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Abstract

“Colour Technologies for Content Production and

Distribution of Broadcast Content”

Marc Górriz Blanch

The requirement of colour reproduction has long been a priority driving the
development of new colour imaging systems that maximise human perceptual plau-
sibility. This thesis explores machine learning algorithms for colour processing to
assist both content production and distribution. First, this research studies colouri-
sation technologies with practical use cases in restoration and processing of archived
content. The research targets practical deployable solutions, developing a cost-
effective pipeline which integrates the activity of the producer into the processing
workflow. In particular, a fully automatic image colourisation paradigm using Con-
ditional GANs is proposed to improve content generalisation and colourfulness of
existing baselines. Moreover, a more conservative solution is considered by pro-
viding references to guide the system towards more accurate colour predictions. A
fast-end-to-end architecture is proposed to improve existing exemplar-based image
colourisation methods while decreasing the complexity and runtime. Finally, the
proposed image-based methods are integrated into a video colourisation pipeline.
A general framework is proposed to reduce the generation of temporal flickering or
propagation of errors when such methods are applied frame-to-frame. The proposed
model is jointly trained to stabilise the input video and to cluster their frames with
the aim of learning scene-specific modes. Second, this research explored colour pro-
cessing technologies for content distribution with the aim to effectively deliver the
processed content to the broad audience. In particular, video compression is tackled
by introducing a novel methodology for chroma intra prediction based on attention
models. Although the proposed architecture helped to gain control over the refer-
ence samples and better understand the prediction process, the complexity of the
underlying neural network significantly increased the encoding and decoding time.
Therefore, aiming at efficient deployment within the latest video coding standards,
this work also focused on the simplification of the proposed architecture to obtain
a more compact and explainable model.

XIV



Chapter 1

Introduction

1.1 Chapter overview

This chapter provides a general introduction to this thesis, presents the motivation

for this research, the hypotheses and research questions, and outlines the struc-

ture of the document. Section 1.2 showcases the importance of colour perception

in computer vision, Section 1.3 analyses the applications of colour processing tech-

nologies in the broadcasting industry, Section 1.4 discusses the specific motivations

underpinning this research. Finally, Section 1.5 presents the hypothesis and research

questions and Section 1.6 outlines the organisation and structure of this thesis.

1.2 Perception of colour

The perception of colour is essential in modern image and video processing systems,

playing an important role in many applications and domains, such as multimedia

systems, computer vision, broadcasting and digital imaging. Over the years, im-

age processing methodologies have primarily focused on grayscale images, treating

colours as a dimensional extension of the intensity component or luminance. How-

ever, a better understanding of the colour components has been important to many

image processing and pattern recognition systems, where colour-based features pro-

vide a richer level of abstraction towards solving complex computer vision tasks such

as image retrieval, segmentation or classification.

While the luminance information provides valuable content-related information

regarding shapes and structures, the perception of colour is essential for understand-

ing the visual world, allowing the distinction between objects and physical varia-

tions, such as shadow gradations, light source reflections or reflectance variations.

For example, as shown in Figure 1.1, the colour information is key to understand the

level of maturity of the coffee beans. For this reason, the processing of chromatic
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CHAPTER 1. INTRODUCTION

Figure 1.1: Colour information is essential to understand an object’s properties. In
this example, the gradient between green and red represents the maturity process
of the coffee cherries, indicating the right moment to collect their seeds.

information and the improvement of colour quality have become a research area

of significant interest for a wide variety of domains that traditionally have priori-

tised the use of luminance data alone. This includes imaging systems for medicine,

meteorology or quality control for a wide range of industries.

1.3 Colour technologies in broadcasting

Colour technologies have long been the heart of the broadcasting industry. Back

in the sixties, the invention of the colour television represented a total revolution,

and one of the most complex and transformative technological innovations in the

history of the world. As shown in Figure 1.2, everyone will remember the famous

test pattern with colour bars that was sometimes used when no program material

was available. Colour systems granted a unique and thoroughly modern form of see-

ing and representing the world, bringing to the viewers a more legible, realistic and

emotive experience. Since then, broadcasting technologies have been in constant

evolution playing a key roles in digital transformation. The convergence of digi-

tal entertainment required the replacement of deprecated analogical systems and

the development of new processing and transmission methodologies which ensure

more efficiency and flexibility. The requirement of colour reproduction has been a

priority all along the process, and the design of new colour imaging systems has

focused on maximising human perceptual plausibility. Digitisation has also driven

the establishment of new computer vision disciplines, such as video enhancement

2
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Figure 1.2: A colour television test at the Mount Kaukau transmitting station,
New Zealand, in 1970. A test pattern with colour bars is sometimes used when no
program material is available.

and restoration, which have had a significant impact on the broadcasting industry

in recovering and colourising degraded content from legacy archives.

The proliferation of imaging devices followed by the rise of user-generated con-

tent, has prompted huge interest in the control and enhancement of video quality

and colour fidelity. The variety in the image capturing and generation sources is

being mirrored by an increasing diversity of the media for which colour images are

reproduced. Consequently, colour imaging technologies have become essential in

managing the reproduction of colour in a consistent and systematic way, such that

the visual appearance remains perceptually constant. Another important element in

the broadcasting chain are technologies for distribution. Video compression has be-

come an essential asset for tackling the increasing demand for higher quality video

content. Colour prediction plays an increasingly important role in video coding,

proven to be effective in achieving better compression rates by means of exploit-

ing cross-component information. Finally, Artificial Intelligence (AI) is increasingly

creating disruption and innovation. Broadcasting applications driven by machine

learning have rapidly shifted from research environments to deployed scenarios, en-

abling the automation of many production workflows. As recently reported by the

International Telecommunication Union (ITU) [7], such technologies are providing

improvements in production efficiency and correlated cost reduction, as well as op-

timised content delivery at lower bandwidth.

3
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1.4 Motivation

This research investigates extending existing AI approaches for application to colour

processing in video broadcast systems. Video technologies are essential in the dig-

ital broadcasting and production workflow, especially for content production and

distribution. Video technologies include multimedia content processing, video com-

pression, video enhancement and data analysis.

In the context of content production, this research focuses on automatic colouri-

sation to be applied in video enhancement and restoration applications. Archived

broadcast content such as previously broadcasted shows, and historical event cov-

erage is of relevance to journalism to support incoming news stories, and provide

context to current events. In particular, colourisation refers to the process of adding

colours to greyscale content such that the results are perceptually and visually ap-

pealing. Therefore, the production of automatically colourised content does not seek

to reproduce reality, rather to generate realistic and semantically meaningful con-

tent. This research targets practical deployable solutions, developing a cost-effective

pipeline which integrates the activity of the user/producer into the processing work-

flow, together with automatic methodologies based on style transfer, deep image

analogy computation and smart retrieval.

In parallel, technologies for content distribution are essential to effectively deliver

the processed content to a broad audience. Colour prediction extends directly to

research disciplines such as video compression. Specifically, within intra frame cod-

ing, chroma components are predicted with the aim to remove correlations within

local regions of the image and the cross-component domain. This research investi-

gates the use of neural networks for improving existent chroma prediction methods,

aiming an efficient deployment within the latest video coding standards. Finally,

explainability of neural networks is considered to verify the predictions of complex

end-to-end models as well as to identify potential simplifications towards more effi-

cient implementations.

1.5 Hypothesis and research questions

In this research, it is hypothesised that AI-based colour processing techniques can be

efficiently implemented into a current digital broadcasting workflow with a significant

impact on video production and distribution. The following research questions drive

the research performed to investigate the proposed hypothesis:

1. Content production: image and video colourisation.

• Can deep learning models for video colourisation be implemented into
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a production pipeline for content enhancement and restoration? Some

areas of interest include reference-based methodologies, user/producer

interactivity and efficient implementations for image and video prediction.

• Which are the best practices to train a colourisation generative model

to ensure content generalisation, colourfulness, temporal consistency and

high-resolution predictions?

• Can style transfer approaches be integrated into an end-to-end video

colourisation pipeline in order to perform exemplar-based colourisation?

If so, which are the best practices to efficiently select appropriate refer-

ences?

2. Content distribution: video compression and explainability.

• Can chroma intra-prediction methods be improved by means of neural

networks and be efficiently implemented into existing video coding stan-

dards?

• Can deep learning models be designed and/or simplified by means of

explainability in order to obtain efficient and cost-effective implementa-

tions?

1.6 Thesis outline

Given the nature and structure of the hypothesis, the chapters of this thesis are

organised into two main areas of research: content production and content distribu-

tion.

Chapter 2 This chapter provides a comprehensive overview of the main back-

ground concepts and principles used in the following chapters. The first part pro-

vides a review of the use of AI in the broadcasting industry. A general workflow is

presented, introducing the main production stages and areas this research focuses

on. The common methods observed across the various task areas are then identified

in order to find the overall AI trends within the digital broadcasting workflow. The

second part provides the basics of colour vision, introducing the concept of colour

spaces and its application in image and video processing. Finally, the third part

describes deep learning as the current state-of-the-art approach to computer vision

applications and gives a brief introduction to its basic principles.

The chapters regarding content production with image and video colourisation

are organised as follows.

Chapter 3 introduces the challenges of fully automatic colourisation and pro-

poses a solution applied to images. This chapter investigates the use of generative
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adversarial networks (GANs) to ensure content generalisation and colourfulness,

facing the intrinsic ambiguity of such colourisation methodologies.

Chapter 4 proposes a more conservative approach for images that enables the

use of colour references to guide the colour assignment process. This chapter in-

troduces XCNET, a novel exemplar-based neural network for image colourisation

that achieves fast and high-quality colour predictions. The proposed architecture

integrates attention modules that learn how to extract and transfer style features

from the reference images in an unsupervised way during the colourisation process.

Chapter 5 studies how to integrate the proposed image-based XCNET archi-

tecture into a video colourisation pipeline and identifies the main drawbacks and

challenges. Finally, the research investigates more robust solutions for exemplar-

based video colourisation and proposes a deployable pipeline for video broadcasting

production.

The chapters regarding content distribution with video compression and explain-

ability are organised as follows.

Chapter 6 introduces a novel neural network architecture for chroma intra

prediction that integrates attention modules to control the contribution of each

neighbouring reference sample when computing the prediction of each chroma pixel

in the current block sample location. The proposed scheme better captures the

relationship between the luma and chroma components, resulting in more accurate

prediction samples.

Chapter 7 proposes a block-independent multi-model and training methodology

that reduces the complexity of the proposed attention-based neural network whilst

remaining competitive with the current state-of-the-art. Proposed simplifications

include a framework to reduce the complexity of the convolutional operations, a

simplified cross-component processing model using sparse autoencoders and a fast

and cost-effective implementation using integer precision approximations.
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Chapter 2

Background concepts

2.1 Chapter overview

This chapter provides a comprehensive overview of the main background concepts

and principles used in the following chapters. Note that the selected content is

high level in nature and more extensive detailed explanations of relevant material

can be found in the later chapters. The first part provides a review of the use of

AI in the broadcasting industry. A general workflow is presented in Section 2.2,

introducing the main production stages and areas this research intends to focus on.

The common methods observed across the various task areas are then identified in

order to find the overall AI trends within the digital broadcasting workflow. Section

2.3 provides the basics of colour vision, introducing the concept of colour spaces

and its application in image and video processing. Finally, Section 2.4 describes

deep learning as the current state-of-the-art approach to computer vision and gives

a brief introduction to its basic principles.

2.2 Digital broadcasting workflow

The broadcasting industry has been gradually shaped by a technological transfor-

mation that has brought innovation and a range of challenges to news practices

and media production. Digitalisation of news has enabled the creation of integrated

newsrooms [8], which have allowed the adoption of improved content creation path-

ways as well as novel consumption and distribution methodologies. Furthermore,

the cross-platform distribution has stimulated the creation of new communication

channels between the broadcasters and their audiences such as comment sections

and social media [9].

As shown in Figure 2.1, digital newsrooms integrate different production and

distribution pipelines into an end-to-end workflow that centralise all the audiovisual
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Figure 2.1: Broadcasting workflow for an integrated newsroom (modified from [1]).

content. Multiple inputs are supported including multimedia sources from TV re-

porters and operators, TV signals from other channels, media and user-generated

content; and content from legacy archives. Audiovisual sources are ingested to the

system by means of a transcoding and digitalisation process and further processed

by non-linear editing systems which enable video enhancement and production [1].

Finally, all signals are stored into a centralised AV server which allows for efficient

access and processing. Centralised content also allows the management of multi-

ple distribution threads which complement the broadcasting emissions with digital

archiving and cross-platform distribution [10].

Notice that the intended video production and distribution technologies in this

research have significant application in many areas of the given workflow, specif-

ically on video enhancement and colourisation and video compression for digital

distribution and storage.

2.2.1 AI trends in broadcasting

Over the years, the adoption of AI technologies has enabled the automatisation

of many stages of the broadcasting workflow. Broadcasters are incorporating AI

into a wide range of areas such as automated content creation, bandwidth opti-

misation, content creation from legacy archives, targeting audience demographics,

metadata creation, dynamic advertising and content personalisation [7]. TVU Net-
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works showcased their AI-based MediaMind1 solution at IBC 2019. AI engines

are used to recognise video content and automate its creation and cross-platform

distribution. During the process, TVU indexes video content using metadata au-

tomatically generated by AI, enabling the producers to create personalised content

for specific audience groups. Similarly, the Wibbitz 2 platform uses AI to support

video content creation and audience engagement by analysing and summarising text-

based information into video storyboards. Its broadcasting partners include Reuters,

Bloomberg, NBC and USA Today. The BBC has developed the Single Operator

Mixing Application (SOMA)3, an automatic technology for generating virtual cam-

era views from high-resolution videos. The method enables interactivity between

producers and the camera operators boosting the creation capacity as well as sav-

ing production costs. Wimbledon and IBM4 used AI to generate automatic high-

light sport clips. Facial and emotion recognition techniques were applied to select

emotionally impactful highlights. Regarding content programming, BBC used AI

algorithms to extract metadata from legacy archived content in advance of automat-

ically programming two days of its BBC 4 channel based on demographic targeting5.

Social media data is increasingly used within the integrated newsroom with a high

potential to improve the efficiency of programme production. An example is the

Spectee6 service from Fuiji Television, using an AI engine to automatically analyse

social media and then broadcast newsworthy topics via a streaming channel. The

New York Times, The Guardian and The Economist are using the AI-based Perspec-

tive7 tool to analyse the level of toxicity of their comment sections through keyword

recognition. Finally, AI has significantly improved captioning systems allowing the

broadcasters automatically produce quick and accurate captions and subtitles and

even translations to foreign languages. An example is Watson Captioning8 service

from IBM, an AI-based speech recognition technology able to generate automatic

captions to live video programming as well as on-demand content. Such methods

allow the broadcasters increase their workflow efficiency and the viewing experience.

2.3 Basics of colour vision

Colour is a sensation created in response to excitation of the visual system by elec-

tromagnetic radiation known as light [11]. More specific, a visible colour is a source

1TVU MediaMind - https://www.tvunetworks.com.ru/solutions/tvu-mediamind/
2Wibbitz - https://www.wibbitz.com/
3SOMA - https://www.bbc.co.uk/rd/blog/2017-07-compositing-mixing-video-browser
4IBM Wimbledon - https://www.ibm.com/uk-en/marketing/wimbledon/
5AI TV on BBC 4.1 - https://www.bbc.co.uk/programmes/p06jt9ng
6Spectee - https://corp.spectee.com/news/archives/04-2019
7Perspective - https://www.perspectiveapi.com/
8Watson Captioning - lhttps://www.ibm.com/products/watson-captioning-live
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a) b)

Figure 2.2: a) human cone cell responses (S-hort, M-edium, and L-ong types) to
monochromatic spectral stimuli; b) CIE x̄(λ), ȳ(λ) and z̄(λ) matching functions.

of light within the visible region of the electromagnetic spectrum (with a range of

wavelengths from 390 nm to 700 nm approximately). The ability of the human eye

to distinguish colours is based upon the varying sensitivity of the different cells in

the retina to different wavelengths of light. Human colour vision is trichromatic,

because the retina has three different photo-receptor cells, called cones, which re-

spond to light radiation with different spectral response curves. As shown in Figure

2.2-a, the maximum absorption probabilities of the three receptor classes occur at

580, 540, and 440 nm, which represent the red, green and blue colours, respectively.

Since the human vision system only needs three types of photo-receptor cells, a

three-component numerical basis is sufficient to represent a colour. In other words,

a colour can be interpreted as a 3-dimensional vector that weights the contribution

of each spectral function. The three components of the colour basis can be defined

in different ways leading to various colour models (or colour spaces) [12]. The Com-

mission Internationale de L’Eclairage (CIE) adopted the standard observer colour

matching functions x̄(λ), ȳ(λ) and z̄(λ) as a result of a perceptual experiment con-

ducted in 1930. Those curves represent the amount of primary red, green and blue

light needed to represent each colour from the visible spectrum. As shown in Figure

2.2-b, the green curve corresponds to the luminosity function, which represents the

sensitivity of the human eye to brightness. From these curves, several colour spaces

can be defined based on the needs of sensing and displaying, some examples include

CIE XYZ, RGB, CIE Lab or YUV.

2.4 Deep learning in computer vision

The last decade has seen approaches to computer vision shift towards models based

on Deep Learning (DL), where the features used to build representations of the world

are not hand crafted: they are learned from data through a training process. Deep
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learning has demonstrated superior performance compared to traditional methods

when applied to a variety of challenging computer vision and image processing tasks.

Methods based on Convolutional Neural Networks (CNNs) have been particularly

successful in solving image classification [13] and object detection [14] problems,

as well as regression problems including image segmentation [15], super-resolution

[16] and restoration [17]. CNNs are a type of feed-forward artificial neural network

in which the connectivity pattern between its neurons, is inspired by the organi-

sation of the animal visual cortex. Individual cortical neurons respond to stimuli

in a restricted region of space known as the receptive field. The receptive fields of

different neurons partially overlap such that they tile the visual field. The response

of an individual neuron to stimuli within its receptive field can be approximated

mathematically by a convolution operation:

S(i, j) =
∑
m

∑
n

X(m,n)W (i−m, j − n), (2.1)

where X is the input with m×n dimensions and W is the convolutional kernel with

learning parameters.

A CNN works similarly to a neural network (NN): each neuron receive an input,

a dot product (Hadamard product or element-wise multiplication) between each

input and its associated weight is performed, followed with a non-linearity. The

most common hierarchical distribution of CNN layers contains: (1) input layer,

containing the pixel values from input images, (2) convolutional layers, the core

block of CNNs, computes a locally dot product (2D in the case of images) between

the weights and a certain tiny region of the input volume, (3) non-linear layers,

most of the times using a ReLU activation function [18] which applies an element-

wise activation by thresholding at zero and (4) pooling layers that apply a spatial

downsampling along the output volume, note that this operation can be replaced by

a strided convolution or similar. Finally, weight sharing can be used to reduce the

number of parameters that must be learned, which reduces model training time and

cost, while making feature search insensitive to feature location in the image [19].

2.4.1 Training the model

The training algorithm is the learning process by which the model parameters (or

weights) are updated by means of a series of iterations where the training samples

are input to the model and the predicted outputs are evaluated on the sample labels

or ground truth. The error from the model is measured by means of a cost function

(or loss) which is minimised with the aim to guide the learning process.

The optimisation algorithm (or optimiser) used to minimise the loss function is
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Figure 2.3: Example of CNN architecture for image classification.

a variation of stochastic gradient descent, which starts with a random initialisation

of the network weights θ and for each iteration t, steps towards to a given direction

that implies a faster reduction in the loss value. Mathematically, gradient descent

computes the derivative of the loss function ∇θL(θt) with respect to θ and updates

the parameters in the opposite direction of the gradient, as follows:

θt+1 := θt − α∇θL(θt), (2.2)

where θt+1 are the weights after the update, θt the current weights and α the learning

rate, which is the size of the step that the optimiser will do at each iteration.

The most common strategy to apply gradient descent to any type of multi-layer

feed-forward neural network is the use of backpropagation [20]. Backpropagation

provides an efficient method for calculation the gradient of the loss by applying the

chain rule and hence computing gradients from different layers with respect their

weights. Mathematically, the gradient of the weights at layer l can be derived with

respect to the output of the previous layer o(l−1) by means of the chain rule, as

follows:
∂L(θ(l))

∂θ(l)
=

∂L(θ(l−1))

∂o(l−1)

∂L(o(l−1))

∂θ(l−1)
. (2.3)

This way, the error computed in the last layer is propagated backwards through

the network to compute the gradients for each layer.

2.4.2 Deep generative models

The aim of generative modelling is to learn a representation of an intractable proba-

bility distribution X defined over Rn, where n is typically large, and the distribution

is complicated [21]. The goal is to obtain a generator G : Rq → Rn that maps sam-

ples from a tractable distribution Z supported in Rq to points in Rn that resemble

the given data. Hence, the formulation assumes that for each sample x ∼ X there

is at least one point z ∼ Z, such that G(z) ≈ x. Since the vector z that results in x
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is often unknown, it is commonly referred as latent variable within the latent space

Z. Therefore, Z can be treated as a probability distribution pZ(z), such that the

generator can be used to compute the likelihood of a particular samples x:

pX (x) =

∫
pg(x|z)pZ(z)dz, (2.4)

where the likelihood pg(x|z)pZ measures how close G(z) is to x.

Deep generative models are neural networks with many hidden layers trained to

approximate high-dimensional probability distributions with large number of sam-

ples. The main property is that such generative networks have a number of pa-

rameters significantly smaller than the amount of data used to train them, so they

are forced to discover and efficiently internalise the essence of the data in order to

generate it. Popular deep generative models include Normalising Flows (NF) [22],

Variational Autoencoders (VAEs) [23], Generative Adversarial Networks (GANs)

[24] and auto-regressive models [25].

In particular, this thesis applies GANs to automatic colourisation, so a more

extensive explanation is made next. GANs are based on an adversarial learning in

which a generative model G is trained simultaneously with a discriminative model

D that outputs an scalar and estimates the probability that a sample came from

the training data rather than G [24]. The training procedure for D is to maximise

the probability of assigning the correct label to both training samples and samples

from G, and simultaneously, the objective of G is to minimise log(1 − D(G(z))).

Therefore, D and G play a two-player minimax game with value function V (G,D),

as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] . (2.5)

Although the above formulation proposes a log-likelihood optimisation, different

strategies are proposed with the aim to gain stability and mitigate some training

issues such as the mode collapse or vanishing gradients. Some examples include

LSGAN [26] or WGAN [27].

