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A B S T R A C T

A deeper understanding of the drivers of evapotranspiration and the modelling of its constituent parts
(evaporation and transpiration) may be of significant importance to the monitoring and management of water
resources globally over the coming decades. In this work a framework was developed to identify the best
performing machine learning algorithm from a candidate set, select optimal predictive features and rank
features in terms of their importance to predictive accuracy. The experiments conducted in this work used
3 separate feature sets across 4 wetland sites as input into 8 candidate machine learning algorithms, providing
96 sets of experimental configurations. Given this high number of parameters, our results show strong evidence
that there is no singularly optimal machine learning algorithm or feature set across all of the wetland sites
studied despite their similarities. At each of the sites at least one model was identified that improved on the
predictive performance of our baseline. A key finding discovered when examining feature importance is that
methane flux, a feature whose relationship with evapotranspiration is not generally examined, may contribute
to further biophysical process understanding. This work demonstrates the applicability of a machine learning
framework for evapotranspiration partitioning that is independent of domain knowledge, producing improved
models for partitioning and identifying new and useful predictive features.
1. Introduction

Evapotranspiration (ET) is the process by which water is exchanged
between the biosphere and the atmosphere. Better understanding of
ET processes and their drivers in various environments is important
for the entire terrestrial hydrological cycle that governs the transport
and recycling of the water that supports, for example, our fresh water
supplies (Oki and Kanae, 2006; Zeng et al., 2018). Observations of the
Earth’s atmosphere and biosphere over the last number of decades have
indicated an intensifying hydrological cycle (Brutsaert and Parlange,
1998; Pascolini-Campbell et al., 2021) and an increase in the number
of people living in water stressed areas (Oki and Kanae, 2006). Mod-
elling efforts over this period have shown disagreements, with evidence
indicating a decline in global terrestrial ET caused by a reduction
in available moisture supply (Jung et al., 2010) and more recently,
indication of an increase in global terrestrial ET due to increasing
land temperature (Pascolini-Campbell et al., 2021). ET is a process
composed of two main parts: Evaporation (E), the physical process, and
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Transpiration (T ), a biologically modulated process that occurs through
the stomata of plants. A better understanding of the drivers of ET and
the modelling of each of its constituent parts may be of significant
importance to the monitoring and management of water resources
globally over the coming decades. ET research contributes to many
important components of global climate modelling including cloud for-
mation (of relevance due to their role in the absorption and reflection
of solar radiation and the transfer of energy between environments)
and moisture availability (Gerken et al., 2018; Green et al., 2017;
Pielke et al., 1998; Schlesinger and Jasechko, 2014; Trenberth et al.,
2009). The partitioning of ET into its constituents is vital in reducing
the associated uncertainty in climate land surface models and satellite
remote sensing projects such as ECOSTRESS (Fisher et al., 2020) as
current models are validated on combined ET data only (Stoy et al.,
2019). The usage of machine learning (ML) in the domain of biosphere–
atmosphere exchange has seen an increase in recent years with the
availability of large, open source Eddy Covariance (EC) data sets such
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Fig. 1. Satellite view of wetland sites included in this study.

as FLUXNET (Baldocchi et al., 2001) and AmeriFlux (Novick et al.,
2018) enabling more data intensive approaches. Applications of ML in
the domain of biosphere–atmosphere exchange have mostly focused on
gap-filling of EC data (Irvin et al., 2021) but some success has been
achieved in the application of ML techniques to the partitioning of
gas fluxes (Tramontana et al., 2020), prediction of fluxes (Tramontana
et al., 2016), spatial interpolation (Lin et al., 2002), and upscaling of
EC data (Bodesheim et al., 2018; Jung et al., 2009). As the EC method
measures total water flux, the goal of partitioning in this work is to
determine the individual contributions of E and T to the net flux.

Our previous work (Eichelmann et al., 2021b) introduced a novel,
data-driven ET partitioning method and applied neural networks on
micro-meteorological data collected from four wetland sites in Califor-
nia (Eichelmann et al., 2021b). Artificial neural networks (NN) were
used to partition ET into E and T by training these networks to predict E
during periods where T can assumed to be negligible. From this, T can
be estimated by subtracting the predicted E from total ET. In this paper
a broader range of ML algorithms are compared alongside the NN tested
in the previous work, expanding on the complexity of the models via
a novel feature selection process. The previous work utilised predictive
features via domain expertise only and in this work additional features
are selected via their correlation with the target and their effect on
increasing predictive performance. This work seeks to address three
research questions. Firstly, is there a ML algorithm that performs as
well or better than those tested in our previous work on the task of
predicting E? Secondly, can ML be utilised to identify an optimal set of
predictive features that improves predictive performance? Thirdly, do
the features identified contribute to our understanding of the processes
mediating ET in the wetland sites in this study? Identical datasets to
the previous work are used in this work (as described in Section 2.1)
and the results from this previous work are used as a partial baseline
for comparison in Section 4.

