of the anomalies. However, the principle behind
the thresholds for defining scale categories in COCO metrics is
unclear. In this paper we propose using the quartiles as the basis
to break down the measurement. Quartiles provide information
about both the center and the spread of the data, and statistics based
on quartiles such as the interquartile range (IQR) are not unduly
affected by outliers. With the quartiles, we divide the anomalies into
five categories and name them as “tiny,” “small,” “medium,” “large,”
and “huge,” and the frame-level interpolated average precision is
calculated in every category. The AP computation is, however,
strongly impacted by the number of anomalies in each category.
We therefore propose a weighted precision in the AP calculation
such that the reported APs are comparable to each other.

With the proposed assessment, we evaluate three video anomaly
detection methods. The first method applies the one-class neural
networks (OCNN) [2] for video anomaly detection. The method was
designed to detect anomalies in images but hasn’t been evaluated for
detecting anomalies in videos. It represents those one-class models
trained with normal videos and detecting anomalies by measuring
their deviations from trained models. The second method uses the
autoencoder (AE) to learn the regular motion patterns for anomaly
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detection [6]. It represents those reconstruction-based approaches
that use the reconstruction error as a proxy for anomaly score.
Many of these reconstruction-based approaches need per-video
score normalization for detection. This is problematic as it assumes
there is at least one anomalous event in the video but the end of
the test video is unknown in practice. To remove such a limitation
we propose applying a 1D derivative filter on the anomaly scores
and detecting the anomalies based on the adjacent anomaly score
difference. The third method in our evaluation uses the multiple
instance learning (MIL) [19] for the detection. It represents those
approaches with the idea of weakly supervised training for anomaly
detection.

Five public datasets are used in the evaluation. The videos from
the UCSD Pedestrian [14], ShanghaiTech [12], and Street Scene [16]
datasets are captured in constrained conditions and scenes, while
the datasets Live Video [9] and UCF Crime [19] contain CCTV
footage collected in the wild. Our evaluation on these datasets
shows that the anomaly scale does have impact on the detection.
For all three methods evaluated the detection achieve higher aver-
age precision for the anomalies large in scale. However, the OCNN
method introduces the least variance in performance for different
anomaly scaleswhile the AEmethod is themost affected by the scale
differences. Our assessment also shows the positions of the anom-
alies have impact on the performance of the MIL method and the
OCNN method but not on the autoencoder reconstruction method.
In the experiment results, the supervised MIL method introduces
much less variances in detection than the unsupervised OCNN
method for different anomaly positions. For the motion magnitude
measurement, the weakly supervised MIL method demonstrates its
detection robustness to the differences in the motion magnitudes
of anomalies while the OCNN shows a better capacity to handle
the variance in motion magnitude than the AE method.

1.1 Video anomaly detection
Video anomaly detection has gained increasing attention in re-
cent years and many papers have demonstrated promising results.
Classic approaches usually require substantial feature engineering.
Cong et al. [3] extract multi-scale histogram of optical flow to build
a normal dictionary for calculating the sparse reconstruction cost
of test samples. Lu et al. [13] extract 3D gradient features of video
patches at multiple scales in their sparse combination learning for
fast abnormal event detection. Doshi et al. [4] extracts motion, loca-
tion, and appearance features for each object in a frame and learns
the normal frames using few-shot learning with k-nearest neighbor
(k-NN) distances. If the k-NN distance of any object with respect to
a training set is larger than a threshold, the frame with that object
is deemed anomalous.

With the advent of deep learning, which presents a way to learn
relevant features automatically, a vast majority of recent video
anomaly detection methods depend on deep neural networks. As
anomalous events usually come as rare cases while videos with
normal events are easy to be obtained, many methods pursue the
unsupervised learning for the problemwithout providing anomalies
for supervision. Tran et al. [21] use convolutional winner-take-all
autoencoders to learn motion-feature representations from optical
flow fields of videos and feed learnt sparse representations to a
one-class SVM to perform anomaly scoring. However, such hybrid

approaches with SVM is suboptimal as they are unable to influence
representational learning in the hidden layers [7]. Ruff et al. [18]
therefore train a neural network while minimizing the volume of a
hypersphere that encloses the network representations of data. The
network is then forced to extract the common factors of variation of
normal samples when used for anomaly detection tasks. Chalapathy
et al. [2] further combine the ability of deep neural networks to
extract progressively rich representation of data along with the
one-class objective for the anomaly detection.

