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Abstract

Purpose — The paper is concerned with interpolatory proper orthogonal decomposition (IPOD) methods for
nonlinear transmission line circuits. This paper aims to examine several factors that must be considered when
applying such model reduction techniques to this kind of circuit.

Design/methodology/approach — Two types of POD will be implemented. In each case, the choice of
the order of the reduced model and the order of the interpolation space shall be considered. The stability of the
models shall be explored.

Findings — The results indicate that the order for the reduced model to obtain accurate results depends
on the chosen method when considering nonlinear transmission lines. The results also indicate that the
structure of the nonlinear transmission line is crucial for determining the stability of the reduced
models.

Originality/value — The work compares two IPOD methods and discusses the issues involved in
achieving an accurate and stable reduced-order model for a nonlinear transmission line.

Keywords Circuit analysis, Model order reduction
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Introduction

With the advances in modern technologies, models of high-frequency circuits and
systems are becoming ever more complex. The focus in this paper is on nonlinear
transmission line circuits. Nonlinear transmission lines find application for high-
power pulse generation (Bragg et al., 2013), edge sharpening (Ricketts et al., 2019;
Bobreshov et al., 2022) and pulse shaping (Gardner et al., 2022). However, the models
for these involve a large number of sections and when detailed models of the
components are included, this can lead to large systems of differential equations.
Nonlinear transmission lines are governed by the Korteweg-de-Vries equation when it
is assumed that losses are negligible, the number of sections is very large and the
nonlinear elements are modelled using a specific type of function (Giambo et al., 1984;
Kuek et al, 2012; Nikoo and Hashemi, 2017). A circuit analysis approach is an
alternative modelling approach and is not restricted by these constraints. Circuit
design involves multiple simulations for optimization and analysis purposes. Hence,
fast and reliable generation of results from models are essential. However, the larger
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and more nonlinear the systems become, the more computationally expensive the
simulations become. To this end, model reduction strategies are considered. Their
purpose is to identify the most significant behaviour of the system and thereby reduce
the computational cost.

A vast array of linear model reduction techniques exist (Antoulas et al,, 2001). Various
nonlinear model reduction techniques exist such as empirical balanced truncation (Lall et al,
1999), piecewise linear approximation (Bond and Daniel, 2009), piecewise polynomial
approximation (Dong and Roychowdhury, 2003, 2008; Qiu and Jiang, 2020) and many more.
However, one important issue concerning forming a reduced-order model is preserving the
stability of the original model. In Bond and Daniel (2009), stability is addressed and systems
for which global and local stability of the models can be preserved are identified. In Qiu and
Jiang (2020), conditions for which stability is preserved with piecewise polynomial model
reduction are given.

Proper orthogonal decomposition (POD) is reliable and used for strongly
nonlinear circuits (Nouri et al, 2017; Nouri and Nakhla, 2018; Prajna, 2003).
However, the basic POD does not result in complexity reduction (Nouri and Nakhla,
2018) and because of this interpolatory POD (IPOD) has been proposed as in
Chaturantabut and Sorensen (2010) and gappy POD (Everson and Sirovich, 1995;
Willcox, 2006). In IPOD, interpolation is used to approximate the nonlinear
functions. Gappy POD is used when experimental data is missing or corrupted and
involves estimating the missing data. Peherstorfer et al. (2020) examine the stability
of discrete empirical interpolation and gappy POD with randomized and
deterministic sampling points. In their work, they show that certain sampling
approaches lead to more stable reduced models.

This paper shall examine IPOD model reduction techniques for simulation for nonlinear
transmission line circuit models. The paper shall review two implementations of this
technique, that proposed by Nouri and Nakhla (2018) and that in Chaturantabut (2020).
These shall be referred to as Method 1 and Method 2 in what follows. Several studies shall
be performed and suggestions shall be made based on the findings and observations.

Interpolatory proper orthogonal decomposition (Nouri and Nakhla, 2018)
Consider the nonlinear system:

dx
dt
%(0) = x @

=F(tx)

x = x(/) is an n-dimensional state vector and F: [0, co) x X —R”" is a nonlinear differentiable
function, X = R".

An initial transient simulation of the system in (1) is performed. The training input
should be wideband and excite as many as possible of the nonlinear modes of the given
system (Nouri and Nakhla, 2018).

Let ybe a set of samples of the states at times #; to #y:

X = [x(tl)v x(t2)7’x(tN)] € IRMXN (2)

To form the projection matrix, singular value decomposition (SVD) is performed.



x=V,Z XW;
V; VX = Duxn &)
Vy={v1,..,0,} € R

V, is a unitary matrix of dimension 7 x n, W, is a unitary matrix of dimension N x N and

Y is a matrix with elements along its diagonal that are the singular values of y.
The projection matrix is formed from the first » left singular vectors:

V= {v1,..,om} € R"" m<n

The reduced state space is formed as:

x(t) = Vi(t)
i(t) e R™ @
The resultant reduced model is:
d ~ t ~
%x(t) =VIF(Vx(t)) )

where F'is as defined in equation (1).