2. Background

2.1. Data

The data utilised in this work are obtained using the Eddy Covari-
ance (EC) method (Aubinet et al., 2012) from measurement towers
across four wetland sites in the Sacramento–San Joaquin river delta
in Northern California: Twitchell Wetland West Pond (AmeriFlux ID:
US-TW1) (Valach et al., 2021b)(WP), Twitchell East End Wetland
(AmeriFlux ID: US-TW4) (Eichelmann et al., 2021a)(EE), Mayberry
Wetland (AmeriFlux ID: US-MYB) (Matthes et al., 2021)(MB), and
Sherman Island Restored Wetland (AmeriFlux ID: US-Sne) (Shortt et al.,
2021)(SW). The locations of the sites are displayed graphically in Fig. 1.
2

This method ascertains the flux of trace gases by measuring the
covariance between fluctuations in vertical wind velocity and the mix-
ing ratio of the gas in question. The data from all sites are available
under an open-source license as part of the AmeriFlux network and can
be accessed through the AmeriFlux data sharing platform (Laboratory,
2021; Novick et al., 2018). The sites have been described in detail
elsewhere (Detto et al., 2010; Eichelmann et al., 2018; Hatala et al.,
2012; Knox et al., 2015) and the reader is referred to these works
for a more complete description. The four sites are all freshwater
marsh wetlands that have been constructed by the Department of
Water Resources to manage soil subsidence in the area. The observation
period for each site differs in length with approximately 10 years of
data for MB (October 2010 to October 2020), 8 for WP (July 2012 to
September 2020), 7 for EE (November 2013 to September 2020) and
4 for SW (May 2016 to April 2020). All sites, with the exception of
WP, underwent flooding within the measurement period. The longest
standing of the four sites is WP having been established in 1998. The
initial flooding period is of note as it provides a period in which
vegetation has not yet been established and thus, it can be assumed
that T is negligible during this period. The vegetation cover (within
the EC footprint at the latest measurement in 2018 (Valach et al.,
2021a)) varies between the sites with 97% cover at WP, 64% at MB,
96% at EE and 45% at SW. The lower vegetation cover at SW can be
explained by the fact that it is the newest wetland to be established,
constructed in 2016. The dominant vegetation species at all sites are
tule (Schoenoplectus acutus) and cattail (Typha spp.) (O’Connell et al.,
2015). Continuous fluxes of water vapour and other trace gases were
measured using the EC method. In addition to the EC data, micro-
meteorological and environmental data were also obtained for each of
the sites including the following variables with a known relationship
with ET; air temperature (TA); water temperature (TW ); soil temper-
ature (TS); relative humidity (RH); atmospheric pressure (AP); net
radiation (RNET ); water table depth (WT ); vapour pressure deficit
(VPD); sensible heat exchange (H); friction velocity (u*); vegetation
greenness index from camera data (GCC) and the target variable water
flux (labelled total ET or wq). The data frequency is at 30 min intervals
and where the data were recorded at higher frequencies, the mean was
computed for that 30 min period. Pre-processing of the data to remove
spikes, filter for instrument malfunctioning and gap-filling procedure
for certain data has been described in detail in Eichelmann et al. (2018).
For EC flux features with missing data, a NN procedure was used for
imputation (Baldocchi et al., 2015; Knox et al., 2015) and is detailed in
our previous work (Eichelmann et al., 2021b). Meteorological variables
were imputed using data from nearby weather stations where data
were available. For any remaining features with missing data, linear
interpolation was used.

2.2. Machine learning algorithms

In this paper, a variety of supervised ML algorithms were utilised
and the resulting models compared for performance on the prediction
task described in Section 3.1. The algorithms tested can be broadly
grouped into 3 categories: parametric regressors, non-parametric re-
gressors and ensembles (Géron, 2019). The scikit-learn library (Pe-
dregosa et al., 2011) was used for model building in addition to the
XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017)
libraries.