2.4.3 Attention models

Attention mechanism has become an important concept in neural networks that

has been researched within diverse application domain such as natural language

processing [28, 29], speech [30] and computer vision [31]. The idea behind attention

models is inspired by the human biological system and is based on reducing complex

tasks by predicting smaller areas of attention that are processed sequentially in order

to encourage more efficient learning.
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Mathematically, attention models can be understood using a regression model

as proposed in [29]. Given a training data of N samples comprising features and

their corresponding target values {(x1, y1), (x1, y1), . . . , (xN , yN)}, the objective is

to predict the value ŷ for a new query instance x. A simple estimator can be the

average of all target values from all training instances: ŷ = 1
N

∑
n xn. However, a

better estimation can be obtained by using a weighted average where the weights

measure the relevance or contribution of each training sample to the prediction of

the query: ŷ = 1
N

∑
n s(x, xn)yn, where s(x, xn) is the relevance measure typically

obtained with a normalised Gaussian kernel or other similarity metric. As noticed

in [29], the attention mechanism can be viewed as a generalisation which enables a

learning process of the weighting function.

Many attention mechanisms can be found in the literature, differing mainly on

the definition of the weighting function. Some examples include content-based atten-

tion [32], additive attention [28], location-based attention [33] or self-attention [34].

One of the most impactful use cases of attention is the definition of the transformer

network [29], which applies self-attention layers to outperform the state-of-the-art

of many sequential tasks without using recurrent architectures.
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Part I

Content production: image and

video colourisation
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Chapter 3

Fully automatic colourisation

3.1 Chapter overview

This chapter provides a detailed description of the contribution of this research to

a recent approach to fully automatic image colourisation using end-to-end condi-

tional Generative Adversarial Networks (GANs), as well as a thorough description

of the configuration setup used in the experiments. Recent advances in conditional

GANs are investigated to develop an end-to-end architecture based on Convolutional

Neural Networks (CNNs) to directly map realistic colours to an input greyscale im-

age. The work described in this chapter was published at the IEEE International

Workshop on Multimedia Signal Processing (MMSP), 2019 [35]. Section 3.3 re-

views related work in the literature, identifying the main draw-backs and possible

improvements, Section 3.4 details the proposed methodology, Section 3.5 provides

information about the implementation and data used in the experiments and a quan-

titative evaluation of the results while Section 3.6 identifies future work and Section

3.7 provides conclusions.

3.2 Introduction

Colourisation refers to the process of adding colours to greyscale or other monochrome

images such that the colourised results are perceptually meaningful and visually ap-

pealing. In general, greyscale content is present in many multimedia applications:

from black and white videos in old archives and videos with faded colours, to com-

puter vision applications that discard the chroma component in order to simplify

processing. However, while the luminance information provides valuable content-

related information regarding shapes and structures, the perception of colour is

important for modern video viewing. For this reason, adding chromatic information

to images and improving the quality of colour has become a research area of signifi-
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Figure 3.1: Examples of desaturated results obtained with colourisation approaches
based on regression.

cant interest for a wide variety of domains that traditionally have resorted to using

luminance data alone. This includes medical imaging [36], surveillance systems [37]

or restoration of degraded historical images [17].

Recently, the emergence of deep learning has enabled the development of new

colourisation algorithms which better generalise the natural data distribution of

colours. Convolutional Neural Networks (CNNs) outperform many state-of-the-art

methods based on hand-crafted features in tasks such as image enhancement, image

classification or object detection [13, 14]. State-of-the-art colourisation methods

based on Generative Adversarial Neural Networks (GANs) [2] aim to mimic the

natural colour distribution of the training data by forcing the generated samples to

be indistinguishable from natural images. Moreover, using an adversarial loss, the

discriminator can learn a correct adaptation of the differences between generated

and real images in the target domain. However, as shown in Figure 3.1, existing

methods still suffer ambiguity when trying to predict realistic colours, often causing

desaturated results. Nevertheless, GANs are a suitable basis for further tackling the

desaturation problem and gaining colourfulness.

Motivated by the recent success of Conditional Adversarial Networks in image-

to-image translation tasks, including colourisation [2, 38], this chapter proposes an

automatic colourisation paradigm using end-to-end Convolutional Neural Network

architectures. Improved colourisation is achieved by introducing techniques that im-

prove the stability of the adversarial loss during training, leading to better colouri-

sation of a variety of images from large multi-class datasets. Further enhancements

are achieved by applying feature normalisation techniques which are widely used in

style transfer models. The capabilities of adversarial models in image colourisation

are improved by adapting an Instance-Batch Normalisation (IBN) convolutional ar-

chitecture [39] to conditional GANs. The main contributions of this chapter are the

following:

1. Analysis of drawbacks in state-of-the art methods for automatic image colouri-

sation.

2. Identification of appropriate architectural features and training procedures

which lead to a boosted GAN performance for image colourisation. The pro-
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posed steps of improvement include:

(a) A novel generator-discriminator setting which adapts the IBN paradigm

to an encoder-decoder architecture, enabling generalisation of the con-

tent’s style changes while encouraging stabilisation during GAN training.

(b) The use of Spectral Normalisation (SN) [40] for improving the generali-

sation of the adversarial colourisation and preventing training instability.

(c) The use of multi-scale discriminators to achieve an improved colour gen-

eration in small areas and local details and a boosted colourfulness.

3.3 Related Work

Automatic colourisation was originally introduced in 1970 to describe a novel computer-

assisted technology for adding colour to black and white movies and TV programs

[41]. Although such semi-automatic method improved the efficiency of traditional

hand-crafted techniques, it still required a considerable amount of manual effort

and artistic experience to achieve acceptable results. Since then, it has been shown

that the task is complex, ill-conditioned and inherently ambiguous due to the large

degrees of freedom during the assignment of colour information [42].

In some cases, the semantics of the scene and the variations of the luminance

intensity can help to infer priors of the colour distribution of the image. For example,

an algorithm can successfully associate rapid changes to vegetation areas, assigning

ranges of green to it, or smooth areas to sky, inferring blue tones. Nevertheless, in

most cases the ambiguity in the decisions can lead a system to make random choices.

For instance, the hypothetical prior of a car being red is the same as it being green or

blue, although in reality the decision will converge towards the dominant samples in

the training data. Another common issue is the well-known desaturated effect [42, 4],

which is associated with treating automatic colourisation as a standard regression

problem. Taking a greyscale input image, a parametric model can learn how to

predict corresponding chrominance channels by minimising the Euclidean distance

between the estimations and the ground truth. Nevertheless, basic solutions are

commonly based on averaging the colours of the training examples. In this way the

basic model produces desaturated results characterised by low absolute values in the

colour channels when trained on large databases of natural images. Previously this

problem has been addressed through a deep learning approach which introduced a

rebalancing process during training with the aim of penalising the predicted colours

based on their likelihood in the prior distribution of training data [42]. Such a

method outperforms previous state-of-the-art approaches, including recent successes
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Figure 3.2: Peter Jackson’s World War I documentary, They Shall Not Grow Old.
A successful colourisation example in a real broadcasting and restoration scenario.
Computer-assisted technologies were used to colourise original footages during the
conflict, provided by BBC Archives and the Imperial War Museum (IWM).

with GANs, in which more complex architectures need to adopt the methodology

to generalise the predicted colours.

As proposed in the pix2pix framework [2], a more traditional regression loss such

as L1 or L2 distance is beneficial when included in the final objective function. This

enables a conditional GAN to increase the error rate of the discriminator while

producing realistic results close to the ground truth. Although such a framework

achieves state-of-the-art performance across a range of image-to-image translation

tasks, it still requires the aforementioned rebalancing method, targeting colour rar-

ity far from the desaturated mean of natural data distributions. The high insta-

bility during training when a GAN deals with complex generator architectures and

high-resolution training images, can lead the pix2pix framework to mode collapse,

converging towards undesirable local equilibria between the generator and discrim-

inator [43, 38]. This effect reduces the contribution of the adversarial loss in the

multi-loss objective, giving the total weight of convergence to the regression loss and

hence leading the system again to desaturated results.

3.4 Proposed Method

Aiming at colourisation of images, the goal of our method is to enable automatic

CNN-based colourisation of an input greyscale image, denoted X ∈ IRH×W×1, where

H ×W is image dimension in pixels, and represented by the lightness channel L in

the CIE Lab colour space [44]. To achieve this, it is essential to train an end-to-end

CNN architecture capable of learning the direct mapping Ŷ = F(X) to the two

associated ab colour channels Y ∈ IRH×W×2. As commonly used in the literature,

CIE Lab colour space is chosen as it is designed to maintain perceptual uniformity
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Figure 3.3: Proposed generator and discriminator architectures with IBN adaptation
to the U-Net and PatchGAN architectures. Note the fake input to the discriminator
is composed by the concatenation (1 + 2) of the original greyscale input and the
generated 2-dimensional colour channels.

and is more perceptually linear than other colour spaces [44]. The mapping function

F(X, θ) can be expressed in a neural network form as:

F(X, θ) =WL+1aL(. . . a1(W1X) . . . ), (3.1)

where θ := {W1, . . . ,WL+1} is the set of learning parameters for a L-layer CNN,

omitting the bias terms for simplicity, and al the corresponding non-linear activation

function, with l = {1, . . . , L}.

3.4.1 Conditional Adversarial Networks

A mapping function is learnt using a generative adversarial methodology with con-

ditional GANs. This work uses the pix2pix framework [2] as baseline to solve image-

to-image translation tasks such as generating realistic street scenes from semantic

segmentation maps, aerial photography from cartographic maps or image colouri-

sation from greyscale inputs. As per the traditional GANs setting [24], two CNNs

(a generator G and discriminator D) are trained simultaneously in a minimax two-

player game, with the objective of reaching the Nash equilibrium between them.

Given an input greyscale image X and a vector of random noise Z, the aim of the

generator G is to capture the original colour distribution of the training data and to

learn a realistic mapping G(X,Z; θG) to the colourisation result. On the other hand,

the discriminator D aims to distinguish real images from colourised ones through

the mapping D(X, Y ; θD), estimating the probability that a sample came from the
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Figure 3.4: Conditional GAN framework in [2] applied to image colourisation.

training data rather than from G. Therefore, the conditional GAN framework will

model the colour distribution of the training data following the minimax training

strategy:

min
G

max
D

V (G,D) (3.2)

where the objective function V (G,D) is given by

V (G,D) = J (G)(θG, θD) + J (D)(θG, θD) (3.3)

J (D)(θG, θD) = EX,Y [log(D(X, Y ))] + EX,Z [log(1−D(G(X,Z)))] (3.4)

J (G)(θG, θD) = −EX,Z [log(D(X,G(X,Z))] + λEX,Y,Z [∥Y −G(X,Z)∥1] (3.5)

using λ to control the contribution of the regression loss.

As suggested in recent works [24, 45], the standard loss function for the genera-

tor is redefined in order to guarantee non-saturation by maximising the probability

of the discriminator being mistaken and converting the loss to a strictly decreasing

function. Moreover, note the aforementioned L1 distance introduced in the final

generator objective to encourage a colourisation close to the ground truth outputs.

Regarding the GAN architectures, the pix2pix framework uses a U-Net [46] as gen-

erator and a Markovian PatchGAN [2] as discriminator, yielding output probability

maps based on the discrimination of N × N patches in the input domain. They

exploit the intrinsic fully convolutional architecture of the discriminator to control

the input patch size via its respective receptive field.
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Batch normalisation Instance normalisation

Figure 3.5: Comparison between mini-batch normalisation techniques. The volumes
represent a batch of N samples with H ×W × C dimensions. Source from Group
Normalisation paper [3].

3.4.2 Mini-batch normalisation

The application of mini-batch normalisation techniques such as Batch Normalisation

(BN) [47], have become a common practice in deep learning to accelerate the training

of deep neural networks. In the case of GANs, the DCGAN architecture was proven

that applying batch normalisation in both generator and discriminator architectures

can be very beneficial to stabilise the GAN learning and to prevent a mode collapse

due to poor initialisation [48]. Internally, batch normalisation preserves content-

related information by reducing the covariance shift within a mini-batch during

training. It uses the internal mean and variance of the batch to normalise each

feature channel. On the other hand, Instance Normalisation (IN) [49] was proven

to be beneficial in style transfer speeding-up fast stylisation. Image colourisation,

as other style transfer techniques, aims to capture style information by learning

features that are invariant to appearance changes, with the aim to generalise the

colourisation process within a mini-batch of variable content. Therefore, unlike

batch normalisation, IN uses the statistics of an individual sample instead of the

whole mini-batch to normalise features.

Inspired by IBN-Net [39], in the presented approach BN and IN are combined

in the same convolutional architecture with the aim to exploit the instance-based

normalisation capabilities in style transfer while encouraging stabilisation during

training, to both improve the learning and generalisation capacities of the GAN.

This work adapts the residual IBN-Net architecture to a U-Net generator and a

patch-based discriminator. The IBN-Net work discussed that appearance variance

in a deep convolutional model mainly lies in shallow layers, while the feature discrim-

ination for content is higher in deep layers. Therefore, IBN-Net avoids IN in deep

layers to preserve content discrimination in deep features, while it keeps batch nor-
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malisation in the whole architecture to preserve content-related features at different

levels. Figure 3.3 shows final proposed architectures for generator and discriminator.

Note that normalisation is not applied to the input layers to avoid sample oscillation

and model instability.

3.4.3 Weight regularisation

One common strategy to improve the generalisation of the network and to prevent

instability during training is the use weight regularisation. This technique penalises

proportionally the weights of the network based on their size, aiming to keep small

values during training and hence preventing small changes in the input leading

to large changes in the output. In the context of GANs, Spectral Normalisation

(SN) [40] can be used as a regulariser to prevent exploiting gradients by control-

ling the Lipschitz constant of the discriminator. Theoretically, one function f(a) is

K-Lipschitz continuous if ∥f(u) − f(v)∥2≤ K∥u − v∥2, for any v, u. Spectral nor-

malisation controls the Lipschitz constant of the discriminator by constraining the

spectral norm of each layer. Being W a linear mapping between the pre-activations

of two layers and x an input tensor, we can simplify the Lipschitz continuity re-

quirement by setting the reference point u = 0, getting therefore ∥Wx∥≤ K∥x∥2
which is equivalent to ⟨(WTW − K2)x, x⟩ ≤ 0,∀x ∈ I. Then, expanding x in the

orthonormal basis of eigenvectors of WTW and following their demonstration in

[40], we get
∑

i(K
2 − λi)x

2
i ≤ 0, proving that K must be the largest eigenvalue

of WTW to satisfy the aforementioned constraints. Given that, they propose to

perform spectral normalisation by simply replacing every weight W with W/σ(W ),

where σ(W ) is the spectral norm or the largest single value of W .

3.4.4 Multi-scale discriminators

A challenge in colourisation is to achieve precision in small areas and local details.

Using the Markovian PatchGAN discrimination in the pix2pix framework, colourful-

ness can be boosted by increasing the receptive field of the discriminator, albeit at

the price of increasing the complexity with deeper architectures and loosing spatial

information, commonly leading to blurry effects and tilling artefacts. A better solu-

tion is to use the multi-scale discrimination setting to tackle high-resolution image

processing without varying the discriminator architecture [38]. This is achieved using

N discriminators at different scales by downsampling the actual inputs. Therefore,

keeping fixed the original discriminator architecture, variable receptive fields are

obtained. These fields are larger at the coarsest levels, and the modified objective
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function V ′(G,D) in the GAN context is given as:

V ′(G,D) =
N−1∑
n=0

V (G,Dn) (3.6)

where {Xn, (G(X))n} ∈ IRM×Hn×Wn×C are the Dn inputs, with Hn = H/2n, Wn =

W/2n and N the number of discriminator scales.

3.5 Experiments

This section provides details about the implementation and data used in the ex-

periments. Moreover, a quantitative evaluation of the performance and a detailed

analysis of the results is also provided. Finally, some colourisation examples are

shown comparing the baseline architecture with the proposed configurations.

3.5.1 Data

Training examples are generated from the ImageNet dataset [50]. Samples are se-

lected from the reduced validation set, containing 50, 000 RGB images uniformly

distributed as 50 images per class. The test dataset is created by randomly select-

ing 10 images per class from the training set, generating up to 10, 000 examples. All

images are resized to 256× 256 pixels and converted to the CIE Lab colour space.

3.5.2 Network architectures

The pix2pix framework is used as a GAN baseline. The generator consists of a

U-Net encoder-decoder architecture, conforming to the following structure: e64 :

e128 : e256 : e512 : e512 : e512 : e512 − d512 : d512 : d512 : d256 : d128 : d64. The

encoder’s e blocks consist of 4 × 4 convolutions with spectral normalisation and a

stride of 2, followed by the normalisation layers as explained in Section 3.4.2 and

a Leaky ReLU activation. The decoder d blocks apply the same block composition

but using ReLU activations. The last layer is a 4 × 4 convolution with a tanh

activation producing a 2-dimensional output space. For L layers of encoder-decoder

architecture, skip connections between layers i at the encoder and layers L− i at the

decoder are applied in order to recover the information lost during the downsampling

operations. After the generator, the discriminator is used in a form of 70 × 70

PatchGAN with the following fully convolutional architecture: e64 : e128 : e256 :

e512. The output layer is a 4×4 convolution producing the output probability maps,

and the input layer takes the concatenation between the original greyscale input and

the original or generated colour channels. Regarding the multi-scale discrimination,
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a setup of 3 different discriminators is used, downsampling the original input volumes

by a factor of 2 and 4.

3.5.3 Quantitative evaluation

Figure 3.6 illustrates the convergence behaviour of the adversarial and regression

losses conforming the generator’s objective function. A poor response from adver-

sarial loss can be observed for the baseline pix2pix method, represented by the BN

line, which rapidly collapses to a local minimum, giving all the weight of global con-

vergence to the regression loss. A loss of colourfulness occurs after this point where

the regression loss abruptly starts to overfit leading to the generation of desaturated

colours. A considerable improvement results after adding spectral normalisation, the

BN+SN line, where weight regularisation helps to stabilise the adversarial loss and

slows down the convergence of the regression, hence preserving colourfulness and

preventing overfitting. The aforementioned behaviour can be validated by observ-

ing the IBN+SN line. Although instance normalisation leads to instability due to

increasing the variance of content-based features during training, a sudden improve-

ment of the adversarial loss can be observed after epoch 16, where the combination

of both normalisation techniques leads to colour generalisation while penalising the

regression loss and helping the system to prevent desaturation.

Table 3.1: Quantitative evaluation of colourisation techniques

Method L1 PSNR [dB] Lperc

IN 9.92 26.70 63.85
BN + SN 10.76 25.69 58.58
IN + SN 9.89 26.73 60.36
BN + SN + MD 11.50 25.11 58.52
IBN + SN + MD 11.20 25.32 57.77
BN (baseline) 9.83 26.77 64.05

The effect of overfitting and lack of colourfulness can be evaluated by comparing

deterministic measures, such as the averaged L1 or L2 distance, with perceptually-

based ones designed to better capture the visual plausibility of the results. From

the results summarised in Table 3.1 it can be observed that, unlike the perceptual

evaluation, deterministic measures reflect poor performance for those models gen-

erating wider colour distributions, e.g. the L2 chrominance distance of a red car

colourised with a plausible blue will be always higher than being colourised with a

desaturated colour. Additionally, the perceptual loss is computed using a VGG19

model for image classification [51] pretrained on Imagenet. As proposed in previ-

ous works [52, 38], the L1 distance between the convolutional features produced by
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Figure 3.6: Learning curves of the generator during training.

classifying real and generated samples is averaged as:

Lperc =
1

L

L∑
i=1

1

Ni

(
∥F (i)(x)− F (i)(G(x))∥21

)
(3.7)

where x is an input tensor, F (i) are the convolutional features from layers relu{i} 1,

i ∈ {1, . . . , 5} and Ni is the number of features of each volume.

Finally, colourfulness is evaluated by estimating the logarithmic colour distri-

bution of the generated ab samples in the test dataset, comparing the proposed

configurations with the prior distribution of the real data. As shown in Figure 3.7,

SN provides improved colourfulness for both channels, reducing the area of inter-

section to the real data distribution with respect to the baseline methodology (BN)

with uses Batch Normalisation. Finally, we improved the BN+SN setting by apply-

ing Multi-scale Discrimination (MD), which enables an increase in colourfulness by

gaining detail in local and small areas. Examples of colourisation achieved by all

analysed methods are presented in Figure 3.8.
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Figure 3.7: Comparison of colour histograms over the test data.

3.6 Future work

Although this work achieved promising results, mapping colours from a greyscale

input is still a complex and ambiguous task. Therefore, more conservative solutions

need to be researched reaching more realistic broadcasting use-cases by introducing

colour references to guide the system towards more accurate colour predictions. The

next chapter introduces a cost-effective architecture that outperforms state-of-the-

art methods on exemplar-based image colourisation in competitive prediction times.

On the other hand, current work on fully automatic image colourisation needs to

be improved in order to gain precision on local areas and consistently discriminate

independent instances and objects in the scene. A possible research line might

tackle this problem by adding the instance segmentation task in the prediction

loop, so a two-head encoder-decoder architecture could be jointly trained to solve

the colourisation task while outputting instance segmentation maps of the input

grayscale image, in which the segmentation task can guide towards more accurate

and discriminative predictions.

Finally, we collaborate with Polytechnic University of Catalonia (Barcelona,

Spain) in [53], improving the methodology presented in this chapter by boosting the
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Figure 3.8: Visual comparison of colourisation techniques. Note the improvement of
the proposed configurations over the BL model: (1) the gain in colourfulness after
applying SN, (2) the localisation improvement of MD and (3) the benefits of IBN
architecture rather than applying BN and IN separately.

realism and colourfulness of the generated predictions. Improvements are achieved

by adding a feature reconstruction loss to guide the proposed training strategy. Such

loss function uses a pre-trained VGG-16 [51] to match perceptual similarity between

the real and generated images.

3.7 Conclusions

The work presented in this chapter improved the state-of-the art for automatic

colourisation using conditional adversarial networks. The proposed GAN archi-

tecture integrates techniques from the literature to ensure good training stability

and to increase the contribution of the adversarial loss during training, which pre-

vents the GAN from collapsing into desaturated colours. It was also shown that

batch normalisation and instance normalisation can be integrated together in a

fully-convolutional encoder-decoder architecture within a GAN framework without

lowering performance, and encouraging the assignment of more plausible colours.

Finally, this work shows that by boosting the performance of the adversarial frame-

work, reduction of the desaturation effect can be achieved due to improvement of

the discrimination of unreliable colours.

28



Chapter 4

Exemplar-based colourisation

4.1 Chapter overview

This chapter proposes a more conservative approach for image colourisation to that

described in the previous chapter that enables the use of colour references to guide

the colour assignment process. An approach termed XCNET is proposed as a novel

architecture that achieves fast and high-quality colour predictions. The proposed ar-

chitecture integrates attention modules that learn how to extract and transfer style

features from the reference images in an unsupervised way during the colourisation

process. The work described in this chapter was published at the IEEE Interna-

tional Workshop on Multimedia Signal Processing (MMSP), 2021 [54]. Section 4.3

reviews related work in the literature, identifying the main draw-backs and possible

improvements, Section 4.4 details the proposed methodology, Section 4.5 provides

information about the implementation and data used in the experiments and a quan-

titative evaluation of the results while Section 4.6 identifies future work and Section

4.7 provides conclusions.