Hasan et al. [6] train a convolutional autoencoder to reconstruct
video snippets for the anomaly detection. It is assumed that the
learned autoencoder reconstructs regular motion with low error
but incurs high reconstruction error for irregular motions. With
a similar motivation, Ravanbakhsh et al. [17] attempt the first use
of generative adversarial networks (GANs) to learn the normality
of the crowd behaviour. Since the GANs are trained with only
normal data, they are unable to reconstruct appearance and motion
information of the possible abnormal regions of the test frame.
A simple difference between the real test-frame representations
and the generated descriptions would detect abnormal areas in the
frame. These approaches have, however, been criticized because
large reconstruction errors can not be guaranteed for abnormal
events [12]. Liu et al. [12] therefore propose to tackle the problem
within a video prediction framework. A future frame is predicted
with an adversarial trained U-Net. The abnormal frame is then
detected by thresholding the normalized peak signal to noise ratio
between the predicted frame and the real frame.

It is argued that an anomaly detection system can perform better
with the training data of both normal and anomalous events [7, 19];
however, the annotation of anomalous events is very expensive.
Sultani et al. [19] therefore propose a weakly supervised learning
approach with only video-level annotations. The approach learns
anomaly through a deep multiple instance learning (MIL) frame-
work by treating normal and anomalous videos as bags and short
segments of each video as instances in a bag. A bag is labelled as
positive if any segment in the bag contains anomaly, otherwise
the bag is labelled as negative. Following the same path, Kamoona
et al. [7] add a temporal encoding-decoding network to the MIL
ranking framework to capture the temporal information among
the video clips. Dubey et al. [5] propose 3D deep MIL with ResNet
along with a new proposed ranking loss to mitigate the false alarm
rate in anomaly detection.

For certain scenarios such as road and highway traffic, super-
vised learning can be designed [1, 22], where the annotations of the
anomalies in the training videos are available. However, because it
is impossible to list all anomalous events, these approaches fail to
generalize well to other applications. Moreover, the supervised ap-
proaches defeat the spirit of anomaly detection where the ultimate
goal in practice is to detect any deviation from normality [15].

1.2 Frame-level evaluation
The performance of the anomaly detection is commonly measured
by the temporal localization of anomaly events, and therefore the
frame-level criteria are widely used in the evaluation. The frame-
level auROC is usually reported in video anomaly detection. The
ROC curve needs 1-specificity in the plot, which takes the pro-
portion of correctly identified normal frames into account. Class
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imbalance is, however, usually an issue in anomaly detection where
the true negatives are much more common than the true positives;
therefore, the auROC is not very suitable for the performance as-
sessment. The F1 score is the harmonic mean of the precision and
recall and can be used an alternative metric for the evaluation,
but an optimal threshold needs to be determined before the score
calculation.

In this paper, average precision (AP) is used as the metric for
the performance. AP is the area under the precision-recall (PR)
curve, which focuses on predictions around the anomaly class.
A detected anomaly frame can be counted as a true positive if
this frame has ground truth anomalous regions, otherwise a false
positive is counted. To remove the zig-zag pattern in the PR curve,
the interpolated average precision [10] is used.

2 DATASETS
Five public datasets are used in our assessment as shown in Figure
1. UCSD Pedestrian [14] is one of the most widely used datasets. It
contains two subsets, UCSD Ped1 and Ped2. Each subset contains
videos captured from a static camera overlooking a pedestrian
walkway. Pedestrian walking is considered as normal and anomalies
are presented as bikers and skaters, etc. The Ped1 subset contains 34
normal videos as training data and 36 test videos. The Ped2 subset
consists of 16 training videos and 12 test videos. Pixel-level and
frame-level annotations are available for both Ped1 and Ped2 test
videos. Bounding box annotations of anomalous regions can also
be found [16].

