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Abstract 22 

The Global Cancer Statistics 2020 reported breast cancer (BC) as the most common diagnosis 23 

of cancer type. Therefore, early detection of such type of cancer would reduce the risk of death 24 

from it. Breast imaging techniques are one of the most frequently used techniques to detect the 25 

position of cancerous cells or suspicious lesions. Computer-aided diagnosis (CAD) is a particular 26 

generation of computer systems that assist experts in detecting medical image abnormalities. In 27 

the last decades, CAD has applied deep learning (DL) and machine learning approaches to perform 28 

complex medical tasks in the computer vision area and improve the ability to make decisions for 29 

doctors and radiologists. The most popular and widely used technique of image processing in CAD 30 

systems is segmentation which consists of extracting the region of interest (ROI) through various 31 

techniques. This research provides a detailed description of the main categories of segmentation 32 

procedures which are classified into three classes: supervised, unsupervised, and DL. The main 33 

aim of this work is to provide an overview of each of these techniques and discuss their pros and 34 

cons. This will help researchers better understand these techniques and assist them in choosing the 35 

appropriate method for a given use case. 36 

 37 
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 39 
 40 

1. Introduction 41 

Breast cancer (BC) is the second most usual cause of cancer death among women and 42 

common malignancy [1]–[3]. Generally, cancer is caused by gene mutation or changes to genes 43 

that control the cells' function. Consequently, cells divide uncontrollably and spread into 44 

surrounding tissues [4]. BC occurs when certain breast cells start spreading abnormally and have 45 

an effect on the inner lining of the milk ducts [5], [6]. These cells divide rapidly and continue to 46 

accumulate which leads to forming a lump or mass. Cells may spread through the lymph system 47 

(metastasize), the bloodstream, local invasion to lymph nodes or other parts of the body, commonly 48 

into bones, brain, liver, and lungs. In this case, the tumor is considered to be malignant (cancerous). 49 

Typically, these cells form a tumor which can be felt as a lump or seen on an X-ray [7], [8]. BCs’ 50 

signs include pain in the nipple, changes in the shape of the breast size, discharge of the nipple, 51 

and lymph node swelling [9], [10]. There are many kinds of BC in both invasive and non-invasive 52 

groups, such as invasive lobular carcinoma (ILC), ductal carcinoma in situ (DCIS), inflammatory 53 



breast cancer (IBC), lobular carcinoma in situ (LCIS), etc. There are 5 stages of BC ranging from 54 

0-4 [11], [12].  55 

Women with dense breasts have a higher risk of developing BC in comparison to women with 56 

less dense breasts [13]. This is because more connective tissues can be seen in dense breasts than 57 

in fatty tissue. This feature can sometimes make it difficult to see tumors in mammogram 58 

screening. Based on studies, unilateral BCs commonly occur in the left breast than in the right 59 

[14]. There are many identified BC risk factors that raise the probability of cancer including family 60 

history, obesity, alcohol use, age of menarche, etc. BC in ~70–80% is curable for those patients 61 

that are diagnosed in the early stage (non-metastatic stage) [15].  62 

In order to detect cancer and the location of the suspicious lesion in the breast (i.e., breast 63 

tumor segmentation), imaging techniques of the breast are essential. Imaging can provide different 64 

kinds of information including structure, functions, metabolism and morphology; therefore, it is 65 

one of the essential and main parts of cancer detection and clinical protocols [16], [17]. Moreover, 66 

a variety of tests can detect the spread of cancer. These tests typically are not performed unless the 67 

doctor thinks the cancer may have spread. The most common tests include a positron emission 68 

tomography (PET) scan, bone scan, chest X-ray, CT scan, MRI scan, and ultrasound. Generally, 69 

the breast imaging term refers to breast magnetic resonance tomography (MRT), sonography and 70 

mammography [4], [18], [19].  71 

Medical imaging has long been part of BC treatment and has been utilized in all procedures 72 

of cancer control from recognition and localization to therapy monitoring and post-therapeutic 73 

follow-up [20], [21]. However, there are some weaknesses in using medical imaging for BC 74 

segmentation. For example, inaccurate interpretation because of expert’s fatigue, low specificity 75 

in mammography, decreased sensitivity because of similar tissue densities, etc. Therefore, image 76 

interpretation is a time-consuming, operator-dependent and arduous task that entails doctors or 77 

certified experts [6], [22].  78 

 Imaging tools such as X-ray, magnetic resonance imaging (MRI) diagnostics, and ultrasound 79 

yield plenty of details and key information that must be carefully examined and assessed by the 80 

radiologist or other medical professional in a short time [23], [24]. The Computer-aided diagnosis 81 

(CAD) is an approach that has the potential to boost the subjectivity of conventional 82 

histopathological image analysis and help doctors in the interpretation of obtained medical images 83 

from the body [25]–[27]. In [28], researchers showed that most experienced experts can diagnose 84 



cancer with 79% precision; however, 91% accurate diagnosis is attained using CADs. 85 

Nevertheless, there are still limitations for applying automatic recognizing systems in routine 86 

clinical practice like excessive dependence on the network.  87 

The limitations of using CAD tools in the daily routine of physicians and experts have been 88 

overcome significantly with the advent of artificial intelligence (AI) and machine learning (ML) 89 

[29]–[32]. These tools have been utilized efficiently for a variety of real-life applications [197]–90 

[200]. For instance, ML techniques are able to design a fast and robust model to decrease 91 

recognition time and memory requirements. The success of deep learning (DL), ML, and AI 92 

techniques in image classification and segmentation in recent years has led to more and more 93 

scholars recognizing the potential for enhancing performance by using these techniques in the 94 

CAD system [4], [33], [34]. ML techniques in the field of AI seek to define complex relationships 95 

that characterize the processes that produce a collection of outputs from a set of empirical ones. 96 

CAD uses ML methods to interpret patient data on imaging and/or non-imaging and measures the 97 

state of the patient, which are able to help doctors and radiologists in their decision-making 98 

process. Furthermore, new researches and development projects to enhance CAD efficiency and 99 

adapt CAD for many other complex medical tasks are motivated by the performance of DL 100 

strategies in computer vision [8], [35]. 101 

In this paper, image segmentation is described as a useful part of image processing in CAD 102 

systems. In addition, the contour of BC is explained to recognize benign and malignant masses 103 

through 57 BC masses. Moreover, different categories of segmentation methods are discussed in 104 

detail as well as their advantages and disadvantages. 105 

This study has summarized the findings of more than 80 scientific research papers in the field 106 

of breast tumor segmentation from 2015- 2022 (until 1st November 2022). To find out the number 107 

of studies in the field of breast tumor segmentation through unsupervised learning, supervised 108 

learning, and DL frameworks a statistical report is provided based on the “Scopus” database. The 109 

keywords employed for searching in this database were “breast cancer” AND “name of the strategy 110 

(e.g., Decision Tree)” OR “breast tumor” AND “name of the strategy”.  111 

This study focuses on reviewing the scientific research papers that applied AI frameworks for 112 

breast cancer detection and segmentation. Abbreviations utilized in this study are referenced in 113 

Table 1. 114 

The rest of the study is organized as follows: analysis of contours of breast masses is described in 115 