While the dimension of the resultant model is reduced from 7 to mz, the complexity is not
reduced as the full x(#) has to be formed to evaluate F.

With a view to reducing the complexity, [POD is used.

Let:

F = [F(x(t)), F(x(ts)),... . F(x(ty))] € RN -

where F'is the vector field in (1) and x(t;) are the snapshots in (2).
An SVD of F is performed:

F = UrSsWh ()

The % left singular vectors corresponding to the % largest singular values are selected. The
choice of % that is recommended from Nouri and Nakhla (2018) is:

A k m !
Re=1-Y 00| =a, k=m )
r=1 =1

o, are the diagonal elements of X, and « is a small threshold value set to achieve a balance
between accuracy and efficiency.
This measure is based on the relative energy associated with the % selected basis

functions. The relative energy is defined as Zlear[ 7:1‘71] - However, to determine
this quantity requires a full SVD so that the n singular values are determined. Hence,

Nouri and Nakhla (2018) recommend the formula in (8) where m singular values are
required.
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Let:
U= {u,..u;} € R™* weUr ©)
An approximation for the nonlinear function is made:
F(x(#)) = Uc(t) (10)

where c(f) is a coefficient vector.

Next a selector matrix P is formed that selects the % elements of F' that most contribute to
the space spanned by U. The algorithm for selecting such rows is given in Nouri and Nakhla
(2018) and Chaturantabut (2020):

Fo(x,(t)) = P'F(x(t)) 1n
Not all states may contribute to F, so:
%) = Y'x(t) (12)

y is a selector matrix with elements that are either 0 or 1. It selects from x(f) those elements
that contribute to F,.
So from (10), (11) and (12):

F,(Y'x(t)) = P'Uc(t) 13

The approximation for the nonlinear function is thus:

Fx(t)) = Uelt) = UP'U) 'F(Y'x(t)) (14)
Now from the initial POD:
x(8) = Vi(t)
and
F(x) ~VF(Vz)
So
F(z) ~ W,F.(V,%) (15)

V,=Y'V



The Jacobian is:
_ OF,(x)
Jr (xr) = ox,

Equations (15) and (16) are used in the numerical integration routine that provides the transient
solution of the system and the complexity cost has been reduced. F' and /, avoid computation of
the full #-dimensional system. However, stability of this method needs to be addressed.

(16)

Stability of reduced-order models and stabilized proper orthogonal
decomposition.

Logarithmic norm (Dahlquist,1959)

Let A be a constant # x 7 real matrix. The logarithmic norm is defined as:

ulA] = 1im LHAAI=1
h—0t h
where || || is the standard Euclidean norm.
It can also be determined as (Soderlind, 2006):
A+ A
/-L[A} == )\mzlx <T> (17)

Logarithmic Lipschitz constant (Siderlind, 2006)
Let F'be a function FY— X and let u,v € R"

(e~ ) (F(u) - F(0))
MI[F] = sup 3

-]

u,v e R” 18)
WhenF = A € R™™ ulA] = M[F).

Definition (infinitesimally contracting)
(Aminzare and Sontag, 2014)

A time-dependent vector field F:[0,00) x X — R”, X CR” is infinitesimally
contracting if:

ulJrtx)]= —c, VxeX, V>0 (19)

where ¢ > (0 is the contraction rate. [ () is the Jacobian of F(x,¢).
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Chaturantabut (2020) gives a stronger condition:
The function F'is infinitesimally contracting if sup M[F(t,x)] < 0.

tel0,00)
Lemma 1 (Chaturantabut,2020)
Suppose the nonlinear vector field /" of the full-order system is infinitesimally contracting.
Consider the reduced-order model:

3 =F) (20)

SHESH

where
F(x)=V'WF(W'Vz)

andx € R”, V € R asinequation (4).

V has m orthonormal columns and W is a matrix such that W'V € R has full
column rank. A

Then the nonlinear vector field (%) is also infinitesimally contracting.

The proof of Lemma 1 is given in Chaturantabut (2020).

The following proposition, Lemma 2, is proven in Chaturantabut (2020).
Lemma 2

Suppose the nonlinear vector field F in the full model is infinitesimally contracting, then
the reduced system in the form given in (20) preserves exponential stability.

Consequently, POD preserves stability for contracting systems as the reduced model is of
the form in (20) with W=1.

