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Abstract. There are many computer vision applications including ob-
ject segmentation, classification, object detection, and reconstruction for
which machine learning (ML) shows state-of-the-art performance. Nowa-
days, we can build ML tools for such applications with real-world accu-
racy. However, each tool works well within the domain in which it has
been trained and developed. Often, when we train a model on a dataset in
one specific domain and test on another unseen domain known as an out
of distribution (OOD) dataset, models or ML tools show a decrease in
performance. For instance, when we train a simple classifier on real-world
images and apply that model on the same classes but with a different
domain like cartoons, paintings or sketches then the performance of ML
tools disappoints. This presents serious challenges of domain generalisa-
tion (DG), domain adaptation (DA), and domain shifting. To enhance
the power of ML tools, we can rebuild and retrain models from scratch
or we can perform transfer learning. In this paper, we present a com-
parison study between vision-based technologies for domain-specific and
domain-generalised methods. In this research we highlight that simple
convolutional neural network (CNN) based deep learning methods per-
form poorly when they have to tackle domain shifting. Experiments are
conducted on two popular vision-based benchmarks, PACS and Office-
Home. We introduce an implementation pipeline for domain generalisa-
tion methods and conventional deep learning models. The outcome con-
firms that CNN-based deep learning models show poor generalisation
compare to other extensive methods.

Keywords: Vision Machine Learning, Domain Generalisation, Domain
Adaptation, Domain Shifting, Domain Specific Learning

1 Introduction

The field of machine learning (ML) has created tremendous success stories by
solving many complex problems like object classification, detection, segmenta-
tion and reconstruction in videos, natural language processing (NLP), medical
image analysis, robotics, and many more. These developments in ML algorithms
and databases, and the fusion of various fields of ML help researchers achieve
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high-level goals. The majority of current applications are built on what we call
traditional ML where we usually have millions of example datapoints with labels
to train a model under supervised learning (SL).

Since 2011, with the help of deep learning (DL) which is a sub-domain of ML
that deals with various datasets to automatically extract features, scientists are
now using DL to handle various supervised and unsupervised learning problems
as described in [1]. Pure DL-based models are static systems, and have many
problems including overfitting, they commonly need huge datasets, have data
biases, and they do not have significant potential for generalisation and domain
adaptation [2].

Previous works illustrate that the majority of the time ML tools fail to gen-
eralise when processing out of distribution (OOD) data. The main reasons for
wanting to design and analyse such generalised tools are applications like vision
based autonomous systems, and medical imaging [2]. For example, when only a
few conditions change during an inference process in image processing such as
light variations, shapes, locations, or the pose of objects, then models perform
poorly because they did not have interaction with similar variations during their
training and thus did not learn how to perform under such unpredictable cir-
cumstances [3–5]. The work in [6] conveys information about the collapse of ML
tools for generalisation of OOD data which actually happens when ML models
learn fake correlations instead of capturing real factors behind such variations
in data. These fake correlations can be racial biases, texture statics, and object
backgrounds.

In the research literature, researchers have developed many methods to tackle
domain generalisation. For instance, one of the first solutions that was tried is
about increasing the size of the training dataset with the same tasks but in
different environments. The goal of the domain generalisation algorithm is to
learn the invariances and features for all possible domain shifts.

Before we go to the contributions this article, it is important to understand
the difference between domain generalisation and domain adaptation. When al-
gorithms process samples of data from different distributions, ML algorithms
suffer from a common problem called the domain shift. This introduces two
further major issues namely domain generalisation (DG) and domain adaption
(DA). DG deals with the comparatively hard situations where several different
but related domains are given, and the purpose of a machine learning algorithm
is to learn a model which could be generalised on unseen test data. The main
goal of DG is learning a representation of its training data that could have the
potential to perform well in unseen domains by leveraging more source domains
during training.

The idea behind DA is different to DG in that it is to maximise the perfor-
mance of algorithms or models on a given target domain using existing training
source domains. The main difference between DA and DG is that DA has access
to the target domain data which implies that it can see the data while DG can-
not see anything from the target domain during training. This makes DG more
challenging than DA but more realistic and more favourable in practical appli-
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cations. There are many generalisation-related research topics or solutions such
as domain adaptation, meta-learning, transfer learning, covariate shift, lifelong
learning, and zero-shot learning.