4.2 Introduction

Although significant progress has been achieved, as Chapter 3 concluded, mapping

colours from a grayscale input is a complex and ambiguous task due to the large

degrees of freedom to arrive to a unique solution. In some cases, the semantics

of the scene can help to infer priors of the colour distribution of the image, but

in most cases the ambiguity in the decisions leads the system to make random

choices, such as the colour of a car or a bird without further information. Thus, in

order to overcome the ambiguity challenge, more conservative solutions propose the

involvement of human interaction during the colour assignment process, introducing

methodologies such as scribbled-based colourisation [4, 55, 56, 57, 58, 59, 60, 61, 62]
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or exemplar-based colourisation [63, 64, 5, 65, 66, 67, 68, 69, 55, 70, 71, 72, 73, 74].

Specifically, colourisation by example can be automated by means of a retrieval

system to select content related references, which can also be used as a recommender

for semi-automatic frameworks [5]. However, existing methods are either highly

sensitive to the selection of references (need of similar content, position and size

of related objects) or extremely complex and time consuming. For instance, most

exemplar-based approaches require a style transfer or similar method to compute

the semantic correspondences between the target and the reference before starting

the colourisation process. This fact usually increments the system complexity by

requiring twofold pipelines with separate and even independent style transfer and

colourisation systems.

This chapter proposes a straightforward end-to-end solution which integrates

attention modules that learn how to extract and transfer style features from the ref-

erence to the target in an unsupervised way during the colourisation process. More-

over, axial attention [75] is adopted to reduce the overall complexity and achieve

a simple and fast architecture easily scalable to high resolution inputs. As shown

in Figure 4.2, the proposed architecture uses a pre-trained backbone to extract se-

mantic and style features at different scales from the grayscale target and colour

reference. Then, attention modules at different resolutions extract analogies be-

tween both feature sources and automatically yield output feature maps that fuse

the style of the reference to the content of the target. Finally, a multi-scale pyramid

decoder generates colour predictions at multiple resolutions, enabling the represen-

tation of higher-level semantics and robustness on the variance of scale and size of

the local areas of content. The main advantage of such an end-to-end solution is

that the attention modules learn how to perform style transfer based on the needs

of the colourisation decoder in order to encourage high quality and realistic predic-

tions, even if the reference significantly mismatches the target content. Moreover,

it generalises the similarity computation of previous image analogy approaches in a

way that does not constrain the similarity to a specific local patch search (attention

modules can be interpreted as a set of long-term deformable kernels) and to specific

similarity metrics. Finally, the proposed architecture introduces a novel design of the

conventional transformer, enabling a modular combination of multi-head attention

layers at different resolutions.

Overall, the contributions of this work are threefold:

• A fast-end-to-end architecture for exemplar-based colourisation that improves

existing methods while decreasing significantly the complexity and runtime.

• A multi-scale interpretation of the axial transformer for unsupervised style

transfer and features analogy.
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Scribble-based colourisation Exemplar-based colourisation

Figure 4.1: Visualisation of supervised colourisation methods, including scribble-
based results from [4] and exemplar-based results from [5].

• A multi-loss training strategy that combines a multi-scale adversarial loss with

conventional style transfer and exemplar-based colourisation losses.

4.3 Related work

State-of-the-art in modern digital colourisation algorithms can be roughly grouped

into three main paradigms: automatic learning-based, scribble-based and exemplar-

based colourisation.

As described in Chapter 3, automatic learning-based methods can perform colouri-

sation with end-to-end architectures which learn the direct mapping of every grayscale

pixel to the colour space. Such approaches require large image datasets to train the

network parameters without user intervention. However, in most cases they pro-

duce results which aren’t colourful due to treating the colourisation process as a

regression problem. As identified in the literature, well-designed loss functions such

as adversarial loss [2, 35], classification loss [76, 77] or perceptual loss [38] or their

combination with regularisation [42] is needed to better capture the colour distri-

bution of the input content and enable more colourful results. A different approach

is proposed in PixColor [78], solving the automatic colourisation task as an autore-

gressive problem. Such methods predict the colour distribution of every pixel by

conditioning to the grayscale input and the joint colour distribution of previous

pixels. Similarly, ColTran [79] addresses the same methodology by using an axial

transformer [75]. Autoregressive methods become impractical for colourisation due

to the high dimensionality of the colour distribution and the related complexity of

decoding high resolution images. For instance, even for modelling 8-bit RGB inputs

only, the model needs to predict 2563 values.

Scribble-based colourisation interactively propagates initial strokes or colour
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points annotated by the user to the whole grayscale image. An optimisation ap-

proach [62] is proposed to propagate the user hints by using an adaptative clustering

in the high dimensional affinity space. Alternatively, a Markov Random Field for

propagating the scribbles [4] is proposed under the rationale that adjacent pixels

with similar intensity should have similar colours. Finally, a deep learning approach

[60] fuses low-level cues along with high-level semantic information to propagate the

user hints.

Exemplar-based colourisation uses a colour reference to condition the prediction

process. An early approach proposed the matching of global colour statistics [68],

but yielded unsatisfactory results since it ignored local spatial information. More

accurate approaches considered the extraction of correspondences at different lev-

els, such as pixels [80], super-pixels [72, 67], segmented regions [55, 69, 63] or deep

features [5, 74]. Based on the extraction of deep image analogies from a pre-trained

VGG-19 network [51], a deep learning framework uses previously computed similar-

ity maps to perform exemplar-based colourisation [5]. Such a method is posteriorly

extended to video colourisation using a temporal consistency loss to enforce temporal

coherency [5]. An alternative approach proposed the use of style transfer techniques

based on AdaIN [81] to generate an initial stylised version which is further refined

with a colourisation network [64]. Finally, a novel framework was proposed to fuse

the semantic colours and global color distribution of the reference image towards

the prediction of the final colour images [65].

Finally, the architecture presented in this chapter adopts axial attention to re-

duce the complexity of the overall system. As introduced in the axial transformer

[75], attention is performed along a single axis, reducing the effective dimensionality

of the attention maps and hence the complexity of the overall transformer. Such

an approach managed to approximate conventional attention by focusing sequen-

tially to each of the dimensions of the input tensor. An application was proposed

to perform panoptic segmentation [82], integrating axial attention modules into a

modified version of DeepLab [15], and improving the original baseline.

4.4 Proposed method

Aiming at exemplar-based colourisation, the goal of this method is to enable the

colourisation of a grayscale target TL ∈ R1×H×W based on the colour of a reference

RLab ∈ R3×H×W , where H × W is the image dimension in pixels, represented in

the CIE Lab colour space [44]. Note that the target’s L index refers specifically to

the luminance channel. To achieve this, an exemplar-based colourisation network is

trained to model the mapping T̂ab = F (TL | RLab) to the target ab colour channels,

conditioned to the reference RLab channels. CIE Lab colour space is chosen as it
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Figure 4.2: XCNET: proposed architecture for exemplar-based image colourisation.
T is the black and white frame with luma component only, and R is colour reference.
Multi-scale outputs P1-P4 are used for training, where P1 are the colourised image
components at targeted resolution.

is designed to maintain perceptual uniformity and is more perceptually linear than

other colour spaces [44]. This work assumes a normalised range of values between

[−1, 1] for each of the Lab channels.

4.4.1 Exemplar-based Colourisation Network

As shown in Figure 4.2, the proposed architecture is composed of four parts: the

feature extractor backbone, the axial attention modules, the multi-scale pyramid

decoder and the prediction heads.

First, both the target TL and the reference RLab images are fed into a pre-trained

feature extractor backbone to obtain L multi-scale activated feature maps F l
T , F l

R in

an intermediate position of the l convolutional block, where l = {1 . . . L}, and the

last activated feature map only for the target input FB
T , which is the output of the

backbone. Note that the features have progressively coarser volumes with increasing

levels. Without loss of generality, the experiments in this paper consider a VGG-19

network pre-trained on ImageNet [50], extracting features F l
T and F l

R from the first

Rectified Linear Unit (ReLU ) activation of every convolutional block (relu{l} 1 from

VGG-19), and FB
T which is the output of the encode (from relu{5} 3 in VGG-19).

Note that in order to feed TL into the pre-trained network, the luminace channel is

triplicated to obtain a 3-dimensional input space. Then, all F l
T , F l

R pairs and FB
T

are projected onto a h-dimensional space by means of a 1×1 convolution plus ReLU

activation [83], to obtain F̂ l
T , F̂ l

R and F̂B
T ∈ Rh×Hl×Wl , respectively.

Next, N pairs (F̂ l
T , F̂ l

R), where l = {L − N + 1 . . . L}, are fed into N axial
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attention modules to compute a multi-head attention mask describing the deep

correspondences between both sources. Then, the style of the reference source is

transferred into the content of the target source by matrix multiplication of the

attention mask with the reference source. Section 4.4.2 describes the axial attention

module in depth and provides more information about the logic behind style transfer

via attention. This process yields N h-dimensional fused feature maps F̂ l
TR.

After generating the multi-scale fused features, a multi-scale pyramid decoder

composed on L − 1 stacked decoders and prediction heads is employed to map F̂B
T

into L−1 colour predictions at different scales using the corresponding fused features

F̂ l
TR. Thus, starting with O5 = F̂B

T , each decoder l = {4, 3, 2, 1} performs a five-fold

operation: (1) adds F l
TR with the output of the previous decoder Ol−1, (2) applies a

3×3 convolution plus ReLU activation, (3) upsamples the resultant feature map by

a factor of 2, (4) similar to the U-Net architecture [46] concatenates the resultant

upsampled map with the projected target feature map F l
T as skip connection and

(5) refines the resultant map with another 3× 3 convolution plus ReLU activation

which projects back the concatenated volume of 2h dimensions into the initial h

dimensions, yielding an output volume Ol.

Finally, the prediction heads map the decoded feature volumes Ol into the output

channels T̂ l
ab. Each prediction head is composed of an e-dimensional 3 × 3 convo-

lution plus ReLU activation and 1× 1 convolution plus hyperbolic tangent (Tanh)

activation to generate the ab colour channels.

4.4.2 Axial attention for unsupervised style transfer

Given two projected sources of features F̂ l
T , F̂ l

R relative to the target and reference

respectively, the goal of the axial attention module is to combine them in a way that

the style codified in the reference features is transferred into similar content areas

within the target features.

Style transfer between two sources of features has been solved in many different

ways, although in most cases only artistic style is targeted without contemplating

the semantic analogies between both sources. Some strategies include the use of

perceptual losses for training feed-forward networks for image transformation [52],

in order to encourage the transformed images to produce similar features to the style

reference when both are fed into a pre-trained loss network (e.g. VGG-16). A faster

strategy is to use Adaptative Instance Normalisation (AdaIN) [81] to align the mean

and variance of the content features with those of the style features. Finally, another

paradigm tackles deep image analogies for multi-scale visual attribute transfer [84],

but the analogy computation and transfer process are performed via a PatchMatch

algorithm [85], which is computationally expensive.
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Figure 4.3: Axial attention module described in Section 4.4.2. In the figure, BN
means Batch Normalisation and A activation.

This work proposes the use of attention to perform such processes faster and in

an unsupervised way. In contrast with image analogy methods based on PatchMatch

algorithms, attention does not need to constrain to a specific local search technique

(even if it can act as a set of long-term deformable kernels) nor the similarity metric

(e.g. correlation loss, cosine similarity) since the module learns it automatically. At-

tention was introduced to tackle the problem of long-range interactions in sequence

modelling [29, 86, 87, 34]. However, attention modules have been employed recently

to improve computer vision tasks such as object detention [88] or image classification

[31], by providing contextual information from other sources of information. Fol-

lowing the same rationale, an attention mechanism can solve the semantic analogy

problem in style transfer by focusing on the most relevant areas of the style source

when decoding each voxel in the content source.

Following the original definition of stand-alone attention [29, 89, 90], given a pro-

jected target and reference feature maps F̂ l
T , F̂ l

R, the fused feature map at position

o = (i, j), F̂ l
TR(o) is computed as follows:

F̂TR(o) =
∑
p∈Nl

softmax p(q̂
l⊺
T (o)k̂

l
R(p))v̂

l
R(p), (4.1)

where Nl ∈ RHl×Wl is the whole 2D location lattice. Furthermore, the queries to

the target source q̂lT (o) = WqF̂
l
T (o) and the keys and values from the reference source

k̂l
R(o) = WkF̂

l
R(o), v̂

l
R(o) = WvF̂

l
R(o) are all linear projections of the target and reference

projected sources F̂ l
T (o) and F̂ l

R(o), respectively, ∀o ∈ N, where Wq,Wk,Wv ∈ Rh×h

are all the learnable parameters. The softmax p denotes a softmax operation applied

to all possible p positions within the 2D lattice Nl.

Next, a position-sensitive learned positional encoding [91, 92, 82] is adopted to

encourage the attention modules to model dynamic prior of where to look at in the
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Row attention Column attention

Figure 4.4: Visualisation of the axial-attention masks in the target image for a given
row and column in the reference image. Note that column attention expands the
input row-dependent activated space into a 2D lattice.

receptive field of the reference source (m×m region within Nl). Positional encoding

has proven to be beneficial in computer vision tasks to exploit spatial information

and capture shapes and structures within the sources of input features. Therefore,

as in [82], a key, query and value dependent positional encoding are applied to

Equation 4.1 as follows:

F̂TR(o) =
∑

p∈Nl
m×m(o)

softmax p(q̂
l⊺
T (o)k̂

l
R(p) + q̂l⊺T (o)r

q
(p−o)+

+ k̂l⊺
T (p)r

k
(p−o))(v̂

l
R(p) + rv(p−o)),

(4.2)

where Nl
m×m(o) is the local m × m local region centred around location o = (i, j),

and rq(p−o), r
k
(p−o)and rv(p−o) the learned relative positional encoding for queries, keys

and values, respectively. The inner products q̂l⊺T (o)r
q
(p−o) and k̂l⊺

T (p)r
k
(p−o) measure the

compatibilities from location p to o within the queries and keys space, and rv(p−o)

guides the output F̂TR(o) to retrieve content within the values space.

Finally, axial attention [75] is adopted to reduce the complexity of the origi-

nal formulation O(HlWlm
2) to O(HlWlm) by computing the attention operations

along a 1-dimensional axial lattice 1 × m, instead of across the whole {m × m}
space. Following the formulation as in stand-alone axial-DeepLab [82], the global

attention operation is simplified by defining an axial-attention layer that propagates

the information along the width-axis followed by another one along the height-axis.

In this work, we set a span m = {Hl,Wl} equal to the input image resolution

(O(HlWlm)), but such values can be reduced for high resolution inputs. Finally,

multi-head attention can be performed by applying N single axial attention heads

with head-dependent projections W n
q , W n

k , W n
v , posteriorly concatenating the re-

sults of each head and projecting the final output maps by means an output 1 × 1

convolution.

As shown in Figure 4.3, a succession of multi-head weight-height axial attention
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layers are integrated to design the axial attention module for unsupervised style

transfer. Given F lh
T , F lh

R inputs, such module performs a three-fold operation: (1)

normalise the target and reference projected sources by means of batch normalisation

plus ReLU activation, (2) fuse the normalised sources by means of the multi-head

weight-height axial attention layers, and (3) add resulting features to the target

source identity F lh
T plus activate the output with a ReLU activation.

4.4.3 Training losses

Usually, the objective of colourisation is to encourage that the predicted T̂ab colour

channels are as close as possible to the ground truth Tab in the original training

dataset. However, this objective does not apply in exemplar-based colourisation,

where T̂ab should be customized by the colour reference RLab while preserving the

content of the grayscale target TL. Therefore, the definition of the training strategy

is not straightforward, as penalising T̂ab and Tab is not accurate. Then, the objective

is to enable the reliable transfer of reference colours to the target content towards

obtaining a colour prediction faithful to the reference. This work takes advantage

of the pyramidal decoder to combine state-of-the-art exemplar-based losses with an

adversarial training at multiple resolutions. Hence, a multi-loss training strategy is

proposed to combine a smooth-L1 loss, a colour histogram loss and a total variance

regularisation, as in [71], with a multi-scale adversarial loss by means of multiple

patch-based discriminators [2]. In order to handle multi-scale losses, average pooling

with a factor of 2 is applied to both target and reference to successively generate

the multi-scale ground truth T l
ab and Rl

ab.

Smooth-L1 loss. In order to induce dataset priors in cases when the content of

the reference is significantly different than the the target, a pixel loss Ll
pixel based

on Huber loss [93] (also known as smooth-L1) is proposed to encourage realistic

predictions. Ll
pixel loss can be summarised as follows:

Ll
pixel(T

l, T̂ l) =
1

HW

∑
i

∑
j

z(i, j)

z =


1
2
(T l − T̂ l)2,

∣∣∣T l − T̂ l
∣∣∣ < 1∣∣∣T l − T̂ l

∣∣∣− 1
2
, otherwise

.

(4.3)

Colour histogram loss. In order to fully capture the global colour distribution of

the reference imageHl
R and penalise the differences in respect to the predicted colour

distribution Hl
T̂

, a colour histogram loss is considered. Without loss of generality,

the following describes how to approximate the target histogram Hl
T̂

, but the same
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formulation can be applied to Hl
R. Following the method in [65], the ab colour space

in the range [−1, 1] is quantised using a step d. Subsequently, quantised colour

histograms Al
T̂

, Bl
T̂

are obtained for the channels a and b respectively. Then, the

target histogram Hl
T̂

is computed as follows:

Hl
T̂

=
1

HlWl

(
Al

T̂

)⊺
Bl

T̂
. (4.4)

Finally, the histogram loss Ll
hist is defined as a symmetric χ2 distance [94] as

follows:

Ll
hist = 2

Q∑
q=1

(
Hl

T̂
(q)−Hl

R(q)
)2

Hl
T̂

(q) +Hl
R(q) + ϵ

, (4.5)

where ϵ prevents infinity overflows and Q =
(
2+d
d

)2
is the number of histogram bins.

In this work, ϵ = 10−5, d = 0.1 and hence Q = 441.

Total variance regularisation. In order to encourage low variance along neigh-

bouring pixels of the predicted colour channels T̂ l, the total variance loss Ll
TV is

computed as follows:

Ll
TV =

∑
i

∑
j

( ∣∣∣T̂ l(i + 1, j)− T̂ l(i, j)
∣∣∣+

+
∣∣∣T̂ l(i, j + 1)− T̂ l(i, j)

∣∣∣ ). (4.6)

Adversarial loss. With the aim to guide the previous losses towards realistic

decisions, an adversarial strategy based on LS-GAN [26] is proposed, using the

ground truth colour targets T l
Lab as original sources and a patch-based discriminator

D as described in Table 4.1. Note that within the GAN framework, the proposed

exemplar-based colourisation network would be the generator. Both generator loss

Ll
G and discriminator loss Ll

D are computed as follows:

Ll
D =

1

2
ET l∼PT

[(
D(T l)− 1

)2]
+

+
1

2
ET̂ l∼PT̂

[
D(T̂ l)2

]
Ll
G =

1

2
ET̂ l∼PT̂

[(
D(T̂ l)− 1

)2]
.

(4.7)

The total discriminator loss LD is computed by adding the L individual multi-
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Layer Kernel Stride Dim in Dim out

Conv2D
4×4 2 3 64

Leaky ReLU
Conv2D

4×4 2 64 128Batch Norm
Leaky ReLU

Conv2D
4×4 2 128 256Batch Norm

Leaky ReLU
Conv2D

4×4 1 256 512Batch Norm
Leaky ReLU

Conv2D 1×1 1 512 1

Table 4.1: Discriminator architecture

scale losses as follows:

LD =
L∑
l=1

Ll
D. (4.8)

Finally, the total multi-scale loss Ltotal is computed as:

Ltotal =
L∑
l=1

(λpixelL
l
pixel + λhistL

l
hist+

+ λTVL
l
TV + λGL

l
G),

(4.9)

where λpixel, λhist, λTV and λG are the multi-loss weights which specify the contri-

bution of each individual loss.

Finally, the total multi-scale loss Ltotal is computed as:

Ltotal =
L∑
l=1

(λpixelL
l
pixel + λhistL

l
hist+

+ λTVL
l
TV + λGL

l
G),

(4.10)

where λpixel, λhist, λTV and λG are the multi-loss weights which specify the contri-

bution of each individual loss.

4.5 Experiments

4.5.1 Training settings

A training dataset based on ImageNet [50] is generated by sampling 225, 000 im-

ages from the 750 most popular categories (300 images per class), which include:

39



CHAPTER 4. EXEMPLAR-BASED COLOURISATION

Figure 4.5: Recommendation pipeline in [5] used to extract colour references from
Imagenet dataset. In case the target class is known, the classification step is avoided
and the global ranking starts over the given class subset. Note that the method in [5]
uses a global ranking of 200 images whilst in this work a top-5 ranking is considered.

animals, plants, people, scenery, food, transportation and artifacts. Pairs of target-

reference images are randomly generated based on the correspondence recommenda-

tion pipeline proposed in [5]. As shown in Figure 4.5, a top-5 global ranking is first

created by minimising the L2 distance between the features of the target and the rest

of the of the same class, extracted at the first fully connected layer of a pre-trained

VGG-19 with ImageNet and projected into 128 dimensions via PCA transformation

[95]. Next, following the process in [5], the global ranking is refined by a local search

selecting the most similar image by means of a patch-based similarity. The top-1

reference is selected by minimising the cosine distance between 16× 16 patches cor-

responding to the most similar position-wise feature vector at the relu{4} 3 space

of the same pre-trained VGG-19, from both target and reference candidate. Finally,

pairs of target-reference images are randomly sampled on-the-fly during training

by using a weighted uniform distribution of 3 categories, with a weight αc: top-1

reference (α1 = 0.6), random choice among the top-5 candidates (α2 = 0.3) and

random choice among the rest of images of the same class (α3 = 0.1). Testing data

is generated in a similar way, sampling 45, 000 pairs of target-reference images from

the training subset (different targets than in training) at the same categories (60

images per class). All images are resized to 224× 224 pixels, converted to the CIE

Lab colour space and normalised into the range [−1, 1] for each channel.

All the experiments use multi-head attention layers of 8 heads, a hidden dimen-

sion h = 256 and a prediction head dimension e = 64. As shown in the Figure 4.2,

a backbone with 5 convolutional blocks is used, starting the decoding process from

a resolution of (H ×W )/16 pixels and decoding 4 different multi-scale predictions.

Although several ablations are performed, the best trade-off between complexity

and performance is achieved by applying the attention modules from the block 3.

All models are trained around 30 epochs using an Adam optimiser [96] with a learn-

ing rate of 10−5. The multi-loss weights λpixel = 100, λhist = 2, λTV = 50 and

λG = 1 are used for all the experiments. Finally, all models are implemented in

Pytorch 1.7.0 [97] and trained with a single GPU using a batch size of around 4−12
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Target Reference Welsh et al. Xiao et al. Zhang et al. Ours

Figure 4.6: Qualitative comparison of the existing and the proposed exemplar-based
colourisation methods.

samples.