Parametric models, such as linear and ridge regression models or
NNs, produce a predictive function by assuming a model with a fixed
number of parameters and improving the performance of the model by
adjusting the weights of the parameters until a minimum loss is ob-
tained. Due to their simplicity, linear parametric models are extremely
fast in training and prediction but can suffer from underfitting if the
true distribution of the data is more complex.

Non-parametric models, such as K -nearest neighbours (KNN), de-
cision trees (DT) and Support Vector Machines (SVM) make little or
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Fig. 2. The process flow for the entire framework is split into two for the sake of legibility. On the left hand side the processes for obtaining the two additional feature sets, F25
and FRFE are described. On the right hand side the processes for training and evaluating the models are described. Each orange rectangle represents a standalone process, each
yellow rectangle represents a process with multiple components (the details of which are included in the text). Each green hexagon represents a feature set, each blue cylinder
represents a data set, each red parallelogram represents a set of ML models and a pink diamond represents a decision. Some processes are carried out across all 4 sites, such as
the Correlation Analysis. Other processes are carried out on each site individually, such as the Recursive Feature Elimination.
no assumptions about the predictive function in advance and seek to
learn both the functional form and the function’s parameter values from
the data. Non-parametric models produce a more flexible predictive
function, thereby allowing them to better model more complex dis-
tributions. This increase in complexity can lead to overfitting and an
increase in both training time and the volume of data required to fit
more complex models.

Ensemble methods such as Gradient Boosting, XGBoost and Light-
GBM, combine the predictions of many simple models, referred to as
weak learners or base learners, to produce a predictive model. Base
learners can be trained in parallel and combined using methods such
as bagging or stacking, or sequentially using methods such as boost-
ing (Géron, 2019). For all ensemble methods tested, the base learners
were DT. Ensemble methods are generally less prone to overfitting
while still retaining sufficient complexity to arrive at a reasonable
approximation of the underlying distribution.

3. Framework methodology

This section begins with a description of the approach used for
ET Flux Partitioning. The proposed framework is then described as
the following series of methodological steps: data preparation, fea-
ture selection, construction of baseline models, final model training,
evaluation and comparison. These steps are represented as a flow in
Fig. 2.

Each set of experiments were repeated across the four wetland sites
for each set of algorithms.
3

3.1. Evapotranspiration partitioning

A novel, data-driven method to ET partitioning (drawing from
previous work on carbon dioxide flux partitioning (Tramontana et al.,
2020)) was presented previously in Eichelmann et al. (2021b), with a
brief outline here. Given the difficulty in establishing ground-truth data
for the component contributions of E and T to overall 𝐸𝑇 , a number
of assumptions are used to establish periods during which T can be
assumed to be negligible and therefore, taken to be 0 in calculations.
During the night, plant stomata are assumed to be closed and therefore
not transpiring (confirmed with leaf level measurements at these sites).
Utilising this assumption, the night-time data (Night) are used to train
models to predict E, which can then be subtracted from total 𝐸𝑇 to give
predicted the values for T. Explicitly the relationship between E and T
can be expressed using Eq. (1).

𝐸𝑇 = 𝑇 + 𝐸

𝑇𝑁𝑖𝑔ℎ𝑡 ≃ 0

𝐸𝑇𝑁𝑖𝑔ℎ𝑡 = 𝐸

(1)

As there are no measured ground truth data for the individual
components E and T, assumptions about 𝑇 during other periods of
the year are used to determine two further test sets to evaluate the
methodology, namely the day-time data from the initial flooding period
(Flood) and day-time data from the winter senescent months (Winter).
The principal purpose of evaluating with these test sets is to examine
the performance of the models under a domain shift. Namely, this



Applied Computing and Geosciences 16 (2022) 100105A. Stapleton et al.
is the ability of the models to generalise to situations where the
underlying distribution of the predictive features is different to that
observed in training, which is performed on Night data only. Further
information on this domain shift can be found in the supplementary
material of our previous work (Eichelmann et al., 2021b). During the
initial flooding period of each of the wetland sites, vegetation had
not yet been established and therefore, T was not occurring. During
the winter months the vegetation are observed to be senescent and
here again, T is negligible. An additional set of core assumptions are
used in determining the timing of the onset and duration of these
periods. The zenith angle of the sun being greater than 90◦ is used to
determine the night-time periods. Visual determination of the level of
vegetation from camera observation of the sites is used to determine
the onset of vegetation after the initial flooding period, also referred to
as ‘‘greenup’’. Lastly, the months of December, January and February
are taken as the senescent periods. Limitations of these assumptions are
discussed in Section 4.5.