Section 2. Breast tumor segmentation approaches are implied in Section 3. In Section 4, more 116 

details about Supervised models are discussed. In Section 5, more details about Unsupervised 117 

models are discussed. Next, some DL pipelines utilized in the field of breast tumor segmentation 118 

are represented in section 6. In the next step, some top databases for the breast tumor segmentation 119 

are represented in Section 7. Next, performance criteria are described in Section 8. Finally, the 120 

discussion and concluding remarks are given in Section 9. 121 

Table 1. List of the abbreviations. 122 

Description Abbreviation Description Abbreviation 

American cancer society ACS K-nearest neighbors algorithm KNN 

Artificial intelligence AI Lobular carcinoma in situ LCIS 

Artificial neural network ANN Linear discriminant analysis LDA 

Bidirectional long short-term 

memory 
Bi-LSTM Long short-term memory LSTM 

Breast cancer histopathological 

annotation and diagnosis 
BreCaHAD Learning vector quantization LVQ 

Confusion matrix CM 
Mammographic image analysis 

society 
MIAS 

Convolutional neural network CNN Multi-layer perceptron MLP 

Computer-aided diagnostic CAD Maximum marginal hyperplane MMH 

Computed tomography CT Magnetic resonance tomography MRT 

Deep belief networks DBN Magnetic resonance imaging MRI 

Deep learning DL Naive bayes classifier NBC 

Decision tree DT National cancer institute NCI 

Density-based spatial clustering DBSCAN 
OPTIMAM mammography 

image database 
OMI-DB 

Ductal carcinoma in situ DCIS Principal component analysis PCA 

Fully convolutional network FCN Partial least squares PLS 

Fuzzy C-mean FCM Particle swarm optimization PSO 

Feed-forward neural network FFNN Positron emission tomography PET 

False negative FN Random decision forest RDF 

False positive FP 
Residual cyclic unpaired 

encoder-decoder network 
RescueNet 

Gaussian mixture model GMM Random forest RF 

Gated recurrent unit GRU Reinforcement learning RL 

Generative adversarial networks GAN Recurrent neural network RNN 

Genetic algorithm GA Receiver operating characteristic ROC 

Generalized regression neural 

network 
GRNN Region of interest ROI 

Genomic data commons GDC Self-organizing maps SOM 

Gray-level co-occurrence matrix GLCM Social ski driver SSD 

Gray level run-length matrix GLRM Support vector machine SVM 

Hierarchical cluster analysis HCA The cancer genome atlas TCGA 

Hierarchical gaussian distribution HGD 
The cancer genome atlas breast 

invasive carcinoma 
TCGA-BRCA 



Description Abbreviation Description Abbreviation 

Inflammatory breast cancer IBC The cancer imaging archive TCIA 

Invasive lobular carcinoma ILC True negative TN 

Kernel support vector machine KSVM True positive TP 
  123 

2. Analysis of contours of breast masses 124 

One of the main methods to recognize benign and malignant masses is through contouring of 125 

breast masses, which is obtainable by mammography. The contour of malignant mass has 126 

spiculated contour and irregular shape, while benign mass is smooth and oval or round [36], [37]. 127 

Abnormal cases have varying textures, shapes, and dimensions of contours. Furthermore, for 128 

experienced radiologists, it is very strenuous to recognize the malignant breast mass [19], [38]. 129 

The diagnosis outcome can be given by a CAD system that incorporates pattern recognition and 130 

image processing theory to decrease the false positive (FP) and false negative (FN) rates. In the 131 

following, 57 BC masses are indicated in Fig. 1, which are taken from the screen test of the Alberta 132 

program for the early detection of BC [39]. The mammogram images in this dataset are from 20 133 

cases. The tumors were graded by the 1D ruler technique in the order of the obtained increasing 134 

fractal dimension. The high fractal dimension of malignant tumors is because they are more 135 

spiculated and ragged than benign masses [39]. 136 

 137 
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Fig. 1. Fractal investigation of contours for finding the breast masses in mammograms. 138 

3. Breast tumor segmentation approaches 139 

Segmentation of images is a technique that consists of extracting the region of interest (ROI) 140 

using an automatic or semi-automatic mechanism [40], [41]. Segmentation is the main part of 141 

image processing in CAD systems. Some image segmentation techniques are fundamentally ad 142 

hoc and vary precisely in the way they prioritize one or more of the desired properties and in the 143 

way they balance one desired property against another and compromise it [42]. The frequently 144 

employed segmentation methods can be classified into two broad classes: (1) region segmentation 145 

methods that look for areas that satisfy a given criterion of homogeneity, and (2) techniques of 146 

edge-based segmentation that search for edges between regions with distinct characteristics [41], 147 

[43]. Segmentation methods can also be divided into fine-grained classes [44], depending on the 148 

classification scheme employed: 149 

1. Automatic, semi-automatic, and manual methods. 150 

2. Region-based and Pixel-based strategies. 151 

3. Model-based segmentation (contour following, dynamic programming, feature map or 152 

multispectral approaches, etc.), manual delineation, and low-level segmentation (region 153 

growing, thresholding, etc.). 154 

4. Classical (region-based, edge-based, and thresholding approaches), neural network, fuzzy, 155 

and statistical approaches. 156 

There are various applications of segmentation in the medical field, for instance, tumor 157 

detection and segmentation, image registration, surgical planning, mass detection in 158 

mammograms, etc. [3], [45], [46]. As shown in Fig. 2, the ML-based segmentation methods can 159 

be classified into three main categories, namely unsupervised, supervised, and DL methods. 160 
 161 



 162 

Fig. 2. Segmentation methods. 163 

4.  Supervised Learning 164 

Supervised learning or supervised ML, is a beneficial technique to classify and process data 165 

using machine language and maps an input to an output [47]–[49]. Supervised learning can be 166 

grouped into two categories, classification and regression (cf. Fig. 2). 167 

Although supervised learning approaches are able to produce a data output or collect data 168 

from the prior experience, these frameworks do not have the capability of classifying any input 169 

data correctly that were not among any classes in the training data. 170 

 171 

4.1 Classification methods 172 

Classification is a supervised learning strategy that learns from the input data (labelled data) 173 

and then employs this learning to classify new findings [21], [48], [50], [51]. The classification 174 

methods focus on predicting the qualitative response through data analysis and pattern recognition 175 

[52]. As displayed in Fig. 3, this review investigates several classification-based methods 176 

published articles from 2015 to 2022 in journals of all the subject categories of Scopus. ‘Support 177 

vector machine (SVM) & BC’, ‘SVM & BC’, ‘K-nearest neighbors (KNN) algorithm & BC’, 178 

‘KNN & BC’, ‘random forest (RA) & BC’, ‘Decision Trees & BC’, ‘Bayesian Network & BC’, 179 

and ‘Naïve Bayesian & BC’ were used as keywords to search in article titles. 180 

As we can see in Fig. 3, the SVM and RF are the most popular classification method used in 181 

the last seven years.  182 



 183 

Fig. 3. Number of published papers per year using different classification methods for BC detection. 184 

Since 2015 the number of research works that are based on the SVM and RF techniques 185 

increased gradually until 2022, when the number of published papers reached over 65 papers. 186 

Moreover, the number of papers published based on decision trees increased since 2016. 187 

Additionally, it is obvious that the KNN and Bayesian networks are not popular methods for BC 188 

classification given that the number of published papers per year is less than 15 papers. In the 189 

following, each of these classification methods is introduced and their application to improve the 190 

detection, prediction and diagnosis of BC are discussed. 191 
 192 

4.1.1 Support vector machine 193 

SVM is a dividing data strategy that learns by some rules to assign labels to objects and is a 194 

promising approach for classification [53]–[56]. Due to its quick calculation time, this method has 195 

been widely used in BC detection [57]. For instance, Vijayarajeswari et al. [58]  introduced an 196 