(a) UCSD (b) ShanghaiTech (c) Street Scene

(d) Live Video (e) UCF Crime

Figure 1: Five public datasets used in assessment.

ShanghaiTech [12] dataset contains videos from 13 different
scenes with complex light conditions and camera angles. Same as
UCSD Pedestrian dataset, pedestrian walking is the normal pattern
and anomaly events are introduced by cars or bikers, etc. It consists
of 330 normal videos and 107 test videos with 130 anomalies. Both
frame-level and pixel-level annotations are provided for the test
videos.

Street Scene [16] is a recent proposed dataset that contains 46
training and 35 test videos with a total of 205 anomalous events con-
sisting of 17 different anomaly types. The videos are taken from a
static USB camera looking down on a scene of a two-lane street with
bike lanes and pedestrian sidewalks, hence the anomaly instances
are “jaywalking," “biker outside lane," “loitering," etc. Bounding
boxes and frame-level annotations are available for the test videos.

It is argued that the datasets mentioned above do not reflect
realistic anomalies in video surveillance. Therefore, some datasets
are prepared with videos captured in unconstrained, “in-the-wild"
conditions and scenes. The Live Video dataset [9] consists of videos
from surveillance cameras depicting realistic abnormal events. It
contains 30 videos with 14 types of abnormal events such as fighting,
people clashing, kidnapping, etc. Bounding boxes in anomalous
frames are given in the dataset. The UCF-Crime dataset [19]1 is a
recently proposed dataset with realistic CCTV videos. The dataset
contains 950 normal videos and 950 unedited videos covering 13
real-world anomaly events such as “abuse," “burglary," “shoplifting,"
etc. Among the 1900 videos, 150 normal videos and 140 anomalous
videos are given frame-level annotations for validation.

3 EVALUATION METHODS
Our selected datasets are evaluated with 3 methods for anomaly
detection, the one-class neural networks (OCNN) method, the au-
toencoder (AE) reconstruction method and the multiple instance
learning (MIL) method. All three methods take features extracted
from a C3D network [20] pretrained on Sports-1M [8]. C3D is a
widely used neural network for extracting generic video features.
For each video, we resize every video frame to 112 × 112 pixels and
compute the C3D features for non-overlapping 16-frame clips from
the video. The visual features are taken from the fully connected
(FC) layer FC6 of the C3D with L2 normalization. This gives each
16-frame clip a 4096 dimensional descriptor.

3.1 One-class neural network
Approaches using one-class classification for anomaly detection
aim to learn the models that can accurately describe the “normality."
Following Chalapathy and Chawla [2], a one-class neural network
(OCNN) is trained in our evaluation. The network takes a clip
descriptor as input and feeds forward to a fully connected layer
with 512 neurons. Both the input layer and the hidden layer use
20% dropout. The hidden layer connects to the scalar output of the
network, and drives its data representation with the objective:

min
w,V ,r

1
2
| |w | |22 +

1
2
| |V | |2F +

1
V

·
1
N

N∑
n=1

max{0, r − ⟨w,д(VXn:)⟩} − r

where V is the weight matrix from input to the hidden units,w is
the weights from the hidden layer to the output, andд is the sigmoid
activation function. In the objective,V ∈ (0, 1) controls the training
error allowed, which is set as 0.1 in our experiments. r gives the
bias of the hyper-plane that separates normal and anomalous data.

3.2 Autoencoder reconstruction
An autoencoder (AE) is built in our evaluation with the assumption
that the anomalies can be detected with high autoencoder recon-
struction errors. The autoencoder takes each C3D clip descriptor
as input and passes through three hidden layers with 512, 32, and
512 neurons respectively. The autoencoder outputs a reconstructed
4096 dimensional vector and the mean squared error (MSE) loss is
measured between the input and the output with 5e-4 weight decay
during training. All layers in the autoencoder are fully connected

1The bounding box annotation can be downloaded from https://github.com/xuzero/
UCFCrime_BoundingBox_Annotation [11]
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layers with 20% dropout, and the rectified linear unit (ReLU) is used
as the activation function.