3.2. Data preparation

In order to reduce the dimensionality (number of features) of the
data to be computationally tractable for model building, the following
approach to feature selection was undertaken. First reduce the candi-
date number of features using correlation and completeness analyses.
Secondly, explore possible feature sets of different sizes and in differ-
ent combinations using Recursive Feature Elimination. This process is
described fully in Section 3.4.

As in Eichelmann et al. (2021b), domain knowledge was used to
inform the selection of features that have a known relationship with
water flux. These were VPD, GCC, u*, TA, RNET, WT, H and ecosystem
respiration estimated from an exponential relationship between night-
time carbon flux and temperature as performed in Reichstein et al.
(2005) (ERReichstein). In addition, three time features were added: year,
month and the day of the year (DOY). This forms the first feature set for
testing, denoted by the identifier FE. All features with a completeness
less than 80% (i.e. missing greater than 20% of the data) for the
measurement period were discarded. Soil and water temperature mea-
surements taken at various depths showed low levels of completeness
and the depths at which measurements were taken was not consistent
across sites. In order to obtain a useable feature for soil and water
temperature that is comparable between sites, the measurements were
consolidated by computing the mean of the sensor values across all
depths to create two new features, TS (mean) and TW (mean). For
the remaining features, linear interpolation was used to replace the
remaining missing data and a correlation analysis was undertaken to
extract the most likely useful features. Of the 50 most highly correlated
features at each site, the 25 features that were common across all sites
in that subset of 50 were selected and added to the FE feature set. The
resultant feature set was labelled F25. This approach was taken as the
hypothesis is that features that do not have a correlation with the target
feature that is common across multiple sites will be less likely to have
an underlying physical causal relationship (i.e. the correlation is more
likely to be spurious) and thus can be removed. It is noted that selecting
the most highly correlated features that are common across the 4 sites
is equivalent to removing the features that have no common correlation
and the features that have a lower average correlation across the sites.

3.3. Model comparison

In order to test and compare a suitably diverse set of algorithms
for model building, initial testing examined 38 algorithms from the
scikit-learn library (Pedregosa et al., 2011) alongside two additional
ensemble algorithms; LightGBM (Ke et al., 2017) and XGBoost (Chen
and Guestrin, 2016). The models are compared in order to ascertain
which algorithm will be most suited to the model building task, includ-
ing but not limited to an improvement in model performance in terms
4

of fitting well to the training data, generalising well to unseen data
and computational cost. Any models whose predictions had a negative
coefficient of determination (R2) with the target at any site were
immediately discarded. From the remaining models, a subset of the
best performing models (or simplest model in the case of equal model
performance) were selected across 3 different categories of models;
parametric, non-parametric and ensemble. The inclusion of different
categories of ML algorithms is undertaken to prevent a loss in diversity
from the initial set of algorithms tested. The models selected for final
testing and comparison were linear regression, ridge regression, KNN,
DT, Gradient Boosting Decision Trees, LightGBM and XGBoost. Default
hyper-parameters were used for all algorithms.

To reduce the effect of sampling bias in training and testing the
models, 10-fold cross-validation was applied. The Night data are split
into 10 randomly sampled subsets (folds) for cross-validation. The
models are trained and evaluated 10 times wherein at each iteration,
one of the folds is removed and the models are trained on the remaining
9 folds. At each iteration, the models are evaluated on the held-out
fold of the Night data as well as the entire Winter and Flood data. The
process is then repeated with the previous fold replaced for training
and the next fold removed for testing. At the end of the procedure, the
mean value for each of the metrics is obtained.

3.4. Recursive feature elimination

In order to identify a feature set that contains maximal information
with the minimum number of features a recursive feature elimination
(RFE) method is used. A lower number of features is desired to reduce
model complexity and subsequently reduce the chance of overfitting
and to combat the so-called ‘‘curse of dimensionality’’ (Han et al., 2011)
whereby an increase in the number of features leads to a lower number
of samples per unit volume of the feature space. In this method, a
LightGBM model is trained on Night data with the features from the
F25 feature set for each of the four sites. Each model is then used to
obtain a metric for the relative importance of each feature at that site.
The metric that is used to measure feature importance is the sum of the
gains in model performance, as measured by reduction in Root Mean
Squared Error (RMSE), of all branches of base learner DT using that
feature. The least important feature is then removed from the feature
set. A new model is trained on the resulting, smaller feature set and the
process is repeated until no features remain. Cross-validation is applied
at each iteration and the mean of the model performance metrics are
recorded. The optimal features for each site are determined to be the
feature set that preceded a 0.1% decrease in R2 for the hold-out Night
data as the number of features is iteratively decreased. The feature sets
obtained for each site are then compared for commonalities and those
features that were of low significance and in the optimal feature set
for only one site are discarded and the remaining feature set is labelled
FRFE. It is hypothesised that this feature set approaches the minimum
number of features needed to capture all information needed to model
E and T from the available data.