SVM-based approach for the early detection of BC. Initially, the features extracted from 197 

mammogram images through the 2D Hough transform approach and classified based on the SVM 198 

classifier. The suggested technique indicated that SVM was an effective approach for the 199 

classification of the abnormal classes of mammograms. Wang et al. [59]  reduced the diagnosis 200 

variance via the SVM-based method. Wakankar et al. [60] also analyzed the breast thermogram 201 

for the ROI segmentation and classified images using the SVM technique. Akinnuwesi et al. [61] 202 

developed a procedure for risk assessment and diagnosis of BC named, BC-RAED. The proposed 203 



method employed Principal Component Analysis (PCA) for extracting features and SVM proposed 204 

for cancer diagnosis. Sarosa et al. [62] offered a combined Gray-level co-occurrence matrix and 205 

SVM for better diagnosis of malignant and benign tumors. Wassila et al. [63] presented an 206 

algorithm for the early detection of BC through rotating the transmitting antenna in the SVM 207 

method.  208 

SVM is capable of working well with even semi-structured and unstructured data utilizing a 209 

proper kernel function. However, the main disadvantages of the SVM method are large datasets 210 

take a long time to train, and the final model is difficult to understand and interpret individual 211 

impact, which is not suitable for large datasets and variable weights. Furthermore, in the presence 212 

of noise in the dataset, the SVM does not perform very well. 213 

4.1.2 K-nearest neighbors algorithm 214 

KNN algorithm is a non-parametric classifier and simple ML technique. The KNN strategy 215 

focuses on the similarity between the new data/samples and available samples and puts the new 216 

samples into the group that is most analogous to the existing groups [64], [65]. The KNN strategy 217 

has been used for tumor classification in the BC field. For instance, Cherif et al. [66] presented a 218 

procedure to speed up the KNN classifier and get a better BC diagnosis system based on clustering 219 

and attribute filtering. Rajaguru and Chakravarthy [67] employed KNN and Decision Tree 220 

methods to classify the BC tumor. According to the result of this study, KNN method had better 221 

performance in BC classification. Athani et al. [64] predicted and classified BC using a KNN 222 

algorithm through parallel programming to decrease the procedure time in comparison with the 223 

sequential execution form.  224 

KNN method is simple to interpret and is much faster than other frameworks that require 225 

training (such as SVM, RF, and decision tree) The main disadvantage of a KNN algorithm is that 226 

accuracy depends on the quality of the data and requires high memory to deal with the large data. 227 

 228 

4.1.3 Random forest  229 

RF is an ML technique that combines classification and regression tree. The RF strategy by 230 

creating a number of decision trees at training time tries to generate the class mode (mean/average 231 

predictor of the individual trees) and can be used for regression, classification, and other tasks 232 

[68]–[70]. Regression predicts a value from a continuous range, whereas classification predicts 233 

'belonging' to the class. The RF can be utilized for both classification and regression tasks, and the 234 



relative importance it assigns to the input features. The RF algorithm has had a major influence on 235 

medical image computing over the last few decades. Wang et al. [71] suggested a method for an 236 

accurate diagnosis system with high precision through developing RF-based rule extraction. 237 

Moreover, a multi-objective evolutionary algorithm (MOEA) was used to optimize the rules. Dai 238 

et al. [72] employed the RF algorithm for the BC diagnosis and prediction problem with high 239 

accuracy. Al-Quraishi et al. [73] aimed to predict the likelihood of BC recurrence among patients. 240 

Therefore, in this study, the Deep Neural Network and RF are applied to compare the accuracy of 241 

the models. The outcomes show that the RF technique provides information with high accuracy. 242 

However, the RF method's main disadvantage is that a large number of trees will make it too slow 243 

and inefficient for real-time applications. 244 
 245 

4.1.4 Decision Trees 246 

Decision tree is a popular approach and acts as a predictive method and uses a tree to go from 247 

an item’s findings to conclusions, regarding the target value of the item [74], [75]. In Tree models, 248 

if the target variables take different sets of values, classification, tree leaves and branches, can be 249 

used to indicate class labels and conjunctions of features contributing to those labels [76], [77]. 250 

Decision tree is a method that has been widely used in different disciplines because it is a reliable 251 

and effective decision-making technique and provides high accuracy in classification; therefore, 252 

this method has been utilized in medical image processing and BC segmentation. For instance, 253 

Jerez-Aragonés et al. [78] incorporated the neural network and decision trees model for detecting 254 

the BC. Moreover, they introduced a new method for Bayes’ optimal error estimation. Li et al. 255 

[79] studied the incidence of BC under different combinations of non-genetic factors. In order to 256 

build such a model, a classification based on the tree algorithm was employed. Sumbaly et al. [80] 257 

suggested a technique for the early detection of BC through the decision tree-based technique. 258 

Hamsagayathri et al. [81] analyzed different decision tree classifier algorithms for early BC 259 

diagnosis.  260 

A decision tree strategy is easy to explain to technical teams and  does not require the 261 

normalization of data. Nonetheless, decision trees are inherently unpredictable and even minor 262 

changes in the data will result in significant changes in the layout of the optimal decision tree. 263 
 264 

4.1.5 Bayesian network 265 

A Bayesian network (decision network, belief network, or Bayes network) is based on Bayes’ 266 



theorem and is a probabilistic graphical model for representing multivariate probability 267 

distributions which utilize a set of variables with their conditional dependencies via a directed 268 

acyclic graph (DAG) [82], [83]. Bayesian network generalizations that can reflect decision issues 269 

under uncertainty are called influence diagrams. There are different theories and techniques that 270 

are a subtype of Bayesian statistical methods, for example, Bayesian network, Naïve Bayesian, 271 

Markov chain Monte Carlo, etc., which are indicated effective tools in BC detection and prediction 272 

[84], [85].  273 

Vazifehdan et al. [86] predicted BC recurrence via a hybrid imputation method to effectively 274 

deal with the missing data problem. They divided the dataset into two discrete and numerical 275 

subsets and used a Bayesian network to impute the first missing values of the discrete fields. Feng 276 

et al. [87] employed Bayesian network meta-analysis to synthesize available evidence of indirect 277 

or direct comparison of HER2-targeted therapy drugs. Mandal et al. [77] introduced a technique 278 

for highly-accurate classification of BC via different cancer classification approaches including 279 

Naïve Bayes, decision tree classifiers, and logistic regression.  280 

Bayesian networks are able to handle missing data and avoid overfitting of data. However, 281 

the major drawback of a technique involving Bayesian networks is the fact that there is no 282 

universally accepted approach for creating a network from data. 283 

 284 

4.2. Regression methods 285 

Regression analysis refers to a series of statistical procedures for determining the 286 

relationships between one or more independent variables (features or predictors) and a dependent 287 

variable (outcome variable) in statistical modeling [77], [88]. In contrast with clustering 288 

approaches, in regression analysis data on each group should be analyzed separately [89]. Each 289 

regression focuses on a specific group and how its variables contribute to this particular group. 290 

There are different methods of regression methods. The most commonly used regressions are 291 

linear regression, logistic regression, stepwise regression, etc. [90]. In the following, we show the 292 

regression methods that are mostly used in the medical field, especially in the BC field.  293 

Fig. 4 illustrates that regression models turned out to be a popular supervised method over 294 

the last decade.  295 



 296 

Fig. 4. Number of published papers per year using different regression models for BC segmentation. 297 

Since 2015 the number of articles based on the regression technique increased gradually and 298 

in 2022, especially, the Linear regression method is one of the most popular methods in regression 299 

technique where the number of published papers has increased considerably over the last decades. 300 