4.5.2 Comparison with colourisation methods

In order to compare our approach with existing exemplar-based colourisation meth-

ods [74, 73, 68], a test dataset is collected by randomly sampling 5, 000 target-

reference pairs from the validation set defined in Section 4.5.1. To provide a fair

comparison, all results are obtained by running the original publicly available codes

and models provided by the authors.

A qualitative comparison for a selection of representative cases is shown in Fig-

ure 4.6. From this comparison, our method along with Zhang et al. [74] produce

the most visual appealing results, being able to transfer effectively the colours from

the reference. Both methods show that image analogy methodology better captures

local information from semantically related objects and leads to more precise colour

predictions. On the contrary, the methods from Welsh et al. [68] and Xiao et al.

[73], based on global histogram estimation, fail to detect precise patterns and only

map overall tones from the reference. The proposed multi-loss strategy, incorpo-

rating histogram and adversarial loss at different resolutions, enables more colorful

and saturated results. However, unlike the conservative colourisation of [74], the

instability of the adversarial training can lead to some colour noise, as can be seen

in the 4th row of Figure 4.6. A better control of the adversarial loss could boost our
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Method HIS SSIM
Top-1
Acc

Top-5
Acc

Welsh et al. [68] 0.55 0.78 50.3% 74.1%
Xiao et al. [73] 0.59 0.84 54.8% 79.2%

Zhang et al. [74] 0.66 0.88 65.6% 84.8%
Ours axial att. 0.72 0.87 68.1% 89.1%

Ours standard att. 0.74 0.88 69.7% 90.1%
Ours single module 0.68 0.88 67.6% 88.9%
Ours w/o adv. loss 0.70 0.88 67.5% 89.2%
Ours w/o pix. loss 0.68 0.86 67.5% 86.7%
Ours w/o hist. loss 0.54 0.88 65.4% 89.2%

Table 4.2: Quantitative comparison of the state-of-the art methods with the pro-
posed method in different settings. Note that standard attention is only used in the
ablation study, the rest of our combinations use axial attention.

method’s performance, reaching the stability of [74] while producing more colourful

and visually appealing predictions.

Moreover, a quantitative comparison is shown in Table 4.2, using three different

metrics: Histogram Intersection Similarity (HIS) [2] relative to the reference im-

age, Structural Similarity Index Measure (SSIM) relative to the target ground truth

image and classification accuracy. First, HIS score measures the averaged colour

histogram intersection between the reference and predicted images. As shown in

the results, our method along with [74], which are both based on semantic-related

analogies, achieve higher HIS scores suggesting a better transfer of the reference

colours. On the contrary, the methods in [73] and [68], based on global histogram

estimation, slightly lower the HIS score due to the averaged colourisation in am-

biguous cases where the target and reference objects are not recognised. SSIM

score is used to estimate structural similarity of each method. As can be observed,

the methods achieving a more precise colourisation obtain higher SSIM score. The

method in [74] achieves the same score as ours, suggesting that more stable predic-

tions help to better retain the structural information of the target image. Finally,

our method outperforms all other methods on image recognition accuracy when the

colour predictions are fed into a VGG-16 pre-trained on ImageNet. The obtained

results indicate that the proposed method overall outperforms previous methods,

which is also reflected by the classification performance.

In addition to qualitative and quantitative comparisons, a perceptual test is

performed to validate overall results and to detect possible failure cases. A total of

100 target-reference pairs are randomly sampled from the test dataset and colourised

using our method and the three state-of-the-art methods [74, 73, 68]. Therefore,

500 images are generated, including 100 original images and 400 images which the
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Figure 4.7: Visualisation of the user interface developed in this project for collecting
the subjective test results.

Method Naturalness (%)

Real images 85.51%
Ours 61.30%

Zhang et al. [74] 60.04%
Xiao et al. [73] 46.10%

Welsh et al. [68] 36.10%

Table 4.3: Perceptual test results. The values show the percentage of images selected
as genuine (natural) for each of the methods.

colour is predicted. Each individual test session randomly selects 25 images and

shows them one by one to viewers, which included participants with technical and

non-technical backgrounds. Then, each participant has to annotate if the colours

in each image appear to be genuine (natural) or not. The study was performed 190

times, generating a total of 4, 750 annotations. Figure 4.7 shows the user interface

developed to collect the results. Table 4.3 shows the percentage of the annotations

that evaluated colours as genuine with reference to the total number of all the

annotations for the specific method, our approach (61.30%) slightly outperforms

the method in [74] (60.04%). As discussed in the visual comparison, the potential

production of colour noise might have lowered the performance of our method. In

contrast, the stability of [74] enabled a considerably high rate despite its conservative

colourisation. Finally, the methods in [73] (46.10%) and [68] (36.10%) achieve the

lowest results.

Finally, the runtime is also compared to highlight the efficiency of the proposed

end-to-end architecture. All the results are obtained using the implementation pro-

vided by the authors. Runtime values are obtained on a machine with 3.60GHz Intel

Xeon Gold 5122 CPU and a single NVIDIA GeForce RTX 2080 Ti GPU. As shown
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Figure 4.8: Runtime comparison in seconds.

in Figure 4.8, among neural network based methods, the pyramid structure in Xiao

et al. [73] costs most of the time. The method from Zhang et al. [74] slightly reduces

runtime but the Patch Match search used in Deep Image Analogy [84] consumes a

lot of time. On contrast, our end-to-end approach significantly reduces complexity

achieving runtimes of 20 ms per image.

4.5.3 Ablation study

Several experiments are performed with the aim to evaluate the effects of the differ-

ent architectural choices and training hyperparameters. The ablation study includes

the analysis of the attention module, comparing the performance obtained with the

standard attention operation and the proposed axial attention simplifications in

Section 4.4.2. Moreover, the number of attention operations at each scale is also

evaluated. Finally, the contribution of each of the training losses is validated by re-

moving them separately from the total multi-loss function and study their effects on

the final predictions. As discussed in Section 4.4.2, axial attention is adopted to re-

duce the complexity of the original attention formulation O(HlWlm
2) to O(HlWlm)

by computing the attention operations along a single 1-dimensional axis, instead of

across the whole {m ×m} space. Although axial attention is applied to both the

horizontal and vertical axis to approximate the standard performance, a significant

loss is identified in Table 4.2. A visual comparison is shown in Figure 4.10, where

standard attention yields to more precise results, being able to capture longer-term

relationships. In order to refine the axial approximation and being able to derive

more complex relationships, the attention module is applied 2 consecutive times. As

shown, such approach outperforms the single configuration in both quantitative and

qualitative evaluations. Finally, the individual contribution of each training loss is

evaluated by removing them one by one from the multi-loss configuration. As shown

in Table 4.2 and Figure 4.9, a major drop in HIS score is identified in the absence of
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Target Reference Ours w/o adv. loss w/o hist. loss w/o pix. loss

Figure 4.9: Visual comparison of each individual training loss contribution.

Target Reference Standard Axial multiple Axial single

Figure 4.10: Visual comparison of the attention module configurations, using stan-
dard attention or axial attention one time or two times.

the histogram loss, indicating its importance to guide the learning process towards

an effective transfer of reference colours. The absence of the adversarial loss also

lowers the performance, dropping by 0.2 the HIS score and 0.6% the Top-1 accuracy.

However, a higher effect is shown in the visual comparison, where a clear loss of both

colourfulness and naturalness can be observed.

4.6 Future work

Several directions can be considered to expand the current work towards different

research lines and applications:

• The XCNET architecture can be improved by further tweaking the attention

module. A cost-effective solution can be investigated to improve attention

performance (keeping the axial approach or proposing a better methodology)

without increasing the overall complexity. Moreover, further improvements

can be obtained by improving the feature extraction backbone, e.g. by in-

vestigating the effect of the input colour space and possibly use a different

backbone for the grayscale target and colour references. Finally, a better per-

formance could possibly be obtained by enabling multiple reference inputs.

• The XCNET architecture could be generalised to other applications and do-

mains aiming at unsupervised analogy computation between pairs of inputs.

Some examples include video frame interpolation, video compression or any

other reference-based approach.
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• In order to design more realistic colourisation and restoration frameworks, the

current approach needs to allow high resolution inputs and to be adapted to

video content. The next chapter presents preliminary insights in this direction

and proposes future research lines.

4.7 Conclusions

This chapter introduces XCNET, a novel architecture for exemplar-based colouri-

sation. The proposed model integrates attention modules at different resolutions

that learn how to perform style transfer in an unsupervised way towards decod-

ing realistic colour predictions. This methodology significantly simplifies previous

exemplar-based approaches, unifying the feature matching with the colourisation

process and therefore achieving a fast end-to-end colourisation. Moreover, in order

to further reduce the model complexity, axial attention is proposed to simplify the

standard attention operations and hence reduce the computation intensity. The

proposed method outperforms state-of-the-art methods in both visual quality and

complexity, and significantly reduces the runtime.
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Chapter 5

A pipeline for video colourisation

5.1 Chapter overview

This chapter studies how to integrate the proposed image-based colourisation archi-

tectures (such as ColorGAN from Chapter 3 and XCNET from Chapter 4) into a

practical video colourisation pipeline. In particular, we focus on temporal stabili-

sation for such frame-to-frame image colourisation methods proposing an optimised

few-shot training strategy to learn scene-aware video priors. The work described in

this chapter was published at the ECCV 2022 Workshop on AI for Creative Video

Editing and Understanding (CVEU 2022). Section 5.3 reviews related work in the

literature, identifying the main draw-backs and possible improvements, Section 5.4

details the proposed methodology, Section 5.5 provides information about the im-

plementation and data used in the experiments and a quantitative evaluation of the

results. Section 5.6 proposes an ultimate video colourisation pipeline combining the

proposed image-based colourisation methods with the introduced temporal stabil-

isation framework. Finally, Section 5.7 provides conclusions and identifies future

work.

5.2 Introduction

Video restoration is in increasing demand in the production industry in order to

both deliver historical content in high quality and to support innovation in the cre-

ative sector [98]. Video colourisation in particular is still a challenging task due to

its ambiguity in the solution space and the requirement of global spatio-temporal

consistency. Prior to automatic colourisation methods, producers relied on special-

ists to perform manual colourisation, resulting in a time consuming and sometimes

a prohibitively expensive manual process. Researchers have thus endeavoured to

develop computer-assisted methodologies in order to automate the colourisation
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process and reduce production costs. Early methods relied on frame-to-frame image

colourisation techniques propagating colour scribbles [4, 57, 56] or reference colours

[68, 63, 69]. The problem that typically occurs when processing is applied on a sin-

gle frame without consideration of the neighbouring frames is temporal flickering.

Similarly, propagation of errors can occur if the temporal dimension is not taken

into account when characteristics (e.g colour) of previous frame are transferred to

the current frame. Improved results can be obtained by considering a more robust

propagation and imposing refinements with temporal constrains [74, 99].

Instead of improving temporal consistency using task-specific solutions, meth-

ods that generalise to various tasks can be applied. An example is the work in

[100], which proposes a general approach agnostic to a specific image processing

algorithm. The method takes the original video (black and white in the case of

colourisation) and the per-frame processed counterpart (initially colourised version)

and solves a gradient domain optimisation problem to minimise the temporal warp-

ing error between consecutive frames. An extension of such an approach takes into

account object occlusions by leveraging information from a set of key-frames [101].

Another example was proposed in [102], adopting a perceptual loss to maintain per-

ceptual similarity between output and processed frames. However, most methods

rely on a dense correspondence backend (e.g. optical flow or PatchMatch [85]), which

quickly becomes impractical in real-world scenarios due to the increased processing

time needed. A novel solution proposed the use of Deep Video Prior by training

a convolutional network on video content to enforce consistency between pairs of

corresponding output patches [103]. The method solves multimodal consistency

by means of Iteratively Reweighted Training, which learns to select a main mode

among multiple inconsistent ones and discard those outliers leading to flickering ar-

tifacts. The main limitation is the requirement to train in test time, which makes

the method extremely time-consuming in practice. For instance, training depends

on the content, motion and length of the input video, requiring a large number of

iterations to generalise to complex sequences with multiple shots and scene changes.

This paper proposes a framework for temporal stabilisation of frame-to-frame

colourised videos with an optimised few-shot training strategy to learn scene-aware

video priors. The proposed architecture is jointly trained to stabilise the input

video and to cluster the input frames with the aim of learning scene-specific modes.

Learnt embeddings are posteriorly injected into the decoder process to guide the

stabilisation of specific scenes. A clustering algorithm for scene segmentation is used

to select meaningful frames and to generate pseudo-labels to supervise the scene-

aware training. Experimental results demonstrate the generalisation of the Deep

Video Prior baseline [103], obtaining improved performance in complex sequences

with small amounts of training data and fewer iterations.
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5.3 Related work

5.3.1 Video colourisation

Although several works attempted to solve the video colourisation problem as an

end-to-end fully automatic task [104], most rely on single frame colourisation. This is

because image colourisation, compared to video colourisation, achieves higher visual

quality and naturalness. Propagation methods are commonly used to stabilise the

temporal coherence between frames. For instance, the work in [105] propose Video

Propagation Networks (VPN) to process video frames in an adaptive manner. VPN

approach applies a neural network for adaptative spatio-temporal filtering. First

it connects all the pixels from current and previous frames and propagates associ-

ated information across the sequence. Then it uses a spatial network to refine the

generated features. Another example is the Switchable Temporal Propagation Net-

work [106], based on a Temporal Propagation Network (TPN), which models the

transition-related affinity between a pair of frames in a purely data-driven manner.

In this way, a learnable unified framework for propagating a variety of visual proper-

ties from video frames, including colour, can be achieved. Aiming at improving the

efficiency of deep video processing, colourisation and propagation can be performed

at once. An example is the method in [74] that is based on a recurrent video colouri-

sation framework, which combines colourisation and propagation sub-networks to

jointly predict and refine results from a previous frame. A direct improvement is the

method in [99] that uses masks as temporal correspondences and hence improves

the colour leakage between objects by wrapping colours within restricted masked

regions over time.

5.3.2 Deep Video Prior

Methods for temporal stabilisation usually promote blind temporal consistency by

means of dense matching (optical flow or PatchMatch [85]) to define a regulari-

sation loss that minimises the distance between correspondences in the stabilised

output frames [100]. Such methods are trained with large datasets with pairs of

grayscale inputs and colourised frames. Notice that such frameworks are blind to

the image processing operator and can be used for multiple tasks such as super-

resolution, denoising, dehazing, etc. In contrast, Deep Video Prior (DVP) can

implicitly achieve such regularisation by training a convolutional neural network

[103]. This method only requires training on the single test video, and no training

dataset is needed. To address the challenging multimodal inconsistency problem,

an Iteratively Reweighted Training (IRT) strategy is used in DVP approach. The

method selects one mode from multiple possible modes for the processed video to
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ensure temporal consistency and preserve perceptual quality.

5.3.3 Few-shot learning

Few-shot learning was introduced to learn from a limited number of examples with

supervised information [107, 108]. For example, although current methods on im-

age classification outperform humans on ImageNet [13], each class needs sufficient

amount of labelled images, which can be difficult to obtain. Therefore, few-shot

learning can reduce the data gathering effort for data-intensive applications [109].

Many related topics use this methodology, such as meta-learning [110, 111], embed-

ding learning [112, 113] and generative modelling [114, 107]. The method proposed

in this chapter uses few-shot learning as training strategy to reduce processing time

and to generalise to long and complex video sequences.

5.4 Method

This section describes the proposed extension of DVP baseline for multiple scenes,

followed by the optimised few-shot training strategy which enables reduced process-

ing time by removing the time response of DVP conditioned to the number of input

frames. Finally, DVP architecture is modified by adding a classification sub-network

which clusters the input frames with the objective of learning scene-specific priors.

5.4.1 Extension of DVP to multiple scenes

Given a grayscale input sequence {It}Tt=1 of T frames and its colourised counterpart

{Pt}Tt=1 created using an image colourisation operator F , the goal is to learn the

mapping Ĝ(θ) : {Pt}Tt=1 −→ {Ot}Tt=1, such that {Ot}Tt=1 is a temporally stable

output without flickering artifacts and θ are the network parameters. Due to the

superior performance of image colourisation compared to video methods [100, 104],

an image operator is applied frame-to-frame and the proposed framework is used to

resolve temporal issues. Therefore, from a random initialisation, Ĝ(θ) is optimised

in each iteration by means of the reconstruction loss Ldata (e.g. L1 distance) between

Ĝ(It; θ) and Pt:

arg min
θ

Ldata(Ĝ(It; θ), Pt). (5.1)

As shown in Figure 5.1, the proposed method extends the DVP framework [103]

for video sequence with multiple scenes. In particular, the proposed method defines

a scene as a change of content, e.g. a camera shot, appearance of new objects,

etc. In particular, the input sequence {It}Tt=1 of T frames is divided into S scenes,

where typically S ≪ T , and {st}Tt=1 is the scene index for each frame. In order
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Figure 5.1: Proposed framework for temporal stabilisation of frame-to-frame
colourised videos. In addition to the DVP baseline, a scene segmentation and a
few show training is used to learn scene-aware video priors.

to learn scene-specific modes, the proposed network not only learns to stabilise the

input sequence, but also to cluster its frames into different scenes by generating

a class distribution vector yt ∈ RS. As shown in Figure 5.2, an external feature

vector ft (from frame It) is provided in order to guide the clustering process. ft

can be obtained from a suitable neural network, e.g. from VGG-16 classification

head [51]. Finally, yt is used to generate scene-specific priors which are posteriorly

injected into the different stages of the network decoder. Therefore, the proposed

model combines two different sub-models, denoted by Ĝ(θ) = {Ĝ1(θ1), Ĝ2(θ2)},
where θ = {θ1, θ2} are all the network parameters, Ĝ1(θ1) : {Pt}Tt=1 −→ {Ot}Tt=1 and

Ĝ2(θ2) : {ft}Tt=1 −→ {yt}Tt=1.

The neural network is then trained to jointly improve the temporal consistency

of the input video frames {It}Tt=1 (enforcing {Ot}Tt=1 to be close to {Pt}Tt=1) and

classify them into the corresponding scenes {st}Tt=1. Following DVP baseline, an IRT

strategy is used to address the problem of averaging when the difference of multiple

modes is large (e.g. pixel with more than one possible colourisation solution). In

particular, a confidence map Ct is used to enforce the selection of a main mode per

pixel from multiple modes, while it ignores the outliers (minor modes leading to

flickering artifacts). In practice, DVP doubles the number of output channels (e.g.

6 channels for RGB images) to obtain two output versions: a main frame Omain
t and
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an outlier frame Ominor
t . The confidence map Ct,i at iteration i is calculated by:

Ct,i =

1 d(Omain
t,i , Pt) < max{L1(O

minor
t,i , Pt), δ}

0 otherwise
, (5.2)

where d is the function to measure the distance between pixels and δ is a threshold.

Therefore, the model parameters at iteration (i + 1) can be optimised using Ct,i

which guides the training loss:

θi+1 = arg min
θ
{Ldata(Ct,i ⊙Omain

t,i , Ct,i ⊙ Pt)+

+ Ldata((1− Ct,i)⊙Ominor
t,i , (1− Ct,i)⊙ Pt)}.

(5.3)

Then, a multi-loss function is proposed combining the IRT loss LIRT between

Ĝ1(It; θ1) and Pt, and the cross-entropy loss Lclass between Ĝ2(ft; θ2) and st:

LT = LIRT

(
Ĝ1(It; θ1), Pt

)
+ Lclass

(
Ĝ2(ft; θ2), st

)
. (5.4)

5.4.2 Few-shot training strategy

The main limitation of DVP is the long processing time due to the need for training

at inference time. This fact makes the method impractical for long sequences. This

paper proposes to speed up the training process reducing the number of iterations

by means of a few-shot training strategy. Such strategy selects a reduced set of

N frames {In}n∈J ⊂ {It}Tt=1, where J ⊂ {1, 2, . . . T} and N < T . Notice that for

completeness In :̸= It. Selected few-shot samples are then used to train the model

for generalisation to the remaining frames during inference time. The proposed

model makes this solution feasible thanks to its scene-aware capacity to generalise

to variable content. This approach makes the model more robust for processing of

sequences with changes (e.g. with high motion) as it temporally downsamples the

input.

The selection of N frames for few-shot training is based on a twofold process:

scene segmentation and selection of representative frames per scene. Scene segmen-

tation is performed in an unsupervised way via clustering of deep features {ft}Tt=1

with K-Means algorithm [115]. Dimensionality reduction is performed by Principal

Components Analysis (PCA) in order to reduce complexity and shorten the cluster-

ing time. The number of scenes (e.g. number of clusters) is unknown and variable

for each input video. Hence a suitable number of clusters is computed by running

KMeans K times and selecting the elbow of the averaged distortion curve, where

the distortion of each sample is computed relative the centroid of its cluster. This

method allows a fast and effective scene segmentation approach.
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Figure 5.2: Proposed architecture for stabilisation of frame-to-frame colourised
videos. The model not only learns to stabilise an input sequence, but also to cluster
the input frames into different scenes, by generating a class distribution vector yt.

Unsupervised clustering of input frames allows the generation of pseudo-labels for

training the proposed classification sub-model. Notice that clustering errors will be

mitigated thanks to the few-shot training, since the trained classifier will generalise

to unseen frames (and potential uncertainties between scenes) during inference time.

After segmentation of the input video into the scenes, suitable frames are selected

from each scene by sub-clustering frames in that scene to cover a balanced span

of different content. KMeans is applied again with a fixed number of clusters and

a number of frames is randomly sampled from each sub-cluster. The number of

selected frames per cluster and sub-clusters is proportional to the total number of

frames in the given sub-cluster.

5.4.3 Network architecture

As shown in Figure 5.2, the architecture of the model proposed at Section 5.4.1 is

composed of two sub-networks (denoted by Ĝ1(θ1), Ĝ2(θ2)). Its inputs are a frame

It ∈ R1×H×W , where H ×W are the input dimensions, and its feature vector ft ∈
R1×d (from VGG-16 classification head), where d are the number of its dimensions.

The proposed architecture outputs two colour stabilised versions (main and minor

frames) Ot ∈ R6×H×W of the input frame, and a class distribution vector yt ∈ R1×S,

which is the product of clustering the input to a particular scene.

It is processed by 4 encoder blocks which downsample the input by a factor of 2,

generating Ibt ∈ Reb×Hb×Wb , where b = 1, . . . 4 is the block index, eb is the number of

dimensions and {Hb,Wb} = max
(

25, {H,W}
2b

)
. The bottleneck block converts I4t into
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Figure 5.3: The proposed decoder block conditioned by the scene-wise embedding
mb

t . Notice that a similar architecture applies to the bottleneck, injecting the em-
bedding vector into the pre-activations.