This article addresses a direct comparison study between domain-specific
and domain generalised methods with respect to vision-based applications, es-
pecially classification. To achieve our goal, we have implemented a pipeline with
9 well-known domain generalised algorithms and 7 domain-specific models. The
comparison study is conducted on two popular benchmarks namely PACS and
Office-Home, from which some sample images are shown in Figure 1. We also
trained and tested 16 models by using fine-tuning. Our research shows the learn-
ing curves of methods for both benchmarks. The result section considers accuracy
as a measure of generalisation for supervised learning benchmarks.
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Fig. 1. Sample images of the same classes across all domains in the PACS and Home-
Office datasets.
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The rest of article is structured as follows: section 2 covers some related
work. Section 3 introduces brief details about the algorithms we use. Section
4 is about the study of benchmarks. Section 5 describes our proposed method
including the experiments and formulation of DG. Results and discussion are
presented in Section 6 while Section 7 presents conclusions and future work.

2 Related Work

To handle domain generalisation, few methods have been proposed to select
hyperparameters so that a model can maximise the performance for OOD [8].
The parameters update with the rest to a function which calculates relatedness
between the different domains. Similarly, in [9] the authors illustrate ways to
select models based on an algorithm-specific regularisation. These previous arti-
cles worked for a specific kind of problem only, although the scope for this article
is to analyse vision-based domain generalisation for various up-to-date methods.

In the literature we find that domain generalisation has many available algo-
rithms which can be classified into data manipulation, representation learning
and strategy learning algorithms [7]. One piece of information which we can
extract from [7] on data generation and adversarial training is also a kind of
common way to optimise ML tools for OOD. In this regard, the well known
ImagNet challenge [10] also updated for different kinds of OOD where authors
created new benchmarks and then tried to solve them with new approaches [11–
13]. Nevertheless, these methods did not consider solving domain generalisation
in vision-based applications with the most up-to-date approaches as explained in
Domainbed [6]. Furthermore, [11–13] have variations in ImageNet challenge to
solve domain generalisation paradigm even though they tried few domain specific
methods, on other hand, totally missing out domain generalisation frameworks.
Table 1 provides a clear picture in this regard.

The most related state-of-the-art research papers are [6] and [7]. In [6], the
authors implemented a framework named Domainbed which has support for
various domain generalised methods to analyse vision-based domain generalisa-
tion. Moreover, Domainbed has variety in model selection, training schemes and
hyper parameters using Resnet as backbone model for domain generalisation
frameworks. The anaylsis provided by authors in those papers were insightful.
However, [6] does not has information about domain specific methods and does
not provide training and inference analysis for domain specific models.

Similarly, [7] also conducted the same kind of study but improve the limita-
tions of Domainbed in implementation and coding flexibility. However, neither
of these works discussed the effect or performance of traditional deep learning
methods for OOD generalisation which is also the scope of our research. In this
paper, we perform an analysis of typical deep learning methods and then com-
pare their performance with domain generalised methods. Therefore, table 1
describes the gaps in other works and improvements in terms of contributions
for our article.
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Table 1. Comparison with previous articles for domain generalisation and domain
specific methods where ✓indicates whether an article has the details and ✗means article
is missing that point

Articles Model
Selection

Training
Framework
Selection

Multiple
Datasets

Domain Gen-
eralisation
Frameworks

Domain
Specific

Frameworks

Gulrajani
and Lopez-
Paz [6]

✓ ✓ ✓ ✓ ✗

Wang et al.
[7]

✓ ✓ ✓ ✓ ✗

Hendrycks et
al. [11]

✓ ✗ ✓ ✗ ✗

Hendrycks
and Diet-
terich [12]

✓ ✗ ✗ ✗ ✓

Hendrycks et
al. [13]

✓ ✗ ✗ ✗ ✓

Ours ✓ ✓ ✓ ✓ ✓

3 Implemented Algorithms

Our paper uses an implementation of 16 algorithms in total, including 9 domain
generalised and 7 conventional deep learning. This section briefly enumerates
each of them.