In fact, in 2022, the number of published papers reached over 110 papers. ANN is another useful 301 

method among regression techniques; however, the number of published papers using this 302 

technique is not considerably high compared to the Linear regression method. Overall, the number 303 

of papers published based on the regression methods are highly increased after 2018 and it can be 304 

evidence of these methods gaining popularity in the last few years. Therefore, it is predicted that 305 

the number of papers that are based on the regression method will increase in the next years.  306 

In the following, each technique will be introduced and its role in BC detection and diagnoses 307 

are explained.  308 

 309 

4.2.1 Linear regression  310 

Linear regression is a supervised learning approach where the anticipated result is continuous 311 

and has a steady slope [91]. Due to the simplicity to implement and interpret its output coefficients, 312 

linear regression is widely employed for a wide range of prediction problems, including BC. For 313 

instance, Veronesi et al. [92] evaluated the risk of internal mammary chain metastases via a 314 

multivariate analysis and resorting to multiple linear regression of the dependent variable with the 315 

logistic transformation. Xiong et al. [93] suggested fine needle aspirate for BC diagnoses and data 316 

mining. Moreover, statistical approaches such as principal component analysis  (PCA) and partial 317 



least squares (PLS) linear regression analysis as well as data mining approaches such as association 318 

rules and decision trees are combined to find the unsuspected relationships. Dunya et al. [94] 319 

evaluated the satisfaction with oncologic surgical procedures to optimize long-term health and 320 

facilitate the decision-making process. Descriptive statistics and regression analysis were used for 321 

this purpose. However linear regression has some disadvantages too. By fitting a linear equation 322 

to observed data, linear regression presumes a linear relationship between dependent and 323 

independent variables. 324 

4.2.2 Support vector regression  325 

SVR employs the same principle as SVM, but for regression problems. SVR looks for a 326 

feasible solution for working with continuous values instead of classification by individualizing 327 

the hyperplane that maximizes the margin [95]. Hyper-Plane in SVM is principally the separation 328 

line between all classes whereas in SVR it defines as the line that predicts the target value or 329 

continuous value. Goli et al. [96] proposed a new SVR method with different kernels. The best 330 

subset of features was selected utilizing three feature selection approaches including recursive 331 

feature elimination, univariate feature selection using concordance index, and a combination of 332 

statistical tests and SVR. However, the SVR has some disadvantages. For example, the SVR 333 

algorithm is not suitable for large datasets and is not executed effectively when the dataset includes 334 

noise samples, and in cases where the number of features for each data point is much more than 335 

the number of training data samples, the SVR will underperform. 336 
 337 

4.2.3 Gaussian process regression  338 

Gaussian process regression (GPR) method is a non-parametric Bayesian regression approach 339 

that generates waves in the field of ML. The GPR technique is capable of working well on small 340 

datasets and providing measurements of uncertainty on the predictions and have various 341 

application, including BC detection and prediction. Rafe et al. [97] developed a prediction model 342 

for BC based on a hybrid incremental learning model and the attributes of the missing values in 343 

the dataset are predicted through the Gaussian process regression. The novel classifier is a 344 

combination of RBF and AdaBoost, and Gaussian Process Classifier. Qiu et al. [98] suggested a 345 

method to track the outcome of post-treatment for evidence-based decision-making in BC. The 346 

model is an innovative Hierarchical Gaussian Distribution (HGD) which is estimating the missing 347 

portion of the data. The main drawback of the Gaussian Process is that it scales very badly with 348 



the number of observations main.  349 

4.2.4 Artificial neural network 350 

ANN is a model inspired by biological neural networks and designed to simulate the human 351 

brain analysis and process of information [99]–[101]. ANNs are used for modeling non-linear 352 

problems and are based on a collection of connected units or nodes called artificial neurons [83], 353 

[102], [103]. These networks are the component of AI and solve problems that are impossible to 354 

solve by human and statistical standards. ANNs have self-learning capabilities by altering weight 355 

values that allow them to generate better results as more knowledge becomes available. That means 356 

a complex relationship defines between output and input. ANNs are finding many uses in medical 357 

diagnosis applications to solve various health problems [4], [104]. Kaymak et al. [105] suggested 358 

an automatic classification of images to diagnose BC. Back propagation neural network (BPPN) 359 

is applied for classifying images and it is improved through the radial basis neural network method. 360 

Dihge et al. [106] predicted nodal status to prevent unnecessary surgery via an ANN model. In this 361 

study, the nodal status in clinically node-negative BC is predicted and candidates for the sentinel 362 

lymph node biopsy are identified through the patient-related and pathological characteristics. 363 

Lessa and Marengoni [107] introduced a diagnostic system to identify the normal and abnormal 364 

tissue in thermographic breast images. The classifier of the proposed method is an ANN model 365 

which shows high sensitivity and accuracy. Ahmed et al. [108] utilized two neural network 366 

methods, DeepLab and Mask RCNN, with the aim of breast mass classification and segmentation 367 

in the cancerous region. However, ANNs have some unexplained functioning of the network 368 

including the difficulty of representing the problem to the network. In other words, problems have 369 

to be translated into numerical values before being introduced to ANN and hardware dependence. 370 

5. Unsupervised learning 371 

Unsupervised learning is a technique of ML in which the model does not need to be 372 

supervised by users [46]. Instead, it enables the model to operate on its own to discover trends, 373 

patterns, and previously undetected knowledge. It deals primarily with unlabeled data [109]–[111]. 374 

The main subsets of the unsupervised learning technique are clustering methods, thresholding 375 

methods, region-based methods, and edge-based methods [43], [112], [113]. Clustering is the 376 

method of grouping similar objects into separate groups or more specifically, dividing the dataset 377 

into subsets so that the data in each subset is calculated following a given distance [114], [115]. 378 

Clustering is a common approach for data analysis and is applicable in many fields, including 379 



pattern recognition, image analysis, data mining, etc. [116]. 380 

Several unsupervised methods are depicted in Fig. 5.  381 

 382 

Fig. 5. Number of published papers per year using different unsupervised learning methods for BC 383 
segmentation. 384 

As can be seen, the K-means clustering and thresholding algorithms have the largest number 385 

of published papers compared to the other clustering methods since 2015. Fuzzy C-mean (FCM) 386 

and region-based methods are also popular methods; however, the number of papers has not 387 

increased considerably through time. In the following, each technique will be introduced and its 388 

role in BC detection and diagnoses are explained.  389 
 390 

5.1 K-means 391 

K-means clustering is known as a vector quantization technique that tries to partition 𝑛 392 

observations into 𝑘 clusters such that each observation is a component of the cluster with the 393 

nearest mean, serving as a cluster prototype [117]–[119]. This method is capable of scaling to large 394 

data sets and relatively simple to implement. 395 

Dubey et al. [120] introduced the K-means as an appropriate method that can classify the BC 396 

dataset. Zhao et al. [121] combined multiple clinic pathological and genomic variables with 397 

dimensional reduction through ML techniques to compare survival predictions. Samundeeswari et 398 

al. [122] suggested a method for diagnosing malignant and benign tumors in which the traditional 399 

K-means technique is synthesized with ant colony optimization (ACO) and regularization to split 400 



the lesion section with optimum boundary preservation.  401 

However, there are some limitations in this method, including all variables possessing the 402 

same variance and K-means considers the variance of the distribution of each variable (attribute) 403 

as spherical. Moreover, the K-means algorithm is sensitive to noise and outliers. 404 
 405 