O5
t ∈ Ro5×H5×W5 , where o5 are the number of output dimensions. In parallel, ft is

processed by 2 linear layers to generate deep embeddings f 1
t ∈ R1×d, f 2

t ∈ R1×S. f 2
t

is both activated with a softmax operation to generate the class distribution vector

yt and with a sigmoid operation to generate the scene-aware mask at that will be

injected into the bottleneck and decoder blocks. at is processed by a sequence of

linear layers which generate 5 scene-aware embeddings mb
t ∈ R1×ob , where b = 1, . . . 5

and ob are the dimensions of the bottleneck and decoder outputs. Finally, as shown

in Figure 5.3, mb
t are injected into the corresponding blocks as follows: (1) mb

t is

activated with a SoftPlus operation (smooth approximation of ReLU) and spatially

repeated to generate a volume M b
t ∈ Reb×Hb×Wb , (2) M b

t is element-wise multiplied

to each pre-activation within the corresponding block. 4 decoder blocks with skip

connections are then applied to upsample the inputs by factor of 2, generating

Ob
t ∈ Rob×Hb×Wb , where b = 1, . . . 4. Finally, a decoder head is applied to map O1

t

into the output frames Ot.

5.5 Experiments

This section provides an overview of the experimental setup, as well as the details

related to the training data and strategy and evaluation metrics and results. The

comparison is carried out relative to the DVP baseline.

5.5.1 Training strategy

As shown in DVP, the network needs to be initialised with the main mode in order

to guide the main outputs towards a specific mode. DVP selects the first image

as reference for the main mode and pre-trains the network for a given number

of iterations. However, when the reference image contains outliers, and those are
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Figure 5.4: Example of mode collapse during initial pre-training. The AUC invari-
ance during the initial iterations indicates convergence to a random state, which
affects the performance of the posterior IRT training.

treated as main mode, the performance of this approach is not satisfactory. To

address that, this work proposes the use of colour histograms to detect outliers when

specific bins present high variance across the sequence. In particular, colourised

frames Pt are converted into CIE La*b* colour space [44], and 2D colour histograms

Ht ∈ RQ×Q are obtained by matrix multiplication of individual histograms for a* and

b* channels, where Q is the number of bins. Next, a mask M̄ ∈ RQ×Q is computed to

locate those bins present in all the frames. Hence, bins out of the mask will represent

an outlier. M̄ =
∏T

t=1 Mt, where Mt masks the bins different than zero. Finally,

main mode reference frame Pt∗ is obtained, where t∗ = arg mint

∑
Ht ⊙ (Mt − M̄).

On the other hand, as shown in Figure 5.4, few-shot training might lead the

network into mode collapse, rapidly converging into a random state. Mode collapse is

detected when the Area Under the Curve (AUC) of the generated colour histograms

vary below a threshold during a given number of iterations. In this case, the initial

pre-training is repeated with random initialisation of the network weights. Due to

the significant difference of complexity, classifier and stabiliser (U-Net) sub-networks

are optimised using different learning rates. Overall, Adam optimiser is adopted,

using a learning rate of 10−4 for θ1 and 10−6 for θ2. All the experiments are performed

with a single GPU and using a batch size of 8 samples. Initial pre-training iterations

are set to 350, and 150 frames are used for few-shot training.

Following DVP [103], this work uses the test set collected by [100], composed by

20 videos of around 200 frames from Videvo dataset1, and extended with 8 longer

videos from Videvo and Hollywood2 dataset [116], to evaluate the performance for

more complex content.

1https://www.videvo.net/
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5.5.2 Evaluation metrics

Temporal inconsistency. DVP uses wrapping error to measure temporal incon-

sistency by means of optical flow. However, the quality of optical flow computation

and the corresponding occlusion mask might decrease when dealing with flickering

content. To mitigate this issue and to better capture colour artifacts, histogram

inconsistency is adopted to measure the temporal similarity in the colour domain.

Being Ht and Ht−1 the colour histograms of frames t and t− 1, respectively, tempo-

ral histogram inconsistency Ehist is defined as a symmetric χ2 distance as follows:

Ehist = 2

Q2∑
q=1

(Ht,q −Ht−1,q)
2

(Ht,q +Ht−1,q) + ϵ
, (5.5)

where ϵ prevents infinity overflows and Q is the number of bins.

Performance degradation. Temporal stabilisation has to be achieved without

degrading the original colourisation. Since stabilised ground truth is not available,

this work uses data fidelity Fdata between {Ot}Tt=1 and {Pt}Tt=1 as follows:

Fdata =
1

T

T∑
t=1

PSNR (Pt, Ot) . (5.6)

Notice that data fidelity can decrease when frames contain large amount of outliers.

Therefore, perceptual quality is also evaluated using Fréchet Inception Distance

(FID) [117] with the ground truth.

5.5.3 Results

Table 5.1 shows quantitative comparison results between DVP method [103], our

method and the proposed ablations in Section 5.5.4. Two image-based fully-automatic

colourisation methods are considered: colourful image colourisation (CIC) [42] and

ChromaGAN (CGAN) [77]. The reference-based image colourisation method XC-

NET [54] is also considered. Such methods, which colourise frames based on a

reference image, introduce even larger flickering issues than fully auto-colourisation

based networks. References are sampled from the Imagenet dataset [13] using the

correspondence recommendation pipeline proposed in [5, 54]. Finally, the quality of

the original predictions {Pt}Tt=1 obtained using CIC method is studied to evaluate

the effect of the proposed stabilisation. Moreover, Figure 5.6 shows the processing

time of both DVP and our method in relation to the number of frames.

As can be seen from Ehist results, both DVP and our method significantly in-

crease the temporal consistency compared to the original predictions, and although
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Figure 5.5: Evaluation in comparison with DVP method and processed frames at
different timestamps.

DVP obtains slightly better results, our method significantly reduces the process-

ing time for long scenes. The drop in performance when using XCNET is due to

the colourfulness of the corresponding predictions and the higher concentration of

flickering artefacts, compared to CIC or CGAN.

As shown in Figure 5.5, the frames at different times in the same shot suffer

from inconsistent colourisation (notice the same object across various frames with

different colour). DVP and DVP with few-shot training temporal both provide

more consistent results, but still the main mode is either not correctly chosen or

the colours are plain, resulting in less natural appearance. This is reflected in data

fidelity results, where our method achieves the best performance. FID also confirm

this fact, as DVP lowers the perceptual quality of the original predictions due to its

strong stabilisation and degradation of input colours. Finally, as shown in Figure

5.6, the few-shot strategy allowed a fix amount of training iterations, resulting into

a flat time response independent to the length of the input sequence. Note that the

total time may increase proportionally to the number of scenes, due to the individual

initial pre-training per scene.

5.5.4 Ablations

An ablation study is performed to analyse the importance of the proposed scene-

aware architecture. First, DVP is tested with the proposed few-shot training strat-

egy. As shown in Table 5.1 and Figure 5.5 (DVP few-shot), without using a clas-
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Table 5.1: Ehist, Fdata and FID comparison for different colourisation methods.

Method
Ehist ↓

{Pt}Tt=1 CIC [42] CGAN [77] XCNET [54]
DVP [103]

20.96

2.30 1.58 3.30
Ours 3.08 2.54 3.59

DVP (few-shot) 3.75 3.79 3.10
Ours (first frame) 1.39 2.14 2.69

Method
Fdata ↑ [dB]

CIC [42] CGAN [77] XCNET [54]
DVP [103] 19.12 19.32 18.94

Ours 28.63 30.31 26.56
DVP (few-shot) 18.14 18.47 18.67

Ours (first frame) 28.46 30.21 26.40

Method
FID ↓

{Pt}Tt=1 CIC [42] CGAN [77] XCNET [54]
DVP [103]

122.74

126.38 111.16 100.21
Ours 121.16 105.65 97.96

DVP (few-shot) 129.68 114.98 102.22
Ours (first frame) 119.76 104.03 99.92

sification sub-network, DVP is unable to generalise to complex sequences and the

input colours are significantly degraded. This drop in performance proves the im-

portance of the classification sub-network to perform effective few-shot training.

Finally, a second ablation is performed to evaluate the proposed initialisation mech-

anism in Section 5.5.1, which proposes the best reference for main mode per scene

by means of histogram characteristics. As shown in Table 5.1 (ours first frame), a

drop in performance is observed when using the first frame as main mode reference

(as DVP proposes), proving the effectiveness of the proposed methodology. Notice

that original DVP performance could be improved by using the same initialisation

mechanism.

5.6 A pipeline for video colourisation

The ultimate goal of the content production part of this thesis is to propose a realistic

and deployable solution for content enhancement and restoration, focused on image

and video colourisation. Previous chapters proposed methods for image colourisation

which improved state-of-the-art methods in performance, model complexity, run-

time, etc. In particular, Chapter 3 introduced ColorGAN, a fully-automatic image

colourisation method based on Conditional GANs, which improved the colourfulness

and perceptual realism of previous GAN-based fully-automatic methods. Moreover,
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Figure 5.6: Comparison of processing time for all test sequences. Notice the signifi-
cant increase of DVP when the number of frames increase.

in order to reduce ambiguity and generate more accurate predictions, Chapter 4

explored exemplar-based methods which involve the interaction of the producer.

XCNET is then introduced, a fast end-to-end architecture that improves existing

reference-based methods while decreasing the complexity and runtime. Both image-

based methods can be integrated into a video colourisation pipeline by using the

proposed temporal stabilisation framework from this chapter.

As shown in Figure 5.7, the proposed pipeline processes a grayscale input se-

quence {It}Tt=1 of T frames and generates a colourised output {Ot}Tt=1. Although the

proposed scheme integrates XCNET to perform reference-based colourisation, a few

modifications are needed to integrate ColorGAN and thus obtain a fully-automatic

version. Reference-based colourisation is performed on a scene-by-scene basis using

specific references. Therefore, the scene segmentation approach from Section 5.4.2

is used to cluster feature vectors relative to each frame {ft}Tt=1, into S scenes. Fea-

ture vectors are generated by means of the Feature Extractor module (e.g. VGG-16

classification head). Then, every frame is classified by means of the Scene Segmen-

tation module, which generates scene indexes {st}Tt=1 that are used by the Scene

Sampler to yield the Q frames belonging to each scene {Iq}Qq=1. Reference-based

colourisation is performed frame-to-frame for each scene by means of the XCNET

network and the reference is automatically retrieved with the Reference Retrieval

module. This work uses the recommendation pipeline [5] from Chapter 4 to retrieve

similar colour references from Imagenet dataset [50]. Alternatively, references can

be provided manually by the producer. Finally, outputs for each scene {Pq}Qq=1 are

merged by means of the Scene Composer module to generate a colourised output
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Figure 5.7: Proposed pipeline for exemplar-based video colourisation combining the
image-based XCNET architecture (from Chapter 4) with the temporal stabilisation
framework proposed in this chapter.

{Pt}Tt=1.

As discussed in this chapter, frame-to-frame colourisation usually leads to tem-

poral inconsistencies such as flickering artifacts, hence the last step is to apply the

proposed temporal stabilisation framework to gain temporal consistency. A refiner

network is trained using the few-shot strategy in Section 5.4.2, and a stable colouri-

sation output {Ot}Tt=1 is posteriorly generated.

5.7 Conclusions

This chapter proposed a general framework for temporal stabilisation of frame-to-

frame colourised videos using scene-aware deep video priors. The framework includes

an optimised few-shot training strategy to reduce the processing time of DVP base-

line by removing its time response conditioned on the number of input frames. In

order to handle complex sequences with multiple scenes, the DVP architecture is

modified by adding a classification sub-network which clusters the input frames with

the objective of learning scene-specific priors. Experimental results show that our

method improves data fidelity and perceptual quality and achieves similar temporal

consistency to DVP while reducing the processing time in long sequences. Finally,

a pipeline for reference-based video colourisation is proposed, integrating the pro-

posed stabilisation framework with image-based approaches from previous chapters.
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Figure 5.8: Evaluation in comparison with DVP method and processed frames at
different timestamps.

61



CHAPTER 5. A PIPELINE FOR VIDEO COLOURISATION

t
=

T
t

=
T
/2

t
=

1
t

=
T

t
=

T
/2

t
=

1
t

=
T

t
=

T
/2

t
=

1

{Pt}Tt=1 DVP [103] Ours

Figure 5.9: Evaluation in comparison with DVP method and processed frames at
different timestamps.
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As future work, model efficiency can be further improved by simplifying the net-

work architecture or by using techniques such as pruning or weights quantisation.

Moreover, finer tuning of colourisation could be achieved by improving the scene

segmentation process in order to obtain more precise scene priors. Finally, the pro-

posed video colourisation pipeline still requires a two-step process (frame-to-frame

colourisation followed by temporal stabilisation), this can be simplified by an unified

framework, integrating the DVP methodology into an end-to-end video colourisation

pipeline.
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Content distribution: video
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Chapter 6

Neural networks for chroma intra

prediction

6.1 Chapter overview

This chapter provides a detailed description of the contribution of this research to a

recent approach to chroma intra-prediction using attention-based CNNs, as well as a

thorough description of the configuration setup used in the experiments. The experi-

ments and results described in this chapter have published at the IEEE International

Conference on Image Processing (ICIP), 2020 [6]. Section 6.3 reviews related work

in the literature, identifying the main drawbacks and possible improvements, Sec-

tion 6.4 details the proposed methodology, Section 6.5 provides information about

the implementation and data used in the experiments and a quantitative evalua-

tion of the results while Section 6.6 identifies future work and Section 6.7 provides

conclusions.

6.2 Introduction

Efficient video compression has become an essential component of multimedia stream-

ing. The convergence of digital entertainment followed by the growth of web services

such as video conferencing, cloud gaming and real-time high-quality video streaming,

prompted the development of advanced video coding technologies capable of tack-

ling the increasing demand for higher quality video content and its consumption on

multiple devices. New compression techniques enable a compact representation of

video data by identifying and removing spatial-temporal and statistical redundancies

within the signal. This results in smaller bitstreams, enabling more efficient stor-

age and transmission as well as distribution of content at higher quality, requiring

reduced resources.
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Figure 6.1: Visualisation of the attentive prediction process. The first image shows
the original and predicted blocks and their respective reference samples, and the
second image the corresponding attention masks for each boundary location. For
each reference sample 0-16 the attention module generates its contribution to the
prediction of individual pixels from a target 4× 4 block.

Among the fundamental blocks of typical video coding schemes, intra prediction

exploits spatial redundancies within a frame by predicting samples of the current

block from already reconstructed samples in its close surroundings. The latest draft

of the Versatile Video Coding (VVC) standard [118] (referred to as VVC in the rest

of this chapter) allows a large number of possible intra modes to be used on the

luma component, including up to 67 directional modes and other advanced meth-

ods, at the cost of a considerable amount of signalling data. Conversely, to limit

the impact of mode signalling on compression performance, a reduced number of

modes is employed to intra-predict chroma samples, including the Planar, DC, pure

horizontal and pure vertical modes, and the Derived Mode (DM, corresponding to

using the same mode used to predict the collocated luma block). In addition to

traditional modes, more recent research introduced schemes which further exploit

cross-component correlations between the luma and chroma components. Such cor-

relations motivated the development of the Cross-Component Linear Model (CCLM,

or simply LM in this chapter) intra modes. When using CCLM, the chroma compo-

nents are predicted from already reconstructed luma samples using a linear model.

Nonetheless, the limitation of simple linear predictions comes from its high depen-

dency on the selection of predefined reference samples. Improved performance can be

achieved using more sophisticated Machine Learning (ML) mechanisms [119, 120],

which are able to derive more complex representations of the reference data and

hence boost the prediction capabilities. Unlike previous methods where neighbour-

ing references are used regardless of their location, this work proposes a new ML-

based cross-component intra-prediction method which is capable of learning the

spatial relations between reference and predicted samples.
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Figure 6.2: General block diagram of VVC encoder.

A novel ML-based cross-component intra-prediction method is proposed, intro-

ducing a new attention module capable of tracking the contribution of each neigh-

bouring reference sample when computing the prediction of each chroma pixel, as

shown in Figure 6.1. As a result, the proposed scheme better captures the rela-

tionship between the luma and chroma components, resulting in more accurate pre-

diction samples. However, such NN-based methods significantly increase the codec

complexity, increasing the encoder and decoder times by up to 120% and 947%,

respectively.

6.3 Related Work

Colour images are typically represented by three colour components (e.g. RGB,

YCbCr). The YCbCr colour scheme is often adopted by digital image and video

coding standards (such as JPEG, MPEG-1/2/4 and H.261/3/4) due to its ability to

compact the signal energy and to reduce the total required bandwidth. Moreover,

chrominance components are often subsampled by a factor of two to conform to the

YCbCr 4:2:0 chroma format, in which the luminance signal contains most of the

spatial information. Nevertheless, cross-component redundancies can be further ex-

ploited by reusing information from already coded components to compress another

component. In the case of YCbCr, the Cross-Component Linear model (CCLM)

[121] uses a linear model to predict the chroma signal from a subsampled version

of the already reconstructed luma block signal. The model parameters are derived

at both the encoder and decoder sides without needing explicit signalling in the

bitstream. Another example is the Cross-Component Prediction (CCP) [122] which

resides at the transform unit (TU) level regardless of the input colour space. In
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case of YCbCr, a subsampled and dequantised luma transform block (TB) is used

to modify the chroma TB at the same spatial location based on a context param-

eter signalled in the bitstream. An extension of this concept modifies one chroma

component using the residual signal of the other one [123]. Such methodologies sig-

nificantly improved the coding efficiency by further exploiting the cross-component

correlations within the chroma components.

In parallel, recent success of deep learning application in computer vision and

image processing influenced design of novel video compression algorithms. In partic-

ular in the context of intra-prediction, a new algorithm [120] was introduced based

on fully-connected layers and CNNs to map the prediction of block positions from

the already reconstructed neighbouring samples, achieving BD-rate (Bjontegaard

Delta rate) [124] savings of up to 3.0% on average over HEVC, for approx. 200%

increase in decoding time. The successful integration of CNN-based methods for

luma intra-prediction into existing codec architectures has motivated research into

alternative methods for chroma prediction, exploiting cross-component redundan-

cies similar to the aforementioned LM methods. A novel hybrid neural network for

chroma intra prediction was recently introduced in [119]. A first CNN was designed

to extract features from reconstructed luma samples. This was combined with an-

other fully-connected network used to extract cross-component correlations between

neighbouring luma and chroma samples. The resulting architecture uses complex

non-linear mapping for end-to-end prediction of chroma channels. However, this is

achieved at the cost of disregarding the spatial location of the boundary reference

samples and significant increase of the complexity of the prediction process. To this

end, an improved cross-component intra-prediction model based on neural networks

is proposed, as illustrated in this chapter.

6.4 Proposed method

Similarly to the model in [119], the proposed method adopts a scheme based on

three network branches that are combined to produce prediction samples. The first

two branches work concurrently to extract features from the available reconstructed

samples, including the already reconstructed luma block as well as the neighbour-

ing luma and chroma reference samples. The first branch (referred to as cross-

component boundary branch) aims at extracting cross-component information from

neighbouring reconstructed samples, using an extended reference array on the left

of, and above the current block, as illustrated in Fig. 6.1. The second branch (re-

ferred to as luma convolutional branch) extracts spatial patterns over the collocated

reconstructed luma block applying convolutional operations. The features from the

two branches are fused together by means of an attention model, as detailed in the
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Figure 6.3: Proposed architecture including the attention module used to fuse the
output of the two first network branches.

rest of this section. The output of the attention model is finally fed into the third

network branch, to produce the resulting Cb and Cr predictions.

An illustration of the proposed network architecture is presented in Fig. 6.3.

Without loss of generality, only square blocks of pixels are considered in this work.

After intra-prediction and reconstruction of a luma block in the video compression

chain, luma samples can be used for prediction of co-located chroma components. In

this discussion, the size of a luma block is assumed to be (downsampled to) N ×N

samples, which is the size of the co-located chroma block. This may require the

usage of conventional downsampling operations, such as in the case of using chroma

sub-sampled picture formats such as 4:2:0. Note that a video coding standard treats

all image samples as unsigned integer values within a certain precision range based

on the internal bit depth. However, in order to utilise common deep learning frame-

works, all samples are converted to floating point and normalised to values within the

range [0, 1]. For the chroma prediction process, the reference samples used include

the co-located luma block X0 ∈ IRN×N , and the array of reference samples Bc ∈ IRb,

b = 4N+1 from the left and from above the current block (Figure 6.1), where c = Y ,

Cb or Cr refers to the three colour components. B is constructed from samples on

the left boundary (starting from the bottom-most sample), then the corner is added,

and finally the samples on top are added (starting from the left-most sample). In

case some reference samples are not available, these are padded using a predefined

value, following the standard approach defined in VVC. Finally, S0 ∈ IR3×b is the

cross-component volume obtained by concatenating the three reference arrays BY ,

BCb and BCr.
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6.4.1 Cross-component boundary branch

The first branch (referred to as the cross-component boundary branch) extracts cross

component features from S0 ∈ IR3×b by applying I consecutive Di - dimensional

1 × 1 convolutional layers to obtain the Si ∈ IRDi×b output feature maps, where

i = 1, 2 . . . I. By applying 1 × 1 convolutions, the boundary input dimensions are

preserved, resulting in an Di-dimensional vector of cross-component information

for each boundary location. The resulting volumes are activated using a Rectified

Linear Unit (ReLU) non-linear function. Si can be expressed in a neural network

form as:

Si (Si−1,Wi) = F
(
WiS

T
i−1 + bi

)
, (6.1)

where Wi ∈ IRDi×Di−1 and bi are the i-layer weights and bias respectively, D0 = 3,

and F is a ReLU activation function.

6.4.2 Luma convolutional branch

In parallel with the extraction of the cross component features, the second branch

(referred to as the luma convolutional branch) extracts spatial patterns over the

co-located reconstructed luma block X0 by applying convolutional operations. The

luma convolutional branch is defined by J consecutive Cj-dimensional 3 × 3 con-

volutional layers with a stride of 1, to obtain Xj ∈ IRCj×N2

feature maps from the

N2 input samples, where j = 1, 2 . . . J . Similar to the cross-component boundary

branch, in this branch a bias and a ReLU activation are applied within convolutional

layer. Xj is expressed as:

Xj (Xj−1,Wj) = F (Wj ∗Xj−1 + bj) , (6.2)

where Wj ∈ IRDj×Dj−1 and bj are the j-layer weights and bias, respectively, and X0

is the input luma block.

6.4.3 Attention-based fusion module

The concept of ”attention-based” learning is a well-known idea used in deep learning

frameworks, to improve the performance of trained networks in complex prediction

tasks. The idea behind attention models is to reduce complex tasks by predicting

smaller ”areas of attention” that are processed sequentially in order to encourage

more efficient learning. In particular, self-attention (or intra-attention) is used to

assess the impact of particular input variables on the outputs, whereby the prediction

is computed focusing on the most relevant elements of the same sequence [34, 86].