3.5. Evaluation

In order to select the most appropriate set of metrics for evaluating
model performance, the nature of the data must be taken into con-
sideration. In contrast to a conventional supervised learning problem
where the ground-truth data were obtained under known conditions,
the ground-truth data for the experiments in this study are based on
an assumption about approximate levels of T occurring under different
conditions. During the night-time, winter and initial flooding periods,
the assumptions governing negligible T are slightly different. There-
fore, we expect that some common metrics for the evaluation of a
regressor (e.g. RMSE and mean average error) may lead to difficulty in
comparing model performance across test sets as the level of actual T
occurring may vary and be non-negligible in some cases. This may lead
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to increases in measures of predictive error that are not attributable
to poor predictive performance but rather to deviations in the data
caused by a confounding variable that is not present in the training
data (namely T arising in total measured ET where the model assumes
that the total measured ET should be measuring E only).

Each of the Night, Flood and Winter datasets have different data
distributions (Eichelmann et al., 2021b) and it is the performance of
the models on data whose values lie outside the range of the training
data (referred to as unseen data) that must be evaluated.

Therefore, a metric that determines how closely the variations in
predictions of E follow the variations in total measured ET across all
test sets is required. For this reason, the metrics chosen for evaluation
are R2, Adjusted R2 (R2

Adj) and slope of line of best fit between ground
truth and predictions (m). R2

Adj enables comparison between feature
sets as this metric adjusts for the number of features used in order to
account for the often spurious increase in R2 when additional features
are added to a model.

𝑅2
𝐴𝑑𝑗 = 1 −

(1 − 𝑅2) × (𝑝 − 1)
𝑝 − 𝑞 − 1

(2)

Eq. (2) describes Adjusted R2 where R2 is the R2 of the model, 𝑝 is
the number of samples and 𝑞 is the number of features.

Slope is chosen in order to validate one of the biophysical con-
straints of any partitioning model, namely that the slope of the line of
best fit between the predicted E and the ground truth (total ET) never
exceeds 1 for any of the data. A slope greater than 1 would indicate
that E had exceeded net ET which would lead to negative T, violating
the biophysical constraint that negative T cannot occur.

At each iteration of the cross-validation procedure, the metrics are
obtained for the removed fold of the Night data in addition to the entire
Winter and Flood data. The mean of the metrics for all 10 iterations is
then reported as the metric for that model.

4. Results & discussion

In this section experimental results are presented where, for all four
wetland sites, identical feature sets and experimental configurations
were used. The results are reported on a per site basis as the goal is
to compare how each of the models generalise to unseen data for the
same site they were trained on. All results are the mean values of the
metric across 10 cross-validation folds.

4.1. Model comparison results

Fig. 3 shows the R2
Adj values for all sites, algorithms and feature

sets tested for the Night, Winter and Flood data.
Fig. 3 shows that an improvement in model performance was ob-

tained on Night data as well as in generalising to Winter and Flood data
over and above that of the baseline results (Eichelmann et al., 2021b),
where the baseline results are those that utilised NN-based models and
the FE feature set, indicated by a grey circular icon.

In general, results show that addition of the extra 25 features from
the correlation analysis gave some improvement in model performance
across all model types when compared to the baseline feature set, FE.
In addition, it is seen that reduction in features from 36 to 19 in
going from F25 to FRFE either resulted in further incremental improve-
ment for the best performing models, or did not drastically decrease
model performance. All sites had more than one model which failed
to generalise well to the Winter and Flood data. This observation is
important as it indicates that a site-specific approach to model building
may be more favourable. The sites modelled in this paper are all
biologically similar: all wetlands with the same species composition,
same climate and similar management. As described in Section 2.1
there are some known differences between the sites, such as the ratio
of open water to vegetation cover and the utility of this framework
5