5.2 K-medoids 406 

The K-medoids technique is a clustering technique that is related to K-means clustering for 407 

segmenting a dataset into k clusters or groups. Moreover, K-medoids method is a type of K-means 408 

algorithm that is more resilient to outliers and noises. K-medoids technique uses an individual 409 

point in the cluster to describe it, while K-means uses the cluster's mean point [123], [124]. 410 

However, the number of papers on BC tumor clustering through the K-medoids is not considerable. 411 

Ping et al. [125] improved K-medoids clustering by identifying the patterns of symptom clusters 412 

in BC, using data from social media and research studies. In this technique, the main disadvantage 413 

is that different initial sets of medoids can produce different clusters. The main advantages of K-414 

medoids are easy to execute and understand, and lead to quick convergence in a predetermined 415 

number of stages and the main disadvantage is that diverse initial sets of medoids can lead to 416 

diverse final clustering. 417 

5.3 Fuzzy C-mean 418 

FCM clustering is a type of clustering where each data point can be assigned to more than 419 

one cluster [126]–[128]. This method also refers to as soft clustering or soft K-means. The FCM 420 

has been used as a clustering method in medical diagnoses and BC diagnoses. For example, 421 

Tavakol et al. [129] employed the FCM and K-means to detect the tumor region in the color 422 

segmentation of the thermal infrared breast images. The results show that the FCM segmentation 423 

provides results with more accuracy and no empty cluster. Kumar et al. [130] attempt to hybridize 424 

the FCM with the cohort intelligence technique to optimize cluster formation in the malignancy of 425 

breast tumor prediction. However, this method is sensitive and does not perform well with high-426 

dimensional datasets [126], [131]. 427 

5.4 Hidden Markov model  428 

The hidden Markov models (HMMs) belong to the statistical models that model the observed 429 

data as a series of events or data. This model assumes that a signal is produced by a stochastic 430 

double-embedded process and deals with continuous data, presuming that each observation is 431 



conditioned on the state of a hidden Markov chain [132], [133]. HMM has been recognized as a 432 

valuable method in healthcare, medical data, and disease detection. For instance, Momenzadeh et 433 

al. [134] offered a new model for predicting BC recurrence based on sequential patterns in 434 

microarray data. The method utilized gene sets as observation symbols of HMM. Edward et al. 435 

[135] analyzed the multivariate hidden Markov technique to assess the quality of life of BC 436 

survivors. Kaitouni et al. [132] proposed a combination of local binary pattern, region-growing 437 

and HMM approaches to segment breast tumors.  438 

Nevertheless, this method has some drawbacks; for example, HMMs often have a large 439 

number of unstructured parameters.  440 
  441 

 5.5 Gaussian mixture models 442 

Gaussian mixture models (GMM) is a probabilistic density function assuming that a blend of 443 

a finite number of Gaussian distributions with unknown parameters produces all data points. The 444 

main advantages of the standard GMM are that it is an easy and fast model, less sensitive to scale, 445 

and handles clusters of differing sizes; therefore, it is one of the methods that are useful for 446 

modeling complex data in areas such as medical science [136]. Prabakaran et al. [137] introduced 447 

a model based on a GMM classifier to categorize individual patients based on their tumors' 448 

molecular characteristics. Rajaguru & Prabhakar [138] presented a simple, cost-effective, and non-449 

invasive method for detecting BC at an early stage using GMM and radial basis function (RBF) 450 

techniques. Aminikhanghahi et al. [139] classified the detected regions in mammogram images 451 

into malignant or benign categories via a combination of GMM and fuzzy logic system (FLS). 452 

Punitha et al. [140] classified the BC images as benign and malignant. According to this approach, 453 

Gaussian filtering is employed for image pre-processing, dragon fly optimization (DFO) is used 454 

for the automatic detection of breast masses, and GLCM and GLRLM techniques were employed 455 

to find the texture features. 456 

The main disadvantages of GMM models include: (i) specifying the number of clusters, (ii) 457 

assuming a normal distribution for features, and (iii) difficultly incorporating categorical features. 458 
 459 

6. Deep learning methods 460 

DL is an AI branch of ML that uses neural networks to learn supervised and unsupervised 461 

from labeled or unlabeled data [127], [141]–[144]. Different types of models used in DL can be 462 

categorized as 1) Supervised models including recurrent neural networks (RNNs), convolutional 463 



neural networks (CNNs), and Classic Neural Networks (Multilayer Perceptrons). 2) Unsupervised 464 

models including AutoEncoders, Boltzmann machines, and self-organizing maps (SOMs). Fig. 6 465 

summarizes the different DL techniques used in the BC detection field.  466 

 467 

Fig. 6. Number of published papers per year using different DL models for BC detection. 468 

As represented in this figure, the DL methods are very popular techniques in the BC field and 469 

that is reflected by the number of published papers in this field in the last decade. As can be seen 470 

in Fig. 6, over 100 papers were published in the year 2022 alone and this number is expected to 471 

increase in the future due to the efficiency of these methods and their accuracy in BC diagnosis 472 

and detection. 473 

In the following, each technique is introduced and their role in BC detection and diagnoses is 474 

explained. 475 

6.1 Convolutional neural networks 476 

CNNs are popular deep neural network techniques utilized to perform deep feature extraction 477 

and classification [24], [49]–[51], [103]. The key to the success of CNN lies in its carefully 478 

designed architecture, capable of understanding the input data's local and global characteristics 479 

[32], [127], [145]. CNNs have achieved expert-level performances in various fields, including 480 

medical research [146]–[148]. For instance, Benzebouchi et al. [149] proposed a 6-layer CNN 481 

architecture for the automatic detection of BC that accepts 190 mammogram images as the training 482 



data. For feature extraction, firstly, the key building blocks applied in CNNs are the convolutional 483 

layers. The simple application of applying a kernel (mask) to input that results in extracting some 484 

features is a convolution operation. When repeatedly applying the same mask to input, an 485 

activation map called a feature map shows the position and intensity of the detected feature in a 1-486 

D input (signal) or 2-D input (image). After the Convolutional layer, the pooling layer is normally 487 

placed. Pooling is required to down-sample information that appeared in the feature maps. The 488 

utility of the pooling layer is to decrease the spatial dimension of the volume of input for the next 489 

layers [24], [127], [150], [151]. In the following, the activation layer (transfer layer) defines the 490 

output values of the obtained feature maps by the former convolutional layer based on a threshold 491 

value. The activation function is an element-wise operation over the input volume, and thus, the 492 

dimensions of the input and the output are equivalent. In the last layer of the feature extraction 493 

procedure, the fully connected (FC) layer is utilized and forms the last few layers in the network. 494 

The output from the final pooling or convolutional layer is flattened and then fed into the FC layer. 495 

The objective of this layer is to take the outcomes of the convolution/pooling layers and utilize 496 

them to classify the image into some predefined labels. For classifying into benign or malignant 497 

labels, the Softmax layer is proposed. The Softmax function returns a vector containing the 498 

probability distributions for a set of possible outcomes. In a multi-class query, Softmax assigns 499 

decimal probabilities to each class [152]–[154]. The sum of such decimal probabilities must equal 500 