3.1 Up-to-Date Algorithms for Vision-Based Generalisation

– Empirical risk minimisation (ERM) is a simple method which actually min-
imises the total sum of all errors in the given domains [6].

– Group distributionally robust optimisation (DRO) [14] also performs ERM
but gives more focus to the domains with larger errors. We can say that it
is an extension of simple ERM.

– Inter-domain mixup (Mixup) [15, 16] uses ERM on linear interpolations of
data in domains.

– Domain adversarial neural networks (DANN) [17] explore features with dis-
tribution matching in the external domains.

– Class-conditional DANN also known as C-DANN [18], is the extension of
DANN and instead of matching features in the data distributions, it matches
conditional distributions across the domains and their respective data labels.

– Deep CORAL [19] utilises the matching between the mean and covariance
of features across the distributions.

– Maximum mean discrepancy (MMD) [20] measure the alignment of distri-
butions across all the domains and use adversarial feature learning to match
aligned distributions.
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– Invariant risk minimisation (IRM) [21] learns a linear classifier on top of
representation matching techniques.

3.2 Conventional Deep Learning Algorithms for Vision-Based
Applications

We implemented 7 well-known deep learning networks including AlexNet, VG-
GNet16, ResNet18, ResNet50, InceptionV3, DenseNet, and SqueezeNet, each
of which are covered in an overview article [22]. These networks are popular
in computer vision applications, therefore further details on them may not be
needed.

The most related state-of-the-art research papers are [6] and [7]. In [6], the
authors implemented a framework named Domainbed which has support for var-
ious domain generalised methods to analyse vision-based domain generalisation.
Similarly, [7] also conducted the same kind of study but improve the limitations
of Domainbed in implementation and coding flexibility. However, neither of these
works discussed the effect and performance of traditional deep learning methods
for OOD generalisation which is also the scope of our research. In this paper,
we will perform an analysis of typical deep learning methods and then compare
their performance with domain generalised methods.

Table 2. Benchmarks used in supervised learning

Datasets Domains Classes Samples Descriptions

Office-Caltech 4 10 2,533 Caltech, Amazon, Webcam, DSLR
Office-31 3 32 4,110 Amazon, Webcam, DSLR
PACS 4 7 9,991 Art, Cartoon, Photos, Sketches
VLCS 4 5 10,729 Caltech101, LabelMe, SUN09,

VOC2007
Office-Home 4 65 15,588 Art, Clipart, Product, Real World
Terra Incognita 4 10 24,788 Wild animal images recoded at four

different locations L100, L38, L43,
L46

Rotated MNIST 6 10 70,000 Rotated Hand written Digits
DomainNet 6 345 586,575 Clipart, Infograph, Painting,

Quickdraw, Real, Sketch

4 Benchmarks Used

To carry out experiments on domain generalisation, we consider only vision-
based benchmarks for supervised learning. We restrict this work to vision-based
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benchmarks in order to narrow the scope because if we were to work with bench-
mark datasets across multiple domains covering vision, robotics, language pro-
cessing, etc. then our results would have an overhanging question of whether
results would have had as much to do with the domains chosen.

Table 2 presents a summary of some of the open benchmarks used in the liter-
ature for evaluating supervised learning. For our initial experiments, we use two
of these, PACS and Office-Home benchmarks. In the case of reinforcement learn-
ing, RoboSuite, DMC-Remastered, DMC-GB, DCS, KitchenShift, NaturalEnvs
MuJoCo, CausalWorld, RLBench, Meta-world and many others are commonly
used benchmarks as described in [23].

Of the two benchmarks we use, one is a relatively simple dataset (PACS)
with 4 different domains including images presented as Art, Cartoon, Photos,
and Sketches. Each domain has 7 classes and there are 9,991 samples in total.
The second benchmark is Office-Home, also consisting of images. This also has 4
domains namely Art, Clipart, Product, and Real World with 65 classes in each
domain. The main idea behind choosing the first is to work on a benchmark
which could have comparatively less complex classification tasks so that we can
observe the behaviours of domain-specific and domain generic models. We select
Office-Home as a second benchmark because of the higher number of classes
(supervised tasks) which adds complexity into the tasks for each domain.