During testing many methods apply the per-video normalization
[6], which scales the reconstruction error to range [0, 1]. How-
ever, this assumes that every test sequence has at least one normal
and one anomalous frames, and it is impractical for real-world ap-
plications because the end of a test video sequence is unknown.
Therefore, we propose a novel way to detect the anomalies based on
the difference between adjacent frame reconstruction error. Given
a test video, a sequence of MSEs is computed from the autoencoder.
This sequence of MSEs is then padded with the mean of MSEs from
all training samples at the top and the end of the sequence, and
is convolved with a 1D kernel [1, 0, -1] to generate a sequence of
MSE difference scores. Within the difference scores, a high positive
difference score signifies the start of an anomalous event and a low
negative score corresponds to the end of the event. Consequently all
frames between the pair of the signals are classified as anomalous.

3.3 Multiple instance learning
It is contended that the anomaly detection performance can be
improved by introducing supervision information. We therefore
follow Sultani et al. [19] and train models with both normal and
anomalous data using multiple instance learning (MIL). Each video
is divided into 32 temporal segments and a C3D descriptor is ex-
tracted from each segment. The 4096 dimensional vector is input to
a feed-forward network with two hidden layers before the scalar
output anomaly score. Both hidden layers are fully connected as
in Sultani et al. [19], but one has 512 neurons and the other has 32
neurons. The MIL ranking loss [19] is used for training.

4 ASSESSMENT
Table 1 shows the AP of the three methods on the five datasets. The
baseline of AP for each dataset is also given in the table, which is
calculated as P/N . P is the total number of the positive frames in a
dataset and N is the total number of frames in the dataset. There is
no obvious winner method that can be identified in the table across
all 5 datasets, and thus a detailed assessment to characterize every
method would be very helpful. For a fine-grained assessment of

datasets baseline OCNN AE MIL

UCSD 0.68 0.71 0.60 0.73
Shanghai 0.42 0.51 0.58 0.44
Street 0.30 0.32 0.37 0.35
Live 0.37 0.57 0.49 0.70
UCF 0.06 0.06 0.12 0.17

Table 1: The APs of three methods on 5 datasets. UCSD stands for the UCSD
Pedestrian dataset. Shanghai stands for the ShanghaiTech dataset. Street is
short for Street Scene and Live is short for Live Video. UCF is the UCF Crime
dataset.

detection performance, the anomalies in every dataset is measured
in terms of their positions, scales and motion magnitudes. For each
measurement, two quartiles can be calculated in every dataset, the
first quartileQ1 and the third quartileQ3. TheQ1 gives the cut point
for the lowest 25% of the measured data while the Q3 splits off the
highest 25%.WithQ1 andQ3, it is possible to calculate the interquar-
tile range (IQR) as Q3 − Q1, a robust measure of data dispersion.

Outliers can then be checked for using the lower fence and the up-
per fence, where the lower fence (LF) is calculated asQ1−1.5× IQR
and the upper fence (UF) is calculated as Q3 + 1.5 × IQR. The cut
points Q1, Q3, LF and UF divide the anomalies into five categories
(−∞,LF ), [LF ,Q1), [Q1,Q3), [Q3,UF ), and [UF ,+∞) and we name
them “tiny,” “small,” “medium,” “large,” and “huge” correspondingly.

The quartiles are calculated in every dataset and thus the analy-
sis based on the quartiles are not comparable to each other across
datasets. To solve this problem, the average values of the cut points
across the five datasets for each measurement are calculated. How-
ever, in this way theQ1 andQ3 may be no longer the 25th and 75th
percentiles of the data. Therefore, the percentage of the anomalies
in each category needs to be calculated for every dataset. A preci-
sion is calculated as tp/(tp + f p) where tp is the number of the true
positives and f p is the number of the false positive. The number of
the false positives is unrelated to how categories of anomalies are
defined and the precision is strongly impacted by the number of
positive samples in each category. Consequently the AP computed
in each category is not comparable to each other due to different
numbers of anomalies in categories. To tackle this issue, we propose
a weighted precision in the AP computation, where the precision
is calculated as tp/(tp + f p × p1) where p1 is the percentage of
anomalies in each category.