may be best realised when building models that contain not only
the general features relevant for modelling a particular ecosystem but
also those features that are relevant for modelling that particular site.
Gradient Boosting and LightGBM based models performed well at all
sites except WP with LightGBM notably performing best on the Night
data at all sites. At WP linear parametric models such as Ridge or Linear
Regression performed best with most other models failing to generalise
to Winter data at this site. The low computational time and resource
requirements and high predictive performance on Night, Flood and
Winter data would suggest that LightGBM or Ridge regression would be
ideal candidate models in most cases. Many of the features are known
to exhibit a high-level of non-linearity in their relationship with ET,
particularly when considering the shift from night to day. For example,
RNET is approximately constant and negative at night while positive
during the day. This may go towards explaining why simpler models
(such as linear parametric models or models that used less features)
performed worse in some cases — the generated hyper-plane may
not have sufficient complexity to model the underlying relationship
between the predictive features and the target feature. It is also noted
that most of the models failed to generalise well for the Winter data
at WP, indicating that there may be particularities about this site that
were not captured in the features or in the learned predictive function.
This may be due to the fact that WP has differences in its composition
to the other sites being the oldest of the 4 sites, as previously discussed
in Section 2.1.

4.2. RFE results

Fig. 4 displays the results of the RFE process wherein features
are iteratively removed from the F25 feature set until only 1 feature
remains. The feature set selected for testing (FRFE) is that which pre-
cedes a 1% reduction in R2

Adj on the Night data. FRFE, the feature
set generated by the RFE process, contains all features from FE except
TA and ERReichstein. It is also noted that the temperature information
may already be captured sufficiently in the TW or TS variables. It is
evident that the number of features needed for an optimally performing
model varies from site to site, indicating the difficulties in determining
a universally optimal feature set. For example, at SW a model with just
3 features generalises best on Winter data and generalises better than
the feature set chosen by the RFE process for that site. In contrast, a
model with 6 features for that site generalises best on Flood data with
a reduction in performance in generalising to Winter data.

4.3. Feature importance

Table 1 lists the features selected using the RFE process for each
site. Feature (F) columns rank features by their importance while
Importance (I) columns give the relative proportion of total gain in
performance contributed by that feature, normalised to sum to 1. The
features that were not included in FRFE are denoted by a strike-through.
A full list of the features tested and their descriptions can be found in
the supplementary material. As noted in Section 4.2, there is an overlap
with the features previously selected using domain knowledge and
many of the new features selected relate to processes that are known
mediators of E and T. Our previous work highlighted the importance of
VPD and u* as they both relate to energy transport (Eichelmann et al.,
2021b) which affects E as it is a form of latent energy. VPD is a measure
of dryness of the air which increases transport of water across this
gradient from high to low moisture and u* is a measure of turbulence
which also increases the transport of energy away from the surface.
Most of the features identified by this framework can be grouped into
their relationships with E as the energy available for evaporation (TW,
H, RNET, TS, tbar), the moisture gradient driving E (RH, VPD and WT
to a lesser degree), the turbulent processes transporting water vapour
away from the surface (u*, u (mean), uw, ww and WD) and the temporal
patterns of ET (year, DOY and time). For description of variable labels
please refer to Table 2 in the supplementary material.
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Fig. 3. Results of model comparison for the four sites being studied. The 𝑥-axis plots the Adjusted R2 (R2
Adj) values for predictions on data from winter month and the 𝑦-axis

plots the R2
Adj values for predictions on data from the initial flooding period, testing the ability of the models to generalise to unseen data. The colour of the marker indicates

the algorithm used in model building and the shape of the marker indicates the feature set being tested. The size of the marker indicates the R2
Adj values for predictions on the

hold-out Night data, demonstrating how well the models perform on data that is identically distributed to the training data. Therefore, the best performing models are those with
the largest markers that are closest to the upper right corner of the graph. The 𝑥- and 𝑦-axis lines along the origin are displayed to allow for ease of identification of those models
that fail to generalise well (i.e. models with 𝑅2

𝐴𝑑𝑗 < 0). As WP does not have data from the initial flooding period, the results are displayed along the 𝑥-axis only.
Table 1
Feature importance ranked in order of importance for each site where the features obtained by the RFE process are denoted by F followed by the site label
and the relative importance of that feature at that site is given by I followed by the site label. Features that were omitted from the final feature set (FRFE)
are indicated by a strike-through, highly important features indicated in bold, features of interest in italics and the threshold for significant feature importance
indicated by a horizontal line for each site.
Rank F (EE) I (EE) F (SW) I (SW) F (MB) I (MB) F (WP) I (WP)

