
P r ed ic tio n o f A T M m u ltip lexer p erform an ce
by s im u la tio n and analysis

o f a m o d el o f p ack etized vo ice traffic

Tom Corcoran B.Sc.

Supervised by Dr. N. G. Duffield

D u b lin C ity U n iv ersity
School o f M a th em a tica l S cien ces

February 1994

M.Sc. Thesis by Research
Submitted in partial fulfilment of the requirements

for the degree of Master of Science in Applied Mathematical Sciences
at Dublin City University

I hereby certify that this material, which I now
submit for assessment on the programme of study
leading to the award of Master of Science in
Applied Mathematical Sciences is entirely my own
work and has not been taken from the work of
others save and to the extent that such work has
been cited and acknowledged within the text of my
work.

Signed:

Candidate

Date: 5 February 1994

)

A cknow ledgem ents 1
I

Thanks to Dr. Nick Duffield, for hanging in there. Also, thanks to the lads on the
telecommunications project, Paul Farrell and Robert Tucker. Thumbs up to all the
maths postgrads, especially Kieran Murphy. I would also like to acknowledge help
from Dr. Emmanuel Buffet and Aishling Walsh, computer support from Dr. 'Tommy
Curran and partial funding from Eolas. Finally, thanks to everyone who kept me sane
during the write up period.

C ontents

1 Introduction 1
1:1 Queueing T h e o r y ... 1
1.2 W hat is a queue? .. 1
1.3 Queueing ch arac te ris tic s .. 2
1.4 Report o b jec tiv es 2
1.5 Report ou tline .. 3

2 M odelling an ATM m ultiplexer 6
2.1 ATM Multiplexing: general concepts and p re lim in a rie s 6
2.2 Modelling statistics of traffic on a single l i n e .. 9

2.2.1 Terminology and assu m p tio n s ... 9
2.2.2 Markov Chains: definitions and limiting behaviour 12
2.2.3 Defining a Markov p ro ce ss .. 14

2.3 Multiplexed system: superposition of sources and modelling the arrival
p rocess ... 15
2.3.1 Lindley equation with a Markovian w orkload............................. 15
2.3.2 Superposition of s o u rc e s ... 17
2.3.3 Stability condition for multiplexed s y s t e m 17
2.3.4 Cell and burst level t r a f f i c .. 18

2.4 Block Level Model .. 19

3 Sim ulation of an ATM m ultiplexer 22
3.1 In troduction ... 22
3.2 Discrete and continuous s im u la tio n ... 22
3.3 Next-event simulation .. 23

3.3.1 Outline of next-event sim ulation.. 23
3.3.2 Event defin ition .. 23
3.3.3 Event a c t io n s ... 24

3.4 Simulation system 25
3.4.1 System d e sc rip tio n 25
3.4.2 Representation of t i m e ... 27
3.4.3 System performance and lim itations.. 27

3.5 System o b j e c t s ... 29
3.5.1 In troduction .. 29
3.5.2 Class n o d e .c .. 29
3.5.3 Class l in e J is t_ c .. 29

i

3.5.4 Class probabilities_c ... 30
3.5.5 Class qu eu e_ c ... 32
3.5.6 Class mlcg32_c .. 33
3.5.7 Class stop_w atch_c.. 33
3.5.8 Class s t r i n g x , .. 33

3.6 Main program and f lo w c h a rts .. 33
3.7 Start-up p o l i c y .. 40
3.8 Simulation d u ra tion .. - 43

4 Sim ulation performance: results and evaluation 44
4.1 In troduction .. 44
4.2 Explanation of simulation p aram eters .. 44
4.3 Simulation g rap h s .. 47
4.4 A model for the buffer queue d istribu tion .. 51
4.5 Regression a n a ly s is ... 52
4.6 Presentation of r e s u l t s .. 56

4.6.1 In troduction.. 56
4.6.2 Analysis of model p a ra m e te rs ... 56
4.6.3 M(x) versus M (x) .. 58
4.6.4 Proportion of time in burst level congestion and the knee . . . 60

5 Conclusion 61
5.1 Prediction of large ATM system s^ ... 61
5.2 QoS for large ATM s y s te m s ... 62
5.3 Further S tu d y ... 62

Bibliography 63

A ppendices

A O bject-oriented program m ing and C+-j- A -l
A.l In troduction ... A-l
A.2 Object-oriented design versus top-down d e s ig n ... A-l
A.3 Understanding object-oriented d e s ig n ..A-2
A.4 Data abstraction and object-oriented programming in C + + A-4

A.4.1 C lasses... A-4
A.4.2 Inheritance and virtual member functions A-4
A.4.3 Friend functions... A-4
A.4.4 Operator name overloading .. A-5
A.4.5 Inline fu n c tio n s ... A-5
A.4.6 E ncapsulation... A-5

A.5 Conclusion...A-5

B Pseudorandom numbers and generators B - l
B.l In troduction ... B-l
B.2 Pseudorandom n u m b e r s .. B-2
B.3 Generating pseudorandom n u m b e rs ... B-2

B.4 Multiplicative linear congruential generator.. B-3
B.5 Generator used in the simulation s y s te m ... B-3

C ATM sim ulator source code C -l
C.l Class definitions and header files .. C-l
C.2 Class member functions .. ,........................ C-14
C.3 Main p ro g ram ...C-42
C.4 Join p r o g ra m ... C-68
C.5 Disc in d e x .. C-76

iii

A bstract

A multiplexer is used to group and carry multiple channels on a single transmission
line. Asynchronous transfer mode (ATM) is a high speed packet switching or multi­
plexing technique. Due to the possible statistical fluctuations in the arrival process to
an ATM multiplexer, it must be equipped with a buffer, which stores temporarily the
excess arrivals, until they can be processed. The buffer must be of a size large enough
to guarantee a sufficiently small probability of overflow. In this thesis bursty voice
sources are modelled using a Markov chain. The inherent correlations of the generated
arrival process make exact analysis intractable. An object oriented simulation system
developed in C + + is used to obtain empirical queue length distributions of the buffer
for a number of multiplexer loads. The shape of the distribution highlights two forms
of congestion due to low and heavy traffic, occurring at small and large buffer sizes,
respectively, and motivates the choice of a phenomenological model. The parame­
ters of the phenomenological model are fitted by analysis of the simulation model.
In practice for large ATM systems, the number of input lines, /, makes simulation
infeasible. We show how loss probabilities for large I can be predicted by simulating
for smaller values of I and using the phenomenological models in conjunction with
the simulation data to fit the parameters for the phenomenological model of the large
system itself.

List o f Figures

2.1 Sample traffic on a single l i n e ... 9
2.2 Probability distribution of the times between c e l ls 11
2.3 Cell level Markov model for a single line source 14
2.4 Relationship between variables in a queueing system 15
2.5 Sample traffic for a superpositional arrival p ro cess 17
2.6 Block level Markov model for a single l i n e .. 20

3.1 The main p r o g ra m .. 34
3.2 Procedure controLsimulation.. 35
3.3 Creating a probabilities o b je c t ... 36
3.4 Setting up a linked l i s t .. 37
3.5 The simulation lo o p .. 38
3.6 Moving a node in the l i s t ... 39
3.7 Effect of different initial c o n d it io n s ... 41
3.8 Simulation run with periodic output .. 43

4.1 M (x) for various I with p = 0 .8 2 .. 48
4.2 Enlargement of knee area for p = 0 .82 ... 48
4.3 M (x) for various / with p = 0 .78 .. 49
4.4 Enlargement of knee area for p = 0.78 .. 49
4.5 M(x) for various / with p = 0 .85 ... 50
4.6 Enlargement of knee area for p = 0 .85 ... 50
4.7 M (x) for various I with p = 0 . 9 50
4.8 Enlargement of knee area for p = 0 . 9 .. 51
4.9 u2 versus left cutoff point for p = 0.82 and I = 1 0 0 54
4.10 Intercept plotted against / for chosen p ... 57
4.11 u2 plotted against I for chosen p ... 57
4.12 u\ plotted against I for chosen p ... 58
4.13 Plot of M(x) and M(x) for p = 0.85 and / = 100.................................... 59
4.14 Enlargement of knee region for figure 4.13 59
4.15 Plot of M(x) and M(x) for p = 0.9 and I = 200 59
4.16 Enlargement of knee region for figure 4.15 .. 59
4.17 % of time in burst level congestion for the chosen p 60

v

List o f Tables

3.1 Comparing simulation le n g th s .. 28
3.2 % time buffer non-em pty.. 41

4.1 f3 depending on I ... 46
4.2 s, C and I for the chosen p ... 46
4.3 cr required for the chosen p .. 46
4.4 Cutoff points used in calculation of U\ and u2 ... 53
4.5 u2, intercept and A with 95 % confidence in t e r v a l 54
4.6 U\ with 95 % confidence in te rv a l... 55

vi

A bbreviated term s

ATDM Asynchronous Time Division Multiplexing
ATM Asynchronous Transfer Mode
BBP Backwards busy period
CTMC Continuous time Markov chain
FIFO First in First out
ISDN Integrated Services Digital Network
MLCG Multiplicative linear congruential generator
MMP Markov modulated process
OOP Object-oriented programming
QoS Quality of Service
SRO Service in random order
UDDT User defined data type
VBR Variable bit rate

C hapter 1

Introduction

1.1 Q u eu ein g T h eory
Queueing theory is a branch of Applied Mathematics utilizing concepts in the fields
of stochastic processes and applied probability and is concerned with the study of the
behaviour of waiting lines. The theory can provide us with among others: predictions
about waiting times, the length of a busy period and the overflow distribution; it can
give us a better understanding of queues with the aim being to improve the system
performance and achieve greater control.

We will begin by giving a brief overview of the characteristics of queueing sys­
tems, followed by a summary of our objectives and finally an outline of the report.

1.2 W h a t is a queue?
Americans call it waiting in line, but regardless of name everybody knows what queues
are. Queues are becoming more and more prevalent in our increasingly congested and
urbanized society and many are inevitable. Most queueing systems involve human
beings and every moment a person spends waiting for some type of service they are
part of a queue. Everyday people queue for service in restaurants, supermarkets,
shops, banks, post offices, passport offices, theatres, cinemas, pubs, train stations,
bus stops, taxi-ranks, labour exchanges and hospitals.

Queues are not always this obvious and they do not have to involve people. A
queue does not have to be visible, it is simply a group of people, tasks, or objects
that have requested, but not yet received, service. Other examples of queues are:
pedestrians waiting to cross the road; waiting lists for telephone installation, specialist
surgery, council houses and court cases; a suit waiting to be dry-cleaned; vehicles
queueing at service stations or stuck in bottlenecks; aircraft waiting in a holding
pattern to land; boats waiting to pass locks and bridges; assembly lines and typing
pools; dam operations and climbers waiting to do a classic route.

In the field of communications there are queues due to telegrams, telephones,
computers (jobs waiting for CPU time) and other data communications. Queues
occur at different levels, for example, telephone calls wait to get through an exchange
and packets of data wait in the buffer of a m u ltip lex er.

1

It is the later queue which we are interested in. A multiplexer takes in many
channels and allows each in turn access to an output link. A buffer store is interposed
between the set of incoming links and the output link, ie. in the multiplexer. Its
general purpose is to receive and store (queue) digitized information until it can be
processed.

1.3 Q u eu ein g ch aracteristics
The elements of a queueing system are the customers waiting for service, the server,
the queue itself and the output. All the queues described in section 1.2 possess these
elements but they are not always obvious, for example, at a supermarket checkout,
the customer may be either the shopper in line or the items being purchased - both
are waiting for service.

The arrival process depicts the timing of customer arrivals at the queue. We
need to know the rate of customer arrival and if they are independent of each other.
If all the servers are busy, then the arriving customer joins a queue where they remain
until a server becomes available. The service rate represents the time taken to serve a

• customer, another important aspect of the server is its configuration, ie. the number
of parallel servers, consequently we talk about single server and multi server queues.

Queue discipline or scheduling represents the order in which the customers in
the queue are served, ie. the disposition of the blocked units, eg. service in random
order (SRO) or first in first out (FIFO). Another factor of the queue discipline is
priority, ie. we need to know if different customers receive different priority and if so,
what is the system for assigning it (triage).

We are concerned with voice traffic as the input to the multiplexer, which oper­
ates as a single server queue, all the traffic has equal priority and is served on a first
come first served basis.

1.4 R ep o rt o b jec tiv es
/

We consider I input voice channels to a multiplexer with a single buffer. Speech
from a telephone (active voice source) is digitized and is fed by the input source to
the common queue (buffer) in the form of periodic cells (packets) of information, of
constant deterministic length, the periodicity of which is due to the constant sampling
rate of the source. Arrivals at the buffer are regular during active periods (talking)
and there are no arrivals during periods of inactivity (listening). We describe a source
as bursty if correlations exist between the activity of the source at different times.
The superposition of a large number of sources constitutes a voice packet arrival
process which possesses positive correlations, due to the periodicity of the sources,
making exact analysis intractable [9]. The random and unpredictable traffic flow
causes unavoidable buffer queues and it is the analysis of these which is the objective.

The scenario of interest is an arrival process constituting of a large number of
independent voice sources, which asynchronously alternate between the transmitting
and idle states. The packets are fed into the multiplexer buffer, which has unlimited
waiting room, on a FIFO basis, and the server removes them for transmission over

2

a shared communications channel. The queue length distribution of the buffer is
important in accessing the performance of the multiplexed system, which is reflected
by the Quality of Service (QoS), which is described by the cell loss probability and
by the buffer delay. The cell loss probability depends on the workload arriving at the
multiplexer and on the size of the buffer. Buffer or queueing delays occur when a
statistical variation in the arrival process is such that the arrivals exceed the service
capacity for some period, the excess is then stored in the buffer.

There has been some work on developing analytic models to reflect the statistical
properties of the voice sources and approximate the queue length distribution for
the packet voice statistical multiplexing system. Heffes and Lucantoni worked on
approximating the superposition by a correlated Markov modulated Poisson process
(MM-PP) in which the durations of the active and inactive periods are exponentially
distributed [24]. Daigle and Langford [9] developed a continuous time Markov chain
(CTMC) model where the amalgamated arrival process is Poissonian and also has
exponentially distributed burst and silence periods [9], Sriram and W hitt have have
done similar work [42].

We are interested in large systems prediction, ie. predicting systems where the
number of input lines, I, and the sampling frequency, s, of the multiplexer are scaled
to infinity. Buffet and Duffield have analyzed the queue due to an arrival process
which is a 2-state Markov process and have shown that the probability of the queue
length exceeding x is bounded above by a function of the form z~ly ~x, where z > 1
and y > 1 (exponential decay rate of the queue length distribution) are functions of
s/Z, if the average number of arrivals at the multiplexer per unit time is held constant
[4]. If this holds more generally then predictions can be made for larger systems
by analyzing the behaviour of smaller, easier to simulate, systems. In this thesis
the behaviour of the queue length distribution, as Z scales with s / l kept constant, is
investigated. We use a modification of the CTMC model developed by Daigle and
Langford, in discrete time, where the periods of activity and inactivity are modelled
by a geometric distribution.

1.5 R ep o rt ou tlin e
This report looks at a certain implementation of a statistical multiplexer using a pur­
pose built simulation system. The mathematical theory regarding the model being
simulated is presented so as to give a full understanding of the problem in hand.
Conclusions regarding the prediction of large ATM systems are drawn from the con­
junction of simulation results and a phenomenological model.

The simulation process follow three main steps: modelling, simulation and in­
terpretation - chapters 2, 3 and 4 follow these steps in the main. Modelling identifies
the relevant system features and the applicable assumptions and simplifications nec­
essary. Simulation runs the specifications for a variety of system parameters relevant
to the purpose of the simulation, interpretation extracts information from the output
of the simulation and evaluates and analyzes it with respect to the task at hand.

Chapter 2 collects several topics that are needed for the study of the problem,
including details on ATM multiplexing, Markov chains and renewal processes.

3

The Markov approach can be applied to the random behaviour of a system
provided the behaviour is characterized by a lack of memory, future states are in­
dependent of all past states except the immediately preceding one, ie. probability
density functions (pdf) that are conditioned on several previous time instants always .
reduce to a pdf that is conditioned only on the most recent time instant.

We model the arrival process of a single input voice channel as a Markov chain.
So, the input to the multiplexer is a superposition of a number of these Markov
processes, each of which we take to be independent. Consequently, the service re­
quirement at each integral time is the sum of a number of random variables, each of
which is the state of an independent Markov chain. The sources are typically bursty,
in the sense that their activity is highly correlated into bursts rather than occurring
independently at different times, this reflects the reality of a telephone conversation
which is made up of alternating periods of speech and silence.

Congestion will occur if there are more customers in the system than the server
can handle simultaneously. Heuristically, we can identify two types of congestion,
namely cell level congestion and burst level congestion. Cell level traffic exists when
the queue was empty more recently than the typical correlation time of arrivals,
which in this case is the periodicity of transmission of an active source. This cell level
congestion resembles that due to Poissonian arrivals of the same rate as the rate of
each source. Burst level congestion is due to the persistence of arrivals from the I
bursty sources which result in long periods when the queue is non-empty. Burst level
congestion is determined by the correlations in the arrivals, which do not contribute
to cell level congestion.

We describe the 2-state Markov model of Buffet and Duffield, which is a sim­
plification of the Markov Chain model for a single voice source and we also draw
comparisons between the two models. We introduce the upper bound for the queue
length distribution obtained by Buffet and Duffield, which is used as a basis for
choosing some of the parameters for the simulation of the modified CTMC model.

We are looking at one particular implementation of a statistical multiplexer,
where the buffer queue is measured from the point of view of an arriving cell of
information. Chapter 3 introduces the idea of simulation and outlines the event-to-
event discrete simulation process. A specification of the system designed to simulate
the above situation is then presented. The development took place using an object
oriented approach and was written in C ++; the source code and sample output is
included in section C.

The system is made up of objects designed to pattern the behaviour of the
real system being simulated. Each line source is an object and another object repre­
sents the aggregate input. The other main objects are the buffer queue, the random
number generator and the system probabilities. The components of these objects
are outlined, as well as the main program, which interacts with the system objects.
The main program is described briefly including the simulation algorithm, which is
the procedure that is repeated until some limit on the length of the simulation is
reached. A simulation run can be described as a non-terminating process, ie. there
is no definite climatic event which stops everything; it can be stopped and started at
arbitrary times and can be run indefinitely. However, simulation is only feasible for
relatively high cell loss probabilities, in the order of 10-4, as otherwise the simulation

4

length would need to be extremely long so as to sample the rare events. The chapter
concludes by discussing the effect of initial conditions and the duration of simulation
runs.

Chapter 4 begins with an explanation of the particular choice of numerical
values for the parameters used in the simulations. The main simulation output is
an empirical probability distribution of queue length of the multiplexer buffer (which
has a-correlated arrival process), versus the buffer size. We present and discuss
the simulation graphs for the chosen parameters. The shape of the output graph
motivates the choice of the following phenomenological model and reflects the two
types of congestion.

Pr{queue length > x) = Xe~UlX + (1 — \)e~U2X

The first term models the queue length due to cell level congestion and the second
term that due to burst level congestion.

We discuss how we use linear regression to fit the parameters of this model, u \ , u2
and A. The main results of this thesis are the plots of the intercept, u2 and Ui against
the number of inputs I. We also compare the fitted model with the simulation model.

‘ Finally we present simulation statistics which give the proportion of time spent in
burst level traffic.

Chapter 5 draws some conclusions regarding the prediction and QoS of large
systems. We show how observed dependence of the quantities, A, ui and u2 on
the parameters of the simulated model can be used to make predictions about the
performance of ATM multiplexers in which the number of inputs is too large to
simulate.

5

C hapter 2

M odelling an A TM m ultiplexer

2.1 A T M M u ltip lex in g : general co n cep ts and p re­
lim in aries

For the purpose of our study, only a general understanding of statistical multiplexing
; is needed. W hat we need to understand is how digital communications (of any type)

share a single common broadband (high speed) transmission link. Although some of
these terms were introduced in sections 1.4 and 1.5, this question still leaves us with
some terms which need to be explained before the question itself is answered.

The term broadband covers speed ranges from 1 Mb/s (106 bits per second)
to 100 M b/s and beyond. In our case, the sources of digital communications are I
input telephone lines, which must share the same transmission link (line/channel), ie.
communication bandwidth. Telephone circuits are designed to pass a certain limited
bandwidth (see below), this permits efficient transmission of the voice and signal
frequencies; signals outside this range and below a certain threshold are suppressed,
effectively being treated as silence for the purpose of transmission. Bandwidth is the
difference between the upper and lower limit of the band.

■ Nowadays telephone systems are moving towards an all-digital network, but
up to the late 1960’s telephone networks were largely analog. However, electrical
communication in its earliest stage was digital in the form of telegraphy, which takes
one of two discrete amplitudes, namely on and off. In digital networks, voice - speech
generated at the telephone - and signalling information (both analog) are converted
to digital signals for transmission along the network. In telephony, once the digital
signals are transm itted they must then be reconverted into analog form to generate
the speech at the called telephone.

One of the features of voice digitization is that the encoded signals are divorced
from the analog waveforms of the source. The digital transmission and switching
equipment of a voice network is then inherently capable of servicing any traffic of
a digital nature. It is this property that is exploited to provide Integrated Services
Digital Network (ISDN) services, which are an entirely digital implementation. Since
all data can be represented in digital form, all data (regardless of source) can travel
along the same link, hence an integrated approach can be taken to communication
networking [1].

6

Digital technology samples a continuous time signal at discrete instants and the
sampled value is represented in digital format, ie. a series of zeros and ones; therefore,
it is a method for encoding a signal. Each source has a maximum bandwidth of 4
kHz, this takes into account that most conversations involving humans happen in the
300 Hz —► 3.4 kHz range and also the frequency of some signalling transmissions.
An analog signal needs to be sampled at twice i t ’s highest frequency to obtain an
accurate digital representation of the information content of the signal. The standard
sampling rate used in digital telephony is 8 khz, since a sample is 8 bits this means
sampling at a constant bit rate of 64 kb/s. Consequently, the data is partitioned or
segmented into fixed length packets, or to use more modern terminology, cells, with
a fixed length of 53 bytes (424 bits), 48 bytes for the data and 5 bytes for the header
(containing identification and routing data).

Multiplexing can be used to group and carry multiple channels on a single
transmission line, whose inherent bandwidth is greater than that needed for a single
channel source, thus transmitting them simultaneously. A sequence of time slots, of
duration equal to the duration of a single packet (integral length), are established
on the transmission medium bandwidth, during which individual sources, each of
which is connected to a caller, can transmit signals. The bandwidth is shared by
multiplexing the bit streams in the time slots to form a single digital stream for
transmission on the common communication channel. There are a number of terms
used to describe this method of sharing: Asynchronous Time Division Multiplexing
(ATDM), more commonly known as Asynchronous Transfer Mode (ATM) of packet
switching [25, 37].

ATM is a fast packet switching technique with the principle characteristic that
it can support cell traffic generated by variable bit rate (VBR) sources. So, ATM
is a high speed multimedia network, ie. it can support a broad spectrum of traffic
classes - voice, video, videotelephony, colour facsimile, LAN (local area network)
interconnections and other data communications - at a variety of transmission speeds
(different bit rates). If the ATM channel (transmission line) has a capacity of C
Mb/s, therefore, the time taken to transmit each cell is a constant 424/(7 - due to
the fixed cell size. Conceptually, time is divided into slots corresponding to this cell
transmission time which is known as a tick . A tick can be looked on as the period
at which the output of the multiplexer operates, ie. the multiplexer can process one
cell per tick. All cells are required to arrive at the beginning of each time slot, also,
cells are cleared to the output line by the end of each time slot.

ATM carries bursty traffic efficiently and a voice source is a well known example
of a sporadic or bursty source. This is true as long as the coding scheme employs
speech activity detection and silence suppression. A packet switched system does
not need to transmit silence and so the silence “is removed” [25]. For intervals when
a caller is speaking, otherwise known as a talkspurt, a bursty voice source emits a
periodic stream of constant length cells in serial form. Talkspurts are interspersed by
silent periods during which no packets arrive. Both talkspurts and silent periods are
variable in length, which reflects the fact that a proportion of the average telephone
conversation constitutes silence. A cell stream from a single voice source can be
modelled by arrival streams, with individual cells separated by a fixed interval during
talkspurts, or by no arrivals during silence. The fixed length between cells in a burst

7

is because of the periodicity at which each individual source is sampled and is known
as the sampling or packetization period. So, in other words, the cell interarrival
time during a talkspurt is constant, otherwise it is one packetization period plus a
silence. This sampling period is measured in units of the output period, ie. ticks,
and is labelled as of length s; s can be seen as the ratio of the sampling period to the
output.

The input traffic to the multiplexer is taken to be a superposition of a finite
population of I packetized voice sources, each of which is characterized as above.
The completion of a service by the multiplexer constitutes the insertion of a call
into the transmission medium - an actual physical channel - which is modelled as a
single server. The queueing or service discipline of the buffer in the multiplexer is
governed by a FIFO policy in order to guarantee call sequence integrity. Each source
is assigned an identifier, which is incorporated in a cell prefix or header. So, a cell is
a labelled block of transm itted information and as each cell is formed it is given the
next available time slot (bandwidth on demand). When the cells reach the head of
the queue they are sent down the output line and when they emerge from the far end
of the transmission line, the data is transm itted to its destination according to the cell
header. This allows data from many conversations to be interleaved in any sequence
without mutual interference and permits individual conversations to be retrieved by
demultiplexing.

So, a statistical multiplexer is used to share a transmission line and in this case,
to gain efficiency in a superposition of bursty sources; thereby reducing the number
of transmission links needed. It takes advantage of the statistical variations in the
incoming traffic to perform statistical multiplexing and save communication band­
width. Its purpose is to maximize utilization by using all the available bandwidth. It
does this by utilizing the sampling period, s between cell arrivals (on a single input
line) and the periods of silence in bursty sources, to support other active sources.

A multiplexer and its buffer can be seen as a single server, constant deterministic
service time queueing system. Queues of cells arise when the available capacity of
the ATM is overallocated using statistical multiplexing. This congestion occurs due
to the dynamic nature of bursty traffic - the fluctuations in the number of bursts and
hence the number of cells arriving. From time to time a number of sources emit bursts
simultaneously, consequently producing a transient cell arrival rate greater than the
multiplexer capacity.

The performance of a network - our inputs, multiplexer and output line form
one part of such - is generally measured in terms of throughput and delay. In order
to minimize the inevitable delays in a queue there is generally a limit on the length
of the queue; however, we are not concerned with this particular problem and assume
that the multiplexer has an infinite capacity, ie. all packets are allowed in. Conse­
quently the probability of cell loss is not an issue and throughput is not degraded.
In synchronous packet networks messages arrive with varying degrees of urgency and
hence priority. Priority is established by the need of transmission or by the impor­
tance of transmission, for example, in voice and data synchronous systems, voice may
get priority over data in order to have a reasonable QoS; different cell types may
have higher or lower maximum admissible cell loss probabilities. We are dealing with
voice traffic only and so priority is not in question; although the fact that the packets

8

are coming from speech signals on voice channels is not im portant in modelling the
arrival process.

So, we model the buffer in the multiplexer as an infinite capacity single server
queue with a constant service time and with no priority. By the end of the chapter
we will have presented the necessary background and discussed the problem at hand,
as well as outlining our motivations for simulating.

2.2 M o d ellin g s ta tis t ic s o f traffic on a sin g le line

2.2.1 Term inology and assum ptions
Firstly, we will examine the characteristics of the traffic for a single bursty voice
source.