1.0. This additional restriction allows training to converge faster than it would otherwise. An 501 

example of a CNN structure is demonstrated in Fig. 7. 502 

 503 

 504 

Fig. 7. An example of a CNN structure with different layers. 505 
 506 

Ranjbarzadeh et al. [4] proposed a multi-route CNN architecture that uses multi-feature 507 



extraction routes to find more distinction in the breast tissue. Peng et al. [155] suggested a 508 

hierarchical model that comprises breast segmentation and tumor segmentation stages.  In the first 509 

stage, a tumor morphology-aware network was utilized to extract contrastive information. Next, a 510 

hybrid inter-class and intra-class distance optimization loss was employed to supervise the model. 511 

Wahab and Khan [156] introduced an integrated scoring system for selecting ROI from whole-512 

slide images. Multifaceted fused-CNN and a hybrid-descriptor are applied for this purpose. 513 

Zuluaga-Gomez et al. [157] suggested a CAD system based on thermal images. The baseline of 514 

this method is the importance of data augmentation and its impact on classification through the 515 

CNN models. Gour et al. [158] suggested an error‐prone and time‐consuming method based on a 516 

residual learning‐based 152-layer model which is named ResHist model. Their model learns 517 

discriminative and rich features from the histopathological images and categorizes 518 

histopathological images into malignant and benign classes. Rouhi et al. [159] designed two 519 

techniques to diagnose malignant and benign masses in mammograms. Firstly, by applying an 520 

ANN model and obtained intensity features an adaptive threshold is calculated in a region-growing 521 

process. Secondly, a genetic algorithm is used to generate CNN templates for segmenting 522 

mammogram images. Ting et al. [18] introduced an approach to assist experts in diagnosing BC. 523 

The CNN improvement for the BC classification classifies the BC tumor into benign tumor, 524 

malignant tumor, and healthy patient; however, in this method, there is no prior information on the 525 

presence of a cancerous lesion. Xu et al. [160] studied the automatic segmentation of 3D breast 526 

ultrasound images and the CNN-based method applied to segment each image into four major 527 

tissues: fatty tissue, mass, fibroglandular tissue, and skin. El Adoui et al. [161] suggested two DL 528 

methods with the aim of breast tumor segmentation automatically in DCE-MRI images. In this 529 

study, two CNNs based on SegNet and U-Net were proposed for DCE-MRI detection and 530 

segmentation. Chougrad et al. [162] utilized a CNN-based method to help mammography mass 531 

lesions classification, and predict whether the mass lesions are benign or malignant. Furthermore, 532 

the importance of transfer learning was explored and the best fine-tuning strategy that adopts the 533 

trained CNN model is identified. Wahab et al. [163] suggested a transfer learning-based fast and 534 

accurate system for mitotic nuclei detection and segmentation. In this study, a pre-trained CNN is 535 

employed for segmentation, and hybrid CNN is applied for the classification of mitoses.  536 

CNNs have some drawbacks like any other method. For instance, a CNN is remarkably 537 

slower due to an operation such as downsampling in a MaxPooling layer, If the CNN has some 538 



layers, then the training process will be time-consuming and will require a good GPU to elevate 539 

this problem.  540 
 541 

6.2 Recurrent neural networks 542 

RNNs are a type of ANN in which nodes create a guided graph along a temporal sequence 543 

and have an internal memory that allows them to remember important information about the input 544 

data [164]–[166]. As a result, RNNs are good and preferred algorithms for dealing with sequential 545 

data and are designed for analyzing streams of data through hidden units. In addition, RNNs can 546 

be considered as a series of networks linked together. An RNN can be designed for input, output, 547 

or both to work through sequences of vectors. In the RNN method, the information does not move 548 

only in one direction from the input layer, through the hidden layer to the output layer. Moreover, 549 

having an input memory makes it a suitable technique for predicting tasks. The knowledge in an 550 

RNN is looped back on itself [164], [165]. It considers the latest input as well as what it's learned 551 

from previous inputs when making a decision. The present and recent past are both inputs to an 552 

RNN model. This is significant because the data series contains important information about what 553 

will happen next. The current and previous inputs are both given weights by RNNs. An example 554 

of an RNN is demonstrated in Fig. 8. As clearly demonstrated in Fig. 8, the information in the 555 

current layer can be applied to the previous layer. 556 

 557 

Fig. 8. An example of an RNN model. 558 
 559 

The key benefits of the RNN approach include the ability to process the input of any length, 560 

the model size not growing with the size of the input, computation taking into account historical 561 

data, and weights being spread over time. For instance, Zheng et al. [167] suggested a model for 562 



predicting the early-stage BC through the RNN and CNN methods with follow-up scans and using 563 

mammographic images. They detected suspicious cancerous regions by three cascading object 564 

detectors. Chen et al. [168] offered a deep incremental learning system. The model starts by using 565 

RNNs to extract features from various kinds of clinical text, such as B-ultrasound, X-rays, and 566 

computed tomography (CT). Saleh et al. [169] suggested an optimized deep RNN model based on 567 

RNN and the Keras–Tuner optimization technique for BC diagnosis. Patil et al. [170] offered a 568 

combination of CNN and RNN models that accepts GLRM features as the input. 569 

However, as with the previous techniques, RNN has also its limitation. The main 570 

disadvantages of the RNN are the slow computation and difficulty of accessing information from 571 

a long time ago. 572 
 573 

6.3 Long short-term memory 574 

Long short-term memory (LSTM) is a DL architecture that uses an artificial RNN architecture 575 

[171]. Unlike normal feedforward neural networks, LSTM has feedback links. LSTM models are 576 

a kind of RNN that employs special units along with standard units. LSTM units are composed of 577 

a memory cell that can preserve information in memory for long periods of time [172]. This kind 578 

of network process not only single data points but also entire data sequences [173]. LSTMs deal 579 

with problems of feedback links by introducing new gates, such as forget, input and output gates, 580 

which enable better preservation of “long-range dependencies” and permit better control over the 581 

gradient flow. These gates decide which information to be removed from the cell in that particular 582 

timestamp. Increasing the number of repeated layers in LSTM solves the long-range dependence 583 

in RNN. An example of an LSTM model is demonstrated in Fig. 9. 584 

LSTM method has been widely employed in the field of medical image processing because 585 

of its reliable results. In this regard, Budak et al. [174] suggested a model to overcome early BC 586 

diagnosis through pathological images. The end-to-end model is utilized which is constructed on 587 

a fully convolutional network (FCN) and bidirectional long short-term memory (Bi-LSTM) to 588 

detect BC. Drukker et al. [175] assessed an LSTM model in the prediction of recurrence-free 589 

survival in BC patients utilizing features extracted from obtained MRI images during the course 590 

of neoadjuvant chemotherapy. Vankdothu et al. [176] combined a CNN with an LSTM to extract 591 

more unique features from MRI images for increasing the accuracy of tumor segmentation. Gore 592 

et al. [177] offered a CNN model to extract more crucial information from the brain tissue. Next, 593 

an LSTM model was employed to classify the obtained features. 594 



The main drawback of the LSTM however is that it fails to store obtained data for a longer 595 

period of time.  596 
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Fig. 9. An example of an LSTM network. 598 
 599 

6.4 Generative Adversarial Networks 600 

A generative adversarial network (GAN), is a kind of ANN for generative modeling that is 601 

based on generating new and synthetic instances of data that can pass for real data [178], [179].  A 602 

GAN model is a generative network that uses two neural network networks to train it [180]. One 603 

network is called the “generative network” or “generator” model that learns to generate new 604 

plausible samples. Generative modeling entails employing a network (model) to produce new 605 

samples that are plausible to come from an existing sample distribution, including generating new 606 

images that are identical to but distinct from an established dataset of images [181]. In ML, 607 

generative modeling is an unsupervised learning technique that entails automatically learning and 608 

discovering patterns or regularities in input data so that the model can be employed to produce or 609 

output new examples that could have been derived from the original dataset [182].  610 