1 TW (mean) 0.282 u (mean) 0.546 u* 0.273 H 0.413
2 u (mean) 0.218 VPD 0.179 wm 0.146 u* 0.208
3 c (mean) 0.123 u* 0.053 year 0.113 RNET 0.098
4 RH 0.087 H 0.044 RH 0.099 VPD 0.053

5 year 0.060 wm 0.032 VPD 0.094 RH 0.048

6 VPD 0.042 TW (mean) 0.028 u (mean) 0.082 DOY 0.024

7 WT 0.037 RH 0.025 TW (mean) 0.052 year 0.021
8 H 0.031 t (mean) 0.020 DOY 0.050 TA 0.018

9 u* 0.030 DOY 0.017 GCC 0.030 uw 0.018
10 uw 0.027 WT 0.015 H 0.027 GCC 0.016
11 DOY 0.015 uw 0.009 WD 0.014 uu 0.015
12 RNET 0.012 time 0.008 wm 0.013
13 TS (mean) 0.011 ww 0.007 WT 0.010
14 ww 0.004 RNET 0.004 WD 0.009
15 wm 0.004 GCC 0.004 time 0.008
16 ze 0.004 TS (mean) 0.004 TW (mean) 0.006
17 GCC 0.004 year 0.003 TS (mean) 0.005
18 statq 0.003 ts (mean) 0.004
19 t (mean) 0.002 sos 0.004
20 WD 0.002 erlinear 0.003
21 vv 0.003
6
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Fig. 4. Results of the RFE process for each of the 4 sites tested with number of features on the 𝑥-axis and R2
Adj results on the 𝑦-axis. The iterations start on the right and move

towards 0 as RFE iteratively decreases the number of features until only 1 feature remains for each of the sites and each of the test sets; Night, Winter and (where available)
Flood. A vertical line on each graph indicates the number of features selected, where the optimal feature set is determined to be the last feature set preceding a 0.1% reduction
in R2

Adj.
If a threshold of 0.2 is set for highly important and 0.05 (±10%)
for significantly important, an examination of Table 1 indicates 4
features (highlighted in bold) as being of high importance in accurately
predicting ET: u(mean) at the EE and SW sites; u* at the MB and WP
sites; H at the WP site and TW (mean) at the EE site. If the features that
are deemed to be highly or significantly important are examined it is
observed that EE has 6, SW has 4, MB has 8, and WP has 5 features. This
indicates that the majority of the predictive performance is attributable
to these features. Two variables (highlighted in italics) which were
unexpectedly ranked as important were carbon dioxide concentration (c
(mean)) at EE and methane flux (wm) at MB. It is hypothesised that the
relevance of c (mean) may be due to its connection to microbial activity
via soil respiration wherein carbon dioxide and water are transported
in the same way. The connection with wm is not as clear as there are
multiple pathways through which methane can be released; diffusion,
ebullition, and plant mediated transport. The fact that wm appears as
an important predictive feature for E could indicate that there is mostly
diffusive transport occurring which would follow the same physical
processes as evaporation.

Identifying new features may reveal previously unknown connec-
tions between components of the system for further study with the
potential to improve understanding of the underlying biophysical pro-
cesses. This process is significantly enabled by this objective and data-
driven framework.

While this work focused on using half hourly flux data, recent
research on the use of high-frequency (10 or 20 Hz) EC data in
the partitioning of methane fluxes (Iwata et al., 2018; Taoka et al.,
2020) and in the partitioning of water vapour and carbon dioxide
7

fluxes (Klosterhalfen et al., 2019; Scanlon and Sahu, 2008; Scanlon
and Kustas, 2010; Scanlon et al., 2019; Skaggs et al., 2018; Zahn
et al., 2022) provide an avenue for further research. The latter utilises
the similarity between non-stomatal (respiration and E) and stomatal
(photosynthesis and T) components, a methodology that could possibly
be amenable to ML techniques or that could serve as a comparison for
the outputs of our methodology.

4.4. Additional results

All other sites were tested for the slope of line of best fit between
total ET and the predictions for the Night, Winter, Flood periods as
well as for the daytime data outside of these periods. The single site
for which a slope greater than 1 was observed was SW during the
Winter period and only for the Decision Tree and Linear models. It
should be noted however that the slopes for other models at SW were
quite close to 1, indicating that the modelling of the Winter data for
this site requires further investigation as these predictions violate the
biophysical constraints outlined in Section 3.5. These findings are in
line with those of our previous study (Eichelmann et al., 2021b). The
details of these results can be found in the supplementary materials in
Tables 4, 6, 8 and 9.