• Burst. A burst or talk spurt is packetized into a series of fixed length packets
(see section 2.1) and continues until a silence longer than the overhang time
in encountered, ie. a burst includes the overhang time. Since there are s ticks
between cells, a burst can be described as a grouping of s ticks, where the last
s ticks are the overhang.

• Overhang. The overhang is a deterministic period of time after the talk spurt
has ended; it is a waiting period to see if another cell of information arrives or
if silence has begun.

• Silence. This is a period of time during which there is no speech activity and
represents the time where a caller is listening and not talking; it continues until

. the next burst starts.

burst silence burst (continuing)

M I N 1 1 1 1 1 1 II 1 1 1 II 1 II 1 1 1 1 II _„LLU_L 1.1 1 L L
time (ticks)

s s
(overhang)

Figure 2.1: Sample traffic on a single line

Human speech is modelled as alternative bursts and silences of variable length and
sample traffic for a single voice source is shown in figure 2.1. A superposition of /
bursty sources is how the traffic is presented to the multiplexer, which regulates the
inputs and multiplexes them onto a single transmission line.

Before we continue we need to define the following probabilities which charac­
terize the distributions of the burst and idle periods:

a = Pr{a burst continues} (2.1)

9

ie. an active line stays active. So, (1 — a) is the probability that an active source
becomes inactive, in other words, that the burst stops. If the burst stops then the
last grouping of s ticks was the overhang.

/? = Pr{the silence continues for another tick} (2-2)

ie. an inactive line stays inactive. So, (1 — /?) is the complimentary probability that
an inactive source becomes active, ie. another talk spurt begins. See section 4.2 for
a more detailed description of a and f3.

For each voice source we make the following assumptions:

Al. The telephones is continuously off-hook, ie. continually busy.

A2. The traffic (on each line) is independent.

A3. The burst lengths are independent and identically distributed (i.i.d.) and are
geometrically distributed.

A4. The silent lengths are i.i.d. and are geometrically distributed.

Assumption Al means that there is no silence between phone calls, only silence be­
tween bursts of speech, words and syllables (see section 2.1) When a person is talking
there are two possible situations, they could be actually speaking or having a slight,
small, pause. So, although we describe a talkspurt or burst as the period when a
person is talking, it really is the period that data is being sent, ie. when the person
is really talking.

The telephones transmit only when there is speech activity; an absence of a cell
means that either the input is not active or that it is between packets, since a packet
of data is only transm itted every s ticks.

Since the packet interarrival times can be regarded as i.i.d, we assume that
the successive talkspurts and silence periods form an alternating renewal process
(regenerative process). This is a sequence of i.i.d. random variables which represent
the lifetimes of a burst or a silent period. It is described as alternating since the
system can be in one of two possible states. The time between the cells, D , measured
in ticks, is never less than s, ie. D > s. We define V to describe the distribution of
the times between cells, ie. V(d) = Pr{D < d}. From equations 2.1 and 2.2 we know
that Pr{D = s} = a and Pr{T> = s + 1} = (1 — a) (l — (3). Now using the fact that
V(s 4- x) = Pr (-^ = 3 + *} we can write

V(d) = a + (1 - a) (l - /3)d~a, d > s (2.3)

From assumptions A3 and A4 we know that the burst and silence lengths are
random variables with geometric distributions.

Pr(burst = j cells) = (1 — a)a-7'-1 (2.4)

Pr(silence = s ticks) = (1 — /?)/?s_1 (2.5)

10

1 _

V(d)

a ----------r

I 1 I I I I I I I 1 I 1

tim e, d (in ticks)

■J— u

Figure 2.2: Probability distribution of the times between cells

Note we speak of bursts in terms of cells and silence in terms of ticks, since this is
what characterizes them. Also, we assume that there is at least one cell in a burst
and at least one tick in a silence. Now, it is straightforward to show the following

Pr(burst > c cells) = (1 — a) cP 1 = of (2 .6)
J = c + 1

. c—1Pr(burst > c cells) = qc_1 (2-7)

Pr(silence > s ticks) = /3s (2-8)

Pr(silence > s ticks) = (3S~1 (2.9)

The burst length is geometrically distributed, so the expected mean number of cells
in a burst, Eg, is by definition

E b =
1

(! ~ a)
Similarly, the expected mean number of ticks in a silence (idle period), E j , is

1

(2.10)

£ / =
(l - «

(2 . 1 1)

We define B and I to be the actual mean burst and mean silence lengths re­
spectively. Then, if Tw is the tick width (see section 2.1), we can write the following

sTw i Tw
a = 1 ---- = - and 8 = 1 ------—

B I

The values of E b and Ei used in the simulations are discussed in section 4.2.

(2 .12)

11

We can calculate the activity rate, A r , ie. the probability that a line source is
active, to be

Ar ~ b + 7 2̂'13^

This also represents the proportion of time in the long run, that the process is in
burst mode, the complimentary probability giving the proportion of time spent in
silent mode.

2.2.2 Markov Chains: definitions and lim iting behaviour
A stochastic process is a collection of random variables defined on a common
probability space; we consider the discrete stochastic process { X n,n £ N } with a
countable state space E. Markov processes are an important class of stochastic
processes with the property that given the present state of the stochastic process the
future (process evolution) is independent of the past (evolution process). A Markov
process can be thought of as the sequence of states entered by a system over time and
is called a Markov chain if i t’s state space is discrete. Then, the above stochastic
process is called a Markov chain (of order one) provided that

Pr{X n+1 = j | X0, •. •, Xn} = Pr{X n+1 = j | X n} (2.14)

V j € E.
We will consider only the Markov chain for which the transition probabilities,
P(i , j) , ie. the probability of transition from state i —► j in one-step, are independent
of the time variable, ie.

P (i , j) = Pr{Xn+i = j \ X n = *'}, i , j € E (2.15)

So, the Markov chain has stationary probabilities, ie. it is time-homogeneous. A
markov chain is characterized by it’s transition m atrix (square) which is made up
of the probabilities P(i , j) , V i , j € E. The transition matrix of a Markov chain is
a Markov (stochastic) matrix, which means that all the entries are non-negative and
that all the rows sum to unity, ie. 0 < P (i , j) < 1 , i , j € E and =
l,fo r every i G E.

The joint distribution of Xo , . . . , X m is completely specified for every m € N
once the initial distribution, ip(i0) = Pr{X0 = i}, and the transition matrix are
known.

Pr{X0 = io ,X t = A , . . . , X m — im} = ^ (i0)P (i0, A), • • •, P(im~i, im) (2.16)

The m-step transition probabilities can be computed using the Chapman - K ol­
mogorov equation, which is

OO
P ^ ^ j) ^ Y J p m { h k)p n (K j) for every i, j € E (2.17)

k=0

So, the process must be in some intermediate state k after m steps and the probability
of reaching state j does not depend on how state k was reached. It can be easily shown

12

that P n, which contains elements P n(i, j) , each of which is the probability of going
from state i to state j in exactly n transitions, is also a Markov matrix.

State j of the Markov chain {A„} is reachable from state i if it is possible to
reach state j from state i in a finite number of steps, ie. P n(i , j) > 0 for some n > 0.
If every state can be reached from every other state the Markov chain is irreducib le ,
this means that the only closed set is the set of all states. For each state we define Xj n ̂
to be the probability that the first return visit to state j occurs after n transitions
(after leaving j) , ie. T ^ = Pr{Xn = j, X„_i ^ j , . . . , X \ ^ j \ X 0 — j}- Then the
probability of ever returning to state j is given by Tj = T jn\ If the probability
of returning to state j is 1, ie. Tj = 1, then state j is said to be re c u rre n t, otherwise,
if 0 <. Tj < 1 , the j is a tra n s ie n t state. If we define Mj to be the time of the first
visit to state j , then if E[Mj] = oo a recurrent state j is called null, otherwise, if
E[Mj]< oo, the same state j is called non-null. A recurrent state j is said to be
p e rio d ic with period d > 2 if P ^ (i , j) = 0 unless n = vd is a multiple of d, and d
is the largest integer with this property. If no such d exists then the state j is called
ap erio d ic .

Feller [15] describes recurrent non-null, aperiodic states as ergod ic . If all the
states are ergodic, this means that a unique stationary distribution exists (see below).
An ergodic theorem gives conditions under which an average over time of a stochastic
process will converge as the number of observed periods becomes large, eg. the
strong law of large numbers or the following conditions for calculating the limiting
probabilities of a Markov chain.

Now, we define the probability that the Markov chain {X„} is in the state j at
the nth step by xjn\ ie.

7r(j n) = Pr{Xn = j } (2.18)

Thus, the initial distribution of the states is given by x f \ for every j € E. The
matrix P n converges to the steady state vector 7r = (7̂ , 7t2, . . .) when n becomes
large, which contains the probability of being in each state at any time, independent
of the initial state, ie:

lim 7r|n) = 7Tj (2.19)
n —t-oo ^

The Markov chain is said to have s ta tio n a ry or s te a d y -s ta te p ro b ab ilitie s (prob­
abilities do not change with time), 7r, if the matrix equation n = 7tP is satisfied,
ie.

7Tj = ^ 2 KiPih for every j € E (2.20)
i

This system of linear equations is solved by a standard algorithm which takes into
account that the parameters 7Tj must also have the properties that

7Vj > 0 and ^ 7Tj = 1 (2.21)
j

The limiting probabilities, Xj, always exist and are independent of the initial distri­
bution if the Markov chain is irreducible, aperiodic and time homogeneous. If all the
states are transient or recurrent null then Xj = 0 for all j and the Markov chain is
not stationary (invariant). Otherwise, if all states are recurrent non-null a unique
stationary distribution exists [6].

13

that P n, which contains elements P n(i, j) , each of which is the probability of going
from stated to state j in exactly n transitions, is also a Markov matrix.

State j of. the Markov chain { X n} is reachable from state i if it is possible to
reach state j from state i in a finite number of steps, ie. P n(i, j) > 0 for some n > 0.
If every state can be reached from every other state the Markov chain is irreducib le ,
this meanssthat the only closed set is the set of all states. For each state we define Tj71'*
to be the probability that the first return visit to state j occurs after n transitions
(after leaving j) , ie. r j n) = Pr{AA = j , X n_i ^ j , . . . ,X \ ^ j j X 0 = j} . Then the
probability.of ever returning to state j is given by Tj = T^n\ If the probability
of returning to state j is 1, ie. Tj = 1, then state j is said to be re c u rre n t, otherwise,
if 0 < Tj < 1 , the j is a tra n s ie n t state. If we define Mj to be the time of the first
visit to state j , then if E[Mj] = oo a recurrent state j is called null, otherwise, if
E[Mj]< oo, the same state j is called non-null. A recurrent state j is said to be
p e rio d ic with period d > 2 if P(n)(i, j) = 0 unless n = vd is a multiple of d, and d
is the largest integer with this property. If no such d exists then the state j is called
ap erio d ic .

Feller [15] describes recurrent non-null, aperiodic states as ergodic. If all the
states are ergodic, this means that a unique stationary distribution exists (see below).
An ergodic theorem gives conditions under which an average over time of a stochastic
process will converge as the number of observed periods becomes large, eg. the
strong law of large numbers or the following conditions for calculating the limiting
probabilities of a Markov chain.

Now, we define the probability that the Markov chain {A”n} is in the state j at
the nth step by 7rj-n\ ie.

7rjn) = Pr { X n = j } (2.18)

Thus, the initial distribution of the states is given by 7rj°\ for every j € E. The
matrix P n converges to the steady state vector 7r = (7̂ , 7t2, . . .) when n becomes
large, which contains the probability of being in each state at any time, independent
of the initial state, ie;

lim 7r|n) = 7Tj (2.19)n—► 00 J
The Markov chain is said to have s ta tio n a ry or s te a d y -s ta te p ro b ab ilitie s (prob­
abilities do not change with time), 7r, if the matrix equation 7r = 7rP is satisfied,
ie.

7Tj = ^ 7T{Pij, for every j € E (2.20)
i

This system of linear equations is solved by a standard algorithm which takes into
account that the parameters 7Tj must also have the properties that

Xj > 0 and ^ 7Tj = 1 (2.21)
j

The limiting probabilities, 7Vj, always exist and are independent of the initial distri­
bution if the Markov chain is irreducible, aperiodic and time homogeneous. If all the
states are transient or recurrent null then 7Tj = 0 for all j and the Markov chain is
not stationary (invariant). Otherwise, if all states are recurrent non-null a unique
stationary ^.distribution exists [6],

13

2.2.3 D efining a Markov process
We now construct the following discrete time Markov process, which represents the
possible states entered by a single line source. The state space for a line will be
E = {0 , 1 ,2 , . . . , s} and the state of a line j , X j (t) £ E, is given by

Xj(t) — min(s, number of ticks since last cell arrival) (2 .2 2)

Note that Xj(t) = 0 means that a cell has arrived. If the number of ticks between
cell arrivals is > s then a silent period has been entered; as is evident from figure 2.3,
this means that the line source stays in state s, until a burst begins - at which point
it moves to state 0. It is clear also, that there is no probability content in moving
from state 0 to state 5 — 1, they are deterministic transitions - a transition occurs
every tick - as nothing further can happen for a period of s ticks; the system thus
traverses from state 0 to state s with probability 1. Then, either a cell arrives with
a probability of a and it is back to the start of the chain or silence begins with a
probability of 1 — a. If Xj(t) = 0 this means that an arrival has taken place.

P

The process shown in figure 2.3 is Markov because the probability distribution of the
line at time n is determined only from i t ’s distribution at time n — 1, according to
equation 2.14. Therefore, a transition matrix, 2.23, can be written for the 5 + 1 state
Markov model for a single line as graphically represented in figure 2.3. Q is a sparse
(5 + 1) x (5 + 1) transition matrix and is made up of the transition probabilities Qxy,
see equation 2.15.

(

Q =

0
0
0

0
0
a

1 0 0
0 1 0
0 0 1

\ l ~ P

0
0
0
0

0
0
0
0

0
0
0
0

0 0
0 0
0 0

1
0
0
0

0
1
0
0

0
0
0

0
0

1 — a
p

\

(2.23)

/
The Markov chain has a finite state space and the states form one irreducible closed
set and are all recurrent non-null aperiodic. This is clear from an examination of

14

the transition diagram in figure 2.3: all initial states have a non-zero probability to
pass through any other state within s ticks. The invariant distribution is obtained by
solving the system of linear equations given by equation 2.20 and the unique solution
obtained is

(f 7- f ¥) <2'24>

where -f = s + The reciprocal of / is multiplied by the particular solution, which
is the stationary state of the arrival process on each line, (1 ,1 , . . . , 1, y^f), ie. the
vector is normalized, so that the properties 2.21 are satisfied.

The probability that a line is active, Pa , is equal to the stationary probability
that the chain is in state 0 (cell arrival), therefore, from equation 2.24 we can write

Pa = Z T E S <2'25)
A 1 -/3

which is of course equal to the activity rate, A r , given in equation 2.13.

2.3 M u ltip lex ed sy stem : su p erp o sitio n o f sources
and m o d ellin g th e arrival p rocess

2.3.1 Lindley equation w ith a M arkovian workload
Before we talk about the multiplexed system we need to introduce the Lindley equa­
tion, which is a recursive relation for calculating the waiting time of a customer in a
queueing system, we will make the following definitions:

• un Instant of arrival of the nth customer.

• vn Interarrival time of the nth customer, where tn = un+1 — un, ie. the time
. between the arrival of the (n + l) </l and the nth customer.

• sn Service time of the nth customer.

• wn Waiting time of the nth customer.
wn

Wn+1

u n time Un+1
Figure 2.4: Relationship between variables in a queueing system

From figure 2.4 it can be shown for a single server queueing system that the waiting
time Wn+i of the (n + l) th customer is got from the following recurrence relation

wn+1 - max(0, wn + sn - vn) (2.26)

15

Equation 2.26 is called Lindley’s equation.
Moving on to the multiplexed system: as a consequence of the multiplexing

techniques we can look at the I lines superimposed over a period of s ticks. At each
tick of the clock any cells present at the input lines are emptied into the buffer in the
multiplexer and the cells are then removed at the rate of one per tick, as described in
section 2.1. If there are customers in the buffer this means that there is no gap in the
output, ie. the output line is being fully utilized. Also, there must be some protocol
to order the different cells arriving simultaneously, this is discussed in section 3.3.2.

Let us examine the virtual queue, which we define to be the queue as seen by
the multiplexer - any cells present at a given tick are emptied into the buffer. To
specify the collective state of the I input sources we define the following vector of
states in E xl

X (t) = (M t) , X 2(t) , . . . , X l(t)) (2.27)

where Xj(t) is defined by equation 2.22. Thus, X(t) represents a state of the input
lines of the multiplexing system, which is the sum of I Markov processes. Further, we
define A(2£(t)) to be the number of cells emptied into the buffer - workload brought
by customers - at time t (measured in ticks), ie.

l
A(X(t)) = E I * = °> (2-28)

t=i

where 6 is an indicator (kronecker delta) function, such that

x . f i n = m
\ 0 otherwise

Now, if we define q(t) to be the number of cells in the buffer at time t, we can relate
q(t + 1) to q(t) in the same way as the waiting times are related in equation 2.26 as
follows

. q(t + 1) = max(0,g(f) + A(X(t)) - 1) (2.29)

A(2L(t)) plays the role of the service time and the interarrival time is 1, ie. the output
rate of the multiplexer per tick.

In the simulated implementation of the queue we are interested in the queue
from the point of view of an arriving packet of data as opposed to the virtual queue.
Now, we define q(tn) to be the number buffer places occupied (cells in buffer) when
the nth arrival occurs at time tn, including the nth arrival itself, ie. the nth arrival is
counted as a waiting cell. Similar to equation 2.29, we can make the following relation

q(tn+1) = max(0, q(tn) + 1 - tn) (2.30)

The one arrival plays the role of the service time and the interarrival time is tn. We
implement equation 2.30 in our simulation and this is discussed in section 3.3.3. Since
each arrival is a function of a Markov chain, equations 2.30 and 2.29) are essentially
Lindley’s equation with a Markovian workload.

16

2.3.2 Superposition o f sources
The multiplexed system is a superposition of the / bursty sources as outlined in section
2.1. Now, in section 2.2.3 we described the packet arrival process for a single line as
an alternating renewal process. However, the superpositional arrival process can not
be modelled as a renewal process due to its burstiness (high variability) and also
because the only renewal process whose superposition is also a renewal process is the
Poisson process [26]. Because of this bursty nature the aggregate arrival process is
highly correlated between different times [42]. We can describe the resultant queueing
system as I V / D / 1, where there are / sources, the service time is deterministic and
there is one server; V is the distribution of the alternating renewal process for one
line as given in equation 2.3.

Line 1 III 1 1 1 1 1 .II M I­ N I M 1 1 1.1 1 1 1 1 1 1 J-LL

1 1 1 1 1 J 1 LL.1 l I I I I I I 1 1 1 I I 1 1 I I I I I I I l l l - U

Line 3 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I ^

Superposition 11 1 I I 1 , . l 11 I I 1 I 11
time (ticks)

Figure 2.5: Sample traffic for a superpositional arrival process

2.3.3 S tab ility condition for m ultip lexed system
From equation 2.25 we know that with I input lines, the average number of active
lines is IPa', this must be less than the service rate, S r , otherwise the number of cells
in the system will grow without bound.

IPa

f t T £ 1 (Z 3 1)

The offered load or traffic in ten sity , p, is a measure of the demand made on the
system and can be defined as the expected number of cells (active lines) arriving at

17

the multiplexer during a service time. We know that the multiplexer can service one
packet per tick, therefore S r = 1. Thus, from equation 2.31 we get the following
stability (non-overloaded) condition:

p < 1 (2.32)

with

° = '-<*o = — r r ^ s (2-33)

where s
a = l

(2.34)

and
</> = (1 - 0) 1 (2.35)

1 — 0 is the probability that a silent source will become active, therefore, intuitively
we can say that (j) represents the expected number of inactive lines becoming active.

2.3.4 C ell and burst level traffic
Due to the burstiness of the I sources the queue can be described by two kinds
of congestion, namely burst level congestion and cell level congestion. These were
discussed briefly in section 1.5.

If we examine a block of s ticks and find that the buffer is never empty during
the block (no idle period), then we can describe the congestion as burst level. Burst
level congestion is associated with heavy traffic and is determined by the correlations
in the arrivals. The queue length at the end of the ith block, qi, depends only on the
queue length at the start of the block, qi-\, and the number of arrivals in the block,
Ai, but not their specific arrival times within the block. Now, we adapt equation 2.29
to get the following relationship for the queue lengths from block to block.

qi - qt-1 + A i - s (2.36)

The multiplexer can only process 3 ticks per block, so in the burst level queueing
regime there always will be a surplus of cells in the queue at each step. We define the
backw ards bu sy p e rio d (BBP) as the period which began the last time the buffer
was empty. In burst mode the BBP extends into the previous block and perhaps
beyond, the queue length then depends on a number of correlated arrivals. If A0 > s,
this means that qt > q0; the probability that an active line stays active, a, is very
close to 1 (see section 4.2), consequently A\ A0, A 2 « Ai, etc. This correlation of
the arrival process is the main reason that the amalgamated arrival process can not
be modelled as a renewal process (see section 2.3.2). So, it is very likely that q2 > q\,
qz > q2 and so on; consequently, the buffer grows over a large time.

So, in burst level congestion it is clear that the queue at cell level is unimportant.
We make the heuristic that a 2-state Markov model, called the block level model,
which is a simplification of the cell level model, should be appropriate for burst level

18

traffic. The queue length is calculated using the following iterative which is based on
the equations 2.29 and 2.36.

qi = max(0, <£_x + - s) (2.37)

The block model is discussed briefly in section 2.4.
Cell level congestion relates to the low traffic regime and reflects the fact that

it is less likely that customers will arrive at the same time. It means that the queue
is empty at some point in the block prior to the given tick, therefore, the (correlated)
arrivals from the next previous block do not influence the queue length. So, to keep an
accurate track of the queue length distribution the details at cell level are important;
equation 2.29 is used to record the queue length in the buffer. The BBP is typically
< s, which means that the correlations between arrivals are not manifested in the
queue, since what happened before the queue was last zero is of no consequence to the
current queue length. To characterize the arrivals we define the following proposition.

P ro p o sitio n 1 The superposition of I i.i.d renewal processes, each with rate 4, tends
to a Poisson process of rate i as I tends to infinity [26].

Section 4.2 discusses the parameters chosen for simulation in detail, however it is
necessary to begin the discussion here. If we fix the traffic at the burst level by
fixing a , and scale I and s to infinity, we are scaling the rate at the cell (tick) level.
This corresponds to the conditions set by proposition 1. For low level traffic, using
proposition 1 we can make the heuristic that the arrival process converges to a Poisson
distribution (see section 4.3) as s and I scale, this amounts to ignoring the correlations
between successive blocks. For block level congestion proposition 1 is true but it is
not relevant, since due to the correlations between arrivals it is not sufficient to only
look at the arrivals at the tick time scale.

2.4 B lo ck L evel M od el

The cell level model for a single line as shown in figure 2.3 can be greatly simplified
by considering the behaviour of a line source at block level. Similarly to equation
2.22 we can represent the state space for a single line for block j as Yj € {0 ,1 }, where
this is essentially a projection of the cell level model.

y _) 0 no cell arrival in block j . .
 ̂ [1 (one) cell arrival in block j v •)

We wish to establish a relationship between the two processes - described in equations
2.22 and 2.38. We further define equation 2.22 so that Xjk represents the state of the
line at the j th tick in the kth. block. Then, if X(s_1)fc = s , the line is silent, its not in
the overhang or between cells. The next tick is the first of the next block represented
by ^f(i)(fc+i) and the last cell arrived in some previous block, ie. no cell arrived in the
j th block. Similarly, if < s, a cell arrived in the j th block. So, the relation
between the two processes is as follows

Yj = 0 *-* X(s-i)j = s (2.39)

19

Yj = 1 <-► X (a. 1}j < s (2.40)

It can be shown that this new block process as represented in equation 2.38 is not
Markov.

Now, we define a 2 state Markov model, Y which is represented by the state
transition diagram in figure 2.6.

l - o 0 1 1 - d

Figure 2.6: Block level Markov model for a single line

The transition matrix, P , for this Markov chain can be written as follows

p = (l : , a (2 .4 i)d 1 — d
{

where a and d are defined as follows:

a = Pr{Y}+1 = 1 | % = 0} (2.42)

d = Pr{yi+1 = 0 I Yj = 1} (2.43)

Now, from equation 2.42 we know that a is the probability that a silent line becomes
active, when we compare this with the cell level model it means that a — Pr{silence <
s}. Then, using equation 2.9 we can write a = 1 — /P. 1 — is a very small value since
/3 is close to 1 (see section 3.3.3). Using the binomial theorem we can approximate
(1 — (1 — f3))s by 1 — s(l — (3)) and we get the following relation.

a — s (l — j3) (2.44)

Similarly comparing equation 2.43 with equation 2.1 we get the following relation.

d = l - a (2.45)

If we fill equations 2.44 and 2.45 into the formula for the load (see equation 2.33) we
get the following expression for the load in the block level model.

(2.46)a(a + d)

From equation 2.32 we get the following relationship for a stable regime.

<T > — (2. 47)
a + d K J

20

As was discussed in section 2.3.4 the 2 state Markov block model can be viewed
as an approximation for the burst level component of the queue of an ATM multi­
plexer. It has been shown that the upper bound for the tail (indicates heavy traffic)
of the queue length distribution is of the following form [4].

Prjqueue length > 6} < z~l y~b for any b > 1 (2.48)

where z > 1 and y > 1 are given in terms of the parameters of the model, a, d and
a. In section 4.2 we describe how we use the upper bound to choose values for the
parameters in our simulation runs.

21

C hapter 3

Sim ulation o f an ATM m ultip lexer

3.1 In tro d u ctio n
First of all we will define a system as a collection of interacting parts, a system is
either deterministic or stochastic. Stochastic systems, unlike deterministic systems
involve random, unpredictable events and this is the kind of system which interests
us. Also, we will define a model as an abstract representation of a physical system.

Imagine the following situation - some new system has been proposed and we
wish to examine the implications of the system for different parameters. From an
analytic point of view, the problem may be too difficult to solve or the level of detail
provided by the analytic results may not be comprehensive enough for our needs. To
learn more about a particular problem one possible solution is to put the concept
into practice on an experimental basis and see what results are produced. However,
constraints such as money, technology, risk and time often make such experiments
infeasible, indeed only rarely does one have an opportunity to perform large scale in
situ experiments in the real world.

The analyst thus is unable to use an analytic approach or to perform a real­
time experiment, a solution then would be to simulate the system, which make a
systematic study of the problem possible. Simulation has been around a long time,
armies the world over have simulated real battle situations in the save haven of their
training grounds, airline pilots have used flight simulators, etc.

Simulation has been used to analyze both theoretical problems in Science and
practical real-world problems, its success has been in parallel with the advance of the
digital computer. Simulation is most useful when analytic and numerical techniques
cannot supply answers; it is essentially a statistical sampling experiment that is used,
in conjunction with a model, to obtain approximate answers for multi-parameter
probabilistic problems, by generating external stimuli and observing how the system
reacts over time.

3.2 D iscre te and con tin u ou s s im u la tio n
Simulation models analyze the behaviour of systems as a function of time and there­
fore we talk about discrete simulation and continuous simulation. In discrete simu­

22

lation, the system is examined only at definite points in time, whereas in continuous
simulation the system is monitored at every point in time.