However, the given IPOD model reduction method is not in the form of (20) and so a
condition for ensuring its stability is necessary.
Lemma 3

Let F be the nonlinear vector field of the full-order system (1) and let /" be infinitesimally
contracting. Let the reduced system be given by:

d

i= F(z) 1)

where:
F&) = VIUPt) ' PtR(VE)

and again as in equation (4), ¥ € R™ V e R
Then the vector field F is infinitesimally contracting if:

M[pF] <0
where:
o=UuPtv) 'p!

It would be advantageous to have an IPOD arrangement in the form of (20) as if the original
system is exponentially stable, then the reduced system would preserve this property.



One scheme is proposed in Chaturantabut (2020). Transmission

Set W= HP"'. The goal is to choose H such that: line circuits
min [|P'F(Vi) - P'HP'F(PH' V)| 22)
HGR NXR

One choice is W = PP where Pis the n x % selector matrix in (11):

%& — P 23)

611

where:

F() = v'PP'F(PP'VE)
¥ eR™, Ve R™

rank(PP'V) = m

and

The Jacobian is:

T dx

Jr (24)

Then the reduced system in (23) preserves exponential stability. Note that for this scheme to
hold true k2 >m where k is the order of the interpolation space and # is the order of the
reduced model. However, as noted earlier, when selecting the order %, it was selected as =< m
to avoid costly SVD of the F matrix in (7). Hence, to meet both stability and efficiency
criteria, # =m is a suitable choice. In addition, while PP? has a dimension of # x #, the
complexity of forming PP’ V is O(km) because P is a selector matrix with only % nonzero
entries.
However, the desire to have:

F(Vi) = WF(W'Vz) (25)

is not fulfilled when W = PP". This leads to a reduction in accuracy. Results in the numerical
study section shall examine these effects.

Numerical results

Example 1

Figure 1 shows the nonlinear transmission line given in Nouri and Nakhla (2018). This
shall be used for the numerical studies in this paper. R=R,;,=1Q,L=10H,C=1F, ;=
I (¢*®? — 1), I, = 1 A. The input is a pulse of amplitude 10 A with a rise and fall time of 1 s
and a duration inclusive of rise and fall times of 10s.
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Figure 1.
Nonlinear
transmission line

For the studies that follow, the number of transmission line sections is N = 10 unless
otherwise stated. The simulation is for 40s. The trapezoidal rule in conjunction with
Newton’s method is used. Snapshots are taken every 80 time steps. The chosen time-step is
0.0031 s. Two measures of error shall be considered. The first is the root mean square error.
It is defined as:

N;

err = Z%Z () — 3, (1))

=1

where y(t) is the output from the full model and , (¢) is the output from the reduced model. N;
is the number of time steps. This gives a measure of the error over the entire waveform.
The relative error is defined as:

rel,,, — ’y(t) —(t) ‘
¥(t)
This gives an indication of where large errors occur in a time-domain waveshape.

The first important point to note is that the Jacobian matrices for this circuit are negative
definite. However, the vector field for this circuit is not infinitesimally contracting. When the
Jacobian Jris formed, ul[/x (¢, )] > 0 for some ¢.

When implementing the IPOD, various factors affect the accuracy of the results.

The first factor is the training input. The training input should be a wideband signal and
typical of that encountered in the regular application of the circuit. Pulses with sharp rise
and fall times as employed by a pulse generator would be suitable for a nonlinear
transmission line.

The next issue is the selection of the reduced-model order, 7. For example, in Method 1,
large errors can arise for certain values of  as seen in Figure 2. The explanation for this
occurrence is that the selected rows of Flx,) do not include sufficient states and hence, the
algorithm produces an output that is in error. Note that the order (which row is selected first,
second and so on) in which the rows are selected is dependent on Urin (7).

Now consider the [IPOD Method 2. In this case, a reduced-order model is guaranteed to be
exponentially stable if the full model is exponentially stable. While this example is not
infinitesimally contracting, noting that the Jacobians are Hurwitz, it is expected that the
Jacobians of the reduced model would be Hurwitz. However, large errors arise again for
certain 7 values because of the structure of the P matrix. The P matrix selects the most
important equations in F to form the reduced model. The state variables involved in these

I(t)



error in the prediction of the output voltage

35 b

25 =

0.5 b

: loooooooooos

selected equations are given by PP'Vx [see equation (23)]. Until the P matrix is such that
PPV includes all voltage states that are involved in the selected equations of F, there will
be an error in the computed value of F and so the overall error will remain large. When all
the voltage states are selected, there is a dramatic decrease in the error as evident from
Figure 3. For the given set of snapshots and parameters, it is not until 7 = 19 that all voltage
states are selected and at this point the error falls off. This situation is different with method
1 as in Method 1, the states that are selected are given by Y’ Vi and hence, the voltage states
that are involved in the selected equations are not determined or restricted by P. The

error in the prediction of the output voltage

25
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Figure 2.
Error as m increases
in Method 1

Figure 3.
Error in Method 2
with increasing m
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Figure 4.