4.5. Limitations

Combining features across sites as part of the RFE feature selection
process may have led to the inclusion of features that were site specific
i.e. relevant to the predictions at one site but not adding useful infor-
mation at another site. Therefore, this methodological pipeline may be
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more useful on a site specific basis to identify useful features for that
site only and reduce them to the optimal number of features.

A large percentage of the data for the target has been imputed for
all sites and additionally a small percentage of features were imputed
with a variety of methods being used for imputation. Building models
that use this data carry the errors and limitations of the imputation
methods and may introduce noise to the data, particularly where linear
interpolation was used. Gap-filling of the target data as well as H and
m was carried out using NN-based methods as discussed in our previ-
us work (Eichelmann et al., 2021b), as well as linear interpolation of
he remaining missing data used in these experiments, which may have
ffects on the error of our models. It is noted however, that there is no
lear relationship between the linear interpolation carried out in this
tudy and the performance of the models at any particular site. This
s a topic that requires further investigation and the inclusion of more
omprehensive methods for gap-filling that are outside the scope of the
urrent work. More information on gaps in the data can be found in the
upplementary materials (Figure 5). Assumptions around the onset of
he different periods where T is considered to be negligible may also
ead to the introduction of noise to the target feature where T could be
ow but non-negligible.

Further model improvements could be obtained through the tuning
nd optimisation of the hyper-parameters of the models implemented.
his forms a potential direction for further experimentation along with
he testing and optimisation of different NN architectures exploiting the
eature sets obtained in this research to allow for better comparison
ith previous modelling efforts (Eichelmann et al., 2021b). An inves-

igation into the performance of the SW models which used the two
maller feature sets obtained from RFE may also yield further model
mprovements. Further research should focus on determining if these
ethods generalise to other sites, including other freshwater marsh

ites and other sites in the FLUXNET network of different types. The
hallenge for generalising this methodology to sites of a different land,
egetation or climate class is that the underlying physical assumptions
ay be different, potentially rendering the method inapplicable or

equiring modification of the core methodology. A definitive choice of
eature set or algorithm across all sites was not possible from the results
f our model comparison, indicating that while some features may be
ommon and of relevance across similar ecosystems (i.e. modelling two
ifferent wetlands) some features may be specific to a particular site.
t is the combination of these more general features with more specific
eatures that may lead to more accurate data-driven modelling of more
eterogeneous systems and the potential identification of previously
nknown drivers or mediators of E and T for further study.

5. Conclusions

In this work a new framework by which climate scientists can test
the efficacy of multiple ML algorithms and identify suitable predictive
features from a high-dimensional candidate set has been presented.
The result is a ranking of the candidate algorithms, a generally op-
timal feature set and an understanding as to how features contribute
to model performance (predictive accuracy). For validation, micro-
meteorological datasets were used with this framework to produce a
model with an optimal balance between complexity and model per-
formance. The framework adopts an objective (i.e. without usage of
domain knowledge) view of feature selection and demonstrated an
improvement on the baseline (Eichelmann et al., 2021b) which used
a subjective approach to feature selection.

Algorithm ranking identified that ensemble models (such as Light-
GBM or Gradient Boosting) or linear parametric models would likely
perform well on this task at other sites, generalising well to unseen
data. However this was not a universal result, with simpler linear
parametric models performing best at WP, indicating that there are key
differences between the sites that necessitate an approach that tailors
the models to individual sites.
8

The RFE process identified new features from the data that im-
proved model performance. The use of information gain as a metric
to iteratively remove features also allows for a direct comparison as to
which features were most important at each site, providing the basis
for further work, either in transferring these learnings to new sites or
refining the models for these sites.

The examination of feature importance highlighted an obscure bio-
physical link in the case of carbon dioxide concentration and methane
flux which improves our understanding of the physical and biological
processes involved.

In conclusion, this method provides new evidence of the contribu-
tion of ML to ET partitioning. The independence of the framework from
explicit domain knowledge indicates that this approach may be domain
agnostic, meaning that this method may have applications on other
datasets, either for different EC flux sites or on entirely unrelated data.

Code availability

The code for this work is available at: https://github.com/AdamSt
apleton/ETPartitioning. Potential users of this code are advised that as
this work is still under development it may not be suitable for reuse
and requires further testing and refinement before implementation as
a publicly available tool for researchers.
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