4.1 Position
The position measures how close an anomaly bounding box is
to the image borders, and we are interested in whether different
positions of the anomalies make any difference in the detection. To
be independent of frame resolutions across datasets, the positions
are measured as ratios. Given the center of a bounding box x ,y and
the image width w and height h, the position is calculated as the
lowest ratio value among the x/w ,y/h, (w−x)/w and (h−y)/h. With
the proposed quartile based metrics, the average LF ,Q1,Q3, andUF
for the position measurement are [−0.089, 0.137, 0.288, 0.515]. Table
2 shows the percentage of anomalous frames in each range part
for the 5 datasets. If multiple anomalies appears in the same frame,
the largest position is used to categorize the frame to a category.
Because the minimum possible value for a position is 0 and the

tiny small medium large huge

UCSD 0 10.89% 28.96% 60.15% 0
Shanghai 0 31.85% 36.33% 31.83% 0
Street 0 70.48% 18.19% 11.34% 0
Live 0 23.82% 54.67% 21.51% 0
UCF 0 4.35% 26.27% 69.38% 0

Table 2: The percentages of anomalous frames in each category under the
position measurement.

maximum is 0.5, there can not be extremes in the tiny and huge
categories as shown in Table 2. Most anomalies in the Street Scene
dataset are near the frame borders and most anomalies in the UCF
Crime dataset are away from the frame borders. This is because
videos from the Street Scene dataset are taken from a static camera
looking down on a scene of a street with bike lanes and pedestrian
sidewalks. The bike lanes and sidewalks are close to the image
borders and most anomalies in the Street Scene dataset are about
pedestrians and bikers. The videos from the UCF Crime dataset are
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selected with clear anomalies; therefore, most anomalous events are
near the center of the frames. The anomalies in the ShanghaiTech
dataset are pedestrians and vehicles that move across the scene
from one end to the other; therefore, the number of anomalies in
the small, medium, and large categories are close.

The frame-level AP with weighted precision is calculated in
each category. We turn on dropout during inference and run every
method 15 times for the five datasets. This gives 75 AP results in
each category for a method. However, the 5 datasets have different
baselines of AP, which make the analysis across datasets difficult.
We therefore subtract the baseline from the APs for each dataset
and use the residuals in an one-way analysis of variance (ANOVA).
The residuals from the small, medium, and large categories form
3 groups in the ANOVA and each group has 75 AP residuals. The
null hypothesis is tested, which states that the means of the AP
residuals from the small, medium, and large position categories
have no significant differences to each other.

OCNN AE MIL

p value 0.00004 0.315 0.009
f value 10.543 1.160 4.809

Table 3: ANOVA results for the position measurement.

tiny small medium large huge

OCNN 0 0.029 0.080 0.067 0
AE 0 0.087 0.071 0.062 0
MIL 0 0.132 0.108 0.079 0

Table 4: The means of AP residuals in each category under the position mea-
surement.

Table 3 shows the ANOVA results. Given the α level 0.05, it can
be seen that the prediction from the autoencoder reconstruction
method is unimpacted by the positions of the anomalies. This is
because the reconstruction error from the AE method is a sum of
each feature difference, which is irrelevant to the anomaly position.
It is surprising that there are performance differences among the
groups for the one-class neural network method and the multiple
instance learning method under the position measurement. These
differences can also been found in Table 4, which lists the means of
the AP residuals in each category. However, the f values in Table 3
show that, as a supervised learning method, MIL introduces much
less variance in detection than the unsupervised OCNN method for
different positions.

4.2 Scale
The scale measures the relative size of an anomaly in a frame. Given
an anomaly, the scale is calculated as the ratio of the size of the
bounding box to the size of the frame. As the position measurement,
the average LF ,Q1,Q3, andUF of the scale measurement across the
5 datasets are calculated, which are [−0.069, 0.025, 0.088, 0.183]. The
anomalous frames from all datasets are then categorized into the 5
categories of scale. Table 5 shows the percentage of the anomalous
frames in each category. If multiple anomalies appears in the same
frame, the largest scale in the frame is used to categorize the frame.