In both types of simulation the end objective is to collect statistics which de­
scribe the behaviour of the simulated system and the way in which these are collected
is the main factor in determining if a system is discrete or continuous. In discrete
systems the statistics are collected only when certain events take place and as will be
evident from section 3.3.3 it is discrete asynchronous (events can occur at any time)
system simulation that we are interested in.

One of the attractions of simulation is that once the initial conditions and fi­
nal states for a particular simulation run are known, then various runs can be rerun
or replicated. For example, if after analyzing the output of a simulation run it was
decided that certain unrecorded data might explain the results obtained, then the
simulation could be rerun with the same initial conditions once the extra data col­
lection was added to the system. This can be useful in the development stage. More
useful is the ability to replicate any experiment, in other words rerun it with selected
changes made to the parameters.

3.3 N e x t-e v e n t sim u la tion

3.3.1 O utline o f next-event sim ulation
Next-event scheduling is one of the common approaches to discrete simulation and
was the approach used in developing the simulation system. The implementation
proceeds as follows: select the first event on the time scale and perform all associated
actions including putting any newly generated events in their proper order on the
time scale. With the events now updated on the time scale, choose the next event
and repeat until a desired simulation period is covered.

3.3.2 Event definition
In section 2.1 we introduced the concept of I telephone lines sharing a transmission
line. The sharing of the communication bandwidth is scheduled by ATM multiplexing
where each terminal transmits short fixed length cells, see section 2.1. Also in this
section we learnt that if a telephone line is firing (talk spurt) this means that packets
of data are being transm itted and if it is not firing this means that the talk spurt has
ended and that there is silence on the line.

Our simulation start-up policy (see section 3.7) positions the I input lines over
a block of s ticks and marks them as firing or not firing. The position a line takes is
reserved for the packet of data that the line will transmit if it is firing or when it starts
firing. Another way of looking at it is that if the line is inactive, the cell contains
silence and the probability of speech activity in the next packet is deterministic, with
probability 7 , see equation 3.2. The set of numbers indicating activity and firing
time for every input represents the state of the system and is sometimes known as
the sy stem im age [21]. An event is something which can make changes to this
system image. Now, we ask ourselves, what activities can cause events? If we keep in

23

mind that every line in the system is examined every s ticks and less when an inactive
line becomes active, we conclude that the activities which can cause events are:

(i) A packet arriving at the multiplexer forms part of a burst for one input; also,
the packet may be the last cell in the burst in which case the activity flag (see
section 3.5.2) will change from firing to not firing.

(ii) A line which is currently silent may begin speech activity, in which case the
activity flag will change from not firing to firing and the firing time will also
change.

We mentioned in section 2.3.1 that we must have some protocol for cells arriving
simultaneously, ie. at the same tick. It is essentially random in that whichever line
gets into position first will be dealt with before other cells at the same tick. The
system cycles from line to line in the order of which they are positioned in time, until
some limit on the simulation length is reached (see section 3.4.1); this is the essence
of next event scheduling.

3.3.3 Event actions
This section describes the actions which occur when an event takes place and is
outlined in detail in the flowchart shown in figure 3.5. These actions are the heart of
the simulation loop and form the algorithm that is repeatedly executed to carry out
the simulation.

The status of the input line is examined, it is either active (firing) or silent (not
firing). If it is firing the following actions take place in sequence.

Action 1: Increment the buffer, B , in the multiplexer.

Action 2: Packet processing.

Action 3: Check to see is the talk spurt is going to end.

When action 1 occurs it indicates that the packet is ready for processing; the
queue length is then stored so as to build a probability distribution of the buffers
queue length (data collection). In section 2.1 we described how we were modelling
a buffer of infinite capacity. For practical reasons, ie. due to restrictions on RAM
size (see section 3.4.3) a maximum value, M b , is given for the buffer, which is a
finite approximation of an infinite buffer. For high load values (see section 4 .2) the
queue grows very large and so we wish the buffer (distribution) to be truncated for
modelling or simulation purposes. If the queue length overflows the given maximum
value at any stage a count is kept of the number of cells lost, ie.

B = m m (B + l , M B) (3.1)

Referring to action 2, one packet can be processed per tick so we work out out
many ticks have passed since the last processing (interarrival time) and decrement
the buffer by this amount, this is outlined by equation 2.30. So, at each tick any cells

24

arriving at the multiplexer from any input line are emptied into the buffer. The cells
are the removed from the multiplexer buffer at a rate of one per tick. Actions 1 and
2 constistute the implementation of equation 2.30.

In section 2.2.1 we gave the probability of an inactive line becoming active as
1 — a. Action 3 involves sampling against this probability and if the result is that the
talkspurt ends, then we set the activity flag to not firing (indicates a departure from
the system).

An inactive input line means that currently that input is experiencing a period
of silence, so if it is inactive we:

Action 4: Check to see if a talk spurt is about to begin.

If the line is to become active within the next s ticks, it is removed from its current
position on the time scale and reinserted at some point within the next s ticks, see
flowchart 3.6. We can conclude that the events are a subset of the activities in the
system and that the events when data collection takes place are a further subset.

As mentioned above, we check against the probability 7 to see if an inactive line
will start to fire within the next s ticks, practical values for 7 are discussed in section
4.2. If the answer is yes, then we must decide the criteria for where to position the
line. From equation 2.9 we can write the probability that the silence is less than s
ticks, 7 , as

7 = 1 - P ~ x (3.2)
Using equations 2.5 and 3.2 we can write

Pr{ silence = t | silence < s} =

(1 - z?)/?*-1

Pr{ silence = t}
Pr{silence < s}

(3.3)1 - /? •
Later, in section 4.2, we will show that j3 is always near 1 - this also means that 7 is
very small and consequently that the average silent period is large (in terms of ticks).
Applying L’hopital’s rule to equation 3.3 we can write

Pr{silence = t | silence < s} = — (3.4)
s

Therefore, we can approximate the silent period by a uniform distribution.

3.4 S im u la tion sy stem

3.4.1 System description
In section 3.3.2 we mentioned that the simulation system cycles from line to line,
essentially what this means is that the simulation process is carried out block by
block. For each block a doubly linked list of the inputs, representing the superposition
of I inputs over a block, is traversed. The system counts time by counting the block
number and within a block it counts tick by tick. So, in the way that was described

25

in section 3.3.3, each line is continuously examined every block and the appropriate
actions are taken.

The system is designed so that all input and output takes place through ASCII
character files. The first input file contains the following parameters:

)
• in.f.namz. This is the main input file name (see below).

• summary.}.namz. This file is where the summaries for all the simulations in the
batch will be written.

• start.szzd.f.namz. This file contains the1 starting seeds for the random number
generator, see section A.

The file m./.name, contains the parameters which fully describe the inputs to the
multiplexer, the initial conditions for the system and the output file names; they are
as follows:

• I. The number of input line sources to the multiplexer.

• s. The sampling period, which is the same for all the line sources.

• p. The load, ie. the mean number of arrivals per tick.

• (f>. Used to fix traffic: /(I — /?), see equation 2.35.

• sim.run. The inputed simulation length is in the form of the number of blocks.

• max.quzuz.sizz. The given limit for the infinite buffer, see section 3.3.3.

• initiaLqueue. This specifies the initial number of cells present in the buffer when
the simulation begins.

• last.proczss.timz. This represents the time (E {0, . . . , s } , for reasons given
above) when the multiplexer last processed the system. This will be non zero
if a previous simulation is being continued and zero otherwise.

• initiaLflag. This boolean flag indicates whether initial conditions are given.

• szzd.flag. This boolean flag indicates whether alternative seeds are given for
the random number generator, which will take precedence over the seeds given
in start.seed.f.namz.

• output.f.namz. This is the name of the file which will contain the resultant
probability distribution from the simulation, all other parameters and results
are contained in summary.f.namz.

• initial.conditionsJ.namz. If initial.flag is true then this file contains the initial
system image (see section 3.3.2). The system image is dependent on the length
of the queue, so if initial.quzuz is non-zero then the initial image of the system
must be given, otherwise the system generates an initial image as described in
section 3.7.

26

• seed-f-name. If seed.flag is true then this file contains the seeds to reset the
random number generator.

• sysstatej jname. This file is where the final system image will be recorded.

These parameters are duplicated for every simulation to be run in the batch.
As we mentioned in section 3.3.3, we measure the queue length every time a

packet arrives at the multiplexer, therefore, we are measuring the queue length as seen
by the arriving packets. On average there will be s.p measurements per block. This
is different from the virtual queue length which would be obtained if we measured
the queue length every tick, which would mean s measurements per block, regardless
of activity.

We can run a batch of simulations which in reality is just one long simulation
with the results outputed at various intervals. This can be done so as to examine
how the probability distribution builds up over time (see section 3.8), or to facility
the running of longer simulations. The simulation outputs can then be joined (see
section C.4) and the output viewed as if the simulations were run as one.

The main output we want to obtain is a probability distribution of the queue
, length of the buffer in the multiplexer, resulting from the arrival process of the I bursty

inputs. The data recorded in file outj.name is the log of the probability distribution
that the queue length, q, is greater than or equal to the buffer size, ie.

log[Pr{? > 6}], V 6 e [l , M B]

Some statistics describing the behaviour of the system are also produced: total num­
ber of cells arriving at the multiplexer, probability of cell loss (if the buffer happens
to have overflowed), percentage of blocks where the buffer was continuously non-zero
(see section 4.6.4). For the run lengths discussed in section 3.8 the total number of
arrivals at the multiplexer were between the order of 108 and 109. The source code
for the system is included in C and the executable code and help files are included
on the accompanying disc, an index of which is included in section C.5 .

3.4.2 R epresentation of tim e
The term simulated time refers to how many units of simulated time have passed
since the beginning of the simulation. In our system a unit of simulated time is a
tick, which represents the service time of the multiplexer. The tick width (length
in real time) is decreased as we increase s, this is discussed in section 4.2. There is
of course no connection between the simulation time and the real time (actual time
taken for simulation), is the real time is dependent on how many events occur. In our
system the simulation could easily take many times longer that the actual operations
being simulated or it could also take shorter time, it depends on the number of inputs;
see table 3.1 below.

3.4.3 System perform ance and lim itations
The simulation system was developed using object oriented design and programming
methods. There is a possible run-time overhead associated with the object oriented

27

I P s Blocks R ea l tim e Sim . tim e Clock
50 0.82 20 10s 2 2.6596 33

10000 0.82 3979 105 630 2.6596 33
50 0.82 20 10v 162 265.96 33
50 0.82 20 10? 108 265.96 50
50 0.9 15 107 158 265.96 33

200 0.9 58 107 642 265.96 33
400 0.9 116 io-7 1336 265.96 33

2000 0.9 579 2 .105 1497 51.1911 33

Table 3.1: Comparing simulation lengths

design, this is a trade-off with robustness, maintenance, extendibility and compati­
bility (see A).

The main limitations of the system are the memory available on the host ma-
. chine and also the clock speed of the computer which can really affect the real time

of the simulation. From our experience, a user intending to run simulations using the
developed system would need a machine with a minimum of a 80486 dx processor
and a 33 MHz clock, otherwise simulations run will just take too long to be practical.
Simulations were also run on a machine with a motherboard speed of 50 MHz and the
corresponding performance gain was approximately 35%. The size of the multiplexer
buffer is limited by the amount of RAM available as mentioned in section 2.1. We
found that a 4 Mb RAM system had enough memory for a maximum buffer of size
7500, whereas moving up to 16 Mb, we did not experience any such problems. So, 4
Mb should be considered a minimum requirement, otherwise the maximum buffer may
overflow, due to its limited size, and we will not be able to make accurate predictions.

The real time for the simulation increases linearly with the number of inputs,
I, and the simulation length in blocks as shown in table 3.1; time is (measured in
minutes). The value for the load or the mean lines active per tick, p, does not affect
the simulation length that much, ie. for practical values of p (see section 4.2), the
number of active lines will not change so much as to make a significant difference on
the number of operations necessary. The number of operations per block depends on
the number of input lines and the total number of operations depends on the number
of blocks. For long simulation runs the cycle length of the random number generator
should be kept in mind (see section B). Table 3.1 also shows how the the real time is
affected as we vary the clock speed (MHz) of the CPU. The only parameter affecting
the simulated time (measured in minutes) is the number of blocks being simulated,
this is explained in more detail in section 4 .2 .

28

3.5 S y stem o b jec ts

3.5.1 Introduction
The data structure of the system is directly patterned on the objects whose behaviour
is being simulated. C + + classes provide the system structuring mechanism and each
class corresponds to a meaningful data abstraction (see A). The system makes use of
seven classes and the following sections describe them.

3.5.2 Class node_c
An input object or an instance of class node_c represents one input line. For any
given simulation there will be I inputs and consequently / node_c objects. An input
object is characterized by the following private data members:

• line.no. Each input line is given a line number (between 1 and I) for identifica­
tion purposes.

• firing.flag. A flag which is either 0 or 1 depending on whether the line is active
or inactive respectively.

• firing.time. This is a value between 1 and s. If firing.flag = 1 this represents
the time at which a packet will arrive at the multiplexer. If firing.flag — 0 this
represents the time at which the line will be examined to check to see if it will
become active within the next s ticks.

• prior. A pointer to the previous line in the block.

• next. A pointer to the next line in the block.

Class lineJist.c is a friend of node_c which means that an instance of lineJist_c has
access to the above members. The main service available is a constructor function
which is used to link the input lines together.

3.5.3 Class lineJist_c
One instance of this class is created in the main program and represents the state
of the system (system image) over a block of s ticks. The class has the following
attributes:

• head. A pointer to the first node in the list.

• foot. A pointer to the last node in the list.

• last.processJime. The last tick at which the system was processed.

There are a number of routines which may be implemented on the class instance:

• Constructor function. This is used to create instances for head and foot, ini­
tialize last_process_time to zero and call connect_two_nodes().

29

• connect-two .nodes (). This function links two nodes and is used to link head and
foot initially.

It should be noted that the linked list is made up of instances of node_c and is setup
in the main program using the constructor function of node_c, see flowchart 3.4.

• $ortJinkedJist(). A routine used to sort the linked list in order of firing time.
If random initial conditions are set then the list will initially not be in order on
the time scale so it needs to be sorted.

• one-blocksimulationQ. This is the most important member function and is de­
fined as a virtual function (see B). It carries out the procedure described in 3.3.2
and is outlined in figure 3.5. This function is a friend of class queue_c,which
stores the queue length distribution, and accesses that data structure so as to
build up the queue statistics. The number of arrivals at the multiplexer is
counted for each block and a running total is kept and at the end of the simula­
tion this total used to build the probability distribution (see section 3.5.5).This
function uses the next procedure to control the random behaviour of the inputs.

• moveJineQ. If a line enters a bursty mode after a period of inactivity it is first
removed from the linked list and then reinserted at the appropriate position (see
figure 3.6). This module controls this moving of a node in the list and makes
use of the following other functions.

• removeJieadQ. Removes the head of the list.

• remove.foot(). Removes the foot of the list.

• removeJineQ. Removes a node in the list other than the head or foot.

• clear .pointers(). Removes the pointers from a (removed) node.

• newJieadQ. Inserts a node at the head of the list.

• new.footQ. Inserts a node at the foot of the list

• insert-midJ)efore (r). Inserts a node before a given node.

• insert-mid-after(). Inserts a node after a given node.

3.5.4 Class probabilities_c
This user defined data type completely defines the traffic parameters of the input
objects and it has the following attributes:

• I. The number of input source lines.

• s. The sampling period of the multiplexer (also the number of ticks in a block).

• p. The mean number of active lines in a block, otherwise known as the load.

30

• a. The probability an active line stays active, see equation 2 .1.

• /3. The probability an inactive line stays inactive, see equation 2.2.

• 7 . The probability that the silence is < s ticks, see equation 3.2.

Once the above probabilities are set they are constant throughout the simulation run.
The following set of operations are provided:

• Constructor functions. Three initializers are provided which initialize the above
data members depending on the input given. Figure 3.3 shows how an object
is created. If the user specifies a value for <f> (see equation 2.35) then either
the sampling period s or the load must be given. The remaining parameter is
calculated using equation 2.33.

• returnsigma(). See equation 2.34.

• return.probJine-active(). See equation 2.25.

There are functions which set and return functions the above variables and the fol­
lowing functions are used in the initializing of the variables:

• fix-alpha(). Alpha is set as the default value (see section 4.2) if no argument is
supplied, this default value was used for all the simulations carried out. The
function calls calc_beta().

• fixJ>eta(). Facility for fixing beta, which also calls calc^alpha().

• calc.alphaQ. Facility to work out a , if it is not fixed, using equation 2.33.

• calc.beta(). Works out /3 using equation 2.33.

These functions calculate the respective variable values using equation 2.35.

• calcs_given.phi(). Used if f and p given.

• calc-rho.given-phi(). Used if <j> and s given.

• calcj}eta.given-phi(). Used if (f> given.

The member function of line_list_c, oneJ)locksimulation() is a friend of this class for
ease of performance.

31

\

3.5.5 Class queue.c
There is one instance of this class for each simulation and it has the following at­
tributes:

• queue. A pointer to a dynamic array (created at run-time). This array is used
to store the frequency of different queue lengths in the multiplexer buffer. The
simulation loop (see figure 3.5) included in oneJ>locksimulation() builds up this
array, we also keep track of how frequently the buffer overflows, if at all.

• max-queuesize. The maximum buffer size, defined at run-time.

• .over-flowsize. This is used to index the last element in the array which keeps
track of the number of cells lost.

• actuaLqueue.size. This is known once the simulation is finished and may equal
max_queue_size.

• totaLactivity. The number of packets that have arrived at the multiplexer and
have been processed or are in the queue.

• buffer. The size of the queue at any given moment; if this is bigger than
max_queue_size then then queue array element which is incremented is indexed
by over_flow_size.

The member functions which operate on the data are:

• Constructor function. This creates the dynamic array and initializes it.

• add-totaLactivity. This is used by the function oneMocksimulationQ to total
the cells handled by the multiplexer.

The following functions are used once the simulating is over to calculate the final
probability distribution:

• setup.pdf(). This creates a probability density function from the array of queue
lengths by normalizing the data using totaLactivity.

• build.cdfQ. A cumulative density function is then built which represents the
Prob[q< 6] ,V 6 e [I, M b].

• build„onejminus-cdf(). This calculates the Prob[q > b], V b [1, Mg].

• log.queue(). This is used to get the log10 of the array so we can make a graphical
presentation of the log probability distribution.

32

3.5.6 Class mlcg32_c
This class represents the random number generator (see appendix A) and has two
attributes which are the generator seeds. Two constructors allow the seeds to be read
from a file or manually set. There is also a reset function which has a default of unity
for both seeds. The starting and finishing seeds are always saved for each simulation
so that a simulation can be rerun, replicated or continued at some future point (see
section 3.7).

3.5.7 Class stop_watch_c
This class controls the timing of the simulation in real-time and displays the start
time, end time and simulation time.

3.5.8 Class string.c
An instance of this class is created for every character string used in the system and
is used for better memory management.

3.6 M ain program and flow charts
The main program is shown in diagrams 3.1, 3.2, 3.3 and 3.4. The main procedure
is shown in diagram 3.1, it calls the module controLsimulation() shown in figure 3.2,
which, as the name suggests, controls the simulation and the collection and recording
of data.

Initially it inputs the data from the main input file as described in section 3.4.1
and i t is outlined in some detail in figure 3.2. An instance of a list object is created
with initially only the head and the foot of the list linked. Instances of the queue
object and the probabilities object (see figure 3.3) are then created. Once all the
conditions are checked a list is set up for the I inputs, linking from the head to the
foot. Class member function oneMock-simulationQ, which traverses the input lines
for one block, is then called for the given number of blocks. The simulation output is
recorded in a summary file and the queue data is written to a data file. The process
is repeated for every simulation in the batch.

33

(Start J

C O

C T O

Read filenames from
names file

f

Create random number
generator object

(read seeds from file)

r

Open input file

1 f

’

Control Simulations
(see figure 3.2)

t

r

Close input file

r

Output random number
generator seeds to file

r

Destroy random number
generator object

FLOW CHART KEY

(^ N u m b e r ^)

Denotes
sta rt/ end

of another
chart

End

Figure 3.1: The main program

34

Create probabilities
object (see figure 3.3)

r

I
Check probability

conditions

I
< _ t - >

Setup linked list
of inputs (see figure 3.4)

Close summary file

i

Output statisitics
after simulation

i

Generate simulation
statistics

ik

No

Figure 3.2: Procedure controLsimulation

3

Is
p h i = 0

No

Yes

Yes

Create object (phi,l,s)
Calculate beta,rno,gamine

1

No

r

Range error
Exit program

Create Object (phi,l,rho)
Calculate beta,s,gamma

1
Create object

(l.s.rhoj

r

Fix alpha

r

Calculate beta

' r

Calculate gamma

Figure 3.3: Creating a probabilities object

36

37

b = call to random

No number generator

Increment buffer

Packet processing:
Buffer = buffer -

ticks since last process

increm ent queue
array elem ent

corresponding to buffer

a = call to random
number generator

Insert line somewhere in
next s ticks (see Figure 3.6)

Figure 3.5: The simulation loop

38

Figure 3.6: Moving a node in the list

39

3.7 S tart-u p p o licy
In section 3.3.2 we mentioned that our start-up policy positions the I input lines over
a block of s ticks and marks them as firing or not firing. This was further outlined
in the flowchart of figure 3.4 and the relevant code can be found in the listing for the
main program in C.3. We now clarify and expand on how the simulation system is
started.

Some problems which are frequently encountered, when using a computer sim­
ulation model, are [7, 21]

1. How to start the model?

2. How to obtain measurements that are not biased by the starting or stopping of
the model?

3. Whether it is better to make a single continuous long run or to make an equiv­
alent number of independent (different random stream) and shorter runs, ie.
replications.

None of these issues can be dealt with in isolation as they are all interconnected.
The assumption concerning the initial conditions for starting the model is im­

portant and its validity needs to be accessed before one can provide answers for the
other two problems. For many models the problem is that it takes some time for the
simulation to overcome the artificiality introduced by the abrupt start-up, in other
words to “warm-up” . The performance of the simulation in some initial period is
then distorted. We have to decide if this initial bias exists and if so how it can be
eliminated. There are two general approaches which can be used to reduce the bias
[2 1]

(i) The system can be started in a state which is more representative than the empty
and idle state (defined below).

(ii) Ignore the data produced from some initial period.

The most common approach is method (ii), ie. to eliminate an initial section of the
run, perhaps choosing starting conditions which make the necessary excluded interval
as short as possible, in our case, we used the first method to reduce the initial bias
and a description of the method and the reasons for using it follow.

Probably the most common way for starting a simulation is in the empty and
idle state, in other words all queues are empty and all facilities are idle. In our case
the facilities means the input lines and the multiplexer server. However, since we are
simulating voice traffic for I input lines it is extremely unlikely that all the lines will
be inactive in reality, also, our assumption Al (see section 2.2.1 was that the phones
are continuously off-hook. The system then needs to be started in a state which is
reasonable and more representative of the system, this can be done from our em a
prior knowledge of the system.

Equation 2.25 gives us the probability that a line is active, PA, per tick. The
probability that a line is active during a block is then sPA, ie. ap\ an input line is

40

buffer length, x

Figure 3.7: Effect of different initial conditions: see table 3.2 for a key to the plots

P lo t I P s Blocks % tim e n o n -em p ty
A 50 0.82 20 10* 17.44
B 50 0.82 20 106 17.44
C 50 0.82 20 10* 17.42
D 50 0.82 20 106 17.18
E 50 0.82 20 10* 17.35

Table 3.2: Simulation parameters for figure 3.7 and % time buffer non-empty

marked as firing or not firing by sampling against this probability. Next, we have
to decide how the I input lines should be positioned over the block of s ticks (see
section 3.3.2). The “silence” before the first packet from each active line arrives at
the multiplexer, must be less than s ticks (since the lines are active). Therefore, we
know that it is uniformly distributed, ie. the first arrival on each line is uniformly
distributed by assumption. So, to position each input line over the block of s ticks we
generate a random number between 1 and s inclusive (see flowchart 3.4). We start
the buffer in the empty and idle state.

Previously, in section 3.4.1, we said that the system image is dependent on the
queue length. This comes from the fact that when the system has a particular system
image, it also has an associated queue length for the multiplexer buffer. Figure 3.7
shows the results of 5 pilot simulation runs we conducted, using the same sequence
of random numbers in each case, our objective was to test the above heuristic re­
garding initial conditions. Plot A shows the probability distribution obtained from a
simulation begun with the default initial system image and empty queue. Plots B,
C, D and E result from initial conditions comprising of system images and associated
queue lengths obtained from the final values of the previous simulations, A, B, C and
D respectively.

We note that initial conditions obtained from previous simulations may be un­
representative in that the particular simulation may have ended when the system was

41

in an unusually busy burst period or in an unusually quite silent period. Examining
figure 3.7 we can see that the initial conditions do not decrease the level of noise at
the tail probabilities. So, we conclude from figure 3.7 that the default initial condi­
tions are representative of the system. Our second problem is also then answered: by
choosing representative initial conditions the initial bias is reduced and consequently
we can begin collecting simulation data from the very start.

The percentages of time that the queue was non-empty in a block was also
collected for each simulation shown in figure 3.7 and are shown in table 3.2; this table
shows that a queue length of zero is very likely indeed. Thus, our assumption that as
long as the initial system state and queue length are representative, it does not make
that much difference on the simulation output, is backed up.

-We then had to resolve the last problem, whether to make a single continuous
run or to make an equivalent number of independent and shorter runs. From figures
3.7 and 3.8 it is clear that calculating the average data from a number of runs has
the same affect as making one long run and so we decided to go with the latter. The
next issue was to decide for what length the simulations should be run.

42

3.8 S im u la tion d u ration
We needed to decide what constituted a satisfactory simulation run length (in blocks).
We made some pilot runs with periodic interval reporting, which amounted to building
a probability distribution of the queue length at each point, one of the runs is shown
in figure 3.8. Our criteria for judging the necessary length was the distribution of the
tail probabilities.

buffer length, x

P lo t I P s B locks
A 50 0.85 18 105
B 50 0.85 18 4 x 105
C 50 0.85 18 7 x 105
D 50 0.85 18 106

Figure 3.8: Simulation run with periodic output

Plots A (1 million blocks), B (4 million blocks) and C (7 million blocks) have the
same maximum buffer length, the tail distributions are noisy due to correspondingly
low p ro b a b il i t ie s (see se c tio n s 1.5 a n d 4 .3) a n d d e c re a se s lig h tly in tu rn . B y th e
time the simulation length is 10 million blocks (plot D) the resulting probability
distribution is a little less noisy at the end. A maximum simulation length had to
be decided on for practical reasons (time constraint on the running time, see section
3.4.3) and we decided on a length of 10 million blocks. The simulations outlined in
figures 3.7 and 3.8 were run using a fixed value for a and </> = /(1 — /?) as described
in section 4.2.

43

C hapter 4

Sim ulation perform ance: results
and evaluation

4.1 In trod u ction
. In this chapter we present and analyze the results of our simulations. Initially, we

explain how the characteristics of the input traffic to the multiplexer are kept con­
stant and how the parameters used in the simulations were chosen; these parameters
are then given in full. We ran a batch of five simulations, for I = 50, 100, 200, 300
and 400, for a number of different loads and we present and comment on the main
simulation output, which is an empirical probability distribution of the buffer queue
resulting from the chosen simulation parameters. A phenomenological model of the
probability distribution, based on the shape of the simulation graph, is defined and
we demonstrate how the model parameters are fitted using regression analysis. The
model parameters are plotted against the number of inputs, /, and the fitted model is
compared with the simulation graph for a selection of the chosen simulation param­
eters. Finally we present other results obtained from the simulations, detailing the
proportion of time spent in the burst level traffic regime.