Error with Method 2
in the prediction of
the endpoint voltage
with pre-set P

consequence is that for Method 2 there is a minimum 2 for accurate results and this
minimum may be significantly greater than that of Method 1. As in Method 1, the order in
which the states are selected is dependent on U

This feature of the results holds true for any number of transmission line sections, for
example, when N = 5, the error remains large until » = 9 and when N = 20, the error
remains large until 7 = 38.

The next issue is the selection of the snapshots in (2). The equations that are selected as
important could differ when the interval between the snapshots change. However, tests carried
out indicated that the snapshot interval did not have any significant effect on the results.

Observations
Based on the findings, the recommended strategy for model reduction of systems that have a
contractive vector field is to firstly select Method 2 so that exponential stability of the reduced
model is guaranteed. However, typical nonlinear transmission lines do not fall into this category.
A lower order model is obtained with Method 1 if Method 2 is implemented as is. However, one
recommendation is to decide what voltage states are required. The elements of P should be set to
select these voltage states and this shall determine the value of 7 that is chosen. (It must also
select the element of F"that has the input to the circuit if this is not already included.) It is possible
to pre-set P such that it selects the voltage states and this then determines the minimum order 2
for the IPOD. For the given transmission line, if Pis such that PP’ selects all of the voltage states,
then m = N + 1 where N is the number of transmission line sections. This reduction to O(N/2) is
significant for a large [V as occurs in practical realisations of nonlinear transmission line (NLTLs).

Figure 4 confirms this fact. It shows the error in the prediction of the end voltage of the
transmission line with the pre-set P. As expected, the error falls off once all of the N+ 1 =11
voltage states are included.

The snapshot interval should be varied to check that there are no significant changes.
Note that when P1is pre-set, the snapshots affect 1 and not P.

error in the prediction of the output voltage

25
09990000000
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Figures 5 and 6 show the transient results at the receiving end of the line. There is a larger
error in Figure 6. This is expected owing to (25) not being always true for Method 2. A
higher order m can be selected if greater accuracy is required. Figures 7 and 8 show the
corresponding relative errors.

Example 2
The previous example had Jacobian matrices that were negative definite. However, this is
not true in general of nonlinear transmission line circuits. For example, consider Figure 9

Result at the end of the line

full model result
reduced model result | |

0 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40
time s
p Result at the end of the line

full model result
reduced model result | |

5 10 15 20 25 30 35 40
time s
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Figure 5.
Result from Method 1
whenm =15

Figure 6.

Result from Method 2
with pre-set P when
m=15
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which is similar to that in Kuek (2012). The parameters chosen are also similar to Kuek
(2012). The number of sections is 10. Ry, = 50 Q, Ry, = 0.16 Q, Ryp0q =50 Q, R, =2 Q, Cy =
816.14pF, L =1 uH,a = 2.137,b = 6.072 x 103, The nonlinear capacitance is given by:

Cw) = G(o+ 1 =b)et)

The input pulse has a rise and fall time of 10 ns and a duration inclusive of the rise and fall
time of 400 ns.

In this case, the Jacobian matrices are not always negative definite and u[/z] cannot be
guaranteed to be negative. Indeed, forming a reduced order model for this type of circuit can be
problematic as numerical issues arise when the Jacobian of the reduced vector field is unstable.
For such cases, recommendations have been made in Bond and Daniel (2009). Stability issues
also arose in Hasan et al. (2018). In this case, 7 should be increased until sufficiently large to
avoid stability issues. Figure 10 shows the result from Method 1 when 2 = 19. It is not possible
to obtain a stable reduced-order model for the given set of parameters using Method 2. This
highlights the fact that forming a stable reduced-order model for a NLTL requires a thorough
knowledge of the full model and its stability properties.

Conclusions

The benefit of or suitability of model reduction for circuits is dependent on a thorough
knowledge of how various factors in the formation of the reduced-order model affect its
operation. Choices of training inputs and snapshot intervals must be considered. Stability of
the reduced-order model is paramount. When POD is used, stability is preserved
(Chaturantabut, 2020). However, it does not lead to a reduction in complexity. Interpolated
POD (Method 1) reduces the complexity but stability cannot be guaranteed to be preserved.
Method 2 is less accurate at a cost of preserving stability for contractive systems. The paper
has examined improvements to Method 2 for the specific application of nonlinear
transmission lines. The paper has recommended a technique for selecting a minimal model

- result at the end of the line

i full model result
3 N reduced model result | |
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Figure 10.
Result from Method 1
withm =19
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order m and interpolation order 2 when the method is applied to nonlinear transmission line
circuits that involve Jacobians that are Hurwitz. For nonlinear transmission lines where the
Jacobians are not Hurwitz, neither method can guarantee stability and Method 1 is
appropriate for such cases. The order m of such reduced models should be increased until a
stable model is obtained.
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