5 Experimental Methods

To investigate our research questions we create a pipeline consisting of both
types of algorithms and Figure 2 provides an overview of our approach. Figure 2
contains three blocks including selection criteria, training and analysis. In the
first block, we choose the dataset or benchmark for which we want to try the
proposed pipeline. This block also includes the model selection step in which we
identify which type of leaning method our pipeline will use, either conventional
deep learning like VGGNet, ResNet or one of the more recent vision-based do-
main generalised methods like ERM, DROP, etc. The training block is the second
block and includes data pre-processing according to selected conditions, training
and validation of models. The third block, analysis, saves the best model accord-
ing to checkpoints and early stopping. It also measures the generalisation in the
form of accuracy and loss metrics and compares the performance by computing
learning curves.

5.1 Formulation of DG and Experiments

In domain generalisation, let us assume we are given N training (source) do-
mains, Strain = {Si|i = 1, ..., N} where Si = {xi

j , y
i
j} denotes the i-th domains.

The joint distributions between each domain are different with Di
XY ̸= Dj

XY ,
N ≥ j ̸= i ≥ 1. The objective of domain generalisation is to learn a robust and
comparatively generalised predictive function f : X → Y by using N training
domains to get minimum error on an unseen test domain DX → Stest where
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Fig. 2. Overview diagram summarising our work

Stest cannot be accessed in training and Dtest
XY ̸= Di

XY . Therefore, the model’s
goal is to minimise the loss function L on Stest

min
f

E(x,y) ∈ Stest[L(f(x), y)]

where E is the expectation and y are the labels. Figure 3 presents a graphical
representation of domain generalisation.

5.2 Domain generalisation model experiments

Here we look at the model pipeline for the training and the inference domain
generalisation. The current version of our approach has been executed on two
benchmarks PACS and Office-Home and for each of these, 9 models which were
commonly used in recent literature have been used, these models being Group-
DRO, ANDMask, Mixup, MMD, DANN, CORAL, VREx, RSC, and ERM. Ex-
periments were performed using Pytorch as a backend with an Nvidia GPU RTX
3090, with 24 GB memory.

Experiments were conducted with original images from the benchmarks with-
out any additional data augmentation and in the pre-processing phase only re-



Out-of-Distribution Generalisation 9

D

Dxy
1 DXY

2 DXY
N DX………

(xj1,yj1) (xj2,yj2) (xjN,yjN) X………

Training domain Testing domain

j=1,… n1 j=1,… n2
j=1,… nN

Fig. 3. A graphical representation of domain generalisation

sizing of the images was implemented. Each model has its own set of hyperpa-
rameters but the common parameters are batch size 32, epochs 120, momentum
0.9, learning rate 0.01, weight decay 0.0005, input size (3, 224, 224), and baseline
model Resnet-18. From each source domain of each of the two datasets, PACS
and Office-Home, models utilise 80% of the data in training and validation, and
keep 20% of the data as the unseen or target domain.

5.3 Domain-specific (DL) model experiments

Our domain-specific pipeline has different settings to the domain generalisation
pipeline and it also supports the same two benchmarks as well as 7 domain-
specific models namely AlexNet, VGGNet16, ResNet18, ResNet50, InceptionV3,
DenseNet121, and SqueezeNet. In this system, we use the same Pytorch environ-
ment with the same Nvidia GPU RTX 3090, with 24 GB memory. These models
use a fine tuning technique in which pre-trained weights can be used as a feature
extractor and the last fully-connected layers could be re-initialised and trained.

For these experiments, a model does training and validation in one domain
and then performs inference in another target domain. For example, in the case
of PACS, models explore the domain of “art painting” (with 1,638 samples) in
training and in validation, and then use 20% of the target domain’s “cartoon
images” (with 410 samples). Similarly, for the Office-Home dataset, models use
the domain of “clipart” (with 3,492 samples) as the source, and then images
categorised as “real world” (with 873 samples) as the target.