Most of the anomalies from the top 3 datasets in Table 5 are
relatively small. The UCSD, ShanghaiTech, and the Street Scene
datasets are prepared under constrained conditions; therefore, the
variance of the scale is small in these datasets. In contrast, the
Live Video dataset and the UCF Crime dataset are prepared in
unconstrained, “in-the-wild" conditions, so both datasets show a
certain variety of scales. However, the anomalies in the UCF Crime
dataset tend to be relatively large. One reason is that a strategy of
having all anomalies enclosed within a single large bounding box
in a frame was used for the annotation of the UCF Crime dataset.

tiny small medium large huge

UCSD 0 78.67% 21.33% 0 0
Shanghai 0 66.00% 28.87% 4.68% 0.44%
Street 0 96.66% 3.22% 0.12% 0
Live 0 27.07% 54.15% 10.81% 7.96%
UCF 0 2.31% 22.17% 20.31% 55.21%

Table 5: The percentages of anomalous frames in each category under the
scale measurement.

OCNN AE MIL

p value 0.012 0.0001 0.007
f value 3.740 7.206 4.159

Table 6: ANOVA results for the scale measurement.

tiny small medium large huge

OCNN 0 0.079 0.013 0.167 0.146
AE 0 0.046 0.212 0.123 0.169
MIL 0 0.135 0.067 0.159 0.157

Table 7: The means of AP residuals in each category under the scale measure-
ment.

Aswith positionmeasurement, we run everymethod 15 times for
each dataset and calculate AP residuals in each category as a group
in the ANOVA. Table 5 shows the UCSD dataset has no frames
with anomalies in the large and huge categories. The Street Scene
dataset has only 0.12% anomalous frames in the large category and
no anomalies in the huge category while the other three datasets
have frames with anomalies in all small, medium, large, and huge
categories. Therefore, we take a two-sided t-test first with the
small and medium categories, which have AP residuals from all
datasets, and calculate p-values of [0.006, 5.6 × 10P−19, 0.004] and
t-values of [2.81,−10.25, 2.92] for OCNN, AE, and MIL respectively.
ANOVA then is run with the 4 categories of AP residuals from the
ShanghaiTech, Live Video, and UCF Crime.

Table 6 shows the ANOVA results. It can be seen that all the
p-values from both the t-test and the ANOVA are smaller than
the α level 0.05, so there are significant differences among group
means for the three methods. In other words different scales of
anomalies introduce significant difference in the anomaly detection
performance. This can also be seen in Table 7. When the anomalies
are large or huge, the detection performance is better than the
detection in the small andmedium categories for the OCNN andMIL
methods. AE achieves the best detection in the medium category
and the performance in the large and huge categories are much
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better than the small category. Moreover, the t-values and f -values
show that OCNN introduces the least performance variance among
the categories while the AE method is the most affected by the scale
differences.

4.3 Motion magnitude
The motion magnitude is calculated as the average magnitude of
the optical flow inside an anomaly bounding box. Video frames in
all datasets are resized to size 112×112 and smoothed by a Gaussian
filter with kernel size 7 × 7 before computing the optical flow. The
Farneback algorithm from OpenCV is used to compute the dense
optical flow. The pyramid scale is set to 0.5 and the pyramid levels
is set to 3. The algorithm runs 3 iterations at each pyramid level
with a window size of 10. The size of the pixel neighborhood for
polynomial expansion in the algorithm and the standard deviation
for smooth derivatives are set to 5 and 1.2. After computing the
motion magnitude for all anomalies, the cutting points of the 5 cat-
egories are obtained as [−0.369, 0.107, 0.424, 0.900] for the motion
magnitude measurement. Table 8 shows the percentage of anoma-
lous frames in each category. If multiple anomalies appears in the
same frame, the largest motion magnitude in the frame is used to
categorize the frame.

tiny small medium large huge

UCSD 0 2.85% 26.88% 41.03% 29.24%
Shanghai 0 17.90% 30.34% 29.09% 22.67%
Street 0 75.47% 18.17% 3.17% 3.19%
Live 0 70.70% 24.38% 3.50% 1.43%
UCF 0 66.83% 23.82% 6.55% 2.80%

Table 8: The percentages of anomalous frames in each category under the
motion magnitude measurement.