The GAN is a modern unsupervised neural network architecture that outperforms 611 

conventional nets. GANs are a modern method of training a neural network and encompass not 612 

one but two independent nets that act as adversaries and work separately. As illustrated in Fig. 10, 613 

the Discriminator (D) is the first neural network, and it is the one that needs to be trained. D is the 614 



classifier wherein once the training is completed, will take over the heavy lifting during regular 615 

operations. The Generator (G) is the second network, and its job is to produce random samples 616 

that look like real samples and make them fake samples.  617 

D is demonstrated with a random combination of legitimate images from training images and 618 

fake images produced by G during training. Its task is to distinguish between real and fake input 619 

images. Based on the results, both models attempt to improve their efficiency by fine-tuning their 620 

parameters. If D acts well in prediction, G adjusts its parameters to produce enhanced fake samples 621 

to fool D. If D's prediction is wrong, it attempts to learn from it in order to avoid making the same 622 

error again. The number of correct predictions is the reward for net D, and the number of D's errors 623 

is the reward for G. This process continues until an equilibrium is formed and D’s training is 624 

optimized. An example of a GAN is demonstrated in Fig. 10. Guan and Loew [183] used the GAN 625 

to create synthetic mammographic images from the digital database for screening mammography 626 

(DDSM) for the purpose of image augmentation. Fan et al. [184] aimed to generate super‐627 

resolution ADC images and evaluate their clinical utility by conducting a radiomics investigation 628 

to predict the histologic grade and position of BC. Mukherkjee et al. [185] suggested a combination 629 

of three different GANs to overcome the problem of fetching the localized features in the latent 630 

representation of the image. Güven et al. [186] proposed a 3D GAN model to map the input MRI 631 

images into a common feature space. 632 

However, the main disadvantage of the GAN approach is that it is harder to train, and 633 

providing various types of data continuously to check the accuracy is essential.  634 
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Fig. 10. An example of a GAN. 636 



 637 

6.5 Radial basis function Networks 638 

RBF networks are a form of artificial neural network that is widely employed to solve 639 

function approximation problems. RBNs differ from other neural networks in that they have a 640 

universal approximation and learn faster. The input layer, the hidden layer, and the output layer 641 

make up an RBF network, which is a form of feed-forward neural network (FFNN) with three 642 

layers [187], [188]. An RBF net is a 2-layer network and these networks are not suffering from 643 

local minima as multi-layer perceptron (MLP). The input is fully connected to a hidden layer and 644 

the output of the hidden layer performs a weighted sum to output. Gaussian RBF is in the inside 645 

of hidden layer neurons. An example of a Radial basis function Network is demonstrated in Fig. 646 

11. 647 
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Fig. 11. An example of a radial basis function network. 649 

Kanojia & Abraham [189] introduced a model for the automatic detection of malignancy in 650 

histopathological images according to image-processing techniques and RBFN. Ng and Kee [190] 651 

suggested a multi-pronged approach comprising linear regression, RBFN, and receiver operating 652 

characteristic (ROC) analysis to evaluate thermograms. In fact, the suggested technique was 653 

constructed on the ANN and bio-statistical methods. Yavuz et al. [191] classified the BC data 654 

samples into malignant/benign through the RBFN, generalized regression neural network 655 

(GRNN), and FFNN. Kaymak et al. [192] developed a methodology for classifying BC images 656 

based on the BPPN and utilized RBFN to improve the efficiency of the automatic classification of 657 



BC images. Although the time of training is faster in the RBF network, classification is slow 658 

compared to MLP due to the fact that every node in the hidden layer has to calculate the RBF 659 

function for the input sample vector during classification. The main disadvantage is that RBF 660 

networks entail an acceptable coverage of the input space by radial basis functions.  661 

 662 

6.6 Deep Belief Networks 663 

Deep belief networks (DBNs) were introduced to provide a solution for problems of 664 

conventional neural networks in deep layered networks, which are including having a large number 665 

of training datasets, slow learning, and getting stuck in local minima due to poor parameter 666 

selection [43], [193]. Fig. 12 depicts a classic DBN for deep features. Based on Fig. 12, there are 667 

no connections between two units in the same layer; however, a complete set of connections exists 668 

between two adjacent layers. The contextual features from neighboring pixels or spectral 669 

signatures of each pixel can be used as the input. Each layer outputs a characteristic of the data it 670 

receives. The DBN is a probabilistic generative model that generates a joint probability distribution 671 

based on measurable data and labels. To initialize the deep network, a DBN uses an effective layer-672 

by-layer greedy learning technique and then fine-tunes all of the weights together with the desired 673 

outputs.  674 

Abdel-Zaher et al. [194] represented a CAD scheme for BC detection based on an 675 

unsupervised DBN which is followed by backpropagation supervised. Also, the Liebenberg 676 

Marquardt learning function was utilized to construct a back-propagation neural network and 677 

weights are initialized from the DBN path. Al-antari et al. [195] suggested a BC diagnosis system 678 

based on the DBN that detects breast tissue areas automatically and classifies them as normal, 679 

malignant, or benign. Ronoud and Asadi  [196] introduced E(T)-DBN-ELM-BP and E(T)-DBN-680 

BP-ELM as two new evolutionary approaches that solve the first problem by incorporating DBN 681 

and an extreme learning machine (ELM) classifier. However, DBNs have the drawback of not 682 

accounting for the two-dimensional structure of an input image, which can have a major impact 683 

on their output. 684 
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Fig. 12. An example of a DBN. 686 

 687 

7. Breast cancer datasets 688 

Now that we have seen the different ML techniques used for DC detection and diagnosis, in 689 

this section we will have a look at the most popular benchmark datasets used by these techniques 690 

to validate their results. 691 

The BC dataset serves as a valuable tool in cancer-related research. Therefore, providing a 692 

good and high-quality dataset will allow for better detection, diagnosis and treatment of cancer. 693 

There are two main types of datasets used in this field: public and private. These datasets are based 694 

on different image types (MRI, sonography, mammography, etc.) and data. Breast cancer digital 695 

repository (BCDR), DDSM, mammographic image analysis society (MIAS) are the popular 696 

databases that have been widely used in this field. The available breast datasets are elaborated in 697 

Table 2. 698 

 699 

 700 

 701 



Table 2. Most popular datasets used for BC detection. 702 

Dataset  Description Data Type No. of Images 

BCDR 

BCDR was released on April 18, 2012, and it 

is still in development. 

The project was renewed in October, 2013, 

and Aveiro University joined the consortium. 

The four institutions are now working 

together to improve and expand the BCDR. 

Ultrasound and mammography 

images, selected pre-computed 

image-based descriptors and 

lesion segmentation, clinical 

history 

1734 mammography and 

ultrasound images 

BCDR-FM A film mammography-based repository Mammography 

12 Male and 998 Female 

patients (1010 in total) 

cases aged between 20 and 

90 years old. 

BCDR-DM 
Full field digital mammography-based 

repository 
Mammography 

1 Male and 723 Female 

Portuguese patients cases 

(724 in total) aged 

between 27 and 92 years 

old. 

TCGA-

BRCA 

The cancer genome atlas breast invasive 

carcinoma (TCGA-BRCA) data collection is 

part of a larger effort to create a research 

community concentrated on connecting 

cancer phenotypes to genotypes by obtaining 

clinical images matched to subjects from the 

cancer genome atlas (TCGA). 