Extending this concept to chroma intra-prediction, this work combines the features
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from the two aforementioned network branches in order to assess the impact of

each input variable with respect to their spatial locations. This addresses previous

limitations of similar cross-component prediction techniques, which generally discard

the spatial relation of the neighbouring reference and the predicted samples. The

feature maps (SI and XJ) from both branches are each convolved using a 1 × 1

kernel, to project them into two corresponding reduced feature spaces. Specifically,

SI is convolved with a filter WF ∈ IRh×D to obtain the h-dimensional feature matrix

F . Similarly, XJ is convolved with a filter WG ∈ IRh×C to obtain the h-dimensional

feature matrix G. The two matrices are multiplied together to obtain the pre-

attention map M = GTF . Finally, the attention matrix A ∈ IRN2×b is obtained

applying a softmax operation to each element of M , to generate the probability of

each boundary location being able to predict a sample location in the block. Each

value αj,i in A is obtained as:

αj,i =
exp (mi,j/T )∑b−1

n=0 exp (mn,j/T )
, (6.3)

where j = 0, ..., N2 − 1 represents the sample location in the predicted block, i =

0, ..., b− 1 represents a reference sample location, and T is the softmax temperature

parameter controlling the smoothness of the generated probabilities, with 0 < T ≤ 1.

Notice that the smaller the value of T , the more localised are the obtained attention

areas resulting in correspondingly fewer boundary samples contributing to a given

prediction location.

The weighted sum of the contribution of each reference sample in predicting a

given sample at a specific location is obtained by computing the matrix multiplica-

tion between the cross-component boundary features SI and the attention matrix A,

or formally ST
I A. In order to further refine ST

I A, this weighted sum can be multiplied

by the output of the luma branch. To do so, the output of the luma branch must be

transformed to change its dimensions by means of a 1×1 convolution using a matrix

Wx̄ ∈ IRD×C to obtain a transformed representation X̄, then O = X̄⊙ (ST
I A), where

⊙ is the element-wise product.

6.4.4 Prediction head branch

The output of the attention model is fed into the third network branch, to compute

the predicted chroma samples. In this branch, a final CNN is used to map the

fused features from the first two branches are combined by means of the attention

model into the final chroma prediction. The prediction head branch is defined by

two convolutional layers, applying E-dimensional 3×3 convolutional filters and then

2-dimensional 1× 1 filters for deriving the two chroma components at once.
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Figure 6.4: Attention visualisation when predicting a block for different tempera-
ture T values. Notice the increasing attention sparsity when T decreases. Axes y
represents the N2 block locations and axes y the B positions.

6.5 Experiments

6.5.1 Training settings

Training examples were extracted from the DIV2K dataset [125], which contains

high-definition high-resolution content of large diversity. This database contains 800

training samples and 100 samples for validation, providing 6 lower resolution versions

with downsampling by factors of 2, 3 and 4 with a bilinear and unknown filters. For

each data instance, one resolution was randomly selected and then M blocks of each

N × N sizes (N = 4, 8, 16) were chosen, making balanced sets between block sizes

and uniformed spatial selections within each image. Moreover, 4:2:0 chroma sub-

sampling is assumed, where the same downsampling filters implemented in VVC are

used to downsample co-located luma blocks to the size of the corresponding chroma

block. All the schemes were trained from scratch using the Adam optimiser [96]

with a learning rate of 10−4.

6.5.2 Integration into VVC

The methods introduced in the paper where integrated within a VVC encoder, using

the VVC Test Model (VTM) 7.0 [126]. The integration of the proposed NN-based

cross-component prediction into the VVC coding scheme requires normative changes

not only in the prediction process, but also in the way the chroma intra-prediction

mode is signalled in the bitstream and parsed by the decoder.

A new block-level syntax flag is introduced to indicate whether a given block

makes use of one of the proposed schemes. If the proposed NN-based method is used,
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a prediction is computed for the two chroma components. No additional information

is signalled related to the chroma intra-prediction mode for the block. Conversely,

if the method is not used, the encoder proceeds in signalling the chroma intra-

prediction mode as in conventional VVC specifications. For instance, a subsequent

flag is signalled to identify if conventional LM modes are used in the current block or

not. The prediction path also needs to accommodate the new NN-based predictions.

This largely reuses prediction blocks that are needed to perform conventional CCLM

modes. In terms of mode selection at the encoder side, the new NN-based mode is

added to the conventional list of modes to be tested in full rate-distortion sense.

Table 6.1: Model hyperparameters per block size

Branch 4× 4 8× 8 16× 16

CC Boundary 16, 32 32, 64 64, 96
Luma Conv 32, 32 64, 64 96, 96

Attention 16, 16, 32 16, 16, 64 16, 16, 96
Output 32, 2 64, 2 96, 2

6.5.3 Results

The proposed methodology is tested under the Common Test Conditions (CTC)

[127], using the suggested all-intra configuration for VVC with a QP of 22, 27, 32

and 37. BD-rate is adopted to evaluate the relative compression efficiency with re-

spect to the latest VVC anchor. Besides, a joint cross-component metric (YCbCr)

[124] is considered to evaluate the influence of the chroma gains when signalling the

luma component. Test sequences include 26 video sequences of different resolutions

known as Classes A, B, C, D and E. Due to the nature of the training set, only

natural content sequences were considered, and screen content sequences (Class F

in the CTC) were excluded from the tests. It is worth mentioning that in these

tests, all block sizes were allowed to be used by the VVC encoder, including all

rectangular shapes as well as larger blocks that are not supported by the proposed

method. As such, the algorithm potential is highly limited, given that it is only

applied to a limited range of blocks. Nonetheless, the algorithm is capable of pro-

viding consistent compression gains. The overall results are summarised in Table

6.2, showing average BD-rate reductions of 0.14% 0.69%, and 0.52% for Y, Cb and

Cr components respectively, and an average joint YCbCr BD-rate (calculated as in

[128]) reduction of 0.20%.

Moreover, in order to further evaluate performance of the scheme, a constrained

test is also performed whereby the VVC partitioning process is limited to using only

the supported square blocks of 4×4, 8×8 and 16×16 sizes. A corresponding anchor
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Table 6.2: BD-rate results anchoring to VTM-7.0

Y Cb Cr YCbCr
Class A1 -0.18% -0.84% -0.58% -0.23%
Class A2 -0.13% -0.57% -0.38% -0.19%
Class B -0.15% -0.65% -0.67% -0.21%
Class C -0.17% -0.63% -0.41% -0.22%
Class D -0.17% -0.63% -0.61% -0.21%
Class E -0.08% -0.80% -0.47% -0.16%
Overall -0.15% -0.68% -0.53% -0.20%

Table 6.3: BD-rate results for constrained test

Y Cb Cr YCbCr
Class A1 -0.26% -2.17% -1.96% -0.53%
Class A2 -0.22% -2.37% -1.64% -0.50%
Class B -0.23% -2.00% -2.17% -0.45%
Class C -0.26% -1.64% -1.41% -0.44%
Class D -0.25% -1.55% -1.67% -0.42%
Class E -0.03% -1.35% -1.77% -0.24%
Overall -0.22% -1.84% -1.78% -0.43%

was generated for this test. Table 6.3 summarises the results for the constrained

test, showing a considerable improvement over the constrained VVC anchor. Aver-

age BD-rate reductions of 0.22%, 1.84% and 1.78% are reported for the Y, Cb and

Cr components respectively, as well as an average joint YCbCr reduction of 0.43%.

In terms of complexity, even though several simplifications were considered during

the integration process, the proposed solution significantly impacts the encoder and

decoder time up to 120% and 947% on average, respectively. Future simplifications

have to be adopted in order to increase computational efficiency of the scheme.

Finally, the trained models were compared with the state-of-the-art hybrid architec-

ture [119] with the aim to evaluate the influence of the proposed attention module.

Table 6.4 summarises the results for prediction accuracy along DIV2K test set by

means of averaged PSNR. Significant improvements in PSNR are reported on all

block sizes.

6.6 Future work

As future work, a complete set of network models for all VVC block sizes should be

implemented in order to ensure a full usage of the proposed approach leading to the

promising results shown in the constrained experiment. Moreover, as described in

Chapter 7, interpretability is required to deeply understand how the models obtains

their predictions with the aim to promote simplifications towards a cost-effective
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Table 6.4: Prediction performance evaluation (PSNR)

Model 4x4 8x8 16x16
Hybrid CNN [119] 28.61 31.47 33.36

Ours 30.23 33.13 36.13

implementation.

6.7 Conclusions

In this chapter existing approaches for chroma intra-prediction based on neural net-

works were improved, introducing a new attention module which is capable of learn-

ing spatial relations when extracting the correlational features from the neighbouring

reference samples to the block prediction samples. The proposed architecture was

integrated into the latest VVC anchor, signalled as a new chroma intra-prediction

mode working in parallel with traditional modes towards predicting the chroma

component samples. Experimental results show the effectiveness of the proposed

method, achieving remarkable compression efficiency.
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Chapter 7

Multi-model architectures and

simplifications

7.1 Chapter overview

This chapter proposes a block-independent multi-model and training methodology

that reduces the complexity of the proposed attention-based neural network in Chap-

ter 6 whilst remaining competitive with state-of-the-art approaches. Proposed sim-

plifications include a framework to reduce the complexity of the convolutional op-

erations, a simplified cross-component processing model using sparse autoencoders

and a fast and cost-effective implementation using integer precision approximations.

The experiments and results described in this chapter were published in the IEEE

Journal of Selected Topics in Signal Processing (Volume: 15, Issue: 2, Feb. 2021)

[129]. Moreover, the interpretability rationale behind the simplified convolutions

has been published in the International Broadcasting Convention, 2020 [130]. This

chapter is organised as follows: Section 7.3 provides a brief overview on the related

work, Section 7.4 presents the proposed simplifications and Section 7.5 shows ex-

perimental results while Section 7.6 identifies future work and Section 7.7 provides

conclusions.

7.2 Introduction

Advanced video compression algorithms are often complex and computationally in-

tense, significantly increasing the encoding and decoding time. Therefore, despite

bringing high coding gains, their potential for application in practice is limited.

Methods based on Convolutional Neural Networks (CNNs) [119, 6] provided signif-

icant improvements at the cost of two main drawbacks: the associated increase in

system complexity and the tendency to disregard the location of individual refer-
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ence samples. Related works deployed complex neural networks (NNs) by means

of model-based interpretability [131]. For instance, VVC recently adopted simpli-

fied NN-based methods such as Matrix Intra Prediction (MIP) modes [132] and

Low-Frequency Non Separable Transform (LFNST) [133]. For the particular task

of block-based intra-prediction, the usage of complex NN models can be counter-

productive if there is no control over the relative position of the reference samples.

When using fully-connected layers, all input samples contribute to all output posi-

tions, and after the consecutive application of several hidden layers, the location of

each input sample is lost. This behaviour clearly runs counter to the design of tra-

ditional approaches, in which predefined directional modes carefully specify which

boundary locations contribute to each prediction position.

A novel ML-based cross-component intra-prediction method is proposed in Chap-

ter 6 (also referred as [6] in the rest of this chapter), introducing a new attention

module capable of tracking the contribution of each neighbouring reference sample

when computing the prediction of each chroma pixel. As a result, the proposed

scheme better captures the relationship between the luma and chroma components,

resulting in more accurate prediction samples. However, such NN-based methods

significantly increase the codec complexity, increasing the encoder and decoder times

by up to 120% and 947%, respectively.

This chapter focuses on complexity reduction in video coding with the aim to

derive a set of simplified and cost-effective attention-based architectures for chroma

intra-prediction. Understanding and distilling knowledge from the networks enables

the implementation of less complex algorithms which achieve similar performance

to the original models. Moreover, a novel training methodology is proposed in

order to design a block-independent multi-model which outperforms the state-of-

the-art attention-based architectures and reduces inference complexity. The use of

variable block sizes during training helps the model to better generalise on content

variety while ensuring higher precision on predicting large chroma blocks. The main

contributions of this chapter are the following:

• A competitive block-independent attention-based multi-model and training

methodology;

• A framework for complexity reduction of the convolutional operations;

• A simplified cross-component processing model using sparse auto-encoders;

• A fast and cost-effective attention-based multi-model with integer precision

approximations.
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7.3 Related work

A novel hybrid neural network for chroma intra prediction was recently introduced

in [119]. A first CNN was designed to extract features from reconstructed luma

samples. This was combined with another fully-connected network used to extract

cross-component correlations between neighbouring luma and chroma samples. The

resulting architecture uses complex non-linear mapping for end-to-end prediction of

chroma channels. However, this is achieved at the cost of disregarding the spatial

location of the boundary reference samples and significant increase of the complexity

of the prediction process. As shown in [6], after a consecutive application of fully-

connected layers in [119], the location of each input boundary reference sample is

lost. Therefore, the fully-convolutional architecture in [6] better matches the design

of the directional VVC modes and is able to provide significantly better performance.

The use of attention models enables effective utilisation of the individual spatial

location of the reference samples [6]. The concept of “attention-based” learning is

a well-known idea used in deep learning frameworks, to improve the performance

of trained networks in complex prediction tasks [29, 86, 87]. In particular, self-

attention is used to assess the impact of particular input variables on the outputs,

whereby the prediction is computed focusing on the most relevant elements of the

same sequence [34]. The novel attention-based architecture introduced in [6] reports

average BD-rate reductions of -0.22%, -1.84% and -1.78% for the Y, Cb and Cr

components, respectively, although it significantly impacts the encoder and decoder

time.

One common aspect across all related work is that whilst the result is an im-

provement in compression this comes at the expense of increased complexity of the

encoder and decoder. In order to address the complexity challenge, this chapter aims

to design a set of simplified attention-based architectures for performing chroma

intra-prediction faster and more efficiently. Recent works addressed complexity re-

duction in neural networks using methods such as channel pruning [134, 135, 136]

and quantisation [137, 138, 139]. In particular for video compression, many works

used integer arithmetic in order to efficiently implement trained neural networks on

different hardware platforms. For example, the work in [140] proposes a training

methodology to handle low precision multiplications, proving that very low preci-

sion is sufficient not just for running trained networks but also for training them.

Similarly, the work in [141] considers the problem of using variational latent-variable

models for data compression and proposes integer networks as a universal solution

of range coding as an entropy coding technique. They demonstrate that such mod-

els enable reliable cross-platform encoding and decoding of images using variational

models. Moreover, in order to ensure deterministic implementations on hardware
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platforms, they approximate non-linearities using lookup tables. Finally, an efficient

implementation of matrix-based intra prediction is proposed in [142], where a perfor-

mance analysis evaluates the challenges of deploying models with integer arithmetic

in video coding standards. Inspired by this knowledge, this paper develops a fast and

cost-effective implementation of the proposed attention-based architecture using in-

teger precision approximations. As shown Section 7.5.2, while such approximations

can significantly reduce the complexity, the associated drop of performance is still

not negligible.

7.4 Multi-model architectures

This section introduces a new multi-model architecture which improves the baseline

attention-based approach [6]. An introduction of the notation and formalities can

be found in the previous chapter, please refer at Section 6.4. The main improvement

comes from its block-size agnostic property as the proposed approach only requires

one model for all block sizes. Furthermore, a range of simplifications is proposed

with the aim to reduce the complexity of related attention-based architectures while

preserving prediction performance as much as possible. The proposed simplifications

include a framework for complexity reduction of the convolutional operations, a

simplified cross-component boundary branch using sparse autoencoders and insights

for fast and cost-effective implementations with integer precision approximations.

Figure 7.1 illustrates the proposed multi-model attention-based schemes with the

integration of the simplifications described in this section.

7.4.1 Multi-model size agnostic architecture

In order to handle variable block sizes, previous NN-based chroma intra-prediction

methods employ different architectures for blocks of different sizes. These architec-

tures differ in the dimensionality of the networks, which depend on give block size,

as a trade-off between model complexity and prediction performance [119]. Given

a network structure, the depth of the convolutional layers is the most predominant

factor when dealing with variable input sizes. This means that increasingly complex

architectures are needed for larger block sizes, in order to ensure proper generalisa-

tion for these blocks which have higher content variety. Such a factor significantly

increases requirements for inference because of the number of multiple architectures.

In order to streamline the inference process, this work proposes a novel multi-

model architecture that is independent of the input block size. Theoretically, a

convolutional filter can be applied over any input space. Therefore, the fully-

convolutional nature of the proposed architecture (1 × 1 kernels for the cross-
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Scheme 1: Multi-model architecture with simplified convolutions

Scheme 2: Scheme 1 with simplified cross-component branch

Figure 7.1: Proposed multi-model attention-based architectures with the integration
of the simplifications introduced in this paper. Notice that Scheme 1 adopts the
multi-model architecture (Section 7.4.1) applying the methodology in Section 7.4.2
to simplify the convolutional layers within the luma convolutional branch and the
prediction branch, and Scheme 2 further simplifies Scheme 1 by applying the method-
ology in Section 7.4.3 to simplify the cross-component boundary branch. More de-
tails about the model’s hyperparameters and a description of the referred schemes
can be found in Section 7.5.
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Figure 7.2: Illustration of the proposed multi-model training and inference method-
ologies. Multiple block-dependent models θN(W (t)) are used during training time.
A size-agnostic model with a single set of trained weighs W is then used during
inference.

component boundary branch and 3 × 3 kernels for the luma convolutional one)

allows the design of a size agnostic architecture. As shown in Figure 7.2, the same

task can be achieved using multiple models with different input sizes sharing the

weights, such that a unified set of filters can be used a posterior, during inference.

The given architecture must employ a number of parameters that is sufficiently large

to ensure proper performance for larger blocks, but not too large to incur overfitting

for smaller blocks.

Figure 7.3 describes the algorithmic methodology employed to train the multi-

model approach. As defined in Section 6.4, the co-located luma block X0 ∈ IRN×N

and the cross-component volume S0 ∈ IR3×b are considered as inputs to the chroma

prediction network. Furthermore, for training of a multi-model the ground-truth

is defined as Z
(N)
m , for a given input {X(N)

m , S
(N)
m }, and the set of instances from

a database of M samples or batches is defined as {X(N)
m , S

(N)
m , Z

(N)
m }, where m =

0, 1 . . .M − 1 and N ∈ {4, 8, 16} is the set of supported square block sizes N ×N

(the method can be extended to a different set of sizes). As shown in Figure 7.2,

multiple block-dependent models θN(W ) with shared weights W are updated in a

concurrent way following the order of supported block sizes. At training step t, the

individual model θN(W (t)) is updated obtaining a new set of weights W (t+1). Finally,

a single set of trained weights W is used during inference, obtaining a size-agnostic

model θ(W ). Model parameters are updated by minimising the Mean Square Error
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Require: {X(N)
m , S

(N)
m , Z

(N)
m }, m ∈ [0,M), N ∈ {4, 8, 16}

Require: θN(W (t)): N model with shared weights W (t)

Require: L(t)
reg: Objective function at training step t

1: t← 0 (initialise timestep)
2: while θt not converged do
3: for m ∈ [0,M) do
4: for N ∈ {4, 8, 16} do
5: t← t + 1
6: L(t)

reg ←MSE(Z
(N)
m , θN(X

(N)
m , S

(N)
m ;W (t−1)))

7: g(t) ← ∇WL(t)
reg (get gradients at step t)

8: W (t) ← optimiser(g(t))
9: end for
10: end for
11: end while

Figure 7.3: Training algorithm for the proposed multi-model architecture.

(MSE) regression loss Lreg, as in:

L(t)
reg =

1

C ·N2
∥Z(N)

m − θN(X(N)
m , S(N)

m ;W (t−1)∥22, (7.1)

where C = 2 refers to the number of predicted chroma components, and θN(W (t−1))

is the block-dependent model at training step t− 1.

7.4.2 Simplified convolutions

Convolutional layers are responsible for most of the network’s complexity. For in-

stance, based on the network hyperparameters from experiments in Section 7.5, the

luma convolutional branch and the prediction head branch (with 3×3 convolutional

kernels) alone contain 46, 882 out of 51, 714 parameters, which constitute more than

90% of the parameters in the entire model. Therefore, the model complexity can

be significantly reduced if convolutional layers can be simplified. This subsection

explains how a new simplified structure beneficial for practical implementation can

be devised by removing activation functions, i.e. by removing non-linearities. It

is important to stress that such process is devised only for application on carefully

selected layers, i.e. for branches where such simplification does not significantly

reduce expected performance.

Consider specific two-layer convolutional branch (e.g. luma convolutional branch

from Figure 2) formulated as:

Y = R(W2 ∗ R(W1 ∗X + b1) + b2) (7.2)

where Ci are the number of features in layer i, bi ∈ IRCi are biases, Ki × Ki are
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Figure 7.4: Visualisation of the receptive field of a 2-layer convolutional branch with
3×3 kernels. Observe that an output pixel in layer 2 is computed by applying a 3×3
kernel over a field F1 of 3× 3 samples from the first layer’s output space. Similarly,
each of the F1 values are computed by means of another 3 × 3 kernel looking at a
field F0 of 5× 5 samples over the input.

square convolutional kernel sizes, W1 ∈ IRK2
1×C0×C1 and W2 ∈ IRK2

2×C1×C2 are the

weights and bias of the first (i = 1) and the second (i = 2) layers, respectively,

C0 the dimensions of the input feature map, R is a Rectified Linear Unit (ReLU)

non-linear activation function and ∗ denotes convolution operation. Input to the

branch is X ∈ IRN2×C0 and the result is a volume of features Y ∈ IRN2×C2 , which

correspond to X0 and X2, respectively. Removing non-linearities, the given branch

can be simplified as:

Ŷ = W2 ∗ (W1 ∗X + b1) + b2, (7.3)

where it can be observed that a new convolution and bias terms can be defined using

trained parameters from the two initial layers, to form a new single layer:

Ŷ = Wc ∗X + bc, (7.4)

where Wc ∈ IR[K̂2×C0]×C2 is the function of W1 and W2 with K̂ = K1 + K2 − 1,

and bc is a constant vector derived from W2, b1 and b2. Figure 7.4 (a) illustrates

the operations performed in Eq. 7.2 for K1 = K2 = 3 and C = 1. Analysing the

receptive field of the whole branch, a pixel within the output volume Y is computed

by applying a K2 × K2 kernel over a field F1 from the first layer’s output space.
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Figure 7.5: Visualisation of the learnt colour space resulting of encoding input
YCbCr colours to the 3-dimensional hidden space of the autoencoder.

Similarly, each of the F1 values are computed by means of another K1 ×K1 kernel

looking at a field F0. Without the non-linearities, and equivalent of this process

is simplified, Figure 7.4 (b) and Eq. 7.4. Notice that K̂ = K1 + K2 − 1 equals

5 in the example in Figure 7.4. For a variety of parameters, including the values

of C0, Ci and Ki used in [6] and in this paper, this simplification of concatenated

convolutional layers allows reduction of model’s parameters at inference time, which

will be shown in Section 7.5.1.

Finally, it should be noted that we limit the removal of activation functions only

to branches which include more than one layer, from which at least one layer has

Ki > 1, and only the activation functions between layers in the same branch are

removed (to be able to merge them as in Equation 7.4). In such branches with

at least one Ki > 1 the number of parameters is typically very high, while the

removal of non-linearities typically does not impact prediction performance. Acti-

vation functions are not removed from the remaining layers. It should be noted that

in the attention module and at the intersections of various branches the activation

functions are critical and therefore are left unchanged. Section 7.5.1 performs an

ablation test to evaluate the effect of removing the non-linearities, and a test to eval-

uate how would a convolutional branch directly trained with large-support kernels

K̂ perform.