4.2 E xp lan ation o f s im u la tion p aram eters
In section 1.4 we described our objective as being to make predictions for large sys­
tems, where the number of input lines, /, is scaled, also, a = s/1 (see equation 2.34),
and hence the load, p, is kept constant. Thus, we will keep the traffic characteristics
of the activity and burst length constant, a (see equation 2 .1) characterizes the mean
burst length, which we will fix, so we need to decide what is a valid choice for a.

We determine the choice of the individual line characteristics by reference to
the block model described in section 2.4. Since we are interested in large systems, we
choose I = 1000 for the purpose of fixing a. The stability condition for the block level
model, given by equation 2.47, states that a must be greater than the activity (see
equation 2.13), ie. the percentage of time, in the long run, that a caller is speaking.
We assume an activity of 35% (a commonly accepted value, see [9]) so a > 0.35 for
stability. The load is equal to the activity divided by a as given by equation 2.46.

44

We wish to have a high load (close to 1, see equation 2.32) so as to get burst level
congestion in the simulations. Otherwise, the probability of burst level congestion
is too small, meaning that it occurs to rarely to be manifested in our simulations.
Consequently, we choose a = 0.4 and since a = s j l this gives us s = 400. In
translating from the block level model to the cell level model, the interpretation of s
and / is the same. We assume a mean burst length, B (see equation 2.2.1), of 352 ms
and a multiplexer capacity of 106 Mbs [37]. The corresponding multiplexer service
time or tick width is 3.989 ps. Since s = 400, if we fill these values into equation 2.12,
we get a = 0.995466.

For the cell level model we have, from equation 2.33, a multiplexer load repre­
sented by

The traffic is characterized by a , which we have fixed, and /3. Now, if we fix (j) =
1(1—/3), then a given value for the load will determine the multiplexer sampling period,
s. Note, that fixing <f> amounts to fixing the mean silent period (see equation 2.11),
measured in blocks of s ticks. Thus, we keep the traffic characteristics constant at

; the block time scale even though we vary s and I. To fix (j) we choose p = 0.82, which
gives us <j> — 0.00553175. Consequently, fi is a function of / and the its values are
shown in table 4.1. Also, the mean silence length for each choice of p is approximately
constant as shown in table 2.11. These values for (j) and a are then used for all the
simulations conducted, with the desired load being obtained by varying <r, see table
4.3.

To decide on what other load values to simulate for, we turned to the upper
bound of the block model, as described by equation 2.48. From preliminary simula­
tions we found that noise due to the sampling of rare events set in at an empirical
probability of 10~4. We found that for values of I = 200 or less the lowest load suit­
able for simulating was p = 0.7, for larger I and smaller p, noise makes simulations
impractical due to time constraints. Our aim was to simulate for / up to 400 and we
found, using the upper bound, that the lowest acceptable load for this I was p = 0.78.
As p approaches 1 the queue size in the buffer grows increasingly large (and corre­
spondingly the percentage of time in burst level congestion), especially if the output
rate of the multiplexer is “slow”, ie. for small I (a constant). Using the upper bound
we found that the highest value of the load worth simulating was 0.9. We also choose
to simulate with a load of 0.85, as the difference between 0.82 and 0.9 was quite large.
Table 4.3 shows the values of a (constant for all X) for the chosen loads, these then
determine s.

At this stage it is perhaps worth relating the chosen parameters to reality. /3
is very close to 1, which means that the probability of an inactive line starting to
fire within the next s ticks, 7 (see equation 3.2), is of the order 2 x 10-3 . Since
a is also close to 1, we can conclude that if a line is active or inactive, it is very
likely that it will stay that way. Consequently the mean burst and mean silence
lengths will be large, relative to the tick size. From equation 2.12 we have the tick
width, Tw = (5(1 — q;))/^, which decreases as we scale I and keep a constant,
consequently, the multiplexer capacity, c, increases. By increasing p we are decreasing

45

I 0
50 0.999889

100 0.999945
200 0.999972
300 0.999982
400 0.999986

Table 4.1: /? depending on I

P s C (M bs) I (ms)
0.82 20 5.3147 719

40 10.6283 725
80 21.2567 712

120 31.8850 739
160 42.5134 712

0.78 23 6.1113 625
46 12.2226 631
92 24.4452 619

138 36.6668 642
185 49.1561 616

0.85 18 4.7828 799
35 9.2998 829
71 18.8653 803

106 28.1651 836
142 37.7306 803

0.9 14 4.7828 1027
29 7.7056 1000
58 15.4111 983
87 23.1166 1019

116 30.8222 983

Table 4.2: 5, C and I for the chosen p

P a
0.78 0.46254
0.82 0.4
0.85 0.35696

0.9 0.2916

Table 4.3: a required for the chosen p

46

5, the sampling period of the multiplexer, for each value of I, this means that the
multiplexer is working slower (lower capacity) and block level congestion is much
more likely. Equation 2.12 also gives us the mean silence, I = Tw / (1 — /?), we list
the values for I and C, for each value of p, in table 4.2. Similar values for the mean
silence length have been used in other work [37]. We also note that by by fixing a and
B we are keeping the actual length of a block constant at 1.598 ms; this means that
the simulated time is determined by the simulation length and not by the number of
inputs, see table 3.1.

4.3 S im u la tion graphs
As explained, we fix the traffic, which is characterized by a and /3, by setting a =
0.995466 and 1(1 — /?) = 0.00553175; the corresponding values of /?, for each /, are
given in table 4.1. The desired loads, 0.78, 0.82, 0.85 and 0.9, are obtained by varying
<7, as listed in table 4.3. For each load we run simulations for I = 50, 100, 200, 300
and 400. The main simulation output was described in section 3.4.1 and consists of
a probability distribution of the buffer queue, M (x) = log10[Pr{queue length > a:}].
Figures 4.1 and 4.2 show M (x) for a load of 0.82.

Examining figure 4.1, we can see that M (x) decreases as I increases. We no­
tice, as mentioned in section 4.2, that all the graphs become very noisy at a threshold
probability of 10-4 . This is because the calculated probabilities beyond this threshold
are based on events too rare to be sampled reliably during the length of our simula­
tions. The part of the graphs visible in figure 4.1 represent burst level congestion (see
section 2.3.4), which occurs when there are long periods when the queue is not empty.
In order to see adequately the part of the graphs relating to cell level congestion, the
left most part of the graphs are blown up and shown in figure 4.2, where the initial
steep decay represents cell level congestion. This figure highlights the area of the
graph which we term the knee, this is the region of the graph which is the boundary
between cell level congestion and burst level congestion. It is clear from figure 4.2
that it is extremely hard to define exactly where the knee begins and where it ends
(see section 4.6.3).

. We include the graphs of M (x) against the buffer size, x, for the other loads,
the full versions are displayed in figures 4.3, 4.5 and 4.7 for the loads 0.78, 0.85, and
0.9 respectively. The enlarged knee sections are shown in figures 4.4, 4.6 and 4.8.
The graphs are linear locally right of the knee and it is also apparent that the log
probability at which the knee occurs, varies roughly linearly with /, and that the
graphs are parallel, at least locally, to the right of the knee.

It is evident from the observation of all the graphs, that M (x) is increasing in
p. This is unsurprising since as the load increases we expect congestion to be more
likely. Concerning the variation of M (x) with I, we can distinguish between the region
of the graph to the left of the knee, corresponding to cell level congestion, and the
region to the right of the knee, corresponding to burst level congestion. To the left
of the knee M (x) appears independent of /, agreeing with the heuristic that the cell
level queue corresponds to that of independent arrivals having activity determined
by the load, independent of /. To the right of the knee M (x) decreases with I. Recall

47

Figure 4.1: M (x) for various I with p — 0.82

our heuristic that burst level congestion requires the BBP to extend a minimum of
s prior to a block of s ticks. This requires that at least the fraction a — s / l of the
lines be active in the block (otherwise the multiplexer can process all cell arrivals in
the block), an event which will become less likely as I increases.

The effect of noise is apparent on all the full graphs (figures 4.1, 4.3, 4.5 and 4.7),
this comes about in the probability range of 10~3 to 10-4 . This was most apparent
in the combinations of low load p = 0.78 and a large number of input lines I = 400.
In this case most of the graph fell in the noise region - see figure 4.3. This run was at
what we regarded to be the limit of convenience for simulation, with a running time
of over 24 hours (see section 4.2).

buffer length, x

Figure 4.2: Enlargement of knee area for p = 0.82

48

buffer length,
— i -------- --------- ------------------- 1— — i______ ■

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

D

P lo t I
A 50
B 100
C 200
D 300
E 400

Figure 4.3: M{x) for various I with p = 0.78

buffer length, x

Figure 4.4: Enlargement of knee area for p — 0.78

49

buffer length, x

P lo t I

A 50
B 100
C 200

, D 300 '

r e | 400

Figure 4.5: M ix) for various I with p - 0.85

buffer length, x

- 1 . 5 •

jvf(s)

Figure 4.6: Enlargement of knee area for p — 0.85

buffer length, x

P lo t I
A 50
B 100
C 200oocoQ

ooW

Figure 4.7: M(x) for various I with p = 0.9

50

buffer length, x

M(x)

Figure 4.8: Enlargement of knee area for p = 0.9

4 .4 A m o d el for th e buffer q ueue d istr ib u tio n
We introduced a phenomenological model based on the shape of the simulation graph
in section 1.5. Examining the shape of the simulation graphs of the probability

■ distribution of the buffer’s queue length, allows us to break the graphs into 3 parts.
The first is characterized by a sharp decay, before moving into the second part, which
we termed the knee of the graph in section 4.3. The third part, to the right of the
knee, is also characterized by a decay constant, although less sharp than the first.

We define A to be a weighting constant and rq ;> u2, where u\ and u2 are the
decay constants for the parts of the graph to the left, and asymptotically to the right
of the knee, respectively. Now, we can write the following phenomenological model
for the probability distribution of the buffer queue length, q.

Pr{^ = a:} = Arqe UlX + (1 — A)u2e— U2X (4.1)

where A G [0,1]. The model described by equation 4.1 is defined for all x >
therefore we can write M (x) = Pr{<jr > x}, where

fOO
M (x) = I P r{q = x} dx

J X

= Ae-Ul* + (1 - X)e~U2X (4.2)

The origin of this model is explained by looking at the eigenfunction expansion
of the buffer queue probability distribution, F(x) = Pr{g > a:}, ie.

(4.3)
3= 0

where ci ~ 1- expansion can in principle be explained using the matrix
geometric solution method [36], although the calculations of cj and yj are intractable
in general and impracticably lengthy even for particular choices of model parameters.
The eigenvalues in this expansion, yj, are labelled such that 0 <2/o <2/i < - -- < S/*,
where k = #(y j) . For a large buffer size, x, F(x) « cQe~yox, and for a small buffer size,

51

x ,F (x) Cfee ykX + Y^j=o cj ■ Comparing this with the phenomenological model, given
by equation 4.2, we have c0 = 1—A, y0 = u2, cy. = A, = tq and X qlo ci ~ 1 — This
means that c2 = C3 = . . . = Ck-i = 0. Therefore, we can regard the phenomenological
model as using the lowest and highest eigenvalues in expansion 4.3, consequently the
model is only good at the extremes, x —> 0 and x —*■ 00 (see section 4.6.3).

Returning to model 4.2, for small buffer sizes, M (x) « Xe~UlX + (1 — A), since
ui u2. We define this approximation to be M \(x) and it corresponds to cell level
congestion. Now, defining Qi(x) = log10[A/i(a:)], we can compare Q.i(x) directly with
a simulation graph of M (x) (see section 4.3). To compare the slope R\ of the part of
the graph left of the knee and the decay constant iq, we take the limit as x —► 0 , of
the derivative of Qi(x), ie.

R x = lim Q i(x) = - - ~ r (4.4)
loge 10

For large buffer sizes M (x) is approximated by (1 — X)e~U2X. We define M 2{x) —
(1 — X)e~U2X and Q2(x) = log10[M2(x)]. The slope R 2 to the right of the knee is
calculated by taking the limit as x —> 00 , of the derivative of Q2(x), ie.

* = i™ «W = i^7io <4-5)
To work out the weighting constant A we calculate the intercept for the right part of
the graph, / 0, where 70 = Q2(0), since at the intercept the buffer length is zero. This
gives us the following expression for A:

A = 1 - e/o loSe 10 (4.6)

To fit the model we need to estimate the slopes i?i and R 2 and obtain the
intercept for the right part of the graph, this is described in the next section.

4.5 R eg ressio n an alysis

The model described by equation 4.2 is intrinsically non linear and therefore it can not
be transformed into a linear model by regular techniques such as a log transformation.
Non linear estimation was attem pted by approximating a linear expansion of the
model using Taylor’s series. To estimate the parameters we needed to obtain a solution
for the normal equations, however this is difficult to obtain analytically and iterative
methods must be employed [13]. Instead a quicker, simpler method was used which
we now describe.

We obtain estimates of the parameters by using linear regression to fit a least
squares line for the parts of the graph to the left and right of the knee, tq and u2
are multiplicative constants times i?i and R 2 respectively, and are calculated using
equations 4.4 and 4.5.

We return to the figure 4.1, which plots M (x) for p = 0.82. At some point
between a probability loss of 10-3 and 10-4 , the graphs become visibly noisy, this is
consistent with the graphs for the other load values shown in figures 4 .3 , 4.5 and 4 .7.

52

p I left u 2 r ig h t 1*! cu toff
0.82 50 2284 2800 4

100 1385 2100 4
200 292 1300 8
300 185 800 12
400 60 700 15

0.78 50 1040 2000 4
100 992 1500 6
200 285 600 10
300 107 300 12
400 79 180 16

0.85 50 2835 4200 2
100 2105 3000 3
200 1446 2200 4
300 1747 2800 7
400 1422 2100 10

0.9 50 463 4450 2
100 2069 4000 3
200 885 4000 5
300 2871 4000 6
400 3558 4000 7

Table 4.4: Cutoff points used in calculation of u\ and u2

We have to decide what points should be included in obtaining a least squares fit. For
the right hand part of the graph, we decided to fix a right cut off point and obtain a
least squares fit as we varied the left cutoff point. This right cutoff point is picked to
be the largest value of the buffer before the graph is deemed to have become noisy. A
list of the right hand cutoffs used is given in table 4.4. We now have to decide what
left cutoff to choose.

We obtain a least squares fit with the right cutoff fixed and the left cutoff
varying. For each least squares fit the value of u2 is calculated using equation 4.5,
we then plot u2 against the left cutoff point. To choose u2 we examine this graph
and use the heuristic of choosing the largest (least negative) u2, before the estimate
becomes noisy due to the decreasing number of points used in the fit, as we move
the left cutoff rightwards. Our reasoning uses the hypothesis that M (x) should be
asymptotically linear for large buffer sizes. Since M (x) is convex, the above heuristic
should provide the best estimate of the limiting slope from our data; u2 is just a
multiplicative constant times this slope. The chosen left cutoffs resulting from this
heuristic are listed in table 4.4.

53

p I ± 9 5 % C I I n t e r c e p t ± 9 5 % C I A
0.82 50 0.00192193 ± 1.3434 x 10“5 -1.47452 ± 1.485 x 10“2 0.966536

100 0.00221279 ± 1.5647 x 10"b -1.76019 ± 1.193 x 10"2 0.982630
200 0.00351096 ± 1.1489 x 10-b -1.90886 ±4.220 x 10"3 0.987665
300 0.00474721 ± 3.8460 x 10"' -2.46860 ± 8.740 x 10“b 0.996601
400 0.00580844 ± 7.0704 x 10~b -2.91241 ± 1.298 x 10~2 0,998777

0.78 50 0.00246813 ± 1.2422 x 10~6 -1.84515 ±8.340 x 10“3 0.985716
100 0.00252016 ±3.0897 x 10-b -2.45699 ± 1.683 x 10"a 0.996509
200 0.00513300 ± 2.7047 x 10~5 -3.09473 ±5.310 x 10"3 0.999196
300 0.00773395 ± 1.1273 x 10~4 -3.89744 ± 1.033 x 10"a 0.999873
400 0.00499003 ± 1.2148 x 10“4 -4.93494 ± 7.020 x 10~3 0.999988

0.85 50 0.00174327 ± 4.795 x 1 0 ^ -1.04643 ± 7.370 x 10“3 0.910139
100 0.00190143 ±2.138 x 10~b -0.94687 ± 2.386 x 10”3 0.886987
200 0.00183684 ±5.514 x 10"b -1.53338 ±4.390 x 10"3 0.970717
300 0.00183281 ± 4.675 x 10“b -2.04305 ±4.660 x 10“3 0.990944
400 0.00193700 ± 7.832 x 10_b -2.48260 ±6.030 x 10"3 0.996708

0.9 50 0.00125641 ± 1.326 x 10~b -0.419442 ± 1.565 x 10~3 0.619322
100 0.00100742 ± 2.029 x 10“b -0.696548 ±2.711 x 10~3 0.798881
200 0.00110693 ± 7.540 x 10"7 -0.769986 ± 8.500 x 10~4 0.830170
300 0.00096406 ± 2.630 x 10“b -1.094710 ±3.940 x 10~3 0.919593
400 0.00088971 ±4.592 x 10"b -1.563260 ± 7.540 x 10~3 0.972664

Table 4.5: u2, intercept and A with 95 % confidence interval

Figure 4.9: u2 versus left cutoff point for p = 0.82 and I = 100

54

As an example we will look at plot B (/ = 100) in figure 4.1, the right hand cutoff
was set at 2100. Figure 4.9 plots the value of u2, obtained from the least squares fit,
against the left cutoff point. The lowest point occurs for a buffer size of 1385, thus
we pick the value of u2 which corresponds to this point. Once we have chosen u2 a
confidence interval can be obtained and using the regression equation for u2, which
gives the intercept, A can be obtained from equation 4.6.

u i is worked out by first picking a point left of where the knee stops. Linear
regression is then used to estimate the slope Ri and consequently ui. In our example
(p = 0.82, I = 100) we use a right cutoff point of 4, linear regression is then carried
out to fit the four points. Because of the small number of points used to fit a line the
error will be relatively high, for example, if we examine the enlarged knee section for
a load of 0.82 (figure 4.2) it is evident that the error in the calculation of R\ will be
high for I = 50. The same can be said for the other loads (figures 4.4, 4.6 and 4.8, in
that the error will be high for low values of I and high values of p. This is reflected in
section 4.6.3, when the fitted model, M (x), is compared with the simulation model,
M (x).

p I Ui ± 95% CI
0.82 50 0.346334 ± 1.53277 x 10"1

100 0.424258 ± 3.57201 x 10"*
200 0.414494 ± 2.04946 x 10"'
300 0.413946 ± 1.62087 x 10"*
400 0.423931 ± 1.25103 x 10“a

0.78 50 0.488622 ± 1.24585 x 1 0 '1
100 0.529873 ± 3.33545 x 10"a
200 0.546772 ± 9.75732 x 10"3
300 0.550050 ± 9.49095 x 10“3
400 0.555527 ± 7.96766 x 10"3

0.85 50 0.387249± indeterminate
100 0.370817 ± 1.06872 x 10"1
200 0.357120 ± 6.22726 x 10"3
300 0.344720 ± 6.79923 x 10"3
400 0.343001 ± 7.24042 x 10"3

0.9 50 0.341795± indeterminate
100 0.260539 ± 1.86491 x 10"1
200 0.237418 ± 3.41750 x 10~2
300 0.221699 ±1.84414 x 10~3
400 0.215059 ± 1.23758 x 10~2

Table 4.6: u\ with 95 % confidence interval

The values of u2, the intercept, A and the corresponding confidence intervals,
for all the load values, are listed in table 4.5. The confidence interval for A is omitted.
The values of ui and there respective confidence intervals are listed in table 4.6. It

55

is noticed that there are two instances of indeterminate confidence intervals: in these
cases there were only two points being fitted (see table 4.4).

4.6 P r e sen ta tio n o f resu lts

4.6.X Introduction
In this section we present the main results of this thesis: the intercept of the limiting
slope, u\ and u2 plotted as we scale the number of inputs I. We make some brief
comments about these graphs and we draw our conclusions in section 5.1. We compare
the fitted model M (x) with the simulated model M (x) for a choice of loads and inputs.
These choices are made from the analysis of the the plot of u2 against I. Finally we
present simulation statistics detailing the percentage of time spent in burst level
congestion. We expect that this proportion should be approximately equal to the
probability at which the knee occurs.

4.6.2 A nalysis o f m odel param eters
Figure 4.10 shows the intercept, 70, plotted against the number of inputs, /, for the
different loads simulated. As discussed in section 4.3, the intercept is increasing
in p. From figure 4.10 we can see that the intercept scales approximately linearly
with I, this is analyzed in more detail in section 5.1. The intercept gives us the
approximate threshold probability, Tp , beyond which the effect of the correlations in
the arrivals can no longer be neglected, this is because the intercept roughly marks
the left boundary of the knee, the beginning of the region of transition between cell
and burst level congestion (the precise boundaries of the knee are indeterminable, see
section 4.6.3).

Figure 4.11 shows the value of u2 plotted against I for the different load values.
The anomaly in the 0.78 graph for I = 400 can be attributed to noise, as was explained
in section 4.3. We recall the simulation graphs of M (x) for loads of 0.82 and 0.78,
figures 4.1 and 4.3 respectively. We notice that as / increases the number of points in
the tail to the right of the knee, prior to the onset of sampling noise, decreases. The
right non-noisy boundary of the tails is roughly at a probability of 10-4 . Observing
the graphs for loads of 0.85 and 0.9, figures 4.5 and 4.7 respectively, we can see that
the buffer lengths are substantially larger before the noisy region is entered (although
for a load of 0.9, see figure 4.7, the noisy region boundary as such has shifted to a
higher probability of 10~3).

The variation in the tail lengths for loads of 0.78 and 0.82 is reflected in figure
4.11. Because of the decrease in tail length the least squares fit (see section 4.5) of
our data provides us with a less accurate estimation of the limiting slope in these
cases. For this reason in section 5.1, where we draw our conclusions, we will confine
ourselves to the higher loads of 0.85 and 0.9.

Figure 4.12 shows ux plotted against the number of inputs, /, for our choice of
load values. If we examine table 4.4, which gives the cutoffs used in obtaining the
slope R x (from the least squares fit), of which ux is a multiplicative constant, we can

56

I

0 50 100 150 200 250 300 350 400

Figure 4.10: Intercept plotted against I for chosen p

I

Figure 4.11: u2 plotted against 1 for chosen p

57

U1

0.6 T

0.5 --

0.4 - -

0.3 --

0.2 - -

0.1 - -

VA.

LOAD
ao.s2
A0.78

X0.85

X0.9

50

X X

X

X

X

X

X

100 150 200

I
250 300 350 400

Figure 4.12: u\ plotted against I for chosen p

see that the higher the load, p, and the lower the number of inputs, /, the smaller
the cutoff point and consequently the wider the confidence intervals. The estimates
get more accurate with larger /, as a result we discount the values for u\ up to and
including / = 100. We will discuss the implications of this graph in section 5.1.

4.6.3 M{x) versus Mix)
In section 4.6.2 we concluded that the fitted values of u2 for loads of 0.85 and 0.9 were
more reliable estimates of the limiting slope than values obtained from loads of 0.78
and 0.82. We now plot a fitted model M (x), for each of these loads, superimposed
with the appropriate simulation model M (x). Figure 4.13 shows the two models for
a load of 0.85 and / = 100, with the knee region enlarged in figure 4.14. It is evident
from these two plots that the model is accurate for the cell level congestion and burst
level congestion. This is backed up from the evidence of figure 4.15 which shows the
two models for a load of 0.9 and / = 200, with the knee region enlarged in figure 4.16.

There is a certain discrepancy about the knee region in evidence from the en­
largements (see figures 4.14 and 4.16), but this is to be expected, as a model with
only two decay constants can not be expected to accurately model the unwieldy knee.
Recall equation 4.3 in section 4.4 which gave the eigenfunction expansion of the buffer
queue length probability distribution. We discussed that the phenomenological model
used the lowest and highest eigenvalues in this expansion, consequently the model is
only good at the extremes and does not accurately model the knee region.

58

buffer length, x

Figure 4.13: Plot of M (x) and M (x) for p = 0.85 and I = 100

buffer length, x

Figure 4.14: Enlargement of knee region for figure 4.13

lo g io M ? > x) " 1
-1.5

500 100015002000 2500 3000 3500 4000
buffer length, x

Figure 4.15: Plot of M (x) and M (x) for p = 0.9 and I = 200

- 0.2

logioP r i9 > z} _o.4

- 0.6

- 0.8

-1

10 20 30 40 50
buffer length, x

Figure 4.16: Enlargement of knee region for figure 4.15

59

4.6.4 Proportion o f tim e in burst level congestion and th e
knee

We collected statistics during the simulation run, outlining the proportion of time
spent in the burst level traffic regime. Referring to section 2.3.4, this means the
proportion of blocks in which the queue was never empty. Figure 4.17 graphs the
results'obtained, and highlights that the time spent in burst level traffic decreases as
the number of inputs, /, is scaled. Also, the higher the load, the more time that is
spent in heavy traffic, relative to I.

Returning to the original simulation graphs of M (x), figures 4.1, 4.3, 4.5 and 4.7,
we know that the position of the knee drops in /. We note the apparent similarities of
the height of the knee with the percentage of time the buffer is non-empty. In section
4.6.2 we discussed that the intercept gives the approximate threshold probability of
the left boundary of the knee. It has been mentioned that the unwieldy nature of
the knee does not lend itself to close analysis, however, it seems that the proportion
of time in burst level congestion may correspond to the threshold probability of the
right knee boundary, ie. the point at which burst level congestion begins. This can
not be substantiated, but we note its possible usefulness as a rule of thumb.

Figure 4.17: % of tim e in burst level congestion for the chosen p

60

C hapter 5

C onclusion

5.1 P red ic tio n o f large A T M sy ste m s

In section 4.6.2 we presented a graph of u2 against the number of inputs, /, and
the load, p (see figure 4.11). After analysis we decided to confine any conclusions
regarding the u2 values, to the results obtained using loads of 0.85 and 0.9, the data
for p = 0.78 and 0.82 being unreliable due to simulation noise. Re-examining figure
4.11 we see that u2 is to a good approximation independent of /. We also found that
the intercept of the regression line is affine in I (see figure 4.10). A plot of tu against
I is shown in figure 4.12. We decided, due to the small number of sample points in
these cases, to discount the values of u\ for / = 50 and / = 100. If we re-examine
figure 4.12 we can conclude that iq is also independent of I.

The following summarizes how the parameters of the phenomenological model

M (x) = Xe~UlX + (1 - A)e

behave after analysis of the simulation results obtained from the graphs of M (x). For
fixed a, (f> = 1(1 — f3) and cr = s/l:

• u\ is independent of /.

• u2 is independent of /.

• The intercept is an affine function of I, ie.

log10(l - A)
loge 10

for some constants A and B.

A + B l

Now, we illustrate how to make predictions for large systems. Suppose we wish to
analyze the queueing problems for an ATM multiplexer for given values of a , f3, s
and I, where the number of inputs / make simulation infeasibly lengthy. We fix a ,
<)> = 1(1 — (3) and a = s / l for the given values and we estimate the constants ux and
u2 by performing simulations for lower values of I. A minimal way of calculating
A and B is to simulate for two values b and l2, where lx, l2 <C I and estimate a
straight line on a plot of the intercepts against the chosen I. Consequently, we can fit
a phenomenological model M (a;) for the large system.