During training, models do not have any access to the target domain and
initially models use only one domain as a source. The common hyperparamters
are batch size 64, epochs 120 with early stopping 20, momentum 0.9, learning
rate 0.0001, weight decay 0.0005, input size (3, 224, 224), and cross-entropy loss.
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6 Results

Table 3 presents the results for 9 domain generalisation frameworks and 7 con-
ventional deep learning or domain-specific models shown in blue font.

Table 3. Experiments with domain generalisation and domain-specific methods

PACS Office-Home

Models Validation Target Validation Target

GroupDRO 0.95 0.73 0.82 0.52
ANDMask 0.95 0.72 0.81 0.44
Mixup 0.97 0.72 0.83 0.53
MMD 0.94 0.69 0.82 0.52
DANN 0.94 0.73 0.83 0.51
CORAL 0.95 0.77 0.84 0.55
VREx 0.97 0.80 0.76 0.49
RSC 0.97 0.77 0.83 0.50
ERM 0.97 0.78 0.84 0.57

AlexNet 0.74 0.45 0.56 0.30
VGGNet16 0.80 0.47 0.50 0.23
ResNet18 0.86 0.51 0.65 0.52
ResNet50 0.89 0.57 0.70 0.62
InceptionV3 0.90 0.55 0.68 0.66
DenseNet121 0.86 0.44 0.62 0.35
SqueezeNet 0.80 0.50 0.54 0.29

In Table 3, the columns marked “Validation” and “Target” represent the ac-
curacy figures for the validation and for the unseen or target testing set respec-
tively with results presented for two different benchmarks. Well-trained models
will have adequately high validation accuracy and target accuracy always tries
to follow validation accuracy. According to various types of data distribution, a
model can have different values of validation and target accuracy but for a bal-
anced dataset, an accuracy figure close to 90% can be considered good enough
to deploy in some application domains.

Table 3 has five columns and the rows include the names of the models used
and the validation and target accuracy performance figures for both datasets.
The first 9 models belong to the domain generalisation method and the remaining
7 models in blue relate to domain-specific methods. Overall, if we examine the
PACS dataset, domain generalisation methods have clearly higher validation
and target accuracy compared to domain-specific methods and VREx shows the
best performance compared to the others. In the case of domain-specific models,
InceptionV3 performs better than the others. Similarly, for the Office-Home
dataset, both types of models have identical behaviour.
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(a)

(b)

Fig. 4. Accuracy analysis for the PACS and the Office-Home benchmarks. The length
of the curves indicate the stopping points.

In the case of domain-specific models, they perform close to the performance
levels of the domain generalisation methods for the PACS dataset but we need
to consider that during the training, they use a single domain and are tested on
another single domain and results on the remaining domains will be different.

On the other hand, the Office-Home benchmark has more complex tasks than
PACS therefore domain-specific models perform comparatively poorly. From this
we can conclude that with more variation in tasks and domains, the performance
of conventional deep learning methods is not stable and fluctuates rapidly.

Even though we try to explain domain generalisation with the help of accu-
racy matrices, there is no absolute way to measure the performance of domain
generalisation. For example, sometimes, a model can have low scores during
the training and validation but that model can still have better generalisation
because the model will be more stable towards unseen data domains.

We now present a more detailed analysis of accuracy and loss for both
benchmarks. Figure 4 represents the validation and testing accuracy across the
datasets. Figure 4(a) highlights the accuracy curves for PACS and Figure 4(b)
presents accuracy for Office-Home. The graph shows information for 7 conven-
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tional deep learning models. In Figure 4(a) Alexnet shows the lowest accuracy,
Resnet50 and InceptionV3 show the highest but almost the same accuracy level,
which is around 90% for the validation case. Moreover, in the case of test-
ing/unseen accuracy, Alexnet and VGGNet have almost the same but lowest
accuracy from among the others and Resnet50 clearly outperforms other mod-
els. From Figure 4(a), for the PACS benchmark, the key information which we
can extract is that less deep or smaller models show low accuracy relative to
larger models that give high accuracy. Therefore, we can also say that larger
models have better generalisation properties for out-of-distribution datasets.