7.4.3 Simplified cross-component boundary branch

In the baseline model, the cross-component boundary branch transforms the bound-

ary inputs S ∈ IR3×b into DJ -dimensional feature vectors. More specifically, after
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applying J = 2 consecutive 1 × 1 convolutional layers, the branch encodes each

boundary colour into a high dimensional feature space. It should be noted that a

colour is typically represented by 3 components, indexed within a system of coordi-

nates (referred to as the colour space). As such, a three-dimensional feature space

can be considered as the space with minimum dimensionality that is still capable of

representing colour information. Therefore, this work proposes the use of autoen-

coders (AE) to reduce the complexity of the cross-component boundary branch, by

compacting the D-dimensional feature space into a reduced, 3-dimensional space.

An AE tries to learn an approximation to the identity function h(x) ≈ x such that

the reconstructed output x̂ is as close as possible to the input x. The hidden layer

will have a reduced dimensionality with respect to the input, which also means that

the transformation process may introduce some distortion, i.e. the reconstructed

output will not be identical to the input.

An AE consists of two networks, the encoder f which maps the input to the

hidden features, and the decoder g which reconstructs the input from the hidden

features. Applying this concept, a compressed representation of the input can be

obtained by using the encoder part alone, with the goal of reducing the dimen-

sionality of the input vectors. The encoder network automatically learns how to

reduce the dimensions of the input vectors, in a similar fashion to what could be

obtained applying a manual Principal Component Analysis (PCA) transformation.

The transformation learned by the AE can be trained using the same loss function

that is used in the PCA process [143]. Figure 7.5 shows the mapping function of the

resulting colour space when applying the encoder network over the YCbCr colour

space.

Overall, the proposed simplified cross-component boundary branch consists of

two 1× 1 convolutional layers using Leaky ReLU activation functions with a slope

α = 0.2. First, a D-dimensional layer is applied over the boundary inputs S to

obtain S1 ∈ IRD×b feature maps. Then, S1 is fed to the AE’s encoder layer f with

output 3 dimensions, to obtain the hidden feature maps S2 ∈ IR3×b. Finally, a third

1 × 1 convolutional layer (corresponding to the AE decoder layer g) is applied to

generate the reconstructed maps S̃1 with D-dimensions. Notice that the decoder

layer is only necessary during the training stage to obtain the reconstructed inputs

necessary to derive the values of the loss function. Only the encoder layer is needed

when using the network, in order to transform the input feature vectors into the 3

dimensional, reduced vectors. Figure 7.1 illustrates the branch architecture and its

integration within the simplified multi-model.

Finally, in order to interpret the behaviour of the branch and to identify predic-

tion patterns, a sparsity constraint can be imposed on the loss function. Formally,
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the following can be used:

LAE =
λr

D · b
∥S1 − S̃1∥22 +

λs

3 · b
∥S2∥1, (7.5)

where the right-most term is used to keep the activation functions in the hidden

space remain inactive most of the time, and only return non-zero values for the most

descriptive samples. In order to evaluate the effect of the sparsity term, Section 7.5.1

performs an ablation test that shows its positive regularisation properties during

training.

The objective function in Equation 7.5 can be updated such that the global

multi-model loss L considers both Lreg and LAE as:

L = λregLreg + λAELAE (7.6)

where λreg and λAE control the contribution of both losses.

7.4.4 Integer precision approximation

While the training algorithm results in IEEE-754 64-bit floating point weights and

prediction buffers, an additional simplification is proposed in this paper whereby

the network weights and prediction buffers are represented using fixed-point integer

arithmetic. This is beneficial for deployment of resulting multi-models in efficient

hardware implementations, which complex operations such as Leaky ReLU and soft-

max activation functions can become serious bottlenecks. All the network weights

obtained after the training stage are therefore appropriately quantised to fit 32-bit

signed integer values. it should be noted that integer approximation introduces

quantisation errors, which may have an impact on the performance of the overall

predictions.

In order to prevent arithmetic overflows after performing multiplications or ad-

ditions, appropriate scaling factors are defined for each layer during each of the

network prediction steps. To further reduce the complexity of the integer approxi-

mation, the scaling factor Kl for a given layer l is obtained as a power of 2, namely

Kl = 2Ol , where Ol is the respective precision offset. This ensures that multipli-

cations can be performed by means of simple binary shifts. Formally, the integer

weights W̃l and biases b̃l for each layer l in the network with weights Wl and bias bl

can be obtained as:

W̃l = ⌊Wl · 2Ol⌋; b̃l = ⌊bl · 2Ol⌋. (7.7)

The offset Ol depends on the offset used on the previous layer Ol−1, as well as on

an internal offset Ox necessary to preserve as much decimal information as possible,
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compensating for the quantisation that occurred in the previous layer, namely Ol =

Ox −Ol−1.

Furthermore, in this approach the values predicted by the network are also in-

tegers. In order to avoid defining large internal offsets at each layer, namely having

large values of Ox, an additional stage of compensation is applied to the predicted

values, to keep their values in the range of 32-bit signed integer. For this purpose,

another offset Oy is defined, computed as Oy = Ox − Ol. The values generated by

layer l are then computed as:

Yl = ((W̃ T
l Xl + b̃l) + (1 << (Oy − 1))) >> Oy, (7.8)

where << and >> represent the left and right binary shifts, respectively, and the

offset (1 << (Oy − 1)) is considered to reduce the rounding error.

Complex operations requiring floating point divisions need to be approximated

to integer precision. The Leaky ReLU activation functions applied on the cross-

component boundary branch use a slope α = 0.2 which multiplies the negative

values. Such an operation can be simply approximated by defining a new activation

function Ã(x) for any input x as follows:

Ã(x) =

{
0 : x ≥ 0

26 · x >> 7 : x < 0

}
(7.9)

Conversely, the softmax operations used in the attention module are approx-

imated following a more complex methodology, similar to the one used in [144].

Consider the matrix M as defined in Equation 7.10 and a given row j in M , and

a vector mj as input to the softmax operation. First, all elements mj in a row are

subtracted by the maximum element in the row, namely:

m̂i,j = (mi,j/T −max
i

(mi,j/T )) (7.10)

where T is the temperature of the softmax operation, set to 0.5 as previously men-

tioned. The transformed elements m̂i,j range between the minimum signed integer

value and zero, because the arguments m̂i,j are obtained by subtracting the elements

in M by the maximum element in each row. To further reduce the possibility of

overflows, this range is further clipped to a minimum negative value, set to pre-

determined number Ve, so that any m̂i,j < Ve is set equal to Ve.

The elements m̂i,j are negative integer numbers within the range [Ve, 0], meaning

there is a fixed number of Ne = |Ve|+ 1 possible values they can assume. To further

simplify the process, such an exponential function is replaced by a pre-computed

look-up table containing Ne integer elements. To minimise the approximation error,
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the exponentials are scaled by a given scaling factor before being approximated to the

nearest integer and stored in the corresponding look-up table LUT-EXP . Formally,

for a given index k, where 0 ≤ k ≤ Ne − 1, the k-th integer input is obtained as

sk = Ve + k. The k-th element in the look-up table can then be computed as the

approximated, scaled exponential value for sk, or:

LUT-EXP(k) = ⌊Kee
sk⌋ (7.11)

where Ke = 2Oe is the scaling factor, chosen in a way to maximise the preservation

of the original decimal information. When using the look-up table during the pre-

diction process, given an element m̂i,j the corresponding index k can be retrieved

as: k = |Ve − m̂i,j|, to produce the numerator in the softmax function.

The integer approximation of the softmax function can then be written as:

α̂j,i =
LUT-EXP(|Ve − m̂i,j|)

D(j)
, (7.12)

where:

D(j) =
b−1∑
n=0

LUT-EXP(|Ve − m̂n,j|), (7.13)

Equation 7.12 implies performing an integer division between the numerator and

denominator. This is not ideal, and integer divisions are typically avoided in low

complexity encoder implementations. A simple solution to remove the integer di-

vision can be obtained by replacing it with a binary shift. However, a different

approach is proposed in this paper to provide a more robust approximation that

introduces smaller errors in the division. The denominator D(j) as in Equation 7.13

is obtained as the sum of b values extracted from LUT-EXP , where b is the number

of reference samples extracted from the boundary of the block. As such, the largest

blocks under consideration (16 × 16) will result in the largest possible value of ref-

erence samples bMAX . This means that the maximum value that this denominator

can assume is obtained when b = bMAX and when all input m̂i,j = 0 (which cor-

respond to LUT-EXP(|Ve|) = Ke), corresponding to Vs = bMAXKe. Similarly, the

minimum value (obtained when m̂i,j = Ve) is 0. Correspondingly, D(j), can assume

any positive integer value in the range [0, Vs].

Considering a given scaling factor Ks = 2Os , integer division by D(j) can be

approximated using a multiplication by the factor M(j) = ⌊Ks/D(j)⌋. A given

value of M(j) could be computed for all Vs + 1 possible values of D(j). Such

values can then be stored in another look-up table LUT-SUM. Clearly though, Vs

is too large which means LUT-SUM would be impractical to use due to storage

and complexity constraints. For that reason, a smaller table is used, obtained by
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quantising the possible values of D(j). A pre-defined step Q is used, resulting in

Ns = (Vs + 1)/Q quantised values of D(j). The table LUT-SUM of size Ns is then

filled accordingly, where each element in the table is obtained as:

LUT-SUM (l) = ⌊Ks/(lQ)⌋ (7.14)

Finally, when using the table during the prediction process, given an integer sum

D(j), the corresponding index l can be retrieved as: l = ⌊D(j)/Q⌋. Following from

these simplifications, given an input m̂i,j obtained as in Equation 7.10, the integer

sum D(j) obtained from Equation 7.13, and a quantisation step Q, the simplified

integer approximation of the softmax function can eventually be obtained as:

α̃j,i = LUT-EXP(|Ve − m̂i,j|) · LUT-SUM (⌊D(j)/Q⌋), (7.15)

Notice that α̃j,i values are finally scaled by Ko = Ke ·Ks.

7.5 Experiments

7.5.1 Architecture configurations

The proposed multi-model architectures and simplifications (Section 7.4) are imple-

mented in 3 different schemes:

• Scheme 1: Multi-model architecture (Section 7.4.1) applying the methodology

in Section 7.4.2 to simplify the convolutional layers within the luma convolu-

tional branch and the prediction branch, as illustrated in Figure 7.1.

• Scheme 2: The multi-model architecture in Scheme 1 applying the method-

ology in Section 7.4.3 to simplify the cross-component boundary branch. As

shown in Figure 7.1, the integration of the simplified branch requires modifi-

cation of the initial architecture with changes in the attention module and the

prediction branch.

• Scheme 3: Architecture in Scheme 1 with the integer precision approximations

described in Section 7.4.4.

In contrast to previous state-of-the-art methods, the proposed multi-model does

not need to adapt its architecture to the input block size. Notice that the fully-

convolutional architecture introduced in [6] enables this design and is able to sig-

nificantly reduce the complexity of the cross-component boundary branch in [119],

which uses size-dependent fully-connected layers. Table 7.1 shows the network hy-

perparameters of the proposed schemes during training, whereas Table 7.2 shows
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Table 7.1: Network hyperparameters during training

Branch (Cin, K ×K,Cout) Scheme 1 & 3 Scheme 2

CC Boundary
3, 1× 1, 32
32, 1× 1, 32

3, 1× 1, 32
32, 1× 1, 3

Luma Convolutional
1, 3× 3, 64
64, 3× 3, 64

1, 3× 3, 64
64, 3× 3, 64

Attention Module
32, 1× 1, 16
64, 1× 1, 16
64, 1× 1, 32

32, 1× 1, 16
64, 1× 1, 16
64, 1× 1, 3

Prediction Head
32, 3× 3, 32
32, 1× 1, 2

3, 3× 3, 3
3, 1× 1, 2

Table 7.2: Network hyperparameters during inference

Branch (Cin, K ×K,Cout) Scheme 1 & 3 Scheme 2

CC Boundary
3, 1× 1, 32
32, 1× 1, 32

3, 1× 1, 32
32, 1× 1, 3

Luma Convolutional 1, 5× 5, 64 1, 5× 5, 64

Attention Module
32, 1× 1, 16
64, 1× 1, 16
64, 1× 1, 32

32, 1× 1, 16
64, 1× 1, 16
64, 1× 1, 3

Prediction Head 32, 3× 3, 2 3, 3× 3, 2

the resulting hyperparameters for inference after applying the proposed simplifica-

tions. As shown in Tables 7.4 and 7.5, the employed number of parameters in

the proposed schemes represents the trade-off between complexity and prediction

performance, within the order of magnitude of related attention-based CNNs in [6].

The proposed simplifications significantly reduce (around 90%) the original train-

ing parameters, achieving lighter architectures for inference time. Table 7.4 show

that the inference version of Scheme 2 reduces to around 85%, 96% and 99% the

complexity of the hybrid CNN models in [119] and to around 82%, 96% and 98%

the complexity of the attention-based models in [6], for 4 × 4, 8 × 8 and 16 × 16

input block sizes, respectively. Finally, in order to provide more insights about

the computational cost and compare the proposed schemes with the state-of-the-art

methods, Table 7.3 shows the number of floating point operations (FLOPs) for each

architecture per block size. The reduction of operations (e.g. additions and matrix

multiplications) to arrive to the predictions is one the predominant factors towards

the given speedups. Notice the significant reduction of FLOPs for the proposed

inference models.

In order to obtain a preliminary evaluation of the proposed schemes and to

compare their prediction performance with the state-of-the-art methods, the trained

models were tested on the DIV2K validation set (with 100 multi-resolution images)
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Table 7.3: FLOPs per block size

Model (parameters) 4× 4 8× 8 16× 16
Hybrid CNN [119] 51465 187273 711945

Attention-based CNN [6] 42795 165451 186146
Scheme 1 & 3 (train/inference) 102859/13770

Scheme 2 (train/inference) 79103/7225

Table 7.4: Model complexity per block size

Model (parameters) 4× 4 8× 8 16× 16
Hybrid CNN [119] 24435 96116 369222

Attention-based CNN [6] 21602 83106 186146
Scheme 1 & 3 (train/inference) 51714/7074

Scheme 2 (train/inference) 39371/3710

Table 7.5: Prediction performance per block size

Model (PSNR) 4× 4 8× 8 16× 16
Hybrid CNN [119] 28.61 31.47 33.36

Attention-based CNN [6] 30.23 33.13 36.13
[6] with multi-model 30.55 33.21 36.05

Scheme 1 single layer training 30.36 33.05 35.88
Scheme 2 without sparsity 29.89 32.66 35.64

(proposed) Scheme 1 30.54 33.20 35.99
(proposed) Scheme 2 29.91 32.68 35.67
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by means of averaged PSNR. Test samples were obtained with the same methodology

as used in Section 6.5.1 for generating the training dataset. Notice that this test

uses the training version of the proposed schemes. As shown in Table 7.5, the multi-

model approach introduced in Scheme 1 improves the attention-based CNNs in [6]

for 4× 4 and 8× 8 blocks, while only a small performance drop can be observed for

16×16 blocks. However, because of using a fixed architecture for all block sizes, the

proposed multi-model architecture averages the complexity of the individual models

in [6] (Table 7.4), slightly increasing the complexity of the 4×4 model and simplifying

the 16× 16 architecture. The complexity reduction in the 16× 16 model leads to a

small drop in performance. As can be observed from Table 7.5 , the generalisation

process induced by the multi-model methodology ([6] with multi-model, compared

to [6]) can minimise such drop by distilling knowledge from the rest of block sizes,

which is especially evident for 8×8 blocks where a reduced architecture can improve

the state-of-the-art performance.

Finally, the simplifications introduced in Scheme 2 (e.g. the architecture changes

required to integrate the modified cross-component boundary branch within the

original model) lower the prediction performance of Scheme 1. However, the highly

simplified architecture is capable of outperforming the hybrid CNN models in [119],

observing training PSNR improvements of an additional 1.30, 2.21 and 2.31 dB

for 4 × 4, 8 × 8 and 16 × 16 input block sizes, respectively. The combination of

attention-based architectures with the proposed multi-model methodology (Scheme

1) considerably improves the NN-based chroma intra-prediction methods in [119],

showing training PSNR improvements by additional 1.93, 1.73 and 2.68 dB for the

supported block sizes. In Section 7.5.2 it will be shown how this relatively small

PSNR differences lead to significant differences in codec performance.

Several ablations were performed in order to evaluate the effects of the proposed

simplifications. First, the effect of the multi-model methodology is evaluated by

directly converting the models in [4] to the size-agnostic architecture in Scheme 1

but without the simplifications in Section 7.4.2 ([6] with multi-model). As can be

shown in Table 7.5, this methodology improves the 4 × 4 and 8 × 8 models, with

special emphasis in the 8×8 case where the number of parameters is smaller than in

[6]. Moreover, the removal of non-linearities in Scheme 1 does not significantly affect

the performance, with a negligible PSNR loss of around 0.3 dB ([6] with multi-model

compared with Scheme 1). Secondly, in order to evaluate the simplified convolutions

methodology in Section 7.4.2, a version of Scheme 1 was trained with single-layer

convolutional branches with large support kernels (e.g. instead of training 2 linear

layers with 3× 3 kernels and then combining them into 5× 5 kernels for inference,

training directly a single-layer branch with 5 × 5 kernels). Experimental results

show the positive effects of the proposed methodology, observing a significant drop
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of performance when a single-layer trained branch is applied (Scheme 1 with single

layer training compared with Scheme 1). Finally, the effect of the sparse autoencoder

of Scheme 2 is evaluated by removing the sparsity term in Equation 7.5. As can

be observed, the regularisation properties of the sparsity term, i.e. preventing large

activations, boosts the generalisation capabilities of the multi-model and slightly

increases the prediction performance by around 0.2 dB. (Scheme 2 without sparsity

compared with Scheme 2).

7.5.2 Simulation Results

The VVC reference software VTM-7.0 is used as our benchmark and our proposed

methodology is tested under the Common Test Conditions (CTC) [127], using the

suggested all-intra configuration for VVC with a QP of 22, 27, 32 and 37. In

order to fully evaluate the performance of the proposed multi-models, the encoder

configuration is constrained to support only square blocks of 4×4, 8×8 and 16×16

pixels. A corresponding VVC anchor was generated under these conditions. BD-rate

is adopted to evaluate the relative compression efficiency with respect to the latest

VVC anchor. Test sequences include 26 video sequences of different resolutions:

3840×2160 (Class A1 and A2), 1920×1080 (Class B), 832×480 (Class C), 416×240

(Class D), 1280 × 720 (Class E) and screen content (Class F). The “EncT” and

“DecT” are “Encoding Time” and “Decoding Time”, respectively.

A colour analysis is performed in order to evaluate the impact of the chroma

channels on the final prediction performance. As suggested in previous colour pre-

diction works [35], standard regression methods for chroma prediction may not be

effective for content with wide distributions of colours. A parametric model which is

trained to minimise the Euclidean distance between the estimations and the ground

truth commonly tends to average the colours of the training examples and hence

produce desaturated results. As shown in Figure 7.6, several CTC sequences are

analysed by computing the logarithmic histogram of both chroma components. The

width of the logarithmic histograms is compared to the compression performance in

Table 7.6. Gini index [145] is used to quantify the width of the histograms, obtained

as

Gini(H) = 1−
B−1∑
b=0

(
H(b)∑B−1

k=0 H(k)

)2

(7.16)

being H a histogram of B bins for a given chroma component. Notice that the

average value between both chroma components is used in Table 7.6. A direct cor-

relation between Gini index and coding performance can be observed in Table 7.6,

suggesting that Scheme 1 performs better for narrower colour distributions. For in-

stance, the Tango 2 sequence with a Gini index of 0.63 achieves an average Y/Cb/Cr
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Figure 7.6: Comparison of logarithmic colour histograms for different sequences.

Table 7.6: BD-Rates (%) sorted by Gini index

Sequence
Scheme 1

Gini
Y Cb Cr

Tango2 -0.46 -8.13 -3.13 0.63
MarketPlace -0.59 -2.46 -3.06 0.77

FoodMarket4 -0.16 -1.60 -1.55 0.85
DaylightRoad2 -0.09 -5.74 -1.85 0.89

Campfire -0.21 0.14 -0.88 0.98
ParkRunning3 -0.31 -0.73 -0.77 0.99
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BD-rates of -0.46%/-8.13%/-3.13%, whereas Campfire with wide colour histograms

(Gini index of 0.98), obtains average Y/Cb/Cr BD-rates of -0.21%/0.14%/-0.88%.

Although the distributions of chroma channels can be a reliable indicator of predic-

tion performance, wide colour distributions may not be the only factor in restricting

chroma prediction capabilities of proposed methods, which can be investigated in

future work.

A summary of the component-wise BD-rate results for all the proposed schemes

and the related attention-based approach in [6] is shown in Table 7.7 for all-intra

conditions. Scheme 1 achieves an average Y/Cb/Cr BD-rates of -0.25%/-2.38%/-

1.80% compared with the anchor, suggesting that the proposed multi-model size

agnostic methodology can improve the coding performance of the related attention-

based block-dependent models. Besides improving the coding performance, Scheme

1 significantly reduces the encoding (from 212% to 164%) and decoding (from 2163%

to 1302%) times demonstrating the positive effect of the inference simplification.

Finally, the proposed simplifications introduced in Scheme 2 and Scheme 3 fur-

ther reduce the encoding and decoding time at the cost of a drop in the coding

performance. In particular, the simplified cross-component boundary branch intro-

duced in Scheme 2, achieves an average Y/Cb/Cr BD-rates of -0.13%/-1.56%/-1.63%

and, compared to Scheme 1, reduces the encoding (from 164% to 146%) and decoding

(from 1302% to 665%) times. Scheme 3 has lower reduction of encoding time (154%)

than Scheme 2, but it achieves higher reduction in decoding time (665%), although

the integer approximations lowers the performance achieving average Y/Cb/Cr BD-

rates of -0.16%/-1.72%/-1.38%.

As described in Section 7.4, the simplified schemes introduced here tackle the

complexity reduction of Scheme 1 with two different methodologies. Scheme 2 pro-

poses direct modifications on the original architecture which need to be retrained

before being integrated in the prediction pipeline. Conversely, Scheme 3 directly

simplifies the final prediction process by approximating the already trained weights

from Scheme 1 with integer-precision arithmetic. Therefore, the simulation results

suggest that the methodology in Scheme 3 is better at retaining the original per-

formance since a retraining process is not required. However, the highly reduced

architecture in Scheme 2 is capable of approximating the performance of Scheme 3

and further reduce the decoder time.