61

5.2 QoS for large A T M sy stem s
In section 5.1 we discussed the prediction of large systems by simulating smaller,
easier to simulate ones, now we will apply what we have learned to the issue of QoS,
which is an important issue in the design of large multiplexed systems.

We mentioned in section 1.4 that QoS is described by queueing delay and cell
loss probability. Consequently, QoS is a function of the buffer size and the load, so
the choice of buffer size is an important issue in guaranteeing a recommended QoS.
Therefore, it is desirable to have a buffer size large enough to have the required cell
loss probability and to have a low probability of burst level congestion, so as to avoid
queueing delays.

.Recall the projected phenomenological model, M (x), of the hypothetical large
system discussed in section 5.1. If the plot of M (x) is examined we can work out
the approximate threshold probability of burst level congestion and the probability
of the buffer overflowing for a given buffer size can be approximated. We can also
measure approximately, the buffer length corresponding to the knee, bk, by getting
the intercept of the two regression lines obtained in calculating u\ and u2. For large
systems it is clear that the probability of the queue exceeding bk is low (how low
depends on the load), consequently the probability of burst level congestion is low.
These are all issues affecting QoS decisions.

Since u\ >■ u2, the gain in loss probability obtained by increasing the buffer
size, x , up to bk is far greater than the probability gained by increasing the buffer
size by the same amount beyond bk. Thus, on economic grounds one could suggest
the rule that the buffer size should be chosen to be bk, since the return in terms of
the loss probability per unit buffer size is greatest for this choice.

5.3 Further S tu d y

Ongoing work by another member of the telecommunications project, involves the
comparison of the limiting slope of M (x) obtained for the burst level traffic regime
(see section 4.6.2), with the theoretical slope obtained using martingale techniques
[14]. This work also includes comparing the log10[Pr{queue length = 0}] obtained
using large deviation methods to the intercept, / 0.

This project concentrated on keeping the traffic constant by fixing a and 1(1 — fi).
We study relatively small systems by scaling s and keeping a constant, our motivation
being to predict large systems. However, the simulation system was developed, such
that it is possible to fix any combination of the simulation parameters. Also, the
system was designed with reusability, integration and further development in mind
(see section A .l), and should be of use to other ATM simulation projects.

62

Bibliography

[1] J. Bellamy, Digital Telephony, J. Wiley, New York, 1991.

[2] J. T. Berry, The Waite group’s C++ programming, H. W. Sams, Indianapolis,
1988.

[3] P. Bratley, B. L. Fox, L. Schrage, A guide to simulation, Springer-Verlang,
New York, 1987.

[4] E. Buffet, N. G. Duffield, “Exponential upper bounds via martingales for mul­
tiplexers with markovian arrivals” , DIAS-STP-92-16.

[5] C. H. Cheng, “Note on the effect of initial conditions on a simulation run”,
Operational Research Quarterly, Vol. 27, no. 2, ii, pp. 467-470, 1976.

[6] E. Qinlar, Introduction to stochastic proccesses, Prentice-Hall, Englewood cliffs,
1975.

[7] R. W. Conway, “Some tactical problems in digital simulation”, Management
Science, Vol. 10, No. 1, pp. 47-61, October 1963.

[8] B. Cox, Object-oriented programming: an evolutionary approach, Addison-
Wesley, Reading, 1986.

[9] J. N. Daigle, J. D. Langford, “Models for analysis of packet voice communica­
tions systems”, Journal on Selected Areas in Communications, Vol. SAC-4, No.
6, pp. 847-855, September 1986.

[10] S. C. Dewhurst, K.T. Stark, Programming in C++, Prentice-Hall, Englewood
Cliffs, 1989.

[11] R. Drake, “Object-oriented programming in C + + ”, Personal Computer World,
February 1989.

[12] R. Drake, “Better C programming in C + + ”, Personal Computer World, March
1989.

[13] N. R. Draper, S. Smith, Applied regression analysis, Wiley, New York, 1981.

[14] N. G. Duffield, “Exponential bounds for Markovian queues” , DIAS-STP-93-01.

[15] W. Feller, An introduction to probability theory and its applications Volume I,
Wiley, New York, 1968.

63

[16] T. Ferguson, “Operator overloading in C + + ?” , Journal of Object-Oriented
Programming, pp. 42-48, March/April 1991.

[17] G. Fishman, Principles of discrete event simulation, Wiley, Chichester, 1973.

[18] G. Fishman, “Achieving specific accuracy in simulation” , Communications of
the ACM, Vol. 20, no. 5, pp. 310-315, May 1977.

[19] G. Fishman, “Statistical analysis for queueing systems”, Management Science,
Vol. 20, no. 3, pp. 363-369, November 1973.

[20] A. G. Fraser, “Early experiments with asynchronous time division networks”,
IEEE Network, pp. 12-14, January 1993.

[21] G. Gordon, System simulation, Prentice-Hall, Englewood Cliffs, 1978.

[22] K. E. Gorlen, S. M. Orlow, P. S. Plexico Data abstraction and object-oriented
programming in C++, Wiley, Chichester, 1990.

[23] T. L. Hansen, The C++ answer book, Addison-Wesley, Reading, 1990.

[24] H. Heffes, D. M. Lucantoni, “A Markov Modulated characterization of pacle-
tized voice and data traffic and related statistical multiplexer performance”,
Journal on Selected Areas in Communications, Vol. SAC-4, No. 6, pp. 856-868,
September 1986.

[25] J. Y. N. Yui, Switching and traffic theory for integrated broadband networks,
Kluwer Academic Publishers, Boston, 1990.

[26], S. Karlin, H. M. Taylor, A first course in stochastic processes, Academic Press,
New York, 1975.

[27] B. W. Kernighan, D.M. Ritchie, “The state of C”, Byte, pp. 205-210, August
• 1988.

[28] A. Koening, “Classes that keep track of themselves”, Journal of Object-
Oriented Programming, pp. 62-65, November/December 1992.

[29] A. Koening, “Understanding constructer initializers in C + + ”, Journal of
Object-Oriented Programming, pp. 40-46, November/December 1991.

[30] D. E. Knuth, The art of computer programming Vol 2, Addison-Wesley, Read­
ing, 1973.

[31] S. B. Lippman, C++ Primer, Addison-Wesley, Reading, 1989.

[32] P. L’Ecuyer, “Efficient and portable combined random number generators” ,
Communications of the ACM, Vol. 31, no. 6, pp. 742-749, June 1988.

[33] B. Meyer, Object-oriented software construction, Prentice-Hall International,
London, 1988.

64

[34] A. Navab, E. Chiariotti, “A note on the definition of visibility for protected
class members in C + + ?” , Journal of Object-Oriented Programming, pp. 35,
March/April 1992.

[35] J. Neter, W. Wasserman, M. H. Kutner, Applied linear statistical models; regres­
sion, analysis of variance, and experimental designs, R. D. Irwin, Homewood,
1974.

[36] M. F. Neuts, Solutions in stochastic models: an algorithmic approach, The
John Hopkin University Press, Baltimore, 1981.

[37] I. Norros, J. W. Roberts, A. Simonian, J. T. Virtamo, “The superposition of
variable bit rate sources in an ATM multiplexer” , IEEE Journal on Selected
Areas in Communications, Vol. 9, No. 3, pp. 378-387, April 1991.

[38] I. Pohl, C++ for Pascal programmers, Benjamin/Cummings Pub. Redwood
City, 1989.

[39] A B. Pritsker, Introduction to simulation and Slam II, Wiley, New York, 1986.

[40] D. R. Reed, G. Wyant, “How safe is C + + ?” , Journal of Object-Oriented
Programming, pp. 69-72, May 1992.

[41] H. Schildt, Teach yourself C++, Osborne McGraw-Hill, Berkeley, 1992.

[42] K. Sriram, W. W hitt, “Characterizing superposition arrival processes in packet
multiplexers for voice and data”, IEEE Journal on Selected Areas in Commu­
nications, Vol. SAC-4, No. 6, pp. 833-846, September 1986.

[43]. A. Stevens, Teach yourself C++, MIS Press, New York, 1991.

[44] B. Stroustrup, The C++ programming lannguage, Addison-Wesley, Reading,
1991.

[45] B. Stroustrup, “W hat is object-oriented programming?” , IEEE Software, pp.
, 10-20, May 1988.

[46] B. Stroustrup, “A better C?”, Byte, pp. 215-216, August 1988.

[47] H. A. Taha, Operations research: an introduction, Collier Macmillian. London,
1987.

[48] R. S. Wiener, L.J. Pinson, An introduction to object-oriented programming and
C++, Addison-Wesley, Reading, 1988.

65

O bject-oriented program m ing and
C-|—j-

A ppendix A

A .l In tro d u ctio n

This appendix is a brief overview of the object-oriented approach to software design
and to the programming language C + + . It is included so as to give the reader an
understanding of the design philosophy behind the simulation program (see appendix
B) and also as to why a programming language supporting object-oriented methods
was used rather than a standard structured programming language. All references to
examples in this appendix refer to the source code in appendix C.

Initially in designing the simulation program normal top-down design was used,
ie. the repetitive process of decomposing problem into several sub-problems. As the
more detailed design phase was entered an object-oriented approach was incorporated
into the methodology.

One of the main motivation for using object-oriented programming (OOP) was
the time that would be saved as different versions of the software were developed,
object-oriented software being a lot more amenable to change. Also, using inheri­
tance (see section A.3 and A.4.2) it is possible that other researchers on the telecom­
munications project will be able to reuse the software developed to build their own
simulation software.

A .2 O b jec t-o r ien ted d esign versu s to p -d o w n d e­
sign

Using top-down design a well developed system tends to be modular, in other words
the system consists of a collection of modules or subprograms, ie. procedures or
functions which should be separately understood. The developer examines a system
and decides what operations are taking place, these operations are then modeled using
procedures or functions which form the basis of the system.

W hat is wrong with this method one may ask? The most noteworthy problems
are that the data structure aspect of the system is neglected and software reusability

A- 1

is not promoted, indeed top-down design is essentially the contrary of reusability.
Reusable software implies that the system is developed by combining existing com­
ponents, which is essentially bottom-up design [31].

The difference between traditional design methods and the object-oriented ap­
proach is whether the system should be based on the actions or on the data structure.
The key to object-oriented design is the Law of Inversion which states that if there is
too much data transmission in your routines, then put your routines into your data
[42]. Of course, if object-oriented techniques are incorporated into1 the design from
the start, then this law is not needed. The basis of the approach is: do not ask what
the system does but instead ask what does it do it to?

Object-oriented programming has similarities to data abstraction as well as
having- subtle differences. Data abstraction is programming with abstract data types
or more correctly user-defined data types (UDDT). A UDDT specifically describes
a data structure not by an implementation but by the list of operations that are
available (to the outside world), which service the data structure; thus it can be
viewed as a sort of a black box - once it has been defined it does not really interact
with the rest of the program [42]. So in other words, abstraction means that the
essential features of something are represented without the background or inessential
detail being included.

Object-oriented programming can be seen as an extension of data abstraction
because it allows you to define new UDDTs which derive properties from those data
types already declared. This is the principle of inheritance. The open-closed principle
states that a module is open if it is available for extension and if is closed it it is
available for use by other modules. W ith classical approaches to design there is no
way to write modules that are both open and closed. Inheritance solves the apparent
dilemma with the open-closed principle [31].

A .3 U n d ersta n d in g o b jec t-o r ien ted d esig n
In system development there are both internal quality and external quality factors.
Internal factors include modularity and readability and are only perceptible to com­
puter professionals, therefore only external factors really m atter in the end. However
internal factors are the key to ensuring that external factors are satisfied and object-
oriented design is then a technique for obtaining internal quality. The main external
factors are: correctness, robustness, extensibility, reusability and compatibility and
these all benefit from object-oriented design.

An object consists of some data and a set of methods or operations that can
be performed on those data. The operations and data are defined together and are
a single entity. An object can be understood as a class or a UDDT or an instance of
a class. We have essentially said that object-oriented design is the construction of a
software system as a structured collection of UDDT implementations.

The idea is that object-oriented systems are to be assembled from pre-written
components with minimal effort and that the assembled system will be easy to extend
without any need to change the reused components. However, it is worth bearing in
mind that very few systems live up to the pure concept of object-orientation and

2

A-2

should not need to.

Meyer [31] promotes seven steps towards object-oriented happiness:

1. O b jec t-b ased m o d u la r s tru c tu re : Systems are broken into subprograms on
the basis of their modular structure. Hiding the representation is the key to
modularity [43].

2. D a ta A b strac tio n : A programming technique described in section A.2 and
further defined in section A.4.

3. A u to m a tic M em o ry M an ag em en t: Unused objects should be deallocated
.without program intervention. Constructors and destructors (see section A.4.1)
are used to allocate and manage memory for a class and help to make a clean
separation between interface and implementation. A constructor gives a recipe
for building an object of a given class; a destructor gives a recipe for undoing
whatever the constructor did. The constructor and destructor functions are
automatically called [26].

4. C lasses: A class (ideally one implementation of a UDDT) describes a set of
data structures (objects) characterized by common properties . Every non­
simple data type should be a module and every high-level module a data type
[31]. Each class is a direct representation of a concept in the program. See
section A.4.2 for more detail.

5. In h e rita n c e : A new class may be declared as an extension/restriction of a
previously defined class. If class A is defined as an heir to class B this implies
that all the features and functionality of B are applicable to A. Class A can add

; to or customize the features of i t ’s parent B (see polymorphism below), only
the differences need to be specified. Alternatively class A can simply reuse the
implementation of class B; See section A.4.2 for more detail.

6. P o ly m o rp h ism and d y n am ic b ind ing : It is possible for class A, a descen­
dant of B, to redefine features of i t ’s parent B; in other words each class in the
class hierarchy can implement a shared action in a way appropriate to itself.
This is known as polymorphism. The ability to determine an objects class at
run-time and allocate its storage is referred to as dynamic binding.

7. M u ltip le and re p e a te d in h e ritan ce :

A derived class can have more than one parent and other classes can be descen­
dants of this class. Therefore, hierarchically organized classes can be specified
which is one of the key features for object-oriented programming; see section
A.4.1 for more detail. ;

3

A-3

A .4 D a ta a b stra ctio n and o b jec t-o r ien ted pro­
gram m in g in C + +

This section includes a brief overview of some of the more im portant aspects of the
C + + programming language:

A .4.1 C lasses
We can associate variables and functions with the name of a data type. These are
called members and are either private, protected or public. Members are private by
default and this means that they are only accessible by a member function of the same
class or a friend (see section A.4.3) of the class. Protected means that a member is
accessible by members and friends of derived classes and public means that a member
is accessible by clients of the class. The keywords protected and public promote the
idea of encapsulation, see section A.4.6. A client can read or modify the values of
the private member variables of an instance of a class indirectly, by calling the public
member functions of the class. Information hiding guidelines dictates that all data

,,within a class be private.
C + + classes have two special kinds of member functions: constructors and

destructors. Constructors create new instances of the the class and take responsibility
for initializing them correctly. Destructors destroy instances (dynamic storage) of the
class. A constructor has the same name as the class and a destructor has also the
same name but is prefixed by'.

A .4.2 Inheritance and virtual m em ber functions
Object-oriented programming is the process of building class hierarchies, this is
achieved by the principle of inheritance, which essentially making commonality ex­
plicit. C + + supports inheritance by means of derived classes, which can differentiate
from their parent classes by adding member variables or functions and/or redefining
member functions inherited from their base class. The base class (parent) must be
created before the descendant class can be created. A base class can declare a member
function using the keyword virtual, signifying that the base classes implementation
of the member function is only a default which will be used only if the derived class
does not supply i t ’s own implementation. This is used to accomplish polymorphism
and dynamic binding; see the listing of list.cpp in section C.2.

Inheritance is the most important concept in realizing the goal of constructing
software systems from reusable parts, rather than hard coding each system form
scratch.

A .4.3 Friend functions
There needs to be a way for another class to be able to access the private data members
of a class without being part of the class hierarchy. Friend functions provide a means
whereby conventional functions or other classes can access private data of a class,
having no particular connection to the class.

4 ■

A-4

A A A O perator nam e overloading
It is possible to use the same function name for more than one function, provided the
number and/or type of the arguments are distinctive; see the listing for openfile.cpp
in section C.2. This is especially useful for writing multiple constructors and is a
special case of polymorphism; see the listing for node.h in section C .l.

A .4.5 Inline functions
A function can be inline implicitly or explicitly. By explicitly declaring a function
inline, by using the keyword inline, each call of the function is replaced by a copy
of the entire function, thus the overhead of calling a function is eliminated. Member
functions can also be made implicitly inline by including the implementation details
(function body) in the function declaration within the class specification; see the
listing for node.h in section C.l.

A .4.6 E ncapsulation
.Most of the details of the implementation of a class are kept in a separate file (header
file) which calls the class. This header file includes the specification of the class,
in other words the information that programs that use the class (clients) need to
compile successfully. The implementation file uses the scope resolution operator (::)
to identify what class the member function belongs to. See list.cpp for examples of
the above. This separation into specification and implementation is done to hide the
implementation details from the client. This is the principle of data hiding and is
known as encapsulation.

A .5 C on clu sion

Software has progressed from a purely procedural application to a data driven object
based approach and the emphasis has further shifted to the use of object-oriented
techniques. C + + is one of the few languages that supports data abstraction, OOP
and traditional programming techniques.

The object-oriented approach dictates that software be designed as a number of
objects, which should be as independent of their environment (rest of the program)
as possible. The fewer assumptions an object makes about i t ’s environment and
vice-versa, the easier it become to transplant it into a different environment.

OOP represents a way of thinking and a methodology for computer program­
ming that are quite different from the usual approaches supported by structured
programming languages. It would take even an experienced C programmer several
months to really appreciate the power of C + + and to become class designers. One
can always learn more about the subtleties of object-oriented design.

The real benefits of an object-oriented approach comes from later modification
to the developed system or to a newly developed system which can make use of all
the libraries of classes already in place.

5

A-5

Pseudorandom num bers and
generators

B . l In tro d u ctio n
Numbers which can be chosen at random are useful in many different kinds of appli­
cations, of which simulation is one. In one sense there is no such thing as a random
number, instead we speak of a sequence of independent random numbers which follow
a specific distribution. In other words each number was obtained by chance and had
nothing to do with the other numbers in the sequence.

How can one choose numbers at random? Possibilities include: spinning a
roulette wheel, sending a current through a resistor and observing the voltage over
time, using an electronic process which has an inherent randomness such as thermal
noise, cosmic ray counter, geiger counter.

B .2 P seu d o ra n d o m nu m b ers

All practical “random number” generators on computers are actually simple deter­
ministic programs that generate a periodic sequences of numbers that should look
apparently random. These computed random numbers are sometimes referred to as
pseudorandom numbers as the are essentially not truly random since all the num­
bers are known in advance once the seed initializing the recursive computations is
known (each number is completely determined by its predecessor). These functions
are referred to as pseudorandom number generators.

The main advantage of being able to produce a set of numbers arithmetically,
which to all intensive purposes appear random, is that the same sequence can be repro­
duced whenever desired once the seed is known. This is very useful when comparing
simulations as you known that any difference in output is not due to experimental
error, it is also very helpful when debugging a program.

A ppendix B

B-l

B .3 G en era tin g p seu d oran d om num bers

A generator is defined by a finite state space S, a function / : S —> S and an initial
state s0 called the seed. The state of the generator evolves recursively to produce a
sequence of non-negative integers, Z = {s;}, where

3i = f (s i - i) , i = 1 ,2 ,3 , . . . (B.l)

At this point it is worth noting that most generators are inherently pseudorandom
integer generators. They can be made pseudorandom real uniform [0,1) generators
indirectly by dividing by the largest possible integer (modulus). So the states s,- of
the sequence Z are transformed to produce the sequence, U = {Ui}, where

U i^ g is i) , V i (B.2)

where g : S —> [0,1) and the elements Ui form the pseudorandom sequence taking
values in some discrete subset of [0,1). The period of the generator is the smallest
positive integer p such that

s,+p = Si V i > v (B.3)

for some integer v > 0.
The most common method of generating pseudorandom numbers is the Lehmer

linear congruential method where

f (s) = (as + c) mod m (B.4)

»W = £ (B.5)

where a, c and m are pre-chosen constants, known as the multiplier, increment and
modulus respectively, where a < m and c < m. Equation B.5 effectively normalizes
the sequence [30].

Any choice of values for these constants will produce a sequence of non- negative
integers that ultimately falls into a repeating pattern. The period of the ideal sequence
is infinite and if the constants are chosen carefully (see below) the pattern will be
large and will appear to be random. Since the current random integer s,- depends
only on the previous random integer s,-_i (see equation B .l), once a value has been
repeated the entire sequence after it must be repeated.

The maximum period (cycle length) of the above generator is clearly m as a
direct consequence of the modulus operation (see equation B.5). The cycle length
is an im portant consideration because if the simulation is long enough to cause the
random numbers to repeat (as a result of the short cycle length), the simulation
outputs will not be independent.

Choosing a, c and m is a science which incorporates both theoretical results
and empirical tests. Since the period of the ideal sequence is infinite , the modulus
m should be chosen as large as possible. Theoretical results then exist that give
conditions for choosing values of the multiplier a and the increment c [28].

B - 2

B .4 M u ltip lica tiv e linear con gru en tia l gen era tor
It is common practice to eliminate the addition operation by setting the increment c =
0, in which case the generator is called a multiplicative linear congruential generator
(MLCG) and its state space is S = {0 ,1 , . . . , m — 1}. This is because, by definition,
x mod m is the remainder after x is divided by m. As described above, a MLCG has
maximum cycle length of m.

An independent subsequence can be produced by splitting a single generator,
provided the seeds can be chosen regularly spaced and far enough apart in the cycle
to ensure that the sequences do not overlap. In other words, given any seed, s,-, we
can compute S{+j, for any j > 0, without generating all intermediate values.

Si+j = (a3S{) mod m (B.6)

which can be easily shown. This can then be implemented like any MLCG.

B .5 G en erator u sed in th e s im u la tio n sy s te m
Various methods have been proposed for combining two or more pseudorandom num­
ber generators. It has been mathematically demonstrated that this results in a much
longer period. Such a generator [30] which combines 2 MLCGs is used in the sim­
ulation system developed (see the listing of mlcg32.cpp in appendix C). The first
generator has modulus mi = 2147483563 and multiplier aa = 40014 and the second
generator has modulus m2 = 2147483399 and multiplier a2 = 40692. The combined
generator has period « 2.30584 x 1018. This generator has been submitted successfully
[30] to a comprehensive series of statistical tests described in Knuth [28].

B - 3

A TM sim ulator source code

A p pend ix C

C .l C lass d efin ition s and h ead er files

/*
File: node.h
Author: Tom Corcoran
Date: 20/7/93

* *
* interface to class line_c *
* *

*/

// includes // defines

#include<stdlib.h>
#include<iostream.h>

// NULL
// ostream

/ /**

// defines a node

class line_c {

friend class line_list_c;

private:
int line_no;
int firing_time;
int firing_flag;

line_c *prior;
line_c *next;

public:

/ private members accessible by
/ line_list_c (forward feference)

/ line number of node
/ firing time of node
/ indicates whether node firing
/ (0 = not firing,1 = firing)
/ pointer to previous node
/ pointer to next node

C - 1

line_c(int num. = 0,int time
int flag = 0,
line_c *p = MULL,
line_c *q = MULL) {

line_no = num;
firing.time = time;
firing.flag = flag;
prior = p;
next = q;

>;

= 0,

// constructor

// set private members

void set_line_no(int num) {
line.no = num;

}
void set.firing_time(int time) {
firing.time = time;

>
void set.firing.flag(int flag) {
firing.flag = flag;

>

// set line.no

// set firing.time

// set firing.flag

// inserter function is friend

friend ostream &operator<<(ostream &stream,line_list_c *list) ;
friend ostream &operator<<(ostream &stream,line_c *node) {
stream << node->line_no << "\t" << node->firing.time « "\t"

<< node->firing.flag << endl;
return stream;

}
>;

//**

/*
File: list.h.
Author: Tom Corcoran
Date: 20/7/93

* *
* interface to class line.list.c *
* *
* * * * * * * * * * * * * * * * * * * */

//**

// includes // defines

#include <fstream.h> / / ofstream

C-2

'// forward declarations

class line_c;
class-mlcg32_c;
class probabilities_c;
class queue_c;

// defines a doubly linked list made up of nodes

class line_list_c {
private:

/* both a head and a foot (as opposed to just a head) are defined
so as to make the code more readable */

line_c *head; // head->next points to head of list
line_c *foot; // foot->prior points to foot of list
int last_process_time; // last time list processed

public:
line_list_c
(int temp_last_process_time); // constructor

// only used to link initial two nodes (head and foot) in list

void connect_two_nodes(line_c *one,line_c *two);

// return functions

line_c * return_head(void) {
return head;

} // returns head of list
line_c * return_foot(void) {
return foot;

} // returns foot of list
int return_last_process_time(void) {
return last_process_time;

} // returns last process time

// new_head,new_foot assume head,foot already created

void new_head(line_c *new_head,

C- 3

line_c *old_head); // insert node at head of list
void new_foot(line_c *new_foot,

line_c *old_foot); // insert node at foot of list

/* insert_mid_before,insert_mid_after assume at least two nodes linked
can be used to create linked list */

void insert_mid_before
(line_c *node_a,line_c *node_b); // insert node before another node

void insert_mid_after
(line_c *node_2,line_c *node_l); // insert node after another node

// following member functions for use once list has been setup

void
void

sort_linked_list(int s_ticks);
move_line(line_c *k,

mlcg32_c *random_gen,

// sorts list in order of firing t

int s_ticks); // controls moving of node in list
void remove_head(line_c *old_head); // removes head of list
void remove_foot(line_c *old_foot); // removes foot of list
void remove_line(line_c *k); II removes node from list
void clear_pointers(line_c *k); II clears pointers of node

// the following functions write the state of the list to file

void print_to_f_detail(
ofstream *file.ptr); // detailed write list

void clear_list(void); // clears linked list

// performs simulation for one cycle through the list (block)

virtual void one_block_simulation(int &empty_queue,queue_c *queue,
probabilities_c *prob,
mlcg32_c *random_gen);

// inserter function is friend (basic write list)

friend ostream &operator<<(ostream &stream,line_list_c *list) ;

~line_list_c(void); // destructor (destroys linked list,
// head,foot)

};

C-4

J

//**
/*

* * * * * * * * * * * * * * * * * *
File: prob.h * *
Author: Tom Corcoran * interface to class prob_c *
Date: 20/7/93 * *

// includes // defines

#ifndef LIST.H
#define LIST_H
#include "list.h"

#endifj /^C5f:5fC^3fC>f:^C^C>(C5|C5f:jf:5^3t:^£^ + ̂ C%^^C5^i^^C%^CifC5^^3iC3tC + Ĉ5fC3f;3fC3(C + >f:Jt< + ̂ ^^C^C^C+5^^S3tc^C3f:j^+^t^C^C^:5t:5+C3^3tc^C^C3fCif:^<^C^C3f:3^^C5|<^;3f:^:

// member function of line_list_c is
// declared as a friend

// class contains simulation input parameters and probabilities

class probabilities_c {
private:
int 1;
int s;

double rho;
double alpha;
double beta;
double gamma;

public:

/ number of lines (nodes in list)
/ number of ticks in block over
/ which 1 lines distributed
/ load
/ prob(active -> active)
/ prob(inactive -> active)
/ prob(silence < s ticks)

// constructors

probabilities_c(void) {}; // default constructor

probabilities_c(int temp.l,
int temp_s,
double temp_rho) :

l(temp_l),s(temp_s),rho(temp_rho) {
>;
probabilities_c(double phi,int temp_l.double temp_rho);
probabilities_c(double phi,int temp_l,int temp_s);

// set private members

void set_no_lines(double temp.l) {

C-5

>
void set_no_ticks(double temp_s) {
s = temp_s;

}
void set_load(double temp_rho) {
rho = temp_rho;

}
void set_alpha(double temp_alpha

= 0.995466666666666) {
alpha = temp_alpha;

> --
void set_beta(double temp_beta) {
beta = temp_beta;

>
void set_gamma(void);

// return functions

int return_no_lines(void) {
return 1;

>
int return_no_ticks(void) {
return s;

>
double return_load(void) {
return rho;

}
double return_alpha(void) {
return alpha;

}
double return_beta(void) {
return beta;

>
double return_sigma(void);
double return_phi(void);
double
return_prob_line_active(void);

// fix alpha/beta

void fix_alpha(double temp_alpha
= 0.995466666666666);

void fix_beta(double temp_beta);

1 = tem p_l;
// sets number of lines

// sets number of ticks

// sets rho/load

// sets alpha (default value)

// sets beta
// prob(silence < s ticks)

// returns number of lines

// returns number of ticks

// returns load

// returns alpha

// returns beta
// return value of sigma (s/l)
// return value of phi

// returns probability line active

// fix alpha (default value)
// works out beta(l,s,rho,alpha)

// fix beta
// works out alpha(l,s,rho,beta)

C-6

/ / c a l c u l a t e a lp h a ,b e ta

double calc.alpha(void);
double calc_beta(void);

// used if beta (and rho) fixed
// used if alpha (and rho) fixed

// ..used when phi, ie. 1(1 - beta), is fixed

int calc_s_given_phi(double phi);
double calc_rho_given_phi(double phi);
double calc_beta_given_phi(double phi);

// checks that private members are consistent

void check_conditions(void);

// friend declaration: function has access to private members

friend void line_list_c::one_block_simulation(int &empty_queue,
queue_c *queue,
probabilities_c *prob,
mlcg32_c *random_gen);

friend ostream &operator<<(ostream &stream,probabilities_c.*prob);
>;

//**

/*
File: queue.h
Author: Tom Corcoran
Date: 20/7/93

* * * * * * * * * * * * * * * * * *
* *

* interface to class queue_c *
* *

*/

//**

// includes

#include <fstream.h>
#ifndef LIST_H
#define LIST.H
#include "list.h"

#endif

// defines

// ofstream

// member function of line_list_c
// is declared as a friend

//**

/* class contains buffer array which keeps track of simulation statistics

C - 7
i

\

class queue_c {
private:
int buffer; // current length of actual queue

/* ..dynamic array (initially records no of times buffer is each length)
any overflow is stored in queue[overflow_size]

e g . q u eu e[5] = 9 => b u f fe r was of l e n g t h 5 during s im u la t io n 9 t im es * /

double *queue;

int- max_queue_size;
int overflow_size;
int actual_queue_size;
long int total_activity;

public:

// constructors

queue_c(void) {}
queue_c(int temp_max_queue_size,

int temp_initial_queue);
queue_c(int temp_max_queue_size,
long int temp_total_activity,
double *temp_queue);

// updates private members

void add_to_total_activity
(long int amount);

void set_actual_queue_size(void);

// return private members

long int return_total_activity(void) {
return total_activity;

>
double return_queue(int element) {
return queue[element];

>
double * return_queue_ptr(void) {
return queue;

>
int return_max_queue_size(void) {
return max_queue_size;

}

*/

// maximum length of array
// max length of array minus one
// actual length of array
// total number of "customers served"

// default constructor

// adds amount to total activity
// sets actual array size

// returns total_activity

// returns queue[elem]

// returns pointer to queue

C- 8

int return_overflow_size(void) {
return overflow_size;

} // returns overflow size
int return_actual_queue_size(void) {
return actual_queue_size;

} // returns actual queue size
int.-return_buffer(void) {
return buffer;

} // returns buffer

// used on whole array

void setup_pdf(void); // creates PDF from buffer array
double check_total_probability(void); // checks probability sums to 1
void build_cdf(void); // builds CDF from PDF,p{q < b]
void build_one_minus_cdf(void); // p[q >= b]
void log_queue(void); // get loglO of array contents

// friend declarations: functions have access to private members

friend void line_list_c::one_block_simulation(int &empty_queue,
queue_c *queue,
probabilities_c *prob,
mlcg32_c *random_gen);

friend ostream &operator<<(ostream &stream,queue_c *queue);

~queue_c(void) {
delete queue; // destructor: frees memory taken

} / / b y queue
>; ■'

//**

/* * * * * * * * * * * * * * * * * * * *
File: mlcg32.h * *
Author: Tom Corcoran * interface to class mlcg32_c *
Date: 20/07/93 * *

* * * * * * * * * * * * * * * * * * * */

//***,)„*„,

// Includes // defines

#include<fstream.h> // ofstream,fstream

C-9

//**

class mlcg32_c {
private:
long int seedl; // first seed for ran no generator
long int seed2; // second seed for ran no generator

public:

// constructors

ralcg32_c(void) {}; // default constructor
mlcg32_c(long int temp.seedl,

long int temp_seed2) :
seedl(temp_seedl),seed2(temp_seed2) {

>;
mlcg32_c(fstream *seed_f);

// reset seeds

void reset_seeds(
long int temp_seedl = 1,
long int temp_seed2 = 1) ; // given seeds

void reset_seeds(ifstream *seed_f) ; // read seeds from file
double random(void); // generates random number in [0,1]
int random.int(int max); // returns random number in [0, int)

// inserter function is friend

friend ostream &operator<<(ostream &stream,mlcg32_c *random);

/ / *

/ * *

File: timer.h * *
Author: Tom Corcoran * interface to class stop_watch_c *
Date: 20/7/93 * *

* * /

/ / *

// includes // defines

#include<iostream.h> // ostream
#include<time.h> // time_t,tm

C- 10

//**

class stop_watch_c {
private:
time_t start; // simulation start time
time_t end; // simulation end time
int hours; // hours of simulation
int minutes; // minutes of simulation
int seconds; // seconds of simulation

public:
stop_watch_c(void); // constructor
void set_start_time(time_t temp_start) {
start = temp_start;

} // sets start
void set_end_time(time_t temp_end) {
end = temp_end;

} // sets end

// functions for displaying start/end time

void display_start_time_to_screen(void);
void display_end_time_to_screen(void);
void display_time_to_screen(time_t now);

void diff_time(void); // gets differnece between
// start and end

// inserter function is a friend
/

friend ostream &operator<<(ostream festream,stop_watch c *watch);

//**

/ * * * * * * * * * * * * * * * * * * *

File: charstr.h * *
Author: Tom Corcoran * interface to class string_c *
Date: 20/7/93 * *

* * * * * * * * * * * * * * * * * * ^ j

//**

// includes ’// defines

#include <iostream.h> // ostream

C- 11

//**

class string_c {
private:
char *string_ptr;
int string_length;

public:

// constructors

string_c(); // default
str-ing_c(char *temp_string_ptr);

// conversion function, convert to char*
operator char *() {
return string_ptr;

}
char * return_string_ptr(void) {
return string_ptr; // returns string_ptr

>
~string_c(void); // destructer

// inserter function is a friend

friend ostream &operator<<(ostream festream, string_c *string);
};

//**

/*
File: routines.h
Author: Tom Corcoran
Date: 23/10/93

* * * * * * * * * * * * * * * * * *
* *

* interface to routines.cpp *
* *
* * * * * * * * * * * * * * * * * * */

/ / * * ♦ *

// includes // defines

#include<iostream.h>
#include <fstream.h>

// iostream
// ifstream

/ / * * * * * * * * * * * * * * * * * * * * * * * * * + * * * * * :)c* * :(C*

/ / f u n c t io n p r o to ty p e s

C- 12

double round_double(double num);
int int_round_double(double num);
double * setup_dynamic_array(int array_size);
void initialize_dynamic_array(int array_size,double * new_array);
ostream &fixed_and_showpoint(ostream &stream);
ostream &error(ostream &stream);
void general_error(char *str_ptr);
void allocation_error(char *str_ptr);
void allocation_error(char *str_ptr,long int display_int);
void display_and_exit(char *error_str);

//**

/ * *

File: openfile.h * *
Author: Tom Corcoran * interface to openfile.cpp *
Date: 27/11/92 * *

* * /
//**

// includes // defines

#include<fstream.h> // ifstream,ofstream,fstream

//**

// Function prototypes

void open_file(char *file_name,
ifstream *fp); // open file for reading

void open_file_input(char *file_name,
fstream *fp); // open i/o file for reading

void open_file_io(char *file_name,
fstream *fp); // open i/o file for reading and

// write to file and overwrite
// writing

void open_file(char *file_name,
ofstream *fp); // open file for writing

void open_file_output(char *file_name,
fstream *fp); // open i/o file for writing

// write fo file and append

C- 13

void open.file_app(char *file.name,
ofstream *fp); // open i/o file for writing

// overloaded error checks

void check.error(ifstream *fp,
char *file.name);

void check.error(ofstream *fp,
char *file.name);

void check_error(fstream *fp,
char *file.name);

void exit_program(char *file.name);

// error check for input file

// error check for output file

// error check for i/o file

// calls exit function

//**

C.2 C lass m em b er fu n ction s
//**

/* File: list.cpp
Author: Tom Corcoran
Date: 20/7/93
Version: 6.0

* * * * * * * * * * * * * *
* *
* class line.list.c *
* member functions *
* *
* * * * * * * * * * * * * * */

//**

// includes // defines

#ifndef LIST.H
#define LIST.H
#include "list.h"

#endif
#ifndef NODE.H
#define NODE.H
#include "node.h"

#endif
#ifndef MLCG32.H
#define MLCG32.H
#include "mlcg32.h"

#endif
#ifndef ROUTINES.H
#define ROUTINES H

// class line.list.c

// class line.

// class mlcg32_c

C- 14

#include "routines.h"
#endif

// allocation_exit()

I /**

line_list_c::line_list_c(int temp_last_process_time) {

/* creating new objects (need instances as use head->next,head->prior

if (!(head = new line_c))
allocation_error("instance of line_c for head of list") ;
if (!(foot = new line_c))
allocation_error("instance of line_c for foot of list") ;

// initializing last time list processed

last_process_time = temp_last_process_time;

// linking head and foot

connect_two_nodes(head,foot);

void line_list_c::sort_linked_list(int s_ticks) {

// objective: to sort linked list in order of firing_time

while (search_tick <= s.ticks) {

// search list for match of firing_time (search_tick)

while ((find_pos != foot)&&(find_pos->firing.time != search_tick))
find_pos = find_pos->next;

// after leaving inner while loop => match found or at foot of list

if (find.pos != foot) { // match found
next_pos = find_pos->next; // search will continue from this node
remove_line(find_pos); // removes matched node from list

foot->next,foot->prior)

int search_tick = 1;
class line_c *current_pos = head;
class line_c *find_pos = head;
class line_c *next_pos = NULL;

// firing time
// node up to which list is sorted
// node which is next in order
// node which is next in sort

C- 15

insert_mid_after(find_pos,
current_pos);

current_pos = find_pos;
find_pos = next_pos;

>
else {
search_tick++;
find_pos = current_pos->next;

>

/ inserts matched node in order
/ list now sorted up to this node
/ find_pos determines from where
/ search continues

/ no (other) node firing at this tick
/ => increment search_tick
/ search continues from find_pos for
/ first occurence of next tick

j /**

void line_list_c::move_line(line_c *k,mlcg32_c *random_gen,int s_ticks) {

/* objective: controls moving of node in linked list
node is removed and reinserted at appropriate position */

// firing time of node to be
// inserted
// old firing time of node
// to be moved
// number of ticks left in block
// pointer to node in list

// remove node from list

int t ;

int old_firing.time = k->firing_time;

int ticks_left = s_ticks - old_firing_time;
line_c *find_pos = NULL;

if (k->prior == head)
remove_head(k);

else {
if (k->next == foot)
remove_foot(k);

else
remove_line(k);

>

// want find_pos to be structure contained at address head->next

find_pos = head->next;

/* generate random time to find where node should be inserted
returns random numner in [0,s_ticks)

t = random_gen->random_int(s_ticks) + 1;

// find new firing time of node

*/

C- 16

if (t <= ticks_left)
t += old_firing_time;
else
t -= ticks.left;

// check to see if node should be inserted at head

if (t < find_pos->firing_time) {
new_head(k, find_pos);

}
else- {

/* possibilities before loop x:
1) t = firing_time => place node after head of list (find_pos)
2) t > firing.time => enter next loop */

if (t > find_pos->firing.time) {
while ((t >= find_pos->firing.time) && (find_pos->next != foot)) // {1}
find.pos = find_pos->next;

>

/* possibilities after loop x:
3) t < firing.time (even if find_pos->next = foot)

=> place node before find.pos
4) t >= firing.time and find_pos->next = foot

=> place node at foot of list (after find.pos)

// check to see if node should be inserted at foot

if ((find_pos->riext == foot)&&(t >= find_pos->firing.time))
new_foot(k, find.pos);
else {

/ / {4}

// find_pos->next may be = foot

if (t < find_pos->firing.time)
insert.mid.before(k,find.pos); / / {3}

// t = find_pos->firing.time (didn't enter loop x)

else
insert_mid_after(k,find.pos);

}
} // end of first else

/ / {1}

C -17

// setting firing time of moved node

k->firing_time = t; s
>
//**

void line_list_c::remove_head(line_c *old_head) {

// Objective: remove the head of the list

(old_head->next)->prior = head;
head->next = old_head->next; // reset head
clear_pointers(old_head); // remove the pointers from node old_head

>

void line_list_c::remove_foot(line_c *old_foot) {

// Objective: remove the foot of the list

(old_foot->prior)->next = foot;
foot->prior = old_foot->prior; // reset foot
clear_pointers(old_foot); // remove the pointers from node old foot

>
//**

void line_list_c::remove_line(line_c *k) {

/* Objective: k is the address of node to be moved, so the
pointers are reordered

node which was pointing to k now points to node to which k was pointing*/

(k->prior)->next = k->next;

// node which k was pointing to is now pointed to by k

(k->next)->prior = k->prior;

// remove the pointers from node k

clear_pointers(k);
}
/ j **

void line_list_c::clear_pointers(line_c *k) {

C -18

// Objective: remove the pointers from node k

k->prior = NULL;
k->next = NULL;

> .
//**

void line_list_c::connect_two_nodes(line_c *one,line_c *two) {

// Objective: one is to be conected to two and vice versa

one->next = two; // one is set to point (next) to two
two->prior = one; // two is set to point (prior) to one

}
//**

void line_list_c::new_head(line_c *new_head,line_c *old_head) {

/* Objective: new_head is to be inserted before old_head

the node which used to point(prior) to head is set to point to new_head*/

old_head->prior = new_head;

// new_head is set to point(next) to the node before which it is placed

new_head->next = old.head;

// new_head is set to point(prior) to head and head is reset

new_head->prior = head;
head->next = new_head;

>
/ / *

void line_list_c::new_foot(line.c *new_foot,line_c *old_foot) {

/* Objective: new_foot is to be inserted after old_foot

node which used to point(next) to foot is set to point to new_foot */

old_foot->next = new_foot;

// new_foot is set to point(prior) to the node after which it is placed

C -19

new_foot->prior = old_foot;

// new_foot is set to point(next) to foot and foot is reset

new_foot->next = foot;
foot->prior = new_foot;

>
//**

void line_list_c::insert_mid_before(line_c *node_a,line_c *node_b) {

/* -Objective: insert node_a mid list before node_b

node after which node_a was placed is set to point(next) to node_a */

(node_b->prior)->next = node_a;

// node_a is set to point(prior) to the node after which it was placed

node_a->prior = node_b->prior;

// the node before which node_a was placed is set to point(prior) to node_a

node_b->prior = node_a;

// node_a is set to point(next) to node before which it was placed

node_a->next = node_b;
}
//**

void line_list_c::insert_mid_after(line_c *node_2,line_c *node_l) {

/* Objective: insert node_2 mid list after node_l

node before which node_2 was placed is set to point(prior) to node_2 */

(node_l->next)->prior = node_2;

// node_2 is set to point(next) to node before which it was placed

node_2->next = node_l->next;

// the node after which node_2 was placed is set to point(next) to node_2

node_l->next = node_2;

C- 20

// node_2 is set to point(prior) to the node after which it was placed

node_2->prior = node.l;
>

void line_list_c::print_to_f_detail(ofstream *file.ptr) {

// objective: prints linked list to file (detailed)

line-.c *ptr = head;
int count.lines.firing = 0;
int count_lines_not_firing = 0;

I
// printing out the head of the list and headings

*file_ptr << "The state of the lines are as follows: " << "\n\n";
*file_ptr << "Head = Line " << (ptr->next)->line_no << "\n\n";
*file_ptr << "Line Time Fire"

<< " Pointers\n";

// loops through each node in linked list

do {
ptr = ptr->next;

// counting lines firing

if (ptr->firing.flag)
count.lines.firing++;

else
count_lines_not_firing++;

// printing line.no, firing.flag, firing.time

*file.ptr << ptr->line_no << "\t" « ptr->firing.time << "\t"
<< ptr->firing.flag << endl;

// printing out sequence of lines which point to each other (opt)

*file.ptr « "\t\t" « (ptr->prior)->line_no « " <- " « ptr->line_no
<< " -> " << (ptr->next)->line_no « "\n";

} while (ptr->next != foot);

// printing out the foot of the’ list

C- 21

*file_ptr << "\nFoot = Line " << (ptr)->line_no << endl;

// printing out number of lines firing/not firing

*file_ptr << "\nLines Firing = " << count_lines_firing
<< " Lines not firing = " << count_lines_not.firing << "\n\n";

}
//**

void line_list_c::clear.list(void) {

// objective: clearing linked list

line.c *pres_list_elem = head->next;
line.c *next_list_elem = NULL;

while (pres_list_elem != foot) {
next_list_elem = pres_list_elem->next;
delete pres_list_elem;
pres_list_elem = next_list_elem;

>
}
//**=******

line_list_c::~line_list_c(void) {

// objective: deleting linked list and other pointers

clear.list();
delete head;
delete foot;

} ■
//**

ostream &operator<<(ostream &stream,line_list_c *list) {

// objective: prints linked list to file

line.c *ptr = list->head;

// loops through each node in linked list

do {
ptr = ptr->next;

C- 22

/

stream << ptr;
} while (ptr->next != list->foot);
return stream;

>

//**

/* * * * * * * * * * * * * *
File: prob.cpp * *
Author: Tom Corcoran * class prob_c *
Date: 20/7/93 * member functions *

* *
* * * * * * * * * * * * * * /

//**

// includes // defines

#include <math.h> // pow()
#include <stdlib.h> Ij exit()
#include <iomanip.h> 11 setprecisionO
#ifndef PR0B_H
#define PR0B_H
#include "prob.h" // class probabilities_c

#endif
#ifndef ROUTINESS.H
#define ROUTINES.H
#include "routines.h" // modules for rounding double,

#endif ' // setiosflags.error

//******* ***

probabilities_c::probabilities_c(double phi,int temp_l.double temp_rho) {

// initializing 1,s,rho,alpha,beta,gamma

1 = temp_l;
rho = temp_rho;
set_alpha();
beta = calc_beta_given_phi(phi);
s = calc_s_given_phi(phi);
set_gamma();

>
/ / * c * * c * c * c * c * c * ; * c * c * c * c * c * : ^ c * c * : * : * c * ; * ; * c * ; * c * e 3 * * c 3 * * ; * : *;3**:

/ / p r in t in g l i n e _ n o , f i r i n g . f l a g , f i r i n g _ t i m e (l i n e _ c i n s e r t e r fu n c t io n)

C- 23

probabilities_c::probabilities_c(double phi,int temp_l,int temp_s) {

// initializing 1,s,rho.alpha,beta,gamma

1 = temp_l;
s = temp_s;.
set_alpha();
beta = calc_beta_given_phi(phi);
rho = calc_rho_given_phi(phi);
set_gamma();

>
//**

void probabilities_c::set_gamma(void) {

/* calculating probability silence less then s ticks
p(silence >= s ticks) = beta to the power of (s-1) */

const int s_minus_one = s - 1; // value of power to which beta raised

// returning value of gamma

gamma = (1.0 - pow(beta, double(s_minus_one)));
>

double probabilities_c::return_sigma(void) {

// returns value of sigma

return (double(s)/double(l));
>
//**

double probabilities_c::return_prob_line_active(void) {

/* mean lines active per block = p*s
b = prob(line active) = (mean lines active per block)/I */

return ((rho*double(s))/double(1));
>
//**

double probabilities_c::return_phi(void) {

C- 24

// returns value of phi

return (1 - alpha)/((l/rho) - return_sigma());
>
//**

void probabilities_c::fix_alpha(double temp_alpha) {

// if no arguement alpha is set to default which is declared in header

alpha = temp_alpha;

// working out value of beta (function of 1,s,rho,alpha)

beta = calc_beta();
}

void probabilities.c::fix_beta(double temp.beta) {

// working out value of alpha (function of l,s,rho,beta)

alpha = calc_alpha();
beta = temp.beta;

}
//**

int probabilities_c::calc_s_given_phi(double phi) {

/* round number of ticks to nearest integer
round_double() first rounds double value to nearesy whole number */

int temp_s = int_round_double(
(double(1)*((l/rho) - ((1 - alpha)/phi)))

) ;
return temp_s;

>
//**

double probabilities_c::calc_rho_given_phi(double phi) {

return (1/(return_sigma() + ((1 - alpha)/phi)));
>
//**

double probabilities_c::calc_beta_given_phi(double phi) {

C- 25

>
j /******************■*«************************************* ********** **********

double probabilities.^: :calc_alpha(void) {

// note: alpha = P{active -> active)

return (1 - ((1 - be±a)*(l - rho*double(s)))/rho);
}
/ />(m|*** *** ******

double probabilities_c::calc_beta(void) {

// note: beta = P(inactive -> inactive)

return (1 - (1 - alpha)/((double(1)/rho) - double(s)));
>
/ J *

void probabilities_c::check_conditions(void) {

if (1 < 10) {
cout << error « "number of lines = " << 1 << " (1 >= 10)\n";
exit(l).;

>-
if (s < 4) {
cout << error << "number of ticks = " << s << " (s >= 4)\n";
exit(1) ;

>'
if (s > 1) {
cout << error << "number of ticks > number of lines\n";
exit(l);

>
if ((rho < 0.05)|(rho > 1.0)) {
cout « error « "load = " << rho << " (rho [0.05,1-0])\n";
exit(l);

>
if ((alpha < 0.05)I(alpha >= 1.0)) {
cout << error << "Pxob[active line stays active] = " << alpha

« " (alpha [0.05,1.0))\n";
exit(1) ;

>
if ((beta < 0.05)I(beta >= 1.0)) {
cout « error << "Prob[inactive line stays inactive] = " « beta

re tu r n (1 - (p h i/d o :n i> le (l))) ;

C- 26

« " (beta [0.05,1.0))\n";
exit(l) ;

>
if ((gamma <= 0.0)I(gamma >= 1.0)) {
cout << error << "Prob[silence < given number of ticks] = " << gamma

<< " (gamma [0.05,1.0))\n";
exit(1) ;

>
}
//**

ostream &operator<<(ostream &stream,probabilities_c *prob) {

stream << fixed_and_showpoint << setprecision(8)
<< "\nl = " << prob->l << 11 s = " << prob->s << " rho = " << prob->rho
« " alpha = " << prob->alpha << "\nbeta = " << prob->beta
<< " gamma = " << prob->gamma << endl;

return stream;
>

//**

/*
File: queue.cpp
Author: Tom Corcoran.
Date: 20/7/93

* * * * * * * * * * * * *
* *

* class queue_c *
* member functions *
* *
* * * * * * * * * * * * * */

//**

// includes

#include <stdlib.h>
#include <iostream.h>
#include <math.h>
#include <iomanip.h>
#include <dos.h>
#ifndef q U E U E .H
tdefine Q U E U E .H
#include "queue.h"

#endif
#ifndef R 0 U T I N E S _ H
#define R 0 U T I N E S _ H
#include "routines.h"

#endif

// defines

// exit()
// cout
// logl0(),fabs()
// setiosf lagsQ
// delayO

// class queue_c

// module for error

C- 27

queue_c :-.queue_c(int temp_max_queue_size,long int temp_total_activity,
double *temp_queue) {

// . -initializing private members
?

buffer = 0;
max_queue_size = temp_max_queue_size;
overflow_size = max_queue_size - 1;
actual_queue_size = temp_max_queue_size;
total_activity = temp_total_activity;
queue = temp_queue;

>

queue_c::queue_c(int temp_max_queue_size,int temp_initial_queue) {

/* initializing buffer,max_queue_size,overflow size,
actual_queue_size and num_samples */

buffer = temp_initial_queue;
max_queue_size = temp_max_queue_size;
overflow_size = max_queue_size - 1;
actual_queue_size = temp_max_queue_size;
total_activity = 0;

/* allocating space for buffer array (queue)
new returns zero if allocation fails */

queue = setup_dynamic_array(max_queue_size);

// initializing buffer array

initialize_dynamic_array(max_queue_size,queue);
>
(J **

void queue_c::add_to_total_activity(long int amount) {

II adds amount to total activity

total_activity += amount;
>

//**

C- 28

v o id q u eu e_ c: : s e t_ a c tu a l_ q u e u e _ s iz e (v o id) {

/* sets: actual max buffer length if < max_queue_size
queue[0] always equal 0 => don't worry about it
queue[j] = 0.0 => array is of length j */

register int j = 1;
while (j <= overflow_size) {
if (queue[j] ==0.0) {
actual_queue_size = j ;
break;

>
j ++;

>
>

void queue_c::setup_pdf(void) {

/* objective: normalises queue array by dividing each entry by
total_activity (number of samples used in building array)

queue[0] always equal 0 => don't worry about it
queueCj] = 0.0 => array is of length j; */

register int j = 1;
while (j < actual_queue_size) {

/* normalize so sum of probabilities add to 1
total_activity = sum over all j of queue[j] */

queue [j] *= 1.0/double(total_activity);
j++;

>
>
//**

double queue_c::check_total_probability(void) {

/* note: if the actual max buffer size is very small, then the total
probaility will not add up fo 1.0 due to rounding error */

double check_total_probability = 0.0;

register int j = 1;

C- 29

// sum probabilities

check_total_probability += queue [j] ;

return check_total_probability;
>
/ / ******* * * * * * * * * * * * * * * * ***************** *************************************

void-queue_c::build_cdf(void) {

// objective: build array which is the CDF, ie. Prob[q < b]

int k = 0;

// calculating CDF (queue[0] =0.0)

for (register int j = 1; j < actual_queue_size; j++) {
k = j - 1;
queue [j] += queue [k] ; // prob[q < b]

}
}
//**

void queue_c::build_one_minus_cdf(void) {

// objective: calculate prob[q >= b}

for (register int j = 1; j < actual_queue_size; j++)
queue [j] = 1.0 - queue[j]; // prob[q >= b]

/* always this value, resetting in case subtraction not exact (needs to be
0.0 if using program join */

queue[actual_queue_size — 1] = 0.0;
>
/ / *

void queue_c::log_queue(void) {

/* objective: get log of contents of array
note: after running build_one_minus_cdf(), queue[actual_queue_size - 1]

= 0.0 so the log of this is not got */

f o r (j = 1 ; j < a c tu a l_ q u e u e _ s iz e ; j++)

C- 30

/* due to truncation error (especially when using program join) queue[j]
for large j may be negative, hence we get the absolute value
this is not a very robust feature */

for- (register int j = 1; j < actual_queue_size_minus_one; j++) {
queue [j] = loglO(fabs(queue[j]));

}
>
/ / * * * * s i c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

ostream &operator« (ostream &stream,queue_c *queue) {

// output contents of array to stream

int actual.size = queue->actual_queue_size;
register int j = 1;

cout << setiosflags(ios: tshowpoint I ios:-.fixed) ;

while (j < actual_size) {
stream << "\t" << j << "\t" << queue->queue[j] << endl;
j++;

>
return stream;

>

//**

in t actu a l_q u eu e_size_m in us_on e = a c tu a l_ q u e u e _ s iz e - 1;

/*
File: mlcg32.cpp
Author: Tom Corcoran
Date: 20/07/93

Outline:

* * * * * * * * * * * * *
* *
* class mlcg32_c *
* member functions *
* *

Member function random():

Multiplicative linear congruential random number generator as described
by Pierre L'Ecuyer in Communications of the ACM June 88. The version
implemented here is in 32 bits. Programmed by Enda Doyle.