Figure 4(b) illustrates accuracy analysis for the Office-Home benchmark
dataset and in the case of validation curves, InceptionV3 and Resnet50 show
the highest results and VGGNet performs poorly. On the other hand, if we look
at Table 3, even though Resnet50 has 70% and InceptionV3 68% validation
accuracy and based upon these numbers we can not possibly say that overall
Resnet50 has better generalisation. The reason behind this argument is again
numbers in table 3 for testing or target set which means that on the target or un-
seen domains it is InceptionV3 that has higher accuracy among all. Figure 4(b)
testing accuracy curves also contain similar trends like validations curves but
one vital piece of information which we can clearly see in it, is the gaps between
InceptionV3 and Resnet50 increased. Therefore, for Office-Home, InceptionV3
has better domain generalisation than the other models.

Figure 5(c) is the validation and testing losses for the PACS benchmark and
Alexnet performs worst in both cases and InceptionV3 perform best in both
cases. Similar to the accuracy pattern in Office-Home, Figure 5(c) also shows
increments in gaps between the losses of Resnet50 and InceptionV3. Figure 5(d)
illustrates losses for Office-Home. Likewise the accuracy analysis of Office-Home,
for the validation loss, VGGNet give high losses, Resnet50 and InceptionV3 are
close to each other but have lowest losses. On unseen data, overall VGGNet shows
relatively stable behaviour and Alexnet crosses VGGNet around 40 epochs and
becomes a higher loss-giving network. Correspondingly, Resnet50 performs well
at the start of analysis but around 35 epochs InceptionV3 crosses Resnet50 and
becomes the lowest loss-giving network. Hence, based on losses curves, Incep-
tionV3 has lower losses than other networks and it supports our above-mentioned
hypothesis that InceptionV3 has better domain generalisation ability than other
conventional models.

7 Discussion

The main purpose of this article is related to performance analysis for popular
benchmarks of domain generalisation. It also contains experiments for conven-
tional domain specific deep learning methods and recent domain generalisation
training frameworks. The results section especially Table 3, Figure 4 and Fig-
ure 5 convey the vital message that domain specific models perform poorly most
of the time if we try to explain generalisation with accuracy and loss matrices.
Moreover, this article tries to highlight another parameter using graphs in Fig-
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(c)

(d)

Fig. 5. Loss analysis of conventional models for the PACS (top) and the Office-Home
(bottom) benchmarks.

ure 4 and Figure 5 which show the gaps between validation and testing accuracy.
Higher gaps mean the target model has poor domain generalisation and lower
gaps mean comparatively higher generalisation.

Another outcome which we can extract from the findings of this article is that
even domain specific models perform less effectively when we compare them with
domain generalisation frameworks but larger models have better domain gener-
alisation. Therefore, in Table 3 ResNet50 has the best domain generalisation re-
sults for both benchmarks including PACS and Office-Home compared to other
domain specific models in blue colour. Furthermore, models having skip connec-
tion like ResNets, DenseNets are better for domain generalisation compared to
models without skip connections like AlexNet and VGGNets.

8 Conclusions and Future Plans

This paper presents important information in the form of a summary of the
performances of various vision-based machine learning tools and connects these
results with the emerging areas of domain generalisation and domain adaptation.
The two base pipelines presented help us to understand that for the PACS and
Office-Home benchmarks, domain-specific methods perform poorly.
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The work here successfully demonstrates that in the field of supervised learn-
ing, domain generalisation learning is better than domain-specific learning for
some kinds of benchmarks. Our evaluation is performed on relatively complex
benchmarks and by determining their accuracy, we try to explain generalisation.

Other ways for measuring domain generalisation have been proposed in the
literature like measuring the gap between source and target domains, which is one
of our future research directions. Furthermore, we will extend our experiments to
cover attention based vision transformers as it would be insightful to introduce
an attention mechanism for such benchmarks. Meanwhile our present results
are for benchmarks which have 4 domains, and as next steps we will increase
the number of domains by using benchmarks like DomainNet which has 345
classes. To test domain generalisation for OOD we will create our own testing
benchmark.

This article has achieved its aims partially as we were able to test the findings
for only supervised learning with vision based benchmarks. Hence, it would be
interesting to explore other areas and applications like unsupervised learning
and audio benchmarks. Besides such concerns, our work highlights important
future research directions to explore domain generalisation.
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