The motion magnitude of anomalies from Street Scene, Live
Video, and UCF Crime datatsets tends to be small. As shown in
the previous section, the scales of most anomalies in the Street
Scene dataset are small, and consequently the motion from these
anomalies could also be small. There are large scale anomalies in
Live Video dataset and UCF Crime dataset; however, most of the
anomalies in both datasets do not introduce large location shift in
frames. In contrast, anomalies in UCSD and ShanghaiTech datasets
move from one end of the scene to the other, which could give large
motion magnitudes.

OCNN AE MIL

p value 0.01 1.3×10−5 0.36
f value 3.792 8.821 1.067

Table 9: ANOVA results for the motion magnitude measurement.

tiny small medium large huge

OCNN 0 0.060 0.080 0.077 0.104
AE 0 0.032 0.016 0.075 0.088
MIL 0 0.099 0.102 0.099 0.127

Table 10: The means of AP residuals in each category under the motion mag-
nitude measurement.

Table 9 shows ANOVA results for the small, medium, large, and
huge categories. It can be seen that the multiple instance learning

method has a p-value 0.36, which indicates that there is no anomaly
detection differences among the 4 motion magnitude categories
in terms of their group means. This could imply that, as a weakly
supervised method, the learning of the MIL is not dominated by
the motion magnitude feature. It is also noticeable that different
motion magnitudes have impact on the detection performance
for the other two unsupervised methods. However, the f value
from the one-class neural network is smaller than the autoencoder
reconstructionmethod, which demonstrates that the OCNNmethod
has a better capability to handle the variance of motion magnitude
from anomalies. This probably benefits from the OCNN’s ability of
driving the data representation in the neural network along with
its one-class objective.

Table 10 shows the means of the AP residuals in each category.
The unsupervised OCNN method has better detection performance
than the unsupervised AE method when the motion magnitude is
relatively small, while supervised MIL gives the best performance
across all 4 categories and has close detection performance among
the categories.

4.4 Discussion
During the evaluation when there are multiple anomalies present
in the same video frame, the largest value of a measurement is used
to determine the category for that frame. This might introduce
a bias in the assessment where the true positive frames could be
overestimated for the larger anomalies in the datasets. One way to
alleviate this problem could be running the evaluation again and
using the smallest value to determine the category, then taking
both evaluations into consideration in the assessment.

In the assessment we apply dropout to have some variance for
eachmeasurement. An alternative way is bootstrapping the datasets
for each AP calculation. However, in this alternative way the base-
line needs to be computed for every resampling such that the AP
residuals can be calculated. Using the auROC metric instead of AP
could avoid the baseline calculation for every sample because the
area under the baseline of the ROC curve is always 0.5; however, as
discussed in Section 1.2, a weak point of auROC is that the metric
does not emphasize predictions around the anomaly class.

5 CONCLUSION
In this paper we presented a quartile based quality assessment of
video anomaly detection. Quartiles provide information about the
spread of the data and statistics based on quartiles are robust to
noise in the annotations. Three methods with five datasets were
evaluated in terms of the position, scale, and motion magnitude
of anomalies. Our evaluation shows anomaly scale introduces de-
tection differences for all three methods evaluated, and both the
supervised and unsupervised methods perform better when the
anomalies become larger in scale. The assessment also shows the
unsupervised autoencoder reconstruction method is immune to the
position changes of anomalies while the weakly supervisedmultiple
instance learning method is robust to the motion differences.

The detection performance can also be evaluated with other
properties of the anomalies such as the ratio of the anomaly motion
magnitude, etc. We hope the framework presented in this paper
can inspire other researchers and be used in other computer vision
tasks.
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