Returns: Random number in range 0 - 1 */

Z/***.),;^;^;),^

C- 31

// Includes // defines

#include <string.h>
#include <conio.h>
#include <stdlib.h>
#include <iostream.h>
#ifndef MLCG32.H
#define MLCG32_H
#include "mlcg32.h"

#endif
#ifndef OPENFILE.H
#define OPENFILE.H
#include "openfile.h"

#endif

// strcpyO
// clrscrO
// exit()
// ostream

// class mlcg32_c

// modules for opening files
// <stdlib.h>,<fstream.h>

/ /**

void mlcg32_c::reset_seeds(long int temp_seedl,long int temp_seed2) {

// objective: reset seeds, given seeds

seedl = temp_seedl;
seed2 = temp_seed2;

//**

double mlcg32_c::random(void) {

// objective: return a random number between 0 and 1

}
//*************** ** *************************************** ********************

void mlcg32_c::reset_seeds(ifstream *seed_f) {

// reset seeds, reading seeds from file

*seed_f >> seedl >> seed2;
>

long z,c; // used to calculate random number

C- 32

// calculating random number

c = seedl */, 53668L;
seedl = 40014L * (seedl - c * 53668L) - c * 12211L;
if (seedl < 0)
seedl = seedl + 2147483563L;

c = seed2 % 52774L;
seed2 = 40692L * (seed2 - c * 52774L) - c * 3791L;
if (seed2 < 0)
seed2 = seed2 + 2147483399L;

z = seedl - seed2;
if (z < 1)
z = z + 2147483562L;

return(z * 4.656613E-10);
>
/ / **

int mlcg32_c:: random., int (int max) {

// objective: returns a random number in [0,max)

double ran_int = (double)max * random();

11 note: (int)9.9 = 9 => [0,max)

return((int)ran_int);
>
f j ** **

ostream &operator<<(ostream &stream,mlcg32_c *random) {

stream << random->seedl << " " << random->seed2;
return stream;

>

! / * * * * * * * .

/*
File: timer.cpp
Author: Tom Corcoran
Date: 20/07/93

* * * * * * * * * * * * * * *
* *

* class stop_watch_c *
* member functions *
* *
* * * * * * * * * * * * * * * */

C- 33

// includes II defines

#include<iostream.h> // ostream
#ifndef TIMER_H
#define TIMER_H
#include "timer.h" // class stop_watch_c

#endif

j /**

stop_watch_c::stop_watch_c(void) {

// initializing private members

hours = 0 ;
minutes = 0;
seconds = 0;

>
//**

void stop_watch_c::diff_time(void) {

/* computes diference in time in seconds between start and end
and converts this into hours, minutes, seconds */

int time_left_in_sec;
double diff_in_sec;

// difference in seconds between start and end

diff_in_sec = difftime(end,start);

// number of hours (3600 seconds per hour)

hours = int((diff_in_sec)/3600.0);

// total time in seconds minus hours in seconds

time_left_in_sec = int(diff_in_sec) - (hours*3600);

// ' number of minutes (not including hours)

minutes = time_left_in_sec/60; // div operation

//**

C- 34

// number of seconds (not including hours,minutes)

seconds = int(diff_in_sec) - (hours*3600) - (minutes*60);
}
//**

void stop_watch_c::display_start_time_to_screen(void) {
display_time_to_screen(start);

>
j /**

void stop_watch_c::display_end_time_to_screen(void) {
display_time_to_screen(end);

}
//**

void stop_watch_c::display_time_to_screen(time_t now) {

// tm is a structure defining the broken-down time

struct tm *date_and_time;

// convert date and time to a structure

date_and_time = localtimeC&now);

// converts date_and_time to ASCII

cout << asctime(date_and_time);
} "
//**

ostream &operator«(ostream festream,stop_watch_c *watch) {

// output simulation length (hrs:min:sec) to file

stream « watch->hours << << watch->minutes << ":" << watch->seconds;
return stream;

>

C- 35

//**

/*
File: ch.arstr.cpp
Author: Tom Corcoran
Date: 20/7/93

* * * * * * * * * * * * *
* *

* class string_c *
* member functions *
* *

*/

//**

// -includes // defines

#include <iostream.h>
#include <string.h>
#include <stdlib.h>
#ifndef OPENFILE.H
#define QPENFILE_H
#include "openfile.h"

#endif
#ifndef R0UTINES_H
#define RQUTINES_H
#include "routines.h"

#endif
#ifndef CHARSTR.H
#define CHARSTR_H
#include "charstr.h"

#endif

/ / ostream
/ / s t r l e n O , strcpyO
/ / s t r l e n O , strcpyO

// modules for opening files

// module for overloaded operator

// class string.c

/ / *

string.c::string_c(char *temp_string_ptr) {

// calculating length of string (initializing string_length)

string_length = strlen(temp_string_ptr) ;
if (!string_length)
general_error("attempted to setup empty string");

/* allocating space for character array
new returns zero if allocation fails */

if (!(string_ptr = new char[string_length + 1]))
allocation_error("string of size ",string_length);

// initializing string_ptr

C- 36

>
s t r c p y (s t r in g _ p t r , t e m p _ s t r in g _ p t r) ;

//**

string.c::"string_c(void) {

// destroying object

delete string_ptr;
}
/ / J*:*** ******** ********************

ostream &operator<<(ostream festream,string_c *string) {

stream << string->string_ptr;
return stream;

>

/ / *

/* File: routines.cpp
Author: Tom Corcoran
Date: 23/10/93 */

//**

// includes // defines

#include <iostream.h>
#include <math.hi>
#include <stdlib.h>
#include <string.h>
#include <fstream.h>
#ifndef ROUTINES_H
#define ROUTINES_H
#include "routines.h'

#endif
#ifndef CHARSTR.H
#define CHARSTR.H
#include "charstr.h"

#endif

// ostream
// ceil,floor
// exit()
// strcat()
// ifstream

// modules for setting ios flags

// class string_c

/ / *

double round_double(double num) {

C- 37

double num_down = double(long(num));

if (num >= num.down + 0.5)
num = ceil(num);
else
num = floor(num);
return num;

>
j /*j***

int. int_round_double(double num) {

double ran_double = round_double(num);
return (int(ran_double));

>
//**

double * setup_dynamic_array(int array_size) {

double *new_array;

// allocating space for array of size array_size

if (!(new_array = new double[array_size]))
allocation_error("array of size " ,array_size);

return new_array;
>

' / /I**)******************

void initialize_dynamic_array(int array.size,double * new_array) {

// initializing arrays

for (register int i = 0; i < array_size; i++)
new_array[i] = 0.0;

>
/ / * * * * * * * * * * * * * * * *

ostream &fixed_and_showpoint(ostream &stream) {

stream.setf(ios::fixed I ios : : showpoint) ;
return stream;

>
/ / *

C- 38

ostream & error(ostream &stream) {

stream << "\nError:
return stream;

}
//**

void general_error(char *str_ptr) {

string.c error_str(str_ptr);
display_and_exit(error_str);

> - .
//**

void allocation_error(char *str_ptr) {

string_c head_str("allocating space for ");
string_c error_str(str_ptr);
strcat(head_str,error_str);
display_and_exit(head_str);

>
//**

void allocation_error(char *str_ptr,long int display_int) {

string_c head_str("allocating space for ");
string.c error_str(str_ptr);
string_c display_int_str(" ");
ltoa(display_int,display_int_str,10); // converts long int to string
strcat(head_str,error_str) ;
strcat(head_str,display_int_str);
display_and_exit(head_str);

>
//**

void display_and_exit(char *error_str) {

// displays string (memory already allocated) to screen and exits program

cout << error << error_str;
exit(1) ;

>
/ / *

C- 39

//**

/* File: openfile.cpp
Author: Tom Corcoran
Date: 27/11/92

Outline: Reusable modules for opening files and checking for errors */

//**

// includes

#include <stdlib.h>
#include <string.h>
#include <fstream.h>
#ifndef OPENFILE.H
#define OPENFILE.H
#include "openfile.h"

#endif
#ifndef CHARSTR.H
#define CHARSTR.H
tfinclude "charstr.h"

#endif
#ifndef ROUTINES.H
#define ROUTINES_H
#include "routines.h"

#endif

/ / d e f in e s

/ / e x i t ()
/ / s t r c a t O
/ / i f s trea m ,o fs trea m ,fs t rea m

// header file

// class string_c

// display_and_exit()

//**

II overloaded file opening

//**

void open_f ileCchaj^f ile_name, if stream *fp) {

// opening input only file

fp->open(file_name); // opened for reading by default
check_error(fp,file_name);

>
/ / ****************** ******************************

void open_file(char *file_name,ofstream *fp) {

// opening output only file (overwrite)

C - 40

fp->open(file_name); // opened for writing by default
check_error(fp,file_name);

}
/ / j i t *

void,.open_f ile_input (char *file_name,fstream *fp) {

// opening existing i/o file for input

fp->open(file_name,ios::in Iios::nocreate);
check_error(fp,file_name);

>

void open_file.output(char *file_name,fstream *fp) {

// opening existing i/o file for output (overwrite)

fp->open(file.name,ios::out Iios::nocreate);
check_error(fp,file_name);

}
//**

void open_file_io(char *file_name,fstream *fp) {

//- open i/o file for reading and writing

fp->open(file_name,ios::iniios::app);
check_error(fp,file_name);

> "
//**

void open_file_app(char *file_name,ofstream *fp) {

// opening existing i/o file for output (append)

fp->open(file_name,ios::app);
check_error(fp,file_name);

}
//************** * *** ********************** **** * ** * *************** *************

// overloaded error checks

/ / ****

C- 41

if (fp->fail()) // check if open, failed
exit.program(file.name);

}
/ /***** ******** *****!**

void check.error(ofstream *fp,char *file.name) {

if (!*fp) // check if open failed
exit_program(file.name);

} -

void check.error(fstream *fp,char *file.name) {

if (!*fp) // check if open failed
exit_program(file.name);

>
//**

void exit_program(char *file.name) {

// exiting to dos when error found

string.c error_str("opening file: ");
strcat(error.str.file.name);
display.and.exit(error.str);

>
//**

C .3 M ain program
/ / *

/* File: ooverl6.cpp
Author: Tom Corcoran
Date: 24/6/93
Version: 8.0

Outline:

Simulation of a cell level model of multiplexed packetized voice traffic.

The program uses the classes:

v o id c h e c k .e r r o r (i f s t r e a m * fp ,c h a r * f i l e .n a m e) {

C- 42

prob_c

mlcg32_c
line_c
line_list_c
queue_c
stop_watch_c
string_c

probabilities, alpha and beta
(function of 1, s, rho)

random number generator
node of linked list (a line)
linked list (superposition of lines)
buffer_array
times simulation length
stores file names

They are included in the following files:

prob.h,mlcg32.h,node.h,list.h,queue.h,timer.h and charstr.h
respectively.

There are four input only files:

Names file: User generated. Contains the names of the following files:

- input file
- summary file
- seeds file

Input file: User generated. Contains the following input parameters:

1
s
rho
phi
sim_run

max_queue_size
initial_queue
last_process_time
initial_flag

seed_flag

out_f_name
in_init_f_name
seed_f_name
sys_state_f_name

number of lines
number of ticks
load
non zero value sets 1(1 - beta)
length of simulation in blocks
(s ticks per block)

maximum length of buffer
initial length of queue
time list was last processed
flag indicating if initial conditions
are to be inputed from file

flag indicating if seeds are to
inputed from file

name of output file
name of initial conditions file
name of seed file
name of last system state file

A set of parameters is included for every simulation to be run.

Note: initial_queue and last_process_time are set to non

C- 43

zero i f a p r e v io u s s im u la t io n i s b e in g co n t in u ed

Initial conditions file:

User/program generated. Specifies initial state of system.
Can be set to be state of lines file, which is system
generated, if trying to improve initial conditions.

Seed file (in):

User generated. Specifies the starting seeds for each simulation
(if seed_flag is on).

Two output (only) files are created:

Output file:

System generated. Contains the ouput empirical buffer queue
length distribution, ie. Log Prob(queue >= buffer), for all values
of buffer. A graph can then be drawn from this data.

Summary file:

System generated. Contains a summary of the simulation run.
Displays name of initial conditions file (out). For each simulation
the above input parameters are displayed as well as the simulation
length, prob(queue >= max_queue_size), percentage of blocks for which
queue not empty, theoritical and actual number of samples used to
build queue, seed values for random number generator prior to
simulation run.

Last state of system file: System generated.

The last state of the system at the end of the simulation is written
to this file. A file is created for each simulation with each name
given in the input file. By naming this file as the initial conditions
file it can be used as the initial state in another simulation. If
this is done and the last size of the queue is also entered (non zero)
in the input file then the simulation for which these conditions were
saved will in effect be rerun.

The following is an i/o file:

Seed file: User/system generated.

Contains the start seed values for the random number generator used

C- 44

by the simulation. It can be used so as to rerun the previous
simulation only (if wished to test how different parameters effect
results, independent of random numbers). At the very end the final
seeds used are written out to it (these seeds are the starting
seeds for the next batch of simulations). */

//**

// includes // defines

#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <conio.h>
#include <time.h>
#include <dos.h>
#include <math.h>
#include <iomanip.h>
#ifndef QUEUE.H
#define QUEUE.H
#include "queue.h"

#endif
#ifndef PR0B_H
#define PR0B_H
#include "prob.h"

#endif
#ifndef NODE.H
#define NODE.H
#include "node.h"

#endif
#ifndef LIST.H
#define LIST_H
#include "list.h"

#endif
#ifndef MLCG32_H
#define MLCG32.H
#include "mlcg32.h"

#endif
#ifndef TIMER_H
#define TIMER_H
#include "timer.h"

#endif
#ifndef CHARSTR.H
#define CHARSTR.H
#include "charstr.h"

// ios
// ofstream,ifstream
// strcpyO ,strcmpO
// clrscr()
// struct time_t
// gettimeO ,getdate()
// loglOO
// setw(),(re)setprecision(),setiosflags()

// class queue_c

// class probabilities_c

// class line_c

// class linelist

// class mlcg32_c

// class stop_watch_c

// class string_c

C- 45

#endif
#ifndef OPENFILE.H
#define OPENFILE.H
#include "openfile.h" // modules for opening files

#endif
#ifndef ROUTINES_H
#define ROUTINES.H
#include "routines.h" // frequently used modules

#endif

j /**

// function prototypes

void main(void);
void control_simulation(ifstream *in_f,ofstream *out_f,fstream *start_seed_f,

ofstream *summary_f,ofstream *sys_state_f,
char *in_f.name,char *summary_f.name,
char *start_seed_f.name,mlcg32_c *random_gen);

probabilities.c * setup_probabilities_class(int no_lines,int no.ticks,
double load,double phi);

void resetting.seeds(mlcg32_c *random,char *f.name);
void control.list.setup(int initial_flag,line_list_c *list,

probabilities.c *prob,mlcg32_c *random,
char *initial_f.name);

void setup_list_from_scratch(line_list_c *list,mlcg32_c *random_gen,
probabilities.c *prob) ;

void setup.list.from.file(line_list_c *list,ifstream *in_init_f,
char *in_init_f.name,probabilities.c *prob);

void overide_last_values(int initial.flag,int last.sim.last.buffer,
int last.sim_last_process.time,
int &temp_initial_queue,
int fetemp.last.process.time);

void generate_statistics(queue_c *queue,ofstream *out_f.double &prob_max,
long int &num_samples);

void writing_initial_seeds(mlcg32_c *random,fstream *seed_f,
char *seed_f.name);

void write.before.summary(ofstream *summary_f,mlcg32_c *random,double phi,
long int sim_run,int initial.queue,
int last.process.time.int initial.flag,
int seed.flag,int sim.no,char *in_init_f.name);

void write.after.summary(ofstream *summary_f.probabilities.c *prob,
double prob_q_ge_b_max,queue_c *queue,
long int count.empty.blocks,long int sum.num.samples,
char *out_f.name,char *sys_state_f.name,
int final.buffer,int last.process.time,

C- 46

long int sim_run,stop_watch_c *watch);
void initialize_char_arrays(char *temp_out_f_name,char *temp_in_init_f_name,

char *temp_seed_f_name,
char *temp_sys_state_f_name);

void display_screen(long int sim_run,int sim_no ,stop_watch_c *watcher);
void start_screen(void);
void.-sim_screen(void);
void check_input(int sim_no,int no_lines,int no_ticks,double load,

double phi,int initial_queue,int last_process_time,
int initial_flag,int seed_flag,char *in_f_name,
char *in_init_f_name, char *seed_f_name,
char *sys_state_f_name,char *last_sys_state_f_name);

void check_flag(int flag,char *f_name);

J j **

void main(void) {

// temporary pointers to names of files

char temp_names_f_name[32];
char temp_in_f_name[32];
char temp_summary_f_name[32];
char temp_start_seed_f_name[32];

// names file
// input file
// summary file
// starting seed file

mlcg32_c *random_gen = NULL;

ifstream names_f;

// pointer to class mlcg32_c

// stream for names file

// pointer to streams for files

ifstream *in_f = NULL;
ofstream *summary_f = NULL;
fstream *start_seed_f = NULL;
ofstream *out_f = NULL;
ofstream *sys_state_f = NULL;

start_screen();

// input file name entered by user

// input file
// summary file
// starting seed file
// output file
// pointer to state of system file

// calls initial screen

cin >> temp_names_f_name;
string_c names_f_str(temp_names_f_name); // string_c class for names file

// opening names file,reading file names and closing file

C- 47

open_file(names_f_str,&names_f);
names_f >> temp_in_f_name >> temp_summary_f_name >> temp_start_seed_f_name;
names_f.close();

// string.c calls for each file name; setting up file names

string_c in_f_str(temp_in_f_name);
string_c summary_f_str(temp_summary_f_name);
string_c start_seed_f_str(temp_start_seed_f_name);

// creating new objects

string_c error_header_str("pointer to stream for: ");
if (!(in_f = new ifstream))
allocation_error(strcat(error_header_str,in_f_str));

if (!(summary_f = new ofstream))
allocation_error(strcat(error_header_str,summary_f_str));
if (!(start_seed_f = new fstream))
allocation_error(strcat(error_header_str,start_seed_f_str));

// pointers created but names not known in this module

if (!(out_f = new ofstream))
allocation_error(strcat(error_header_str,"output file"));
if (!(sys_state_f = new ofstream))
allocation_error(strcat(error_header_str,"initial state of system file"));

// opening starting_seed file.creating object(setting seeds),closing file

open_file_input(start_seed_f_str,start_seed_f);
if (!(random_gen = new mlcg32_c(start_seed_f)))
allocation_error("instance of class mlcg32_c");

start_seed_f->close();

// opening input file (other files must be opened for each simulation)

open_file(in_f_str,in_f);

// open/header/close summary file to keep track of simulations

open_file(summary_f_str,summary_f);
♦summary_f << "File: " << &summary_f_str << "\n\n";
summary_f->close();

/ / perform s im u la t io n s

C- 48

control_simulation(in_f,out_f,start_seed_f,summary_f,sys_state_f,
in.f_str,summary_f_str,start.seed_f_str,random.gen);

/* writing last seeds used to seed file and summary file
(mlcg32_c inserter function)

open.file.app(summary_f_str,summary_f);
*summary_f << "Final seeds are:
*summary_f << random.gen;
summary_f->close();

open.file.output(start.seed.f_str,start.seed.f);
*start_seed_f << random.gen;
start_seed.f->close();

// closing input file after simulations finished

in_f->close();

/* displaying summary file and state of list file names on screen
(string.c inserter function) */

cout << "\n\t\t\tSee " << &summary_f_str
<< "\n\t\t\tfor summary of simulations\n";

// destroying objects

delete in_f;
delete summary.f;
delete start_seed_f;
delete sys_state_f;
delete out.f;
delete random.gen;

//***

void control_simulation(ifstream *in_f,ofstream *out_f,fstream *start_seed_f,

}

ofstreajn *summary_f, of stream *sys_state_f,
char *in_f_name,char *summary_f.name,
char *start_seed_f.name,mlcg32_c *random_gen) {

int empty.queue = 0;
int sim.no = 0;
int temp.max.queue.size = 0;
int temp.initial.queue;
int temp.last.process.time;

// empty queue
// number of simulation
// inputed max length of buffer array
// inputed initial queue length
// inputed last process time

C- 49

int temp_l; //
int temp_s; //
int initial.flag; //
int seed.flag; //
int last_sim_last.buffer = 0 ; //
int last.sim_last_process.time = 0 ; //
long int count_empty_blocks = 0 ; //
long int sim.run; //
long int sum.nnm.samples; //
double temp.rho; //
double prob_q_ge_b_max =0.0; //
double temp.phi; //

// temporary file names

char temp.out.f_name[32]; //
char temp.in.init.f.name[32]; //
char temp.seed.f.name[32]; //
char temp.sys.state.f.name[32]; //

char last.sys.state.f.name[32]; //

// pointer to classes

line.list.c *this_list = NULL; //
probabilities.c *prob = NULL; //
queue.c *queue = NULL; //
stop.watch.c *watch = NULL; //

value of 1 inputed from file
value of s inputed from file
initial flag inputed from file
seed flag inputed from file
last queue length
last process time of simulation
number of empty blocks in simulation
length of simulation in blocks
total number of additions to queue
value of rho inputed from file
overflow probability
determines 1(1 - beta)

output file
initial system state file
seed file
last state of system file

used to save file name

class line.list.c
class probabilities.c
class queue.c
class stop.watch.c

/* reading parameters for first simulation (non zero initial.flag indicates
that initial conditions are to be read from file, non zero seed.flag
indicates that seeds are to be read from file) */

initialize.char.arrays(temp.out.f.name,temp.in.init.f.name,temp.seed.f.name,
temp.sys.state.f.name);

*in_f >> temp.l >> temp.s >> temp.rho >> temp.phi >> sim.run
>> temp.max.queue.size >> temp.initial.queue >> temp.last.process.time
>> initial.flag >> seed.flag >> temp.out.f.name >> temp.in.init.f.name
>> temp.seed.f.name >> temp.sys.state.f.name;

// loop runs until end of input file; one cycle for each simulation

while (!in_f->eof()) {

// string.c class for each file name; setting up file names

C- 50

string_c out_f_str(temp_out_f_name);
string_c in_init_f_str(temp_in_init_f_name);
string_c seed_f_str(temp_seed_f.name);
string_c sys_state_f_str(temp_sys_state_f_name) ;

//- keeps track of simulation number

sim_no++;

11 checking input for error

check_input(sim_no,temp_l,temp_s,temp_rho,temp_phi,temp_initial_queue,
temp_last_process_time,initial_flag,seed_flag,in_f_name,
in_init_f_str,seed_f_str,sys_state_f_str,last_sys_state_f_name) ;

// simulation start time => length of simulation can be calculated

if (!(watch = new stop_watch_c()))
allocation_error("instance of class stop_watch_c");

watch->set_start_time(time(NULL));

// output screen displayed while simulation runs

display_screen(sim_run,sim_.no,watch) ;

/:* if the seed_flag is 1 then the simulations will run starting with the
seeds in seed_f_name.Otherwise the simulations will begin with the seeds
given in start_seeds_f_name which is what the seeds are initialized to*/

if (seed_flag)
resetting_seeds(random_gen,seed_f_str);

/* write initial seeds to start seed file (so next simulation can use
current simulation's starting seeds, by this means one long simulation
can be monitored at regular intervals) */

writing.initial.seeds(random_gen,start_seed_f,start_seed_f.name);

/* check to see if temp_initial_queue and temp_last_process_time need
to be set to values saved from last simulation */

overide_last_values(initial_flag,last_sim_last_buffer,
last_sim_last_process_time,temp_initial_queue,
temp_last_process_time);

C- 51

/* opening summary file (for each simulation,so if terminated data
for previous simulations isn't lost)

writing starting simulation statistics to file */

open_file_app(summary_f_name,summary_f);
write_before_summary(summary_f,random.gen,temp.phi,sim_run,

temp_initial_queue,temp_last_process_time,
initial.flag,seed_flag,sim_no,in_init_f_str);

/* creating new objects for this.list.queue and prob
creating this.list also connects head and foot of list */

if (!(this.list = new line_list_c(temp_last_process_time)))
allocation_error("instance of class line.list.c");

if (!(queue = new queue.c(temp.max.queue.size,temp_initial_queue)))
allocation_error("instance of class queue.c");

prob = setup_probabilities_class(temp_l,temp_s.temp.rho.temp.phi);

/* checking if parameters pass all conditions, exits program if any
inconsistency is found */

prob->check_conditions();

// setting up linked list

control.list.setup(initial.flag,this.list,prob,random.gen,in.init.f.str);

// running simulation for sim.run number of blocks

for (register long int i = 1; i <= sim.run; i++) {

// runs simulation for one block

this_list->one_block_simulation(empty_queue,queue,prob,random.gen);

if (empty.queue) {
count_empty_blocks++;
empty.queue = 0;

>
}

// generate statistics and write to output file (sets prob.q_ge_b.max)

open.file(out_f_str,out.f);
generate_statistics(queue,out_f,prob_q_ge_b_max,sum.num.samples);
out_f->close();

// counts no of empty blocks
// resets empty.queue

C- 52

/ / s im u la t io n end tim e (g e t s system t im e in secon d s f r o m . . .)

watch->set_end_time(time(NULL));

// writing message to screen (string.c inserter function)

cout << "\n\n\t\t\tSee " << &out_f_str << " for results\n\a";

/* saving last queue length,last process time and sys_state_f_str
in case next simulation is a continuation of this one

last_sim_last_buffer = queue->return_buffer();
last_sim_last_process_time = this_list->return_last_process_time();
strcpy(last_sys_state_f_name,sys_state_f_str);

// writing statistics to summary file

write_after_summary(summary_f,prob,prob_q_ge_b_max,queue,
count_empty_blocks,sum_num_samples,out_f_str,
sys_state_f_str,last_sim_last.buffer,
last.sim_last_process.time,sim.run,watch);

summary_f->close();

/* outputs state of linked list after each simulation (line_list_c
inserter function); overwritten each time (can be used for breaking
one long simulation into a series of shorter ones)

open.file(sys_state_f_str,sys.state.f);
*sys_state_f << this.list;
sys_state_f->close();