Genetic, clinical, and 

pathological data resides in the 

genomic data commons (GDC) 

data portal 

11,000 cases of primary 

cancer samples 

TCIA 

The cancer imaging archive (TCIA) is a free 

medical image database for cancer research. 

The national cancer institute's (NCI) cancer 

imaging program funds the facility, and the 

University of Arkansas for medical sciences 

manages the contract. 

The radiological data is stored on 

TCIA 

230,167 images of 139 

patients 

DDSM 

The DDSM is a resource for usage by the 

mammographic image analysis research 

community. 

Screen-film 
2,620 cases (10,480 

images) 

BreCaHAD 

Breast cancer histopathological annotation 

and diagnosis (BreCaHAD) dataset which 

include various malignant cases allow 

researchers to optimize and evaluate the 

usefulness of their suggested techniques. 

Histopathology images, 
162 histopathology 

images 

UCI 

UCI ML Repository is a set of databases, 

domain theories, and data generators that the 

ML community uses to test ML algorithms 

empirically. 

BC Data 286 images 

BC Coimbra 198 images 

Breast Tissue 106 images 

BC Wisconsin (Diagnostic) 569 images 

Haberman's Survival: 306 images 

BC Wisconsin (Original) 699 images 

OPTIMAM 

image 

database 

OPTIMAM mammography image database 

(OMI-DB) has been established to support 

medical imaging research. 

Mammography, Radiology over 2.5 million images 



Dataset  Description Data Type No. of Images 

CBIS-

DDSM 

A subset of the DDSM data was chosen and 

curated by a professional mammographer for 

the CBIS-DDSM array. Decompression and 

conversion to DICOM format were 

performed on the files. 

Mammography 
753 calcification cases and 

891 mass cases 

INbreast 

INbreast is a new website of 115 cases, 90 of 

which are from women who have both breasts 

affected and 25 from mastectomy patients. 

There were several different kinds of lesions 

(distortions, calcifications, asymmetries, and 

masses). 

Digital mammography 410 images 

MIAS 

A generated database of digital mammograms 

in an organization of UK research groups 

interested in the understanding of MIAS. 

Screen-film 322 images 

BreaKHis 

The breast cancer histopathological image 

classification (BreakHis) dataset comprises 

9,109 microscopic images of breast tumor 

tissue collected from 82 patients. Samples 

present in the dataset were collected by partial 

mastectomy or excisional biopsy using 

various magnifying factors (40X, 100X, 

200X, and 400X). 

Microscopic images 
2,480 benign and 5,429 

malignant images 

Breast DCE-

MRI 

This collection of breast dynamic contrast-

enhanced (DCE) MRI data includes images 

from a longitudinal study that analyzes BC 

response to neoadjuvant chemotherapy. 

The MRI dataset consists of 

DCE-MRI images 
20 datasets 

HICL 

The raw clinical material was obtained from 

the archives of the University Hospital of 

Patras, Greece. 

Histopathological images 

 
116 BC cases 

QIN-Breast 

QIN-Breast Treatment Response It includes 

updated scan protocols and data collected at 

both University of Chicago and the 

Vanderbilt University Medical Center to 

illustrate similar outcomes at multiple sites 

(both using Philips 3T MR scanners). 

Longitudinal PET/CT and 

quantitative MR images 

 

100,835 PET/CT, MR 

images from 67 patients 

Breast 

Ultrasound 

Image 

The data collected in 2018 at baseline contain 

breast ultrasound images among women 

between the ages 25 to 75 years old. 

Ultrasound image 

 
780 images 

BancoWeb 

BancoWeb, which began as a management 

system that enabled users to select and 

download high-quality mammographic 

images, now includes tools to extend the 

database's resources beyond a single image 

download for testing. 

Screen-film and digital 

mammography 
1700 images 

 703 

8. Performance measures 704 

The performance validation of the classification, prediction, or segmentation techniques can be 705 

accomplished by employing various techniques for validating the achieved results. The most 706 

popular and broadly employed performance criteria include Specificity, Accuracy, Recall 707 

(Sensitivity or True Positive Rate), Precision, Confusion Matrix (CM), and Dice Similarity.  708 



CM is broadly used to give vital information about correct and estimated results created by 709 

different techniques for classification or segmentation purposes. An example of a CM matrix for 710 

a two-class classification task is indicated in Table 3.  711 

 712 
Table 3. Details of classification criteria for breast tumor segmentation. 713 

Class Estimated Breast tumor Ordinary tissue 

Breast tumor True Positive (TP) False Negative (FN) 

Normal tissue False Positive (FP) True Negative (TN) 

 714 

Here, FN, TN, FP, and TP can be defined as: 715 

TP: Accurately categorized or segmented breast cancer cells as breast cancer cells. 716 

TN: Accurately categorized or segmented normal tissue as normal tissue. 717 

FN: Incorrectly categorized or segmented normal tissue as breast cancer cells. 718 

FP: Incorrectly categorized or segmented breast cancer cells as normal tissue,  719 

where Equations (1)-(5) represents their formulas. 720 

Recall =  ( 
TP

TP + FN
), (1) 

Precision =  ( 
TP

TP + FP
), (2) 

Accuracy = (
TN + TP

TP +  TN + FP + FN
), (3) 

Dice = (
2 × TP

(2 × TP) + FN + FP
), (4) 

Specificity = (
TN

TN + FN
). (5) 

9. Discussion and conclusion 721 

BC is one of the most common cancers in the world and among American women in 722 

particular, according to the American Cancer Society (ACS). Therefore, the early detection of BC 723 

is essential for the effective management of the disease besides reducing the number of deaths. 724 

Mammography is one of the screen methods to recognize the boundaries or the contour of benign 725 

and malignant masses. In fact, screening mammograms are capable of finding many BCs at an 726 

earlier stage before the symptoms are developed.  727 

Since the diagnosis of abnormal cases of BC is tough even for experienced radiologists, CAD 728 

is considered as an interdisciplinary technology that combines methods of ML and computer vision 729 



by radiological image processing. The most important part of image processing is segmentation 730 

which extracts the identified pixels of organs or lesions from background medical images. In this 731 

work, we highlighted and explained the different categories of ML segmentation methods 732 

including supervised, unsupervised, and DL. The different techniques and algorithms belonging 733 

to each category were defined, and the strengths and weaknesses of these techniques were also 734 

highlighted. Furthermore, we also surveyed some state-of-the-art works that used each of these 735 

techniques for BC detection in the last decade.  736 

Based on our review of the state-of-the-art works, we were able to find that SVM, RF, and 737 

Linear regression are the most popular supervised techniques used for BC segmentation since 738 

2015. In addition, K-mean and thresholding techniques are taken into account as commonly used 739 

unsupervised methods in the last seven years. Moreover, our review has also shown that CNNs are 740 

considered as the most popular DL approach used in the field of BC segmentation. This was 741 

reflected by the significant increase in the number of published papers in the last seven years. This 742 

is due to the efficiency of the DL approaches and the accuracy and reliability of their results.  743 

Furthermore, the most popular benchmark datasets used by the different ML techniques for 744 

BC segmentation were also outlined. This research serves as a basis and starting point for 745 

researchers looking at using ML techniques in the medical field and particularly for BC detection 746 

and recognition.  747 

Finally, while there is a lot of work on BC segmentation using ML, particularly DL 748 

techniques, there is still a lot to be done to improve these techniques in terms of both accuracy and 749 

execution time to allow them to reach their full potential and help further the field of BC 750 

segmentation and the medical field in general. 751 
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