Overall, the comparison results in Table 7.7 demonstrate that proposed models

offer various trade-offs between compression performance and complexity. While it

has been shown that the complexity can be significantly reduced, it is still not neg-

ligible. Challenges for future work include integerisation of the simplified scheme

(Scheme 2) while preventing the compression drop observed for Scheme 3. Re-

cent approaches, including a published one which focuses on intra prediction [142],
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Table 7.7: BD-Rate (%) for all proposed schemes and [6] under all-intra CTC

Class A1 Class A2 Class B
Y Cb Cr Y Cb Cr Y Cb Cr

Scheme 1 -0.28 -3.20 -1.85 -0.25 -3.11 -1.54 -0.26 -2.28 -2.33
Scheme 2 -0.08 -1.24 -1.26 -0.12 -1.59 -1.31 -0.15 -1.80 -2.21
Scheme 3 -0.19 -2.25 -1.56 -0.13 -2.44 -1.12 -0.16 -1.78 -2.05

Anchor + [6] -0.26 -2.17 -1.96 -0.22 -2.37 -1.64 -0.23 -2.00 -2.17

Class C Class D Class E
Y Cb Cr Y Cb Cr Y Cb Cr

Scheme 1 -0.30 -1.92 -1.57 -0.29 -1.70 -1.77 -0.13 -1.59 -1.45
Scheme 2 -0.20 -1.41 -1.62 -0.18 -1.42 -1.73 -0.08 -1.67 -1.40
Scheme 3 -0.20 -1.44 -1.29 -0.20 -1.64 -1.41 -0.07 -0.75 -0.46

Anchor + [6] -0.26 -1.64 -1.41 -0.25 -1.55 -1.67 -0.03 -1.35 -1.77

Class F Overall
EncT [%] DecT [%]

Y Cb Cr Y Cb Cr
Scheme 1 -0.25 -2.38 -1.80 -0.25 -2.38 -1.80 164 % 1302 %
Scheme 2 -0.13 -1.56 -1.63 -0.13 -1.56 -1.63 146 % 665 %
Scheme 3 -0.16 -1.72 -1.38 -0.16 -1.72 -1.38 154 % 512 %

Anchor + [6] -0.21 -1.90 -1.81 -0.21 -1.90 -1.81 212 % 2163 %

demonstrate that sophisticated integerisation approaches can help retain compres-

sion performance of originally trained models while enabling them to become signif-

icantly less complex and thus be integrated into future video coding standards.

7.6 Future work

The proposed attention-based methodology guides the fusion between the bound-

ary and current luma block information. However, the predictive ability of CNNs

is limited, and simply making the network deeper does not lead to more accurate

predictions. On the other hand, side information is useful for performance improve-

ment. In this spirit, we collaborated with Northwestern Polytechnical University

(Xi’an, China) to improve the proposed network by spatial information refinement

[146]. In particular, considering the different importance of boundary information

for the predicted chroma pixel at each location, we propose a method for fusing

reconstructed value data with the location information and finally, we use a con-

volutional layer instead of original chroma down-sampling filter to better preserve

features in the luma information.

As future work, we aim to implement a complete multi-model for all VVC

block sizes in order to ensure a full usage of the proposed approach building on

the promising results shown in the constrained test conditions. Moreover, an im-

proved approach for integer approximations may enable the fusion of all proposed
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simplifications, leading to a fast and powerful multi-model.

7.7 Conclusion

This chapter showcased the effectiveness of attention-based architectures in perform-

ing chroma intra-prediction for video coding. A novel size-agnostic multi-model and

its corresponding training methodology were proposed to reduce the inference com-

plexity of previous attention-based approaches. Moreover, the proposed multi-model

was proven to better generalise to variable input sizes, outperforming state-of-the-art

attention-based models with a fixed and much simpler architecture. Several simplifi-

cations were proposed to further reduce the complexity of the original multi-model.

First, a framework for reducing the complexity of convolutional operations was intro-

duced and was able to derive an inference model with around 90% fewer parameters

than its relative training version. Furthermore, sparse autoencoders were applied to

design a simplified cross-component processing model capable of further reducing

the coding complexity of its preceding schemes. Finally, algorithmic insights were

proposed to approximate the multi-model schemes in integer-precision arithmetic,

which could lead to fast and hardware-aware implementations of complex operations

such as softmax and Leaky ReLU activations.

The proposed schemes were integrated into the VVC anchor VTM-7.0, signalling

the prediction methodology as a new chroma intra-prediction mode working in par-

allel with traditional modes towards predicting the chroma component samples.

Experimental results show the effectiveness of the proposed methods, retaining com-

pression efficiency of previously introduced neural network models, while offering two

different directions for significantly reducing coding complexity, which translates to

reduced encoding and decoding times.
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Conclusions

The requirement of colour has played an important role in the digitalisation process

of the broadcasting industry. Colour television followed by the convergence of dig-

ital entertainment led to the replacement of deprecated analogue systems and the

development of new processing and transmission methodologies which ensure more

efficiency and flexibility, whilst maximising human perceptual plausibility. More-

over, new computer vision disciplines such as video enhancement and restoration

have gained importance with the aim to bring back to life deprecated legacy content

from digital archives. Inspired by the recent success of artificial intelligence and

convolutional neural networks in many computer vision applications, this thesis ex-

plored the integration of such technologies to improve colour processing in different

parts of the broadcasting workflow.

In the context of content production, this thesis tackles the prediction of colour

from black and white content and explores the challenges to deploy a video colouri-

sation pipeline into a realistic production and restoration workflow. In particular,

Chapter 3 studies the use of Generative Adversarial Networks to perform fully-

automatic image colourisation and identifies improved architectural features that

lead to better training stability and reduction of the well-known averaging or desat-

urated effect. In order to reduce ambiguity of automatic colourisation, Chapter 4

explores exemplar-based methods which allow the interaction of the producer into

the prediction pipeline with the aim to control the predicted outcomes by means of

colour references. An attention mechanism is proposed to compute feature analogies

from the reference image and to enable style transfer in an unsupervised way during

the prediction process. With the aim to promote a cost-effective implementation,

axial attention is adopted to reduce the overall complexity and to achieve a sim-

ple and fast architecture that is easily scalable to high resolution inputs. Finally,

Chapter 5, explores how to perform video colourisation by applying the proposed

image colourisation models frame-to-frame while coping with the associated tem-

poral inconsistencies and flickering artefacts. A temporal stabilisation framework
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is proposed using scene-aware deep video priors, which generalises the DVP base-

line [103] to complex sequences with multiple scenes. The framework includes an

optimised few-shot training to reduce the processing time of DVP by removing its

time response conditioned on the number of input frames. As a result, findings from

Chapters 3, 4 and 5 are combined to propose an easily-deployable video colourisation

prototype.

In the context of content distribution, colour prediction is a key element in most

video coding standards. In particular, within intra frame coding, chroma informa-

tion is predicted with the aim to remove correlations within local regions of the

image and the cross-component domain. The size of the bitstream can be there-

fore reduced, and better compression rates can be achieved to enable more efficient

content delivery to the broad audience. The research presented in this thesis investi-

gates the use of neural networks for improving existing chroma prediction methods,

aiming an efficient deployment within the latest video coding standards. In par-

ticular, Chapter 6 introduces a novel neural network architecture for chroma intra

prediction that integrates attention modules to control the contribution of each

neighbouring reference sample when computing the prediction of each chroma pixel

in a given block sample. The proposed scheme better captures the relationship

between the luma and chroma components, resulting in more accurate prediction

samples. However, coding efficiency and the associated encoding and decoding times

is as important as quality for modern video coding standards. Therefore, despite

the high coding gains, the potential application of neural networks in real scenar-

ios is limited. Chapter 7 focuses on complexity reduction with the aim to simplify

the proposed attention-based architecture while retaining most of the original per-

formance. Proposed simplifications include a framework to reduce the complexity

of the convolutional operations, a simplified cross-component processing model us-

ing sparse autoencoders and a fast and cost-effective implementation using integer

precision approximations.

In this chapter, Section 8.1 revisits the hypothesis described in Chapter 1, and

how the research presented in this thesis addresses the hypothesis through the re-

search questions also introduced in Chapter 1. Section 8.2 summarizes the research

contributions of this thesis. Section 8.3 elaborates on the suggestions for future

research introduced in the individual chapters of the thesis. Finally, Section 8.4

provides the closing remarks for this thesis.

8.1 Hypothesis and research questions

The hypothesis introduced in Chapter 1 is discussed in this section in light of the

research presented in the previous chapters. Each of the associated research ques-
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tions are addressed to provide more concise descriptions of the various contributions

of this thesis.

Hypothesis: AI-based colour processing techniques can be efficiently implemented

into a current digital broadcasting workflow with a significant impact on video pro-

duction and distribution.

Research question 1: Can deep learning models for video colourisation

be implemented into a production pipeline for content enhancement and

restoration? Some areas of interest include reference-based methodolo-

gies, user/producer interactivity and efficient implementations for image

and video prediction.

Although previous works attempted to solve video colourisation as an end-to-end

fully automatic task [104], most relied significantly on single frame colourisation fol-

lowed by propagation [4, 57, 56]. This is because image colourisation, compared to

video colourisation, achieves higher visual quality and naturalness. However, prop-

agation methods are usually complex and lead to amplification of errors. Chapter

5 demonstrated the effectiveness of Deep Video Prior (DVP) [103] to promote blind

temporal consistency and how well-performing image-based colourisation methods

from Chapters 3 and 4 can be efficiently applied to achieve stable video colouri-

sation. Moreover, an easily-deployable pipeline is proposed, which combines the

findings from the content production part of this thesis. The XCNET architecture,

introduced in Chapter 4, achieves efficient reference-based colourisation and enables

the involvement of the producer in the selection of colour references. Finally, ef-

ficiency is considered as an essential aspect in the design of most of the pipeline

components. For instance, XCNET architecture achieves end-to-end inference by

integrating attention modules which allow the computation of analogies with the

reference image in an unsupervised way and reduce the computation overhead of

previous methods relying on Patch Match [85] or similar nearest neighbour search.

Moreover, axial attention allows a cost-effective implementation of the attention op-

erations which facilitates scalability to high-resolution inputs. Another example is

the design of the video stabilisation framework in Chapter 5, in which a few-shot

training strategy is proposed to reduce the impact of prior learning by removing

the time response of DVP baseline conditioned on the number of input frames. The

proposed architecture is jointly trained to stabilise the input video and to cluster the

input frames with the aim of learning scene-specific modes. Experimental results

demonstrate the generalisation of DVP, obtaining improved performance in complex

sequences with small amounts of training data and fewer iterations.
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Research question 2: Which are the best practices to train a colouri-

sation generative model to ensure content generalisation, colourfulness,

temporal consistency and high resolution predictions?

Chapter 3 explores the use of conditional GANs for fully automatic image colouri-

sation and introduces techniques that improve the stability of the adversarial loss

during training, leading to better colourisation of a wide variety of images from

large multi-class datasets. Further enhancements are achieved by applying feature

normalisation techniques which are widely used in style transfer models. The ca-

pabilities of adversarial models in image colourisation are improved by adapting an

Instance-Batch Normalisation (IBN) convolutional architecture [39] to conditional

GANs. Finally, experimental results show that by boosting the performance of the

adversarial framework, reduction of the desaturation effect can be achieved due to

improvement of the discrimination of unreliable colours. Proposed techniques im-

prove colourisation performance of baseline method using conditional GANs 3, in

both perceptual realism and colourfulness. On the other hand, as shown in Chap-

ter 4, the training of XCNET needs to promote the reliable transfer of reference

colours to the target content towards obtaining a colour prediction faithful to the

reference. The XCNET training strategy combines state-of-the-art exemplar-based

metrics with fully automatic objectives (including adversarial loss), which promote

dataset priors in the case of ambiguity. Finally, as mentioned in research question 1,

both temporal consistency and high resolution scalability are derived from the cost-

effective design of the video colourisation pipeline, achieved by combining efficient

image-based colourisation techniques with generalised DVP framework to promote

blind temporal consistency.

Research question 3: Can style transfer approaches be integrated into

an end-to-end video colourisation pipeline in order to perform exemplar-

based colourisation? If so, which are the best practices to efficiently select

appropriate references?

Chapter 4 presents XCNET, a straightforward end-to-end solution for exemplar-

based image colourisation which integrates attention modules that learn how to

extract and transfer style features from the reference to the target in an unsuper-

vised way during the colourisation process. In contrast to image analogy meth-

ods based on PatchMatch, attention does not need to constrain to a specific local

search technique (even if it can act as a set of long-term deformable kernels) nor

the similarity metric (e.g. correlation loss, cosine similarity) since the module learns

it automatically. Experimental results demonstrate the efficiency of the proposed
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end-to-end solution, significantly reducing the runtime of previous exemplar-based

works based on deep analogy computation [5]. Finally Chapter 5 proposes a pipeline

for video colourisation, where the XCNET architecture can be easily integrated to

perform exemplar-based predictions. Based on the method used in Chapter 4 to

create training pairs of target-reference images, a retrieval system is integrated into

the colourisation pipeline to assist the producer to search for meaningful references

based on a similarity search on an external dataset.

Research question 4: Can chroma intra-prediction methods be improved

by means of neural networks and be efficiently implemented into existing

video coding standards?

Chapter 6 proposes a novel neural network for cross-component intra-prediction,

introducing a new attention module capable of tracking the contribution of each

neighbouring reference sample when computing the prediction of each chroma pixel.

The proposed architecture is integrated into the VVC anchor (VTM-7.0), signalled

as a new chroma intra-prediction mode working in parallel with traditional modes

towards predicting the chroma component samples. Experimental results shows the

effectiveness of the proposed architecture, reporting average BD-rate reductions of

-0.21%, -1.90% and -1.81% for the Y, Cb and Cr components, respectively, with re-

spect to the VVC anchor. Although improving coding performance, this NN-based

method significantly increases the codec complexity, reporting encoder and decoder

times of 212% and 2163%, respectively. The size-agnostic multi-model proposed

in Chapter 7 (Scheme 1), further improves the coding performance with BD-rate

reductions of -0.21%, -1.90% and -1.81% and manages to reduce the encoder and

decoder times to 164% and 1302%, respectively. Moreover, the simplifications pro-

posed in the same chapter manage to derive an inference model with around 90%

fewer parameters and hence reduce the encoder and decoder times to 154% and

512%, respectively, for Scheme 3.

Research question 5: Can deep learning models be designed and/or sim-

plified by means of explainability in order to obtain efficient and cost-

effective implementations?

Chapter 7 focuses on complexity reduction and specifically tackles the model

proposed in Chapter 6, with the aim to derive a set of simplified and cost-effective

attention-based architectures for chroma intra-prediction. Understanding and dis-

tilling knowledge from the networks enables the implementation of less complex

algorithms which achieve similar performance to the original models. The chapter
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introduces a novel framework for complexity reduction of the convolutional opera-

tions, responsible for most of the network’s complexity. For instance, simplification

of convolutions enables the development of an inference model with around 90%

fewer parameters. Moreover, a simplified cross-component boundary branch is pro-

posed under the rationale that a three-dimensional feature space can be considered

as the space with minimum dimensionality that is still capable of representing colour

information. Therefore, the chapter proposes the use of autoencoders to reduce the

complexity of the cross-component boundary branch, by compacting the original

space dimensional into a reduced 3-dimensional space. Finally, algorithmic insights

are proposed to approximate the multi-model schemes in integer-precision arith-

metic, which could lead to fast and hardware-aware implementations of complex

operations such as softmax and Leaky ReLU activations.

8.2 Research contributions and proposed solutions

The contributions of this research are collected and summarised in the following list:

• Chapter 3: Fully automatic colourisation

1. A GAN-based setting for fully automatic image colourisation, which adapts

the IBN paradigm [39] to an encoder-decoder architecture. The proposed

method enables generalisation of the content’s style changes while encour-

ages stabilisation during adversarial training.

2. The use of Spectral Normalisation (SN) [40] for improving the generali-

sation of the adversarial colourisation and preventing training instability.

3. The use of multi-scale discriminators to achieve an improved colour gen-

eration in small areas and local details and a boosted colourfulness.

• Chapter 4: Exemplar-based colourisation

1. Introduction of XCNET, a fast-end-to-end architecture for exemplar-

based image colourisation that improves existing methods while decreas-

ing significantly the complexity and runtime.

2. A multi-scale interpretation of the axial transformer for unsupervised

style transfer and features analogy, which reduce the complexity of the

attention operations.

3. A multi-loss training strategy that combines a multi-scale adversarial loss

with conventional style transfer and exemplar-based colourisation losses.

• Chapter 5: A pipeline for video colourisation
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1. A framework for temporal stabilisation of frame-to-frame colourised videos

with an optimised few-shot training strategy to learn scene-aware video

priors.

2. A CNN architecture that is jointly trained to stabilise the input video

and to cluster the input frames with the aim of learning scene-specific

modes.

3. A clustering algorithm for scene segmentation to select meaningful frames

and to generate pseudo-labels to supervise the scene-aware training.

4. An easily-deployable pipeline which integrates image-based colourisation

methods from previous chapters to enable stable exemplar-based video

colourisation.

• Chapter 6: Neural networks for chroma intra prediction

1. A novel NN-based cross-component intra-prediction method, introduc-

ing a new attention module capable of tracking the contribution of each

neighbouring reference sample when computing the prediction of each

chroma pixel.

2. Integration of the neural network into the latest VVC anchor, signalled as

a new chroma intra-prediction mode working in parallel with traditional

modes towards predicting the chroma component samples.

• Chapter 7: Multi-model architectures and simplifications

1. A competitive block-independent attention-based multi-model and train-

ing methodology.

2. A framework for complexity reduction of the convolutional operations.

3. A simplified cross-component processing model using sparse auto-encoders.

4. A fast and cost-effective attention-based multi-model with integer preci-

sion approximations.

Potential directions for future work are also identified in each of the chapters to

further push the field towards more realistic outputs and to improve the applicability

of the proposed methods in real-world challenges. Section 8.3 elaborates on those

observations.

8.3 Recommendations and future work

This subsection compiles the main research directions introduced across the thesis,

and potential opportunities for future research in these areas.
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With regards to image and video colourisation:

• Improve quality of image colourisation to gain precision on local areas and

different objects:

– Most colourisation methods tend to struggle with complex scenes with

a variety of objects and details, specially when they are trained with

datasets with constrained amount of content such as Imagenet. Most

methods tend to create colour leakage in the boundary of uncertain ob-

jects, or directly colourise such objects with averaged colours. A possible

research line might tackle this problem by adding the instance segmen-

tation task in the prediction loop, so a two-head encoder-decoder ar-

chitecture could be jointly trained to solve the colourisation task while

outputting instance segmentation maps of the input grayscale image, in

which the segmentation task can guide towards more accurate and dis-

criminative predictions.

– Perceptual improvements could be achieved by adding a feature recon-

struction loss to guide the training strategy. Such loss function could

use a pre-trained VGG-16 [51] to match perceptual similarity between

the real and generated images. Other alternatives include the use of FID

[117] as a perception metric or a hybrid perception and PSRN-oriented

training similar than the work in [16].

• Improve and generalise the XCNET architecture for exemplar-based colouri-

sation:

– The XCNET architecture can be improved by further tweaking the at-

tention module. A cost-effective solution can be investigated to improve

attention performance (keeping the axial approach or proposing a bet-

ter methodology) without increasing the overall complexity. Moreover,

further improvements could be obtained by improving the feature extrac-

tion backbone, e.g. investigate the effect of the input colour space and

possibly use a different backbone for the grayscale target and colour refer-

ences. Finally, better performance can be obtained by enabling multiple

reference inputs.

– Masked attention can be implemented to enhance discrimination of lo-

cal objects by injecting instance segmentation masks into the attention

modules.

– The XCNET architecture could be generalised to other applications and

domains aiming at unsupervised analogy computation between pairs of
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inputs. Some examples include video frame interpolation, video compres-

sion or any other reference-based approach.

• Further optimisation of the blind temporal stabilisation framework:

– Although the few-shot training strategy significantly reduces training run-

time of the DVP baseline, the model still needs a few minute processing

to yield the stabilised version. Model efficiency could be further improved

by simplifying the network architecture or by using techniques such as

pruning or weights quantisation. Moreover, a possible research line might

consider fine-tuning priors from a generic model or checkpoint from pre-

vious scene to reduce the training overhead.

– Finer tuning of colourisation could be achieved by improving the scene

segmentation process in order to obtain more precise scene priors.

– Consider processing video data instead of individual frames in order to

generalise deep video prior paradigm into a unified and more efficient

framework.

Finally, with regards to video compression and explainability:

• Improve attention-based architecture by enhancing performance while reduc-

ing model complexity:

– The proposed attention-based methodology guides the fusion between the

boundary and current luma block information. However, the predictive

ability of CNNs is limited, and simply making the network deeper does

not lead to more accurate predictions. Extending the side information

and the methodology to measure the level of importance of each reference

sample could boost the model performance towards more complex and

uncertain situations and allow a reduction of overall complexity, specially

in the convolutional branches.

– Extension of the multi-model strategy for all VVC supported block sizes,

including non-square blocks, could be investigated in order to ensure full

usage of the proposed approach building on the promising results shown

in the constrained test conditions.

• Further simplifications to approach acceptable codec complexity in future cod-

ing standards:

– Investigate new linearisation methodologies to further reduce the process-

ing steps of the inference model, such as concatenation, multiplication or
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fusion of multiple branches. Exploring distillation techniques could also

be a promising research line.

– An improved approach for integer approximations may enable the fusion

of all proposed simplifications, leading to a fast and powerful multi-model.

8.4 Closing remarks

The broadcasting industry has been in constant evolution since the beginning of

the digital era. New technologies have emerged to adapt to the increasing diversity

of multimedia devices in which new forms of content are captured and reproduced.

Artificial Intelligence is becoming a key player in the process providing improve-

ments while automating many stages of the production and distribution workflows.

However, the rapid advances in the field makes the shift from research to real world

scenarios a complicated task. As seen in this thesis, research usually prioritises per-

formance over efficiency, assuming powerful computational resources are available at

the application side. However, this does not always happen, for instance, as shown

in Chapter 7, fields such as video coding demand low complex models to be deployed

in hardware-aware implementations.

This thesis targets practical applications for improving colour processing in con-

tent production and distribution scenarios. Efficiency is considered as a key aspect

in the design of the proposed algorithms, and easily-deployable models are intended.

Nevertheless, regarding content production research, further work needs to be done

to upgrade current methods to real production requirements. For example, scal-

ability to high-definition content, compatibility to editing video formats, variable

colour spaces or support to high dynamic range. Finally, although this thesis tar-

gets colour processing technologies, some research findings can be generalised to

other computer vision disciplines. An example is the attention mechanism used in

XCNET to compute unsupervised analogies between pairs of inputs, which can be

applied for instance to video frame interpolation, video compression or any other

reference-based applications. Other examples are the proposed simplifications in

Chapter 7, such as the linearisation of convolutional operations or integer precision

approximations, applicable to other research scenarios which demand cost-effective

implementations. Therefore, similar methodologies can extend colour processing to

other AI-based video enhancement and distribution problems enabling new applica-

tion scenarios in the digital broadcasting workflow and beyond.
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