// deleting objects (also calls destructers)

delete this.list;
delete prob;
delete queue;
delete watch;

// reinitialising variables for subsequent running

temp.l = temp.s = temp_max_queue_size = 0;
count_empty_blocks = sum_num_samples = sim.run = 0 ;
temp.phi = temp.rho = prob_q_ge_b_max = 0;
initialize_char_arrays(temp_out_f.name,temp.in_init_f.name,temp.seed.f_

temp.sys.state.f.name);

*/

name,

C- 53

/ / read in g in v a lu e s f o r n ex t s im u la t io n

*in_f >> temp_l >> temp_s >> temp_rho >> temp_phi >> sim_run
>> temp_max_queue_size >> temp_initial_queue >> temp_last_process_time
>> initial_flag >> seed_flag >> temp_out_f_name >> temp_in_init_f_name
>> temp_seed_f_name >> temp_sys_state_f_name;

} // end while loop
}

probabilities_c * setup_probabilities_class(int no_lines,int no_ticks,
double load,double phi) {

// objective: create probabilities object

probabilities_c *prob = NULL; // pointer to class
// probabilities_c

if (!phi) { // l,s,rho all given
if (!(prob = new probabilities_c

(no_lines,no_ticks,load)))
allocation,error
("instance of class probabilities_c");

/* fix value of alpha for simulation to default, beta is then worked out
as a function of beta,l,s,rho
gamma = p[silence < s ticks] and is a function of beta */

prob->fix_alpha();
prob->set_gamma();

>
else {

// setting traffic constant (either s or rho not given)

if (!no_ticks) { // rho given (s not given)
if (!load) // s given (rho not given)
general_error("both s and rho cannot"

" be zero\n"); // s = rho = zero
else
if (!(prob = new probabilities_c
(phi,no_lines,load)))
allocation,error
("instance of class probabilities_c");

C- 54

>
else {
if (load) // s given (rho not given)

- general_error("since phi != 0, then either"
" s = 0 or rho = 0\n"); // s = rho != zero

else
•if (! (prob = new probabilities.c

(phi,no_lines,no.ticks)))
allocat ion.error
("instance of class probabilities.c");

}
} • - // end main else
return prob;

}

void resetting_seeds(mlcg32_c *random,char *f_name) {

ifstream *seed_f = NULL;
if (!(seed.f = new ifstream))
allocation.error
("stream for resetting seeds file");

open_file(f.name,seed.f);
random->reset_seeds(seed.f);
seed_f->close();
delete seed.f;

> ::

// pointer to file
// creating new object

// opening file
// reseting seeds
// closing file
// destroying object

/ j **

void control_list_setup(int initial.flag,line.list.c *list,
probabilities.c *prob,mlcg32_c *random,
char *initial_f.name) {

if (initial.flag) {
ifstream *initial_f = NULL;
if (!(initial_f = new ifstream))
allocation.error
("stream for initial state file") ;

open.f ile(initial.f.name,
initial.f);

setup.list.from.file(list,initial.f,
initial.f.name,prob);

initial_f->close() ;
delete initial.f;

}

// pointer to initial file
// creating new object

// opening initial file

// closing initial file
// destroying object

C- 55

else {
setup_list_from_scratch(list,random,prob);

// sort linked list in order of firing time

list->sort_linked_list(prob->return_no_ticks());
> -

>
//**

void setup_list_from_scratch(line_list_c *list,mlcg32_c *random,
probabilities_c *prob) {

// objective: to build and initialize linked list

int firing_flag;
int tick.no;
int no.lines = prob->return_no_lines();
int no.ticks = prob->return_no_ticks();

/* mean lines active per block = p*s
prob(line active) = (mean lines active per block)/l */

double prob_line_active = prob->return_prob_line_active();
double random.a;
line_c *nodel = NULL;
line_c *node2 = list->return_head();

// while loop runs for the number of lines

register int i = 1;
while (i <= no_lines) {

/* deciding whether node fires/not fires by sampling the probabilty
distribution of line being active */

random_a = random->random();
if (random_a <= prob_line_active)
firing.flag = 1;
else
firing.flag = 0;

/* generate random time to find firing time of node in list
returns random numner in [O.no.ticks) */

tick.no = random->random_int(no_ticks) + 1;

C- 56

/ / c r e a t in g new node

if (!(nodel = new line_c(i,tick.no,firing_flag)))
allocation_error("instance of class line_c for line ",i);

/*. • insert node i in list (linking node i to node (i - 1) and node (i + 1))
at the start head will be connected to foot and node2 = head */

list->insert_mid_after(nodel,node2);

node2 = nodel; // node2 is the last node inserted
i++; // incrementing counter

>
>
//**

void setup_list_from_file(line_list_c *list,ifstream *in_init_f,
char *in_init_f_name,probabilities_c *prob) {

// objective: to build and initialize linked list from given input file

int no_lines = prob->return.no_lines();
int no.ticks = prob->return_no_ticks();
int count.lines = 0;
int firing.flag;
int line.number;
int firing.time;
line.c *nodel = NULL;
line.c *node2 = list->return_head();

// reading parameters for first node and verifying input

*in_init_f >> line.number >> firing.time >> firing.flag;

// while loop runs until end of input file

while (!in_init_f->eof()) {

count_lines++;

// firing.flag = 0 or 1 only

check.flag(firing.flag,in_init_f.name);

// creating new node

C- 57

if (!(nodel = new line_c(line_mimber,firing_time,firing_flag)))
allocation.error("instance of class line.c for line " ,line_number);

/* insert node i in list (linking node i to node (i - 1) and node (i + l))
at the start head will be connected to foot and node2 = head */

list->insert_mid_after(nodel,node2);

// enables buliding of list: node2 is the last node inserted

node2 = nodel;

// reading parameters for first node and verifying input

*in_init_f >> line.number >> firing.time >> firing.flag;

} // end while loop

/* the number of lines inputed from the file must match the given
number of lines */

if (count.lines != no.lines)
general_error("the initial system state does not match the given"

"\n\tnumber of lines");

/* the last firing time inputed from the file cannot be greater than the
the number of ticks given */

if (firing.time > no.ticks)
general_error("the firing time of the initial system state does"

"\n\tnot match the given number of ticks");
}
//**

void overide_last_values(int initial.flag,int last.sim.last.buffer,
int last.sim_last_process.time,
int &temp_initial_queue,
int &temp_last_process_time) {

// initial.flag = 1 => initial system state given

if (initial.flag) {

/* if temp.last.process.time and temp.initial.queue are zero then this means
that the current simulation is a continuation of the previous simulation*/

C- 58

/* the parameters must be reset to the last values saved from the
previous simulation */

temp.initial.queue = last_sim_last_buffer;
temp.last.process.time = last.sim_last_process.time;

>
>

}
j j ****** *******************:((**!((******* ****** ******* ****************** *********

i f ((! te m p _ in i t ia l_ q u e u e)& (!t e m p . l a s t . p r o c e s s . t i m e)) {

void line.list.c::one_block_simulation(int &empty_queue.queue.c *queue,
probabilities.c *prob,
mlcg32_c *random_gen) {

/* Objective: carries out simulation for one block of s ticks

Data Dictionary:

queue:
prob:
random.gen:
empty.queue:

pointer to object of class queue.c
pointer to object of class probabilities.c
pointer to object of class mlcg32_c
if non zero indicates buffer was empty during block */

enum new.line.fire.type {nofire,fire}; / / defining type

new.line.fire.type
new.line.fire = nofire; / / flag for line to be moved

int count.firing = 0; I I number of active lines per block
iiit rel.time; I I time since last packet processing
double random.p,random_q; I I random numbers
line.c *line_ptr = head->next; // simulation node (cycles list)
line.c *line_to_insert = NULL; I I node to be moved in list
line.c *save_pos = NULL; // position in list prior to a move

while (line.ptr != foot) {

// checks line firing status (firing/not firing)

if (line_ptr->firing.flag) {
count_firing++;

// calculating time elapsed since last active line

C- 59

if (line_ptr->firing.time >= last_process_time)
rel.time = line_ptr->firing.time - last.process.time;

else
rel.time = line_ptr->firing.time + (prob->s - last.process.time);

/* processing packets: taking time elapsed since last active line
(last time packets processed) from buffer as a packet can be
processed at each tick

if (rel.time) queue->buffer -= rel.time;
•if (queue->buffer < 0) queue->buffer = 0;

// buffer was empty at some stage in block if empty.queue is non zero

if (!queue->buffer) empty_queue++;

/* incrementing buffer and gathering simulation statistics
if the buffer overflows => count is kept of the lost cells in the
last array element

queue->buffer++;
if (queue->buffer < queue->overflow_size)
queue->queue[queue->buffer]++;

else
queue->queue[queue->overflow.size]++;

// is line going to stop firing? (test and update firing status)

random.p = random_gen->random();
if (random.p > prob->alpha) {
line_ptr->firing.flag = 0;

' >

// line_ptr->firing time is now "last time" packets were processed

last.process.time = line_ptr->firing time;
}
else {

/* check if line is going to start firing; line will start firing
at some point in the next s ticks if q <= gamma

random.q = random_gen->random();
if (random.q <= prob->gamma) {
line_ptr->firing.flag = 1;

new.line.fire = fire;
lin.e_to_in.sert = line.ptr;

/* necessary here as insert will reorder pointers (firing.time)
don't want it to effect progression through loop */

save.pos = line_ptr->next;

// move line in linked list

move_line(line_to_insert,random_gen,prob->s);
}•

} // else

// moving to next node in list

if (!new.line.fire)
line.ptr = line_ptr->next;

else { // node has just been moved
line.ptr = save.pos;
new.line.fire = nofire;

>
}

/* keep track of the number of samples (lines active)
used to normalize array of queue lengths */

queue->add_to_total_activity(count_firing); '
}
//**

void writing_initial_seeds(mlcg32_c *random,fstream *seed_f,
char *seed_f.name) {

/* write starting simulation seeds to file so can be reused in
next simulation (only - as overwritten for each simulation time) */

open.file.output(seed.f.name,seed.f);
*seed_f << random;
seed_f->close();

>
//**

void write.before.summary(ofstream *summary_f,mlcg32_c *random,double phi,
long int sim_run,int initial.queue,
int last.process.time,int initial.flag,

C- 61

int seed.flag,int sim.no,char *in_init_f.name) {

// writing simulation number and output file name to file

*summary_f « "\nSIMULATION NUMBER " « sim.no « "\n\n";

/♦ ..describing (in summary_f.name) how system initialized,3 possibilities:
- (a) initial conditions random
- (b) initial conditions random (seeds reset from file)
- (c) initial conditions given in file by user/program

(produced by previous simulation) ♦ /

// initial.flag and seed.flag are 0 or 1

if (!initial.flag) {
*summary_f << "Initial conditions random";
if (seed.flag)
♦summary_f << " (seeds reset from file)";

" >
else {
♦summary.f << "Initial conditions given by the system "

<< "/user, see " << in.init.f.name;
>

// writing starting simulation seeds to summary file ♦/

♦summary_f << "\nStarting seeds are: ";
♦summary_f << random;

// writing starting queue length and last process time to summary file

if (initial.flag)
♦summary.f << "\nStarting queue length = " « initial.queue

<< " Starting last process time = " « last.process.time;

♦summary.f << "\nSimulation length in blocks = " << sim.run;

// writing starting phi to summary file

if (phi)
♦summary.f << "\nStarting phi = " << fixed.and.showpoint

<< setprecision(lO) << phi;
>
/ j **

void generate.statistics(queue.c ♦queue,ofstream ♦out.f,double &prob_max,

// {a}

// {b>

/ / {c>

C-62

long int &num_samples) {

int max.array = queue->return_max_queue_size();

// examines array to see how long it is

queue->set_actual_queue_size();
int actual.array = queue->return_actual_queue_size();

/* generating data to graph
working out the probaility density function and then the

--cummulative density function (and getting log of it) */

queue->setup_pdf(); // calculating probability distribution

/* returns overflow probabilty - otherwise prob.max = 0.0 (initialized)
must be returned before queue->setup.pdf() */

if (actual.array == max.array)
prob.max = queue->return_queue(max_array - 1);

queue->build_cdf(); // calculating cdf, p[q < b]
queue->build_one_minus_cdf(); // calculating p[q >= b]
queue->log_queue(); // logl0[p[q>= b]]

// write simulation statistics to file (queue.c inserter function)

*out_f « queue;

/* finding out number of samples used to build buffer (equal total number
of active lines come across in simulation) */

num.samples = queue->return_total_activity();
}
//**

void write_after_summary(ofstream *summary_f.probabilities.c *prob,
double prob_q_ge_b_max,queue_c *queue,
long int count.empty.blocks,long int sum.num.samples,
char *out_f.name,char *sys_state_f.name,
int final.buffer,int last.process.time,
long int sim_run,stop_watch_c *watch) {

int max.buffer = queue->return_max_queue_size() - 1;
int actual.buffer = queue->return_actual_queue_size();
int num.ticks = prob->return_no_ticks();

C - 63

double load = prob->return_load();
double per_cent_blocks_not_empty;
long int theo.samples = long(double(sim.run)*double(num.ticks)♦load);

per.cent.blocks.not.empty =
(1.0 - (double(count_empty_blocks)/double(sim_run)))+100.0;

// calculate simulation length

watch->diff_time();

/♦- writing statistics to summary file (probabilities.c and stop.watch.c
inserter functions) ♦ /

♦summary.f << prob
<< "Time taken for simulation = " << watch
<< "\nGiven max buffer = " « max.buffer
<< " Actual max buffer = " << (actual.buffer - 1) ;

if (prob.q_ge_b.max)
♦summary.f << "\nP[q >= " << max.buffer << "] = " << prob.q_ge_b.max;

♦summary.f << "\nTheoretical samples = " << theo.samples
<< " Actual samples = " << sum.num.samples
<< "\nLast state of system: " << sys.state.f.name
<< "\nLast queue length = " << final.buffer
<< " Last process time = " « last.process.time
« "\nBlocks not empty - " << setprecision(2)
<< per.cent.blocks.not.empty << " '/,"
<< "\nResults: " << out_f.name << "\n\n";

> "

//************** ********* *********** *** *********** ************* ***************

void initialize.char.arrays(char ♦temp.out.f.name,char ♦temp.in_init_f.name,
char ♦temp.seed.f.name,
char ♦temp.sys.state.f.name) {

strcpy(temp_out_f.name,"null");
strcpy(temp.in.init.f.name,"null");
strcpy(temp.seed.f.name,"null");
strcpy(temp.sys.state.f.name,"null");

>
//**

void check.input(int sim.no,int no_lines,int no.ticks,double load,
double phi,int initial.queue,int last.process.time,

C - 64

int initial_flag,int seed_flag,char *in_f_name,
char *in_init_f.name,char *seed_f.name,
char *sys_state_f.name,char *last_sys_state_f.name) {

// initial_flag and seed_flag can be only 0 or 1

cheGk_flag(initial_flag,in_f_name);
check.flag(seed_flag,in.f.name);

// if phi = 0 => l,s,rho can't be 0

i f -{(phi) {
if (!no_lines)
general_error("number of lines = 0\n") ;
if (!no_ticks)
general_error("number of ticks = 0\n");
if ((load)
general_error("load = 0.0\n");

>

/* last.process.time element of [0,no_ticks]
if s = 0 => s still to be calculated => check not relevant */

if ((initial.flag)&(no_ticks)) {
if ((last.process.time < 0)|(last.process.time > no.ticks)) {
cout << error << "last process time = " « last.process.time

<< "\n\t(last process time is element of [0," << no.ticks << "])\n";
exit(1);

}
>

/* if initial.flag = 1, then last.process time can not be zero if it is
the first simulation of the batch */

if (sim.no == l) {
if (initial.flag)
if (!last.process.time)
general_error("initial system state given for first simulation but"

"\n\ta value for the last process time was not given\n");
>
else {
if (initial.flag) {
if ((last.process.time) -(
int ptrO = strcmp(in_init_f.name,last.sys.state.f.name);

// equality => no error

C - 65

if (ptrO)
general_error("name for initial conditions file must be the same as"

"\n\tthe last state of system file for the previous "
"simulation,\n\tsince th® initial flag = 1 and the "
"last process time = 0\n");

}
} // end else

/* initial_queue can be zero but if it is non zero then a
r - last_process_time must also be given */

if (initial_queue < 0)
general_error("initial queue length less than zero\n");

if (initial_queue) {
if (!last_process_time)
general_error("an initial queue length was given so a last "

"\n\tprocess time must also be given\n");
>

/* note: if null/file name is not included in the file an error
check is not possible and an error will occur */

if (!initial_flag) {

// strcmpO returns zero if equal; equality => no error

int ptrl = strcmp(in_init_f_name,"null");
if (ptrl) {
cout << error << "name for initial conditions file not included in "

"file:\n\t" << in_f_name <<
"\n\t(check initial conditions flag, if = 0 => "
"write 'null' for above name)\n";

exit(l) ;
>

}

if (!seed_flag) {

// equality => no error

int ptr3 = strcmp(seed_f_name,"null");
if (ptr3) {
cout << error << "name for seed file not included in"

C - 66

"file:\n\t" << in_f_name <<
"\n\t(check reset seeds flag, if = 0 => "
"write 'null' for above name)\n";

exit(1) ;
>

}

// equality => error

int ptr4 = strcmp(sys_state_f_name,"null");
if (!ptr4) {
cout << error << "name for final system state file not included in"

<< "file:\n\t" << in_f_name << endl;
exit(1) ;

>
}
I I **

void check.flag(int flag,char *f_name) {

if ((flag != 0)&&(flag != 1)) {
cout << error << "in file: " << f.name << "\n\t(all flags must be 0 or 1)";
exit(1) ;

>
>
//**

void display_screen(long int sim_run,int sim.no,stop.watch.c *watcher) {

// want new screen for each simulation

sim.screenO;

// display additional info to screen

cout << "\nSimulation " << sim.no << "\t\tThe Simulation started at: ";
watcher->display_start_time.to.screen();
cout << "\n\t\t\tSimulation Run in blocks = " << sim.run << endl

<< "\n\t\t\tln Progress ";
>
//**

void sim.screen(void) {

clrscr(); // clears output screen
cout << "\n\n\n\n"

C - 67

<< "\t* *\n"
<< "\t* *\n"
<< "\t* D O N ' T D I S T U R B *\n"
« "\t* *\n"
« "\t* *\nn
« "Yt* S I M U L A T I O N I N P R O G R E S S *\n"
« "\t* *\n"
<< "\t* *\n"
<< "\n\n";

}
//**

void start_screen(void) {

clrscrO ; // clears output screen
cout << "\n\n\n\n"

<< "\t* *\n"
« "\t* *\n"
« "\t* A T M S I M U L A T O R *\n"
« "\t* *\n"
<< "\t* Programmed by Tom Corcoran *\n"
<< "\t* (Help available in readme.doc) *\n"
<< "\t* *\n"
<< "\t* *\n"
« "\n\n"
<< "\tPlease enter the input filename,\n"
<< "\teg. a:\\inputWnames. txt:

}
/ / *

C .4 Jo in program
//**

/* File: join.cpp
Author: Tom Corcoran
Date: 23/7/93
Version: 1.0

Outline:

Two files are inputed which contain simulation results. The second
file Contains the simulation results which come from a continuation
of the first simulation. The results are combined to obtain the
results Which would have been obtained if the simulation was run as

C - 68

a w hole .

There are three input only files and one output file:

Joininfo.dat: User generated. Contains the program input parameters:

- first_f_name
- first_array_size
- first_num_samples
- second_f_name
- second_array_size
- second_num_samples
- out_file_name

The other two input files, first_f_name and second_f_name
are generated by the simulation system and are the files to be joined.
The combined results are written to the file out_f_name.

Note: eg. If the largest queue length in the first_f_name
(or second_f_name) is 110, then the first_array_size is 111.*/

//**

// includes // defines

Sinclude <fstream.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <iomanip.h>
#ifndef OPENFILE.H
#define 0PENFILE_H
#include "openfile.h"

#endif
#ifndef QUEUE_H
#define QUEUE_H
#include "queue.h"

#endif
Sifndef CHARSTR_H
#define CHARSTR.H
#include "charstr.h"

#endif
#ifndef ROUTINES.H
#define ROUTINES.H
#include "routines.h"

// ofstream,ifstream
// clrscr()
// exp()
// exit()
// strcpyO
// setiosflagsQ

// modules for opening files

// class queue_c

// class string_c

// modules for rounding double,

C - 69

#endif // setting up and initializing arrays

//**

// function prototypes

void .main(void);
void read_in_array_from.file(char *in_f.name.double *this_array);
void convert_back.to.cdf(int array.size,double *this_array);
void convert_back_to.pdf(int array.size,long int num.samples,

double *this_array);
void-join.arrays(int out.array.flag,int first.array.size,

int second.array.size.double *array_l.double *array_2);
void initial.screen(void);
void display.screen(void);
void display_info(char *first_f.name,char *second_f.name,char *out_f_name);

//**

void main(void) {

int first.array.size; //
int second.array.size; //
int out.array.size; //
int out.array.flag; //
long int first.num.samples; //
long int second.num.samples; //

// dynamic arrays - holds contents of

double *array_l = NULL;
double *array_2 = NULL;

double *out_array = NULL; //

// temporary file names

array size in first file
array size in second file
array size in output file
indicates which array largest (1/2)
total number of additions to array.l
total number of additions to array_2

ile 1 and file 2

points to array_l/array_2 (biggest)

char temp.in.f.name [32];
char temp.first.f.name[32];
char temp.second.f.name[32];
char temp.out.f.name[32];

ifstream in.f;
ofstream out.f;

initial.screenO ;

// input file name
// first file to be joined
// second file to be joined
// output file

// stream for input
// stream for output

// calling initial screen

C - 70

// input file name provided by user

cin >> temp_in_f.name;
string.c in.f_str(temp_in_f.name); // string.c class for input file

// -calling screen to show work in progress

display_screen();

// opening input file,reading parameters and closing

open.file(in_f_str,&in_f);
in.f >> temp.first.f.name >> first.array.size >> first.num.samples

>> temp.second.f.name >> second.array.size >> second.num.samples
>> temp.out.f.name;

in.f. c l o s e O ;

// string.c calls for each file name; setting up file names

string.c first.f_str(temp_first.f.name);
string.c second.f_str(temp_second_f.name);
string.c out.f_str(temp_out_f.name);

// allocating space for arrays

array.l = setup_dynamic_array(first.array.size);
array_2 = setup_dynamic_array(second_array_size);

// initializing arrays

initialize_dynamic_array(first.array.size,array.l);
initialize.dynamic.array(second.array.size,array_2);

// reading in arrays from files

read.in.array.from.file(first.f_str,array.l);
read.in.array.from.file(second_f_str,array_2);

// convert back to cdf

convert_back_to_cdf(first.array.size,array.l);
convert.back_to.cdf(second.array.size,array_2);

// convert back to pdf

C - 71

convert_back_to.pdf(first_array_size,first_mim_samples,array_l);
convert_back_to_pdf(second_array_size,second_num_samples,array_2);

// setting size of output array and marking largest array

if (first_array_size > second_array_size) {
out-, array, size = first.array.size;
out_array = array.l;
out_array_flag = 1 ;

>
else {
out_array_size = second_array_size;
out.array = array_2;
out_array_flag = 2;

>

// joining array.1 and array_2

j oin.arrays(out.array.flag,first_array_size,second_array_size,
array.1,array_2);

// finding the total needed to normalize the new array

long int sum.samples = first.num.samples + second.num.samples;

// creating instance of queue class

queue.c queue(out.array.size,sum.samples,out.array);

/* generating data for graphing
working out the probaility density function and then the
cummulative density function (and getting log of it) */

queue.setup.pdf(); // calculating probability distribution
queue.build.cdf(); // calculating cdf, p[q < b]
queue.build.one_minus.cdf(); // calculating p[q >= b]
queue.log.queue(); // loglO[p[q >= b]]

// output queue to file

open.file(out_f_str,&out_f); // opening file
out.f « &queue; // outputing array (inserter function)
out_f.close()i U closing file

// deleting objects

C - 72

delete array.l;
delete array_2;

display.info(first.f_str,second.f_str,out.f_str);
} ••
//**

void join.arrays(int out.array.flag,int first.array.size,
int second.array.size.double *array_l.double *array_2) {

// joining arrays - adding arrays to each other

register int j ;

if (out.array.flag == 1) { // array.l > array_2
for (j = 1; j < second.array.size; j++)
array.l [j] += array_2[j];

>
else { // array_2 > array.l
for (j = 1; j < first.array.size; j++)
array_2[j] += array_l[j];

}
}
/ J **

void convert_back_to.pdf(int array.size,long int num.samples,
double *this_array) {

int i = array.size - 1;
int j ;

do {
j = i - 1;

/* working out the probability value by subtracting the previous cumulative
probability value from the current cummulative probability value */

this.array[i] -= this.array[j];

/* converting the probability back to the queue length and ensuring
that it is a whole number */

this.array[i] = round.double(double(num.samples)^this.array [i]);
i— ;

/ / w r i t e in fo rm a tio n t o sc r e e n

C - 73

} while (this_array[i] != 0.0);
>
//******************************* **************** ************ *****************

void convert_back_to_cdf(int array_size.double *this_array) {

// -convert back to cdf

int array_size_minus_one = array_size - 1;
int i = 1;

while (i < array_size_minus_one) {

// the loglO value in the file was logl0(l - cdf)

this_array[i] = (1.0 - pow(l0.0,this_array[i]));
i++;

>

// the last element in a cdf is always 1

this_array[array_size_minus_one] = 1.0;
>
//**

void read_in_array_from_file(char *in_f_name.double *this_array) {

int q_length; // queue length inputed from file
double log_value; // log value corresponding to q_length

// inputed from file
ifstream *in_f = NULL;

// creating new object

in_f = new ifstreajn;

// reading in arrays from files

open_file(in_f_name,in_f);
*in_f >> q_length >> log_value;
while (!in_f->eof()) {
this.array[q.length] = log_value;
*in_f » q.length >> log value;

>
in_f->close();

C - 74

/ / d e l e t i n g o b je c t

delete in_f;
>
j f **

void display_info(char *first_f_name,char *second_f_name,char *out_f_name) {

cout << "\t\tSimulation output files:\n\n\t\t" << first_f_name << " and "
<< second_f_name << "\n\n\t\thave been joined and the result "
<< "is in the file:\n\n\t\t" << out_f_name << endl;

>
//**

void display_screen(void) {

clrscrO ; // clears output screen
cout << "\n\n\n\n"

"\t* *\n"
"\t* *\n"
"\t* Simulation output files are being joined.... *\n"
"\t* *\n"
"\t* *\n"
"\n\n";

>
/ / *

void initial_screen(void) {

clrscrO; // clears output screen
cout << "\n\n\n\n"

<< "\t* *\n"
« " \ t* *\n"
<< "\t* Simulation joining program *\n"
<< "\t* *\n"
<< "\t* *\n"
« "\n\n"
« "\tPlease enter the input file name,"
« "\n\teg. a:\\inputWdemojoin.dat: ";

>
//**

C - 75

C .5 D isc in d ex

The following is a listing of the important files included in the accompanying disc:

• ..readm e.doc: This file gives details on how to format the input so as to run
the simulation system.

• s im atm .ex e : The executable file for running the ATM simulator.

• jo in .exe: The executable code for running the join program, which allows two
or more simulations to be joined.

• a tm d a ta .z ip : This file is stored in the data directory and contains the zipped
data of all the simulations described in this thesis (see readme.doc).